Skip to content

Instantly share code, notes, and snippets.

@KaroAntonio
Created April 1, 2024 19:39
Show Gist options
  • Save KaroAntonio/8d778634f0ff06f7705ee75fd703971c to your computer and use it in GitHub Desktop.
Save KaroAntonio/8d778634f0ff06f7705ee75fd703971c to your computer and use it in GitHub Desktop.
Relax Challenge.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"provenance": [],
"authorship_tag": "ABX9TyMxL6n39oJcNvBK3qPZEJxt",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/KaroAntonio/8d778634f0ff06f7705ee75fd703971c/relax-challenge.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"source": [
"# Relax Take Home Challenge\n",
"Karo Castro-Wunsch\n",
"2024-03-29\n",
"\n",
"We are working with user and user engagement data for the Relax service. \n",
"Our goal is to: **Identify which factors predict future user adoption.**\n",
"\n",
"Defined 'Adopted User': a user who was logged into the product on three seperate days in at least one seven day period.\n",
"\n",
"In order to answer our key question, we:\n",
"1. Build an 'is_adoped' col for each user\n",
"2. Select / Clean up the features for analysis\n",
"3. Compute importance using 2 methods \n",
" 3.1 Correlation \n",
" 3.2 LogReg Feature Importance\n",
"4. Analyize feature importance"
],
"metadata": {
"id": "G-bFfnQjTASB"
}
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {
"id": "LJwHQ_H9S0zM"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.preprocessing import StandardScaler\n",
"from sklearn.model_selection import train_test_split, cross_val_score\n",
"from sklearn.metrics import accuracy_score, confusion_matrix, classification_report"
]
},
{
"cell_type": "code",
"source": [
"user_df = pd.read_csv('takehome_users.csv', encoding='latin-1')\n",
"engagement_df = pd.read_csv('takehome_user_engagement.csv')"
],
"metadata": {
"id": "EL4GPlp-T0i7"
},
"execution_count": 48,
"outputs": []
},
{
"cell_type": "code",
"source": [
"user_df.rename(columns={'object_id':'user_id'}, inplace=True)"
],
"metadata": {
"id": "drne55Ak5Yla"
},
"execution_count": 49,
"outputs": []
},
{
"cell_type": "code",
"source": [
"user_df.set_index('user_id', inplace=True)"
],
"metadata": {
"id": "BmmwtOVC5Kc9"
},
"execution_count": 50,
"outputs": []
},
{
"cell_type": "code",
"source": [
"user_df.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 344
},
"id": "MFOYIQf3UCda",
"outputId": "53e16998-fa58-42e5-a787-bb8745fcef1f"
},
"execution_count": 51,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" creation_time name email \\\n",
"user_id \n",
"1 2014-04-22 03:53:30 Clausen August [email protected] \n",
"2 2013-11-15 03:45:04 Poole Matthew [email protected] \n",
"3 2013-03-19 23:14:52 Bottrill Mitchell [email protected] \n",
"4 2013-05-21 08:09:28 Clausen Nicklas [email protected] \n",
"5 2013-01-17 10:14:20 Raw Grace [email protected] \n",
"\n",
" creation_source last_session_creation_time opted_in_to_mailing_list \\\n",
"user_id \n",
"1 GUEST_INVITE 1.398139e+09 1 \n",
"2 ORG_INVITE 1.396238e+09 0 \n",
"3 ORG_INVITE 1.363735e+09 0 \n",
"4 GUEST_INVITE 1.369210e+09 0 \n",
"5 GUEST_INVITE 1.358850e+09 0 \n",
"\n",
" enabled_for_marketing_drip org_id invited_by_user_id \n",
"user_id \n",
"1 0 11 10803.0 \n",
"2 0 1 316.0 \n",
"3 0 94 1525.0 \n",
"4 0 1 5151.0 \n",
"5 0 193 5240.0 "
],
"text/html": [
"\n",
" <div id=\"df-957d9e1f-1b3b-410d-b4cd-1a5886257095\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>creation_time</th>\n",
" <th>name</th>\n",
" <th>email</th>\n",
" <th>creation_source</th>\n",
" <th>last_session_creation_time</th>\n",
" <th>opted_in_to_mailing_list</th>\n",
" <th>enabled_for_marketing_drip</th>\n",
" <th>org_id</th>\n",
" <th>invited_by_user_id</th>\n",
" </tr>\n",
" <tr>\n",
" <th>user_id</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2014-04-22 03:53:30</td>\n",
" <td>Clausen August</td>\n",
" <td>[email protected]</td>\n",
" <td>GUEST_INVITE</td>\n",
" <td>1.398139e+09</td>\n",
" <td>1</td>\n",
" <td>0</td>\n",
" <td>11</td>\n",
" <td>10803.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2013-11-15 03:45:04</td>\n",
" <td>Poole Matthew</td>\n",
" <td>[email protected]</td>\n",
" <td>ORG_INVITE</td>\n",
" <td>1.396238e+09</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>316.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2013-03-19 23:14:52</td>\n",
" <td>Bottrill Mitchell</td>\n",
" <td>[email protected]</td>\n",
" <td>ORG_INVITE</td>\n",
" <td>1.363735e+09</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>94</td>\n",
" <td>1525.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2013-05-21 08:09:28</td>\n",
" <td>Clausen Nicklas</td>\n",
" <td>[email protected]</td>\n",
" <td>GUEST_INVITE</td>\n",
" <td>1.369210e+09</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>1</td>\n",
