Skip to content

Instantly share code, notes, and snippets.

@KKostya
Created April 17, 2016 16:28
Show Gist options
  • Save KKostya/4a89101975d6eea045042f2da08425f2 to your computer and use it in GitHub Desktop.
Save KKostya/4a89101975d6eea045042f2da08425f2 to your computer and use it in GitHub Desktop.
Newton-Raphson
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n"
]
}
],
"source": [
"%pylab inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"I want to solve this system using the NR method\n",
"$$\\left\\{ \\begin{array}{l} y + \\sin x + 1 = 0\\\\ y^2 + x = 0 \\end{array}\\right.$$"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def F(x,y):\n",
" return np.array([ y + np.sin(x) + 1, y**2 + x ])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"First I calculate the Jacobian\n",
"\n",
"$$\n",
" J = \\left(\\begin{array}{cc} \n",
" \\frac{\\partial f_1}{\\partial x}& \\frac{\\partial f_2}{\\partial x} \\\\ \n",
" \\frac{\\partial f_1}{\\partial y}& \\frac{\\partial f_2}{\\partial y} \n",
" \\end{array}\\right) = \n",
" \\left(\\begin{array}{cc} \n",
" \\cos x & 1 \\\\ \n",
" 1 & 2 y \n",
" \\end{array}\\right)\n",
"$$"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def J(x,y):\n",
" return np.array([[ np.cos(x) , 1 ], \n",
" [ 1 , 2*y ] ])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Newton-Raphson method is an iterative method expressed with this formula:\n",
"$$ \\vec{r}_{n+1} = \\vec{r}_n - J^{-1}\\cdot F(\\vec{r}_n) $$"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"def step(r):\n",
" x = r[0]\n",
" y = r[1]\n",
" \n",
" j = J(x,y)\n",
" f = F(x,y)\n",
" \n",
" jinv = np.linalg.inv(j)\n",
" rnew = r - jinv.dot(f)\n",
" \n",
" return rnew"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One starts with some initial guess ([x=0,y=0] in this case) and applies this formula itertively until it converges to some value:"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([ 0., -1.])"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"step([0,0])"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.33333333, -0.66666667])"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"step([ 0., -1.])"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.3861205 , -0.62292371])"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"step([-0.33333333, -0.66666667])"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.38728575, -0.62232316])"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"step([-0.3861205 , -0.62292371])"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.38728607, -0.62232312])"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"step([-0.38728575, -0.62232316])"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([-0.38728607, -0.62232312])"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"step([-0.38728607, -0.62232312])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lets check wheter these values solve our equations:"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"array([ 3.62356367e-10, -4.31346558e-09])"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"f(-0.38728607, -0.62232312)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment