Skip to content

Instantly share code, notes, and snippets.

View Kakarot-2000's full-sized avatar
💭
studying graphql

Rohan Krishna Ullas Kakarot-2000

💭
studying graphql
  • India
View GitHub Profile
def getLink(number):
link='https://www.google.com/search?q='+'geeksforgeeks puzzle '+number
response=requests.get(link)
ls=[]
links=[]
try:
soup=bs4.BeautifulSoup(response.text,features="html.parser")
for tag in soup.find_all('a'):
@Kakarot-2000
Kakarot-2000 / run.py
Last active May 4, 2021 09:26
importing the libraries
import smtplib, ssl
import bs4,webbrowser
import requests
model = model_from_json(open("fer.json", "r").read()) #load model
model.load_weights('fer.h5') #load weights
face_haar_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
camera = cv2.VideoCapture(0)
app = Flask(__name__)
from flask import Flask, render_template, Response
import cv2
import numpy as np
from tensorflow.keras.models import model_from_json
from tensorflow.keras.preprocessing import image
flask
tensorflow
opencv-python
numpy
fer_json = model1.to_json()
with open("fer.json", "w") as json_file:
json_file.write(fer_json)
model1.save_weights("fer.h5")
x_train=x_train.astype('float32')
x_test=x_test.astype('float32')
#intializing callbacks
early_stopping=keras.callbacks.EarlyStopping(patience=15,restore_best_weights=True)
model1.compile(optimizer='Adam',loss='categorical_crossentropy',metrics=['accuracy'])
model1.fit(x_train,y_train,
batch_size=64,
model1=keras.models.Sequential()
# Block-1
model1.add(keras.layers.Conv2D(filters=32, kernel_size=(3,3), padding='same',
kernel_initializer='he_normal',
activation="elu",
input_shape=(48,48,1)))
model1.add(keras.layers.BatchNormalization())
model1.add(keras.layers.Conv2D(filters=32, kernel_size=(3,3), padding='same',
#data augmentation
x_train=x_train.reshape((x_train.shape[0],48,48,1))
x_test=x_test.reshape((x_test.shape[0],48,48,1))
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale=1./255,
rotation_range=60,
shear_range=0.5,
zoom_range=0.5,
width_shift_range=0.5,
height_shift_range=0.5,
df1 = pd.read_csv("fer2013.csv") #make sure the file is in the root location
# Preprocessing
x_train=[]
x_test=[]
y_train=[]
y_test=[]
for i,row in df1.iterrows():
k=row['pixels'].split(" ")
if(row['Usage']=='Training'):