" <td>5151.0</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>2013-01-17 10:14:20</td>\n",
" <td>Raw Grace</td>\n",
" <td>[email protected]</td>\n",
" <td>GUEST_INVITE</td>\n",
" <td>1.358850e+09</td>\n",
" <td>0</td>\n",
" <td>0</td>\n",
" <td>193</td>\n",
" <td>5240.0</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-957d9e1f-1b3b-410d-b4cd-1a5886257095')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-957d9e1f-1b3b-410d-b4cd-1a5886257095 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-957d9e1f-1b3b-410d-b4cd-1a5886257095');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-1b4f1be9-ba7b-4f46-9a63-283637f771b2\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-1b4f1be9-ba7b-4f46-9a63-283637f771b2')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-1b4f1be9-ba7b-4f46-9a63-283637f771b2 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "user_df",
"summary": "{\n \"name\": \"user_df\",\n \"rows\": 12000,\n \"fields\": [\n {\n \"column\": \"user_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3464,\n \"min\": 1,\n \"max\": 12000,\n \"num_unique_values\": 12000,\n \"samples\": [\n 1936,\n 6495,\n 1721\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"creation_time\",\n \"properties\": {\n \"dtype\": \"object\",\n \"num_unique_values\": 11996,\n \"samples\": [\n \"2013-02-12 13:23:43\",\n \"2013-02-16 01:32:28\",\n \"2013-06-02 16:34:12\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"name\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 11355,\n \"samples\": [\n \"Christiansen Bent\",\n \"Higley Christopher\",\n \"Train Aidan\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"email\",\n \"properties\": {\n \"dtype\": \"string\",\n \"num_unique_values\": 11980,\n \"samples\": [\n \"[email protected]\",\n \"[email protected]\",\n \"[email protected]\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"creation_source\",\n \"properties\": {\n \"dtype\": \"category\",\n \"num_unique_values\": 5,\n \"samples\": [\n \"ORG_INVITE\",\n \"SIGNUP_GOOGLE_AUTH\",\n \"SIGNUP\"\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"last_session_creation_time\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 19531160.787043978,\n \"min\": 1338452406.0,\n \"max\": 1402066730.0,\n \"num_unique_values\": 8821,\n \"samples\": [\n 1340000786.0,\n 1379320190.0,\n 1401502899.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"opted_in_to_mailing_list\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 0,\n 1\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"enabled_for_marketing_drip\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0,\n \"min\": 0,\n \"max\": 1,\n \"num_unique_values\": 2,\n \"samples\": [\n 1,\n 0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"org_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 124,\n \"min\": 0,\n \"max\": 416,\n \"num_unique_values\": 417,\n \"samples\": [\n 198,\n 407\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"invited_by_user_id\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 3383.7619678015885,\n \"min\": 3.0,\n \"max\": 11999.0,\n \"num_unique_values\": 2564,\n \"samples\": [\n 1877.0,\n 10730.0\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 51
}
]
},
{
"cell_type": "code",
"source": [
"user_df.info()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "rDkZ3G5iUGPa",
"outputId": "2124f1c9-5a8e-42c8-9f6d-85895c5c7882"
},
"execution_count": 4,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 12000 entries, 0 to 11999\n",
"Data columns (total 10 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 object_id 12000 non-null int64 \n",
" 1 creation_time 12000 non-null object \n",
" 2 name 12000 non-null object \n",
" 3 email 12000 non-null object \n",
" 4 creation_source 12000 non-null object \n",
" 5 last_session_creation_time 8823 non-null float64\n",
" 6 opted_in_to_mailing_list 12000 non-null int64 \n",
" 7 enabled_for_marketing_drip 12000 non-null int64 \n",
" 8 org_id 12000 non-null int64 \n",
" 9 invited_by_user_id 6417 non-null float64\n",
"dtypes: float64(2), int64(4), object(4)\n",
"memory usage: 937.6+ KB\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"engagement_df.head()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 206
},
"id": "ySG9rmvqUI8u",
"outputId": "3347352e-cb9f-405e-bd4c-64b78e5aed69"
},
"execution_count": 5,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" time_stamp user_id visited\n",
"0 2014-04-22 03:53:30 1 1\n",
"1 2013-11-15 03:45:04 2 1\n",
"2 2013-11-29 03:45:04 2 1\n",
"3 2013-12-09 03:45:04 2 1\n",
"4 2013-12-25 03:45:04 2 1"
],
"text/html": [
"\n",
" <div id=\"df-ce40bdef-a6a1-4eb1-b6ca-6470af84b655\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>time_stamp</th>\n",
" <th>user_id</th>\n",
" <th>visited</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>2014-04-22 03:53:30</td>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2013-11-15 03:45:04</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>2013-11-29 03:45:04</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>2013-12-09 03:45:04</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2013-12-25 03:45:04</td>\n",
" <td>2</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-ce40bdef-a6a1-4eb1-b6ca-6470af84b655')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-ce40bdef-a6a1-4eb1-b6ca-6470af84b655 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-ce40bdef-a6a1-4eb1-b6ca-6470af84b655');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-1c19f64b-267e-4e3c-889d-121c39d7642b\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-1c19f64b-267e-4e3c-889d-121c39d7642b')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-1c19f64b-267e-4e3c-889d-121c39d7642b button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "engagement_df"
}
},
"metadata": {},
"execution_count": 5
}
]
},
{
"cell_type": "code",
"source": [
"engagement_df.info()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "ZsG-djqrULIF",
"outputId": "48f74004-7734-4d36-fd76-2dcb4d1ac9aa"
},
"execution_count": 135,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 207917 entries, 0 to 207916\n",
"Data columns (total 4 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 time_stamp 207917 non-null object \n",
" 1 user_id 207917 non-null int64 \n",
" 2 visited 207917 non-null int64 \n",
" 3 day_visited 207917 non-null datetime64[ns]\n",
"dtypes: datetime64[ns](1), int64(2), object(1)\n",
"memory usage: 6.3+ MB\n"
]
}
]
},
{
"cell_type": "markdown",
"source": [
"#### Build is_adopted Feature\n"
],
"metadata": {
"id": "10rrvWkt680C"
}
},
{
"cell_type": "code",
"source": [
"# Construct the adopted_user target variable\n",
"# Construct a dt for each day a user visited\n",
"day_visited = pd.to_datetime(engagement_df.time_stamp.apply(lambda t_str: t_str[0:10]))\n",
"engagement_df['day_visited'] = day_visited\n",
"\n",
"def is_adopted_user(days_active):\n",
" days = np.sort(days_active.unique())\n",
" if len(days) <= 2:\n",
" return 0\n",
" for day_i in range(1, len(days)-2):\n",
" if days[day_i+1] - days[day_i-1] < pd.Timedelta('7 days'):\n",
" return 1\n",
" return 0\n",
"\n",
"adopted_users_sr = engagement_df.groupby('user_id')['day_visited'].transform(is_adopted_user)"
],
"metadata": {
"id": "8UMWqclxU2C3"
},
"execution_count": 136,
"outputs": []
},
{
"cell_type": "code",
"source": [
"adopted_users_df = pd.DataFrame({'is_adopted': adopted_users_sr, 'user_id': engagement_df.user_id })"
],
"metadata": {
"id": "gYS_7j7D231O"
},
"execution_count": 137,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Let's Double check that our transform f worked as expected\n",
"# We should get only 0s and 1s for the mean across user rows,\n",
"# which would indicate that all rows are labelled consistently\n",
"# This shows also indicates that we have a 1555 / 12000 adoption rate for users\n",
"adopted_users_df.groupby('user_id').mean().value_counts()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "fXFLdt3J4ADg",
"outputId": "ae793481-7ef3-493a-8562-05471a86e274"
},
"execution_count": 138,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"is_adopted\n",
"0.0 7268\n",
"1.0 1555\n",
"dtype: int64"
]
},
"metadata": {},
"execution_count": 138
}
]
},
{
"cell_type": "code",
"source": [
"# Add is_adopted value to user df\n",
"is_adopted_sr = adopted_users_df.groupby('user_id').mean().astype(int)\n",
"user_df['is_adopted'] = is_adopted_sr"
],
"metadata": {
"id": "12t2GDuM4wpB"
},
"execution_count": 139,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"#### Clean up Features and choose those appropriate for Analysis"
],
"metadata": {
"id": "bnjTj3IV7BN1"
}
},
{
"cell_type": "code",
"source": [
"# Select Cols relevant cols\n",
"# name and email are unique to each row, so not useful for us\n",
"analysis_cols = ['creation_time', 'creation_source','last_session_creation_time', 'opted_in_to_mailing_list', 'enabled_for_marketing_drip', 'org_id', 'is_adopted']\n",
"analysis_df = user_df[analysis_cols]"
],
"metadata": {
"id": "vFertvH-5wKT"
},
"execution_count": 140,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# These both look like cols that could have NA filled with 0\n",
"analysis_df.isna().sum()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "N_TtnycxGe_J",
"outputId": "29c72e54-78aa-4352-ddd0-573fae183455"
},
"execution_count": 141,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"creation_time 0\n",
"creation_source 0\n",
"last_session_creation_time 3177\n",
"opted_in_to_mailing_list 0\n",
"enabled_for_marketing_drip 0\n",
"org_id 0\n",
"is_adopted 3177\n",
"dtype: int64"
]
},
"metadata": {},
"execution_count": 141
}
]
},
{
"cell_type": "code",
"source": [
"analysis_df.fillna(0, inplace=True)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "kgwpqqVEHIgU",
"outputId": "abc3a310-6c75-4791-82a2-57c8b1f7a1c9"
},
"execution_count": 142,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"<ipython-input-142-0b452bc9e5b1>:1: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" analysis_df.fillna(0, inplace=True)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# Convert creation_time to days to treat it as a simple int\n",
"analysis_df['creation_time'] = pd.to_datetime(analysis_df['creation_time'])\n",
"analysis_df['creation_time_days'] = ((analysis_df['creation_time'] - pd.Timestamp('1970-01-01')) / pd.Timedelta(days=1)).astype(int)"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "f8rFE_qVBomL",
"outputId": "4c894d2b-bbc7-41da-8b8f-dde0a12de415"
},
"execution_count": 143,
"outputs": [
{
"output_type": "stream",
"name": "stderr",
"text": [
"<ipython-input-143-131596bffcb4>:2: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" analysis_df['creation_time'] = pd.to_datetime(analysis_df['creation_time'])\n",
"<ipython-input-143-131596bffcb4>:3: SettingWithCopyWarning: \n",
"A value is trying to be set on a copy of a slice from a DataFrame.\n",
"Try using .loc[row_indexer,col_indexer] = value instead\n",
"\n",
"See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
" analysis_df['creation_time_days'] = ((analysis_df['creation_time'] - pd.Timestamp('1970-01-01')) / pd.Timedelta(days=1)).astype(int)\n"
]
}
]
},
{
"cell_type": "code",
"source": [
"# We can convert creation source to dummy bc we have a low amount of categories\n",
"analysis_df.creation_source.value_counts()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "r6XN3B1Y7vs2",
"outputId": "a1ed9e97-02a9-4913-c69c-74792ca33582"
},
"execution_count": 144,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"ORG_INVITE 4254\n",
"GUEST_INVITE 2163\n",
"PERSONAL_PROJECTS 2111\n",
"SIGNUP 2087\n",
"SIGNUP_GOOGLE_AUTH 1385\n",
"Name: creation_source, dtype: int64"
]
},
"metadata": {},
"execution_count": 144
}
]
},
{
"cell_type": "code",
"source": [
"# opted_in_to_mailing_list is binary, it's already well formatted\n",
"analysis_df.opted_in_to_mailing_list.value_counts()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GP396J6o75M-",
"outputId": "f9877cb4-49a3-4697-abf7-86cdbc2e7480"
},
"execution_count": 145,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"0 9006\n",
"1 2994\n",
"Name: opted_in_to_mailing_list, dtype: int64"
]
},
"metadata": {},
"execution_count": 145
}
]
},
{
"cell_type": "code",
"source": [
"# org_id has many unique values, these categories are not ordinal\n",
"# We have some options for encoding info from this col\n",
"# 1. We could replace the org id with the value count for each org\n",
"# 2. we could use Xfold target mean encoding to have a useful value for the category\n",
"\n",
"# 1. Add org counts\n",
"org_id_counts_df = analysis_df.org_id.value_counts().to_frame().rename(columns={'org_id':'org_count'})\n",
"analysis_df = analysis_df.join(org_id_counts_df, on='org_id')"
],
"metadata": {
"id": "SwvxUiGU8BP_"
},
"execution_count": 146,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Convert Dummy vars\n",
"creation_source_dummies = pd.get_dummies(analysis_df['creation_source'], prefix='creation_source')\n",
"analysis_with_dummies_df = pd.concat([analysis_df, creation_source_dummies], axis=1)"
],
"metadata": {
"id": "lZNmp2DV-Mog"
},
"execution_count": 147,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Drop Categorical Vars\n",
"analysis_with_dummies_df.drop(['creation_source', 'org_id', 'creation_time'], axis=1, inplace=True)"
],
"metadata": {
"id": "-opk1CZ1-nAI"
},
"execution_count": 148,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Map Feature correlations\n",
"\n",
"correlation_matrix = analysis_with_dummies_df.corr()\n",
"\n",
"plt.figure(figsize=(10, 8))\n",
"sns.heatmap(correlation_matrix, annot=True, cmap='coolwarm', fmt=\".2f\", linewidths=0.5)\n",
"plt.title('Feature Correlations')\n",
"plt.show()"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 966
},
"id": "WUQaa2Rx-wiw",
"outputId": "28c4e0fc-2f45-483c-fedc-f9315dd05e47"
},
"execution_count": 149,
"outputs": [
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1000x800 with 2 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABBMAAAO1CAYAAAA8JK0gAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXRURxvA4d/G3T2EKBDc3YsELW6lRYoXipdCWyBYqVCKtEiLU1ooFChFC8FdgxWCEyRACMQ92e+PJRs22QTCl02Q9zlnz0nuzr133pm5m+zcmbkKpVKpRAghhBBCCCGEEOIl6RV2BoQQQgghhBBCCPFmkc4EIYQQQgghhBBC5Il0JgghhBBCCCGEECJPpDNBCCGEEEIIIYQQeSKdCUIIIYQQQgghhMgT6UwQQgghhBBCCCFEnkhnghBCCCGEEEIIIfJEOhOEEEIIIYQQQgiRJ9KZIIQQQgghhBBCiDyRzgQhhBBCiHfQsmXLUCgU3Lp1K9+OeevWLRQKBcuWLcu3YwohhHg9SWeCEEIIIfIs44uottfYsWN1cs7Dhw8TGBhIZGSkTo6fH65fv86AAQPw8fHBxMQEKysrateuzezZs0lISCjs7OWb33//nVmzZhV2NoQQQhQig8LOgBBCCCHeXJMnT8bb21tjW5kyZXRyrsOHDzNp0iR69eqFjY2NTs7x/9iyZQudOnXC2NiYHj16UKZMGZKTkzl48CCfffYZFy9e5JdffinsbOaL33//nQsXLjB8+HCN7Z6eniQkJGBoaFg4GRNCCFFgpDNBCCGEEK+sefPmVKlSpbCz8X+Ji4vD3Nz8/zrGzZs36dq1K56enuzevRtXV1f1e4MHD+batWts2bLl/80qSqWSxMRETE1Ns72XmJiIkZERenqFN/BUoVBgYmJSaOcXQghRcGSagxBCCCF0Ztu2bdStWxdzc3MsLS1p2bIlFy9e1Ehz7tw5evXqpZ4a4OLiwscff0xERIQ6TWBgIJ999hkA3t7e6ikVt27dynWevkKhIDAwUOM4CoWC//77jw8++ABbW1vq1Kmjfv+3336jcuXKmJqaYmdnR9euXblz584L4/zuu++IjY1l8eLFGh0JGfz8/Bg2bJj699TUVKZMmYKvry/GxsZ4eXnxxRdfkJSUpLGfl5cXrVq1YseOHVSpUgVTU1MWLlzI3r17USgUrF69mq+++gp3d3fMzMyIjo4G4NixYzRr1gxra2vMzMyoX78+hw4demEcf//9Ny1btsTNzQ1jY2N8fX2ZMmUKaWlp6jQNGjRgy5Yt3L59W10PXl5eQM5rJuzevVvdDmxsbGjTpg2XLl3SSJNRN9euXVOPPrG2tqZ3797Ex8drpN25cyd16tTBxsYGCwsLSpQowRdffPHC+IQQQuQfGZkghBBCiFcWFRXF48ePNbY5ODgAsHLlSnr27ElAQADffvst8fHxzJ8/nzp16nDmzBn1F9CdO3dy48YNevfujYuLi3o6wMWLFzl69CgKhYL27dtz5coV/vjjD3788Uf1ORwdHQkPD89zvjt16kSxYsX4+uuvUSqVAEybNo3x48fTuXNn+vbtS3h4OHPnzqVevXqcOXMm16kV//zzDz4+PtSqVeulzt+3b1+WL19Ox44dGTVqFMeOHWP69OlcunSJDRs2aKQNCQmhW7duDBgwgH79+lGiRAn1e1OmTMHIyIjRo0eTlJSEkZERu3fvpnnz5lSuXJmJEyeip6fH0qVLee+99zhw4ADVqlXLMV/Lli3DwsKCkSNHYmFhwe7du5kwYQLR0dF8//33AHz55ZdERUVx9+5dfvzxRwAsLCxyPOauXbto3rw5Pj4+BAYGkpCQwNy5c6lduzanT59Wt4MMnTt3xtvbm+nTp3P69GkWLVqEk5MT3377LQAXL16kVatWlCtXjsmTJ2NsbMy1a9deqrNECCFEPlIKIYQQQuTR0qVLlYDWl1KpVMbExChtbGyU/fr109jvwYMHSmtra43t8fHx2Y7/xx9/KAHl/v371du+//57JaC8efOmRtqbN28qAeXSpUuzHQdQTpw4Uf37xIkTlYCyW7duGulu3bql1NfXV06bNk1j+/nz55UGBgbZtj8vKipKCSjbtGmTY5rnBQcHKwFl3759NbaPHj1aCSh3796t3ubp6akElNu3b9dIu2fPHiWg9PHx0Si/9PR0ZbFixZQBAQHK9PR09fb4+Hilt7e3skmTJuptGXX4fHlqq4sBAwYozczMlImJieptLVu2VHp6emZLq60uKlSooHRyclJGRESot509e1app6en7NGjh3pbRt18/PHHGsds166d0t7eXv37jz/+qASU4eHh2c4vhBCi4Mg0ByGEEEK8sp9//pmdO3dqvEA12iAyMpJu3brx+PFj9UtfX5/q1auzZ88e9TGen/+fmJjI48ePqVGjBgCnT5/WSb4HDhyo8fv69etJT0+nc+fOGvl1cXGhWLFiGvnNKmNqgaWl5Uude+vWrQCMHDlSY/uoUaMAsq2t4O3tTUBAgNZj9ezZU6P8goODuXr1Kh988AERERHqOOLi4mjUqBH79+8nPT09x7w9f6yYmBgeP35M3bp1iY+P5/Llyy8V3/PCwsIIDg6mV69e2NnZqbeXK1eOJk2aqMvieVnrpm7dukRERKjLOWOEyN9//51rLEIIIXRLpjkIIYQQ4pVVq1ZN6wKMV69eBeC9997Tup+VlZX65ydPnjBp0iRWr17No0ePNNJFRUXlY24zZX0CxdWrV1EqlRQrVkxr+tyeTpARS0xMzEud+/bt2+jp6eHn56ex3cXFBRsbG27fvp1rXnN7L6Pce/bsmeM+UVFR2Nraan3v4sWLfPXVV+zevVv95f35/fIqI5bnp2ZkKFmyJDt27Mi2AGbRokU10mXk9enTp1hZWdGlSxcWLVpE3759GTt2LI0aNaJ9+/Z07NixUBefFEKId410JgghhBAi32XcMV65ciUuLi7Z3jcwyPwXpHPnzhw+fJjPPvuMChUqYGFhQXp6Os2aNXupO88KhULr9ucXDcwq69MQ0tPTUSgUbNu2DX19/Wzpc1sTwMrKCjc3Ny5cuPDCvD4vp3y/KK+5vZdRXt9//z0VKlTQuk9OsURGRlK/fn2srKyYPHkyvr6+mJiYcPr0aT7//PMCGwWgrfwB9doWpqam7N+/nz179rBlyxa2b9/OmjVreO+99/j3339z3F8IIUT+ks4EIYQQQuQ7X19fAJycnGjcuHGO6Z4+fUpQUBCTJk1iwoQJ6u0Zd9ifl9OX74w715GRkRrbs97hf1F+lUol3t7eFC9e/KX3y9CqVSt++eUXjhw5Qs2aNXNN6+npSXp6OlevXqVkyZLq7Q8fPiQyMhJPT888nz9DRrlbWVnlWu7a7N27l4iICNavX0+9evXU22/evJkt7ct2hGTEEhISku29y5cv4+Dg8EqP5dTT06NRo0Y0atSImTNn8vXXX/Pll1+yZ8+ePMcthBDi1chYMCGEEELku4CAAKysrPj6669JSUnJ9n7GExgy7iJn3HXOMGvWrGz7ZHzpzNppYGVlhYODA/v379fYPm/evJfOb/v27dHX12fSpEnZ8qJUKjUeU6nNmDFjMDc3p2/fvjx8+DDb+9evX2f27NkAtGjRAsge48yZMwFo2bLlS+c7q8qVK+Pr68uMGTOIjY3N9n5uT77QVhfJyclay9Hc3Pylpj24urpSoUIFli9frlFvFy5c4N9//1WXRV48efIk27aMURhZH60phBBCd2RkghBCCCHynZWVFfPnz+ejjz6iUqVKdO3aFUdHR0JDQ9myZQu1a9fmp59+wsrKinr16vHdd9+RkpKCu7s7//77r9a74ZUrVwZUjybs2rUrhoaGtG7dWv0l/ptvvqFv375UqVKF/fv3c+XKlZfOr6+vL1OnTmXcuHHcunWLtm3bYmlpyc2bN9mwYQP9+/dn9OjRue7/+++/06VLF0qWLEmPHj0oU6YMycnJHD58mLVr19KrVy8AypcvT8+ePfnll1/UUwuOHz/O8uXLadu2LQ0bNsxbYT9HT0+PRYsW0bx5c0qXLk3v3r1xd3fn3r177NmzBysrK/755x+t+9aqVQtbW1t69uzJ0KFDUSgUrFy5MlvnCqjqYs2aNYwcOZKqVatiYWFB69attR73+++/p3nz5tSsWZM+ffqoHw1pbW1NYGBgnmOcPHky+/fvp2XLlnh6evLo0SPmzZtHkSJFqFOnTp6PJ4QQ4hUV3oMkhBBCCPGmynis4IkTJ3JNt2fPHmVAQIDS2tpaaWJiovT19VX26tVLefLkSXWau3fvKtu1a6e0sbFRWltbKzt16qS8f/9+tsc6KpVK5ZQpU5Tu7u5KPT09jccaxsfHK/v06aO0trZWWlpaKjt37qx89OhRjo+GzOmxgn/99ZeyTp06SnNzc6W5ubnS399fOXjwYGVISMhLlcuVK1eU/fr1U3p5eSmNjIyUlpaWytq1ayvnzp2r8WjFlJQU5aRJk5Te3t5KQ0NDpYeHh3LcuHEaaZRK1aMhW7ZsqbVcAeXatWu15uPMmTPK9u3bK+3t7ZXGxsZKT09PZefOnZVBQUHqNNoeDXno0CFljRo1lKampko3NzflmDFjlDt27FACyj179qjTxcbGKj/44AOljY2NElA/JjKnx3Tu2rVLWbt2baWpqanSyspK2bp1a+V///2nkSanusmaz6CgIGWbNm2Ubm5uSiMjI6Wbm5uyW7duyitXrmgtCyGEELqhUCq1dDcLIYQQQgghhBBC5EDWTBBCCCGEEEIIIUSeSGeCEEIIIYQQQggh8kQ6E4QQQgghhBBCCJEn0pkghBBCCCGEEEK8Rvbv30/r1q1xc3NDoVCwcePGF+6zd+9eKlWqhLGxMX5+fixbtkyneZTOBCGEEEIIIYQQ4jUSFxdH+fLl+fnnn18q/c2bN2nZsiUNGzYkODiY4cOH07dvX3bs2KGzPMrTHIQQQgghhBBCiNeUQqFgw4YNtG3bNsc0n3/+OVu2bOHChQvqbV27diUyMpLt27frJF8yMkEIIYQQQgghhNCxpKQkoqOjNV5JSUn5cuwjR47QuHFjjW0BAQEcOXIkX46vjYHOjiyEEEIIIYQQQrxGthiWKLRzn/iyG5MmTdLYNnHiRAIDA//vYz948ABnZ2eNbc7OzkRHR5OQkICpqen/fY6spDNBCPHGKcw/AgWhZUoIv+4q7FzoTr/GsCiosHOhO30bwbmrjwo7GzpVrpgTK/YVdi50p0d9mK+bEaGvhUHNYIHuptC+FgYGwNI9hZ0L3endEOq0fnsvwoP/1OfQf7GFnQ2dql3KgpMhTws7GzpTpYRtYWfhtTRu3DhGjhypsc3Y2LiQcvP/k84EIYQQQgghhBDvBIWhotDObWxsrLPOAxcXFx4+fKix7eHDh1hZWelkVALImglCCCGEEEIIIcQbrWbNmgQFaQ793LlzJzVr1tTZOaUzQQghhBBCCCGEeI3ExsYSHBxMcHAwoHr0Y3BwMKGhoYBqykSPHj3U6QcOHMiNGzcYM2YMly9fZt68efz555+MGDFCZ3mUaQ5CCCGEEEIIId4JegaFN80hL06ePEnDhg3Vv2estdCzZ0+WLVtGWFiYumMBwNvbmy1btjBixAhmz55NkSJFWLRoEQEBATrLo3QmCCGEEEIIIYQQr5EGDRqgVCpzfH/ZsmVa9zlz5owOc6VJOhOEEEIIIYQQQrwTFIYy0z+/SEkKIYQQQgghhBAiT2RkghBCCCGEEEKId8KbsmbCm0BGJgghhBBCCCGEECJPpDNBCCGEEEIIIYQQeSLTHIQQQgghhBBCvBMUhjLNIb/IyAQhhBBCCCGEEELkiYxMEEIIIYQQQgjxTpAFGPOPjEwQQgghhBBCCCFEnkhnghBCCCGEEEIIIfJEpjkIIYQQQgghhHgnyAKM+UdGJgghhBBCCCGEECJPZGSCEEIIIYQQQoh3gizAmH9kZIIQQgghhBBCCCHyRDoT3iANGjRg+PDhhZ2NAvUuxvw8Ly8vZs2aVah52Lt3LwqFgsjIyELNhxBCCCGEEP8vhb6i0F5vG5nm8A66desW3t7enDlzhgoVKhR2dnK1fv16DA0NCzsbOrds2TKGDx+e7Qv7iRMnMDc3L7B8NGjQgAoVKmh0YNSqVYuwsDCsra0LLB+6YlenCj6j+mBdqQwmbk6c7PAJDzcF5b5PvWqUmjEWi1LFSLwTxrXp87m7YoNGGs9BH+Azsg/GLo5En7vMxeFTiDpxXpeh5OjMvlWc2LWYuOhwHN39adR5PK5e5XJMH3J6G4c2zyYq4h62Tl7UazManzL11e9fCf6XswdW8/DORRLjIukxdiNOHiULIpQcnd63ihM7VTE6FXm5GA/+kxlj/bZZYjzzL8HPxzhuI86FGOP2zevZtP4PIp8+wdPbl48HDKdYiVJa0+7avol9u3dw5/YNAHz8StCtR/8c0//y0wx2bv+bXv0+pWWbzjqLITcn96zi6L+LiY0Kx7mIP027jcfdO+f6u3RyG/v+nk1kxD3snLx4r8No/Mpm1t/+TXP578QWop8+QN/AEJeipWnQdgTuPuULIhytlEolR7fN4fyRtSQlROPmXYn3OgVi6+SV635nD6zi5O7FxEeH4+DuT8MO43HxzCyb84fXcPnUZsLvXCQ5KY6B009gYmal42iyUyqVHNmqGV+jzi+OL3j/Kk7tzvx8athRM77UlCT2b/iGkNNbSUtNxrNkHd7rNBFzKwcdR5Tdqb2rOPZv5udMky7jcculnV4+tY39m1SfM3ZOXjRoNxrfZ+00LS2F/X/P4saF/UQ+voOxqQWe/rVo0G4UljbOBRVSNn26e9G6qQuW5gacvxTNjHlXuRuWkGP6ts1dadvcDVdnEwBuhsazbPVtjp56ok7j5mLCkI99KVvKCiNDPY6dfsKPC6/xNDJF5/E8L2jrn2zfuIKoyAg8vIrRve8YfIqX0Zr2Xuh1Nv6xgFvXLxERHkbXj0fRtPUHGmnS09LYuGYhR/dtIyoyAhtbB2q/15rWnfqiUBTOF8R/t6xjy4bfiHr6hKLefvTsPwrf4qW1pt29YyMH92xT/63w9itBl48GqdOnpqay9rcFBJ86QviDe5iaW1CmfFW69vgEW3vHAotJvHlkZIJ4rdnZ2WFpaVnY2chRSopu/zg6OjpiZmam03O8iJGRES4uLoX2xzI/6ZubEX0uhAtDJ71UelOvIlTdtJCIvcc4WKUNN+cup+zCqTg0qaNO49qpOSW/H8fVqT9zsFo7Ys5dpvqWxRg52ukqjBxdPrWVveunU7PFYD4auwGnIv6s+6kPcTERWtPfu3GazUtHUaZmR3qM24hfuUZs/GUw4fevqNOkJMXj7luJem1GF1QYubp8cit7/5pOrZaD6TFuA47u/qydm0uM10/zz5JRlK3VkZ7jNlKsfCM2LMwSY3I8RfwqUb9t4cd4aH8Qyxf9RKduvfh29iI8vf2YNmEUUZFPtaa/eD6YOvUbM3H6HKbNWIC9oxNTJ4wi4nF4trTHDu/nSshFbO0K/otZhv9ObGXX2unUbTWYPl9twMnDn9Wz+xAXrb3+7l4/zYZFoyhfpyN9x2+keMVGrJ03mEf3MuvPztmLgG4T6DfxH3qM+R1rB3f+mPUxcTFPtB6zIJwM+pUz+1fSqHMgXUf8iaGRKRsW9CE1JSnHfUJOb2X/hunUCBjMB59twNHNnw3z+xD/XNtOSU7Ay78uVZsMLIgwcnRy168E719J486BdBupim/9/JeMr9lgun+2AQd3f9bP04xv3/qvuXFxDy0/nkWnoSuJi3rEP4uHFERIGi6d3MruddOp02owvb9QfZaumZt7O/178SjK1+5I7y83UqxCI/5aMJjwZ+00JTmRh6H/UavFIHp9sZ52A37iycOb/DVvUEGGpaF7Bw86tnJnxryr9B99hoTENGZOLotRLqvchz9OZsHym/QZfpq+I05z+txTpn9ZGu+iqv9TTIz1+HFyOZRKJcO+PMegMcEYGOjx7fgyFOS/EMcP/suapTN5v0t/Jv6wCg+v4sycPIToSO2fCclJiTg6u9Pxo0+xtrXXmmbrhuXs3b6O7v3GMG3uOjr1GMq2DSvYtWW1LkPJ0ZEDO1m1eDbtu/Zl6o/LKepVjG8mDicqhxgvXThNzXpN+HLaz0z6/lfsHZz5ZuIwnkQ8AlRlcOt6CO269Gbqj8sZPvYbwu7d5odpnxVkWOINJJ0Jb6iVK1dSpUoVLC0tcXFx4YMPPuDRo0fq958+fUr37t1xdHTE1NSUYsWKsXTpUgC8vb0BqFixIgqFggYNGrzwfHv37qVatWqYm5tjY2ND7dq1uX37tvr9v//+m0qVKmFiYoKPjw+TJk0iNTUVUN3BCAwMpGjRohgbG+Pm5sbQoUPV+86bN49ixYphYmKCs7MzHTt2VL+XdZrD06dP6dGjB7a2tpiZmdG8eXOuXr2qfn/ZsmXY2NiwY8cOSpYsiYWFBc2aNSMsLOyly3bJkiWULl0aY2NjXF1dGTIk8x8ZhULB/Pnzef/99zE3N2fatGkvjB9g5syZlC1bFnNzczw8PPjkk0+IjY1Vl23v3r2JiopCoVCgUCgIDAwEsk9zCA0NpU2bNlhYWGBlZUXnzp15+PCh+v3AwEAqVKjAypUr8fLywtramq5duxITE/PCuHv16sW+ffuYPXu2Oh+3bt3KNs0ho4w3b95MiRIlMDMzo2PHjsTHx7N8+XK8vLywtbVl6NChpKWlqY+flJTE6NGjcXd3x9zcnOrVq7N3796Xrpf8EL5jP1cmzuLh37teKr1n/64k3LzLpTHfEnv5BrfnreLBXzvwHtZLncZ7eG/uLP6Tu8vXE3vpOuc/mUhafCIevTroKIqcnQxaStlanSlbswMOrn406ToJQyMTLhz5S2v603tW4F2qLtWa9MXexZc6rYfj7FGK4H2/qdOUrt6WWi2G4Olfs6DCyNXJ3UspVzszxqbdnsV4WHuMp56P0TUzxjN7X88YN29cQ6OA1jRs0hKPot70HzwaI2MTdu/cojX9sM8mENCyHd4+xXD38GTgp5+jTE/nwtlTGukiHoezZOEsho2egIFB4Q1KPLZzKRXqdKZ87Q44uvnRovskDIxMOHtIe/0dD1qBb+m61Azoi4OrLw3aDMelaClO7smsvzLVW+Ndqha2jh44uhWjSadxJCXG8uhuSEGFpUGpVHJm3wqqNx2Eb9nGOLr7E/Dhd8RFPeL6+Zw/e07vXUqZWp0pXaMD9i5+NOqsKpuLRzPLplKDXlRt0h8Xr8IddXF63wqqNR2EbzlVfM0+ehbfuVzi2/NcfK5+NH4W34Vn8SUlxHDh6F/UazuWosVr4ly0DE27f03YzTOE3QwuoOhUju9aSvnanSlXqwMObn40+2AShoYmnMvhc+bk7hX4lK5L9aaqdlrvfVU7PfXsc8bE1JKuw5dSskoL7F18cPepQNOu43kQepGoJ/cLMjS1Tu+7s+LP2xw8FsH1W3FM/fEy9nbG1K2Rc2fjoRMRHD31hLthCdy5n8AvK2+RkJhGqRKq0TFlS1nj4mTCtFkh3Lgdx43bcUz78TL+fpZULmdTQJHBjk2/Ua9JO+o2eh93Dx96DPwCI2MTDgT9rTW9d7HSdO41nOp1AzAwMNKa5trls1So1oDyVeri4ORGlVqNKVOhBjevXtRlKDna9vcfNGzahvqNW1GkqDcff/I5xsYm7Nu1WWv6waMm06RFR7x8iuNWxIt+Q74gPT2di2dPAmBmbsG4KXOpUacxbkU8KeZfhp4DRnPz2mUehz8oyNAKhJ6+otBebxvpTHhDpaSkMGXKFM6ePcvGjRu5desWvXr1Ur8/fvx4/vvvP7Zt28alS5eYP38+Dg6qPxDHjx8HYNeuXYSFhbF+/fpcz5Wamkrbtm2pX78+586d48iRI/Tv3199p/rAgQP06NGDYcOG8d9//7Fw4UKWLVum/qL9119/8eOPP7Jw4UKuXr3Kxo0bKVu2LAAnT55k6NChTJ48mZCQELZv3069evVyzEuvXr04efIkmzZt4siRIyiVSlq0aKExQiA+Pp4ZM2awcuVK9u/fT2hoKKNHv9wdx/nz5zN48GD69+/P+fPn2bRpE35+fhppAgMDadeuHefPn+fjjz9+YfwAenp6zJkzh4sXL7J8+XJ2797NmDFjANU0glmzZmFlZUVYWBhhYWFa85uenk6bNm148uQJ+/btY+fOndy4cYMuXbpopLt+/TobN25k8+bNbN68mX379vHNN9+8MPbZs2dTs2ZN+vXrp86Hh4eH1rTx8fHMmTOH1atXs337dvbu3Uu7du3YunUrW7duZeXKlSxcuJB169ap9xkyZAhHjhxh9erVnDt3jk6dOtGsWTONzqDXjU2NCjzefURjW/jOg9jWqACAwtAQ60qleRx0ODOBUsnj3YexqVGxAHMKaanJPLxzEU//WuptCj09ivrX4v6NM1r3uX8zGM8Sml+gvUrW4X4B/+P+stJSk3kQehHPEpoxevrX4v7NXGLM0kngVer1jDElJYUb165QrkJl9TY9PT3KVajClcsv9w9rclISqWmpWDw3ois9PZ25M6fyfvtueHh653u+X1ZaajJhoRfxLqlZf94la3E3hzZ673ow3iU168+ndB3u3QjO8RxnDqzB2NQS5yIl8i3veREdcZf46HA8imfGaWxqiYtnecJyaKdpqck8unNRYx+Fnh5Fi9ci7Jb2fQpL1LP4ipbIHt/9HPKa8flUNMu1W7RELXWZPLxzgfS0FI00ds6+WNq6EXYrWDfB5JDXB6EX8crSTr1K1uJeTp+lN4LxyvI5410q53YKkJQQCwoFJqYFP03FzdkEBztjTgRnjniKi0/jvyvRlPF/ufzo6UGjuo6YmOhz8XI0AEYGeiiBlJR0dbrk5HTSlVCuVMFMlUxNSeH29cuUKl/tubzqUapcNa6HvPr0Qz//8lw6d5wH91Q30kJvXuHqpWDKVqr1gj3zX2pKCjevhVCmQlX1Nj09PcqUr8rVyy8XY1JSImlpaZhb5lzfCXGxKBQKzMxf3xHCovDJmglvqI8//lj9s4+PD3PmzKFq1arExsZiYWFBaGgoFStWpEqVKoDqDncGR0fV3Cd7e3tcXFxeeK7o6GiioqJo1aoVvr6+AJQsmTmfeNKkSYwdO5aePXuq8zNlyhTGjBnDxIkTCQ0NxcXFhcaNG2NoaEjRokWpVk31IR8aGoq5uTmtWrXC0tIST09PKlbU/iXs6tWrbNq0iUOHDlGrlurDe9WqVXh4eLBx40Y6deoEqP4hX7BggTqvQ4YMYfLkyS8uVGDq1KmMGjWKYcOGqbdVrVpVI80HH3xA79691b9//PHHucYPaIyu8PLyYurUqQwcOJB58+ZhZGSEtbU1CoUi1/oICgri/Pnz3Lx5U/0lf8WKFZQuXZoTJ06o85mens6yZcvU00M++ugjgoKCNDo3tLG2tsbIyAgzM7MXtouUlBTmz5+vLuOOHTuycuVKHj58iIWFBaVKlaJhw4bs2bOHLl26EBoaytKlSwkNDcXNzQ2A0aNHs337dpYuXcrXX3+d6/kKi7GzA0kPH2tsS3r4GENrS/RMjDG0tUbPwICkRxFZ0kRgXsKnILNKQuxTlOlpmFtqDtE0t7TnyYMbWveJi36MWZa5yGZW9sRFP9aavrBlxGhmpRmjmaU9Tx7mHKO5pWaM5pavZ4wx0VGkp6dhbaM5RcbaxpZ7d2/nsJem35bNx87OgbIVqqi3/b1uFfr6+rR4v2Mue+pefEYbtcreRiPCtNdfbPTjbPPlza3siYvSrL+r5/aw4deRpCQnYGHtyAcjlmBmWfBTjQDiYlRTTLJei2aW9sTFaG93CXHP2raWfZ480l42hSU+WhWftrzG53Bd5Rbf02fXbnz0Y/T1DbOtAWFmaU9cdPZpO7qSazvN4bNUazvN5XMmNSWJPRtmUKpKS4xNLfIn43lgZ6u6+551HYOnkcnq93Li42nOgu8rYmSkR0JCGl9Mu8itO/EAXAyJJjExjUG9fFi48iYKYGBPHwz0Fdjb5X7c/BITE0l6ehpW1pr1Z2VjT9i9W6983Bbte5EQH8uXn3ZAT0+P9PR02nf/hJr1W/yfOc67mOhIrX8rrGxsuf+SMa5e/jO2dg6UKV9V6/vJyUn8sfxnatZrgplZwa3dVVAUem/fCIHCIp0Jb6hTp04RGBjI2bNnefr0Kenpql7g0NBQSpUqxaBBg+jQoQOnT5+madOmtG3bVv0FPK/s7Ozo1asXAQEBNGnShMaNG9O5c2dcXV0BOHv2LIcOHdL4spqWlkZiYiLx8fF06tSJWbNm4ePjQ7NmzWjRogWtW7fGwMCAJk2a4OnpqX6vWbNmtGvXTus6AZcuXcLAwIDq1aurt9nb21OiRAkuXbqk3mZmZqb+kgvg6uqqMQUkJ48ePeL+/fs0atQo13QZHTQZXhS/mZkZu3btYvr06Vy+fJno6GhSU1M13n8Zly5dwsPDQ2O0QKlSpbCxseHSpUvqzgQvLy+NdSZeNv68yFrGzs7OeHl5YWFhobEt47znz58nLS2N4sWLaxwnKSkJe3vt8xMz3k9K0pyDa2xsnB8hCPHW2bD2Nw7tD2LS9DkYGamuk+vXQtiyaR3fzV78Vqx7khPPEtXpO34jCbFPOXPgT9YvHE7vcWuzfSHUhcsnNxG0ZqL69zYDFur8nAXp0gnN+Nq+ZfEVtLS0FDb+OgyUSgI+eLn1e/5fTeo78dngzL+/Yya/+h360Hvx9B52EgszAxrUduTLESX4dNxZbt2JJzI6hfHf/sfoQcXo2NqddCXs2v+IkGsxpKe/+NivsxOHdnJ0/3b6j5iGe1EfQm9e4Y/FP2Bj60jt91oXdvbyZNO6FRw5sIuvpv2s/lvxvNTUVOZ+9yUolfQe9Hkh5FC8SaQz4Q0UFxdHQEAAAQEBrFq1CkdHR0JDQwkICCA5ORmA5s2bc/v2bbZu3crOnTtp1KgRgwcPZsaMGa90zqVLlzJ06FC2b9/OmjVr+Oqrr9i5cyc1atQgNjaWSZMm0b59+2z7mZiY4OHhQUhICLt27WLnzp188sknfP/99+zbtw9LS0tOnz7N3r17+ffff5kwYQKBgYGcOHECGxubV8pr1qc/KBQKlErlC/czNTV9qeNnfbrCi+K/desWrVq1YtCgQUybNg07OzsOHjxInz59SE5OzvcFFrXFn57Pf8W1nSO388bGxqKvr8+pU6fQ19fXSPd8B0RW06dPZ9IkzX+2Jk6ciPZ+9PyX9PAxxs6ad5uMnR1IiYohPTGJ5MdPSU9NxdjJPksae5IeFOydb1MLWxR6+tkWIoyLichxJXRzK4dsdxLjo3NOX9gyYozPsgha/AtizHo3OLcyKUyWVtbo6elnW0ArKvIpNjksCpZh0/o/2LhuFROm/oind+bUrMsXzxId9ZRBvTNHJaSnp7F88c9s+Xst85aszd8gcmGW0UajtbRRa+31YWHlkO3ublx09vRGxmbYOXmCkyfuPhWY91VTgg+to3bzAfkbhBY+Zd7DxTNzDYO0VNXfYVVcTurt8TEROLr7az2Gqfmzth2jpW1bFm5b9S37Hq7PrdGQ+iy++JgILLLGVyTv8Zk9i8/MyoG0tBQS46M1Rieoru+CW00+13aaw+eG1naqJX1aWgobfxlOVMR9PhixvMBGJRw8HsF/V06qfzcyVM1ytrUxJOJpsnq7rY0R127E5nqs1FQl98ISAQi5HkvJYpZ0et+d739WTVk8ceYpXfofx9rKgLQ0JbFxafy9oib3H+TvTY2cWFraoKenT3SUZv1FR0ZgbfPq19Kfy2fTon0vqtcNAKCIZzEiwsPYsn5pgXcmWFrZaP1bER35FGub3P9WbNmwin/+WsG4yXMp6l0s2/sZHQmPHz3gi6k/v5WjEkT+kjUT3kCXL18mIiKCb775hrp16+Lv76/1zrOjoyM9e/bkt99+Y9asWfzyyy+AanV+QGNxvJdRsWJFxo0bx+HDhylTpgy///47AJUqVSIkJAQ/P79sLz09VRMzNTWldevWzJkzh71793LkyBHOn1f1jBsYGNC4cWO+++47zp07x61bt9i9e3e285csWZLU1FSOHTum3hYREUFISAilSml/DFpeWFpa4uXlRVBQ7o8KzOpF8Z86dYr09HR++OEHatSoQfHixbl/X3PBJSMjoxfWR8mSJblz5w537txRb/vvv/+IjIzMl/hfNh+vomLFiqSlpfHo0aNsZZTblIpx48YRFRWl8Ro3bly+5y8nkUeDsX+vhsY2h0a1eHo0GABlSgpRpy/i8N5zc2UVCuwb1iTyaMHOc9Y3MMLZozShIZlrPCjT0wkNOYKbj/apQ27eFbgdclRj2+3Lh3HzrqDLrL4yfQMjXIqW5naWGG+HHMHNO+cYQy9nifHS6xmjoaEhPn7FOf/c4onp6emcP3uK4v7aH/cFqmkM61Yv58tJM/Atpvllrl7DAGbMXcb3c5aoX7Z2DrzfvhtfTv5BZ7Foo29ghGvR0ty6rFl/ty4doUgObdTdtwI3s9Tfzf8O4+5TIddzKdPTSUtJzjVNfjEyscDG0VP9snPxw8zKkTtXMuNMSozlwe2zuObQTvUNjHDyKK2xjzI9nTtXjuDqVbDrr2SVNT57bfElqOJzyyGvGZ9P2eILOaIuE2ePMujpG2qkefLwBjFP7+PqVUE3weWQVxct7fT25SO45/RZ6lOBW1na6a1Lmu00oyPhafhtug1fhqmFrU7yr01CQhr3whLVr5uh8Tx+kkSV8pl5MDPVp1RxKy48W//gZSkUYGiY/etEVHQqsXFpVCpng621IQePa38SRn4zMDTE09efS+dOqLelp6dz6fwJfEuUfeXjJiclopdlaLyenh7K9BffrMpvBoaGePuV4OJZzRgvnDtBMf+cY/znr5VsWLOEMRNn4VMs++OPMzoSHty/w7gpc7G0evMfCZ4Thb5eob3eNjIy4Q1UtGhRjIyMmDt3LgMHDuTChQtMmTJFI82ECROoXLkypUuXJikpic2bN6vXOXBycsLU1JTt27dTpEgRTExMsLbO+QPj5s2b/PLLL7z//vu4ubkREhLC1atX6dGjh/pcrVq1omjRonTs2BE9PT3Onj3LhQsXmDp1KsuWLSMtLY3q1atjZmbGb7/9hqmpKZ6enmzevJkbN25Qr149bG1t2bp1K+np6ZQokX3hrGLFitGmTRv69evHwoULsbS0ZOzYsbi7u9OmTZt8KdvAwEAGDhyIk5MTzZs3JyYmhkOHDvHpp5/muM+L4vfz8yMlJYW5c+fSunVrDh06xIIFCzSO4eXlRWxsLEFBQZQvXx4zM7NsIxYaN25M2bJl6d69O7NmzSI1NZVPPvmE+vXrZ5t68aq8vLw4duwYt27dwsLCAju7/JlzXLx4cbp3706PHj344YcfqFixIuHh4QQFBVGuXDlatmypdT9jY+N8ndagb26GuV9R9e9m3kWwKu9P8pMoEu+EUWLqSEzcnTnbWzWs7/Yvq/H8pDv+0z/jzrK/cGhYA9dOzTnxfubdzpuzllJ+ybdEnrpA1IlzeA3tiYG5KXeW576wqS5UadSbbSs+x7loGVy9ynFq93JSkhIoU0M1ambr8jFY2DhTr80oACo17MGaHz/ixK4l+JSpz+VTW3kQeoEmH2SuMZIQF0nMkzBio1Qdlk8e3QRUd/zNrQv+2dNV3uvN1hWf4+JZBlfPcpzc8yzGmqoYtywbg6WNM/XaqmKs3LAHq5+P8aQqxqbdNWOMfhJG3LMYnz7MjNGigGNs1bYLP//4Nb7F/PErXpItf68lKTGBho1V83Ln/jAVO3sHuvdSPRpw47pVrPltMcM+m4CjswtPn6r+YTcxMcXU1AxLK+ts/xAaGBhga2uHe5GiFLTqTXqzaennuHqWwc27HMd3LSclOYFytVX1t2mJqv4atlfVX7VGPVj5/Ucc/XcJfmXr89+JrYTdvkCLj1T1l5wUz6GtCyhe/j0srB2Jj33KyT2riIl8SMkqzQo8PlCNyqpYvwfH/52PjaMn1vZFOLx1NubWTviWbaxO99dPPfEt14QK9T4EoFKD3vy7SnX9uhQtx+l9qrIpVT1z1FtcdDhx0Y+JehwKQETYFQyNzbGydcXE3KbA4qtUvwfHdjwX35Zn8ZXLjG/dTz3xez6+hr3Z8dvnOHmUwcWzHGf2quIr/Sw+Y1NLytTowL4N32BiZo2RiQV71k3F1asirgXc+VetcW82L1O1U1evcpzcvZzk5ATK1VLl9Z+lqnbaoJ2qnVZ5rwe///ARx3ZqttNmzz5n0tJS2LBwKA/v/EfHwQtJT08jNkq1DoSpuTX6OTxBQJfWbrpHzy5FuXM/gbCHifT90IuIJ0kcOJo5wmLW1HLsP/KY9VtUN0AG9PDm6KknPAxPxMzUgCb1nahY1oaREzOnTbRo5Mztu/E8jUqhjL8Vw/r58effd7lzL6HAYgt4/0MWzZmIl29JvIuVYefm30lKTKBOo/cB+HX2BGztHOn4kep/u9SUFO7fVa2HkZqaQmTEI0JvhmBsYoazq2pqaYWqddm8bgl2Di64F/Xl9o3L7Ni0irqN8uf/z7xq3qYbC2dNwduvJL7FS7F90xqSEhOp30j1/9T8Hydha+dI156fAPDPXytYt+pXBo+ehKOzK5HP/a0wMTUjNTWV2d+M49aNEEaP/4H09HR1GgsLKwyyjD4VIoN0JryBHB0dWbZsGV988QVz5syhUqVKzJgxg/fff1+dxsjIiHHjxnHr1i1MTU2pW7cuq1ernoVrYGDAnDlzmDx5MhMmTKBu3bq5PqLPzMyMy5cvs3z5ciIiInB1dWXw4MEMGKD6QhUQEMDmzZuZPHky3377LYaGhvj7+9O3b18AbGxs+Oabbxg5ciRpaWmULVuWf/75B3t7e2xsbFi/fj2BgYEkJiZSrFgx/vjjD0qX1n4XbunSpQwbNoxWrVqRnJxMvXr12Lp1a7Yh9q+qZ8+eJCYm8uOPPzJ69GgcHBw0HlWpzYviL1++PDNnzuTbb79l3Lhx1KtXj+nTp6s7Y0D1RIeBAwfSpUsXIiIimDhxovrxkBkUCgV///03n376KfXq1UNPT49mzZoxd+7cfIkdVIsi9uzZk1KlSpGQkMDNmzfz7dhLly5VL3B57949HBwcqFGjBq1atcq3c7yIdeUy1Axaqf691IwvALizYj3n+ozD2NURUw9X9fsJt+5y4v0BlPphHF6f9iDx7gPOD/iKxzsPqtOErd2GkaMdxScOxdjFkeizlzjeqi/JjwrmLszz/Cu3ID7mCYc2zyE+JhxH95J0HLxIPdQ2+mkYCkVmr7i7TyVa9p7BwX9mcfCfmdg4etG2/884umXOrb1+bjfbf8scDbJ5yQgAarYYQu2WOXey6Yp/lRbEx6pijIsOx6lISToOyYwx5mkYCr3nYvStRKuPZ3Bg0ywObJqJraMX7QZkj3HbyswY/3kWY60WQ6jdqmBjrF2vEdFRkaz5bTGRT5/g5ePHl5NnYGOr6th7HP5QY+Gof7duJDU1hR+mj9c4Tqduvenc/WNeN6WqtiAu5gn7Nqnqz7lISboOXYTFs/qLeqLZRov4VqJt3xns/XsWezfOxM7Ji06f/IyTu6r+9PT0iXhwg3VHNpAQ+xRTcxtcvcrSY8wqHN2yD+EtKFUa9SM1OYGgNRNISojGzacy7QYuwsAws3M0MuIOCXGZq+mXqNSChNgnHNk6h/jocByKlKTtwEUaQ+XPHVrNse0/qX9fO6c7AE0+mK7+Ul4QqjTuR0pyArtWZ8bXfpBmfFGP75AQm3N8jkVK0m6QZnz123+BQqHHP0uGkpaajJd/Hd7rPJGCVrKK6rP0wD+ZnzNdPn3us1RLO32/zwz2b5rF/r9nYuvkRYeBP+P4rJ3GPH3ItXOqEZdLp2p++ew2YgWeJapT0Fb9dQcTE33GDCmOhbkB5/+LYtTE8ySnZN5pd3cxxcYq8/8rW2tDvhrhj72dEXFxqVy/FcfIiec5+dxTIYoWMWNATx+sLAx48CiRFX+GsubvuwUaW7U6TYmJfsrG1QuIehqBh3dxRkyYq54C8CT8AXrPrSET+TScwJEfqH/f/vdKtv+9khKlK/P5VNWo3g/6jWHD7/P57ZdviI56io2tAw2aduD9zv0KNLYMNes2ISYqknW//0rU0wg8fYrxeeCPWD+bEhcR/kBjnZxd29aTmprC7G++0DhO+6596PBBP55GPOL08QMAfDHsI400X077mVJlK/M2eRsf0VhYFMqXmUwuhBCvkS2GhfPIt4LSMiWEX3N+XPsbr19jWJS32URvlL6N4NzVgpkfXFjKFXNixb7CzoXu9KgP87cXdi50Z1AzWLCjsHOhWwMDYOmews6F7vRuCHVav70X4cF/6nPov9zXb3jT1S5lwcmQpy9O+IaqUqLgpvLk1dHq1V6cSEdqHDteaOfWBRmZIIQQQgghhBDinSCPhsw/b98qEOKVWFhY5Pg6cOBAYWcv37wrcWoTGhqaa/yhoaGFnUUhhBBCCCHEG0JGJggAgoODc3zP3d294DKiY+9KnNq4ubnlGr+bm1vBZUYIIYQQQgjxRpPOBAGAn5/fixO9Bd6VOLUxMDB4p+MXQgghhBBCFmDMPzLNQQghhBBCCCGEEHkiIxOEEEIIIYQQQrwTFDIyId/IyAQhhBBCCCGEEELkiXQmCCGEEEIIIYQQIk9kmoMQQgghhBBCiHeCQk/up+cXKUkhhBBCCCGEEELkiYxMEEIIIYQQQgjxTlDoyQKM+UVGJgghhBBCCCGEECJPZGSCEEIIIYQQQoh3gp48GjLfyMgEIYQQQgghhBBC5Il0JgghhBBCCCGEECJPZJqDEEIIIYQQQoh3gizAmH9kZIIQQgghhBBCCCHyREYmCCGEEEIIIYR4Jyj05H56fpGSFEIIIYQQQgghRJ5IZ4IQQgghhBBCCCHyRKY5CCGEEEIIIYR4J8gCjPlHRiYIIYQQQgghhBAiT2RkghBCCCGEEEKId4KevoxMyC8KpVKpLOxMCCGEEEIIIYQQunaxzXuFdu7Sf+8utHPrgoxMEEK8cX7dVdg50K1+jWGLYYnCzobOtEwJIf7QX4WdDZ0xq93hnWij87cXdi50Z1Az+HlbYedCdwY3h4X/FnYudGtA07f7b8W7cA2+C210wY7CzoXuDAwo7ByIgiCdCUIIIYQQQggh3gmyAGP+kQUYhRBCCCGEEEIIkScyMkEIIYQQQgghxDtBoSf30/OLlKQQQgghhBBCCCHyREYmCCGEEEIIIYR4J8iaCflHRiYIIYQQQgghhBAiT6QzQQghhBBCCCGEEHki0xyEEEIIIYQQQrwTZJpD/pGRCUIIIYQQQgghhMgTGZkghBBCCCGEEOKdICMT8o+MTBBCCCGEEEIIIUSeSGeCEEIIIYQQQggh8kSmOQghhBBCCCGEeCco9OR+en6RkhRCCCGEEEIIIUSeyMgEIYQQQgghhBDvBD19WYAxv8jIBCGEEEIIIYQQQuSJjEwQQgghhBBCCPFOkEdD5h8ZmSCEEEIIIYQQQog8kc4EIYQQQgghhBBC5Il0JojXwrJly7CxsXmptIGBgVSoUEGn+XldNWjQgOHDh6t/9/LyYtasWerfFQoFGzduLLD8ZK2LXr160bZt2wI7vxBCCCGEEHmh0NMrtNfbRtZMEK9s2bJlDB8+nMjIyAI97+jRo/n000/z7XheXl4MHz5c40v662r9+vUYGhrm+H5YWBi2trYFmCNNs2fPRqlUvlTaXr16ERkZWaCdHwBn9q3ixK7FxEWH4+juT6PO43H1Kpdj+pDT2zi0eTZREfewdfKiXpvR+JSpr37/SvC/nD2wmod3LpIYF0mPsRtx8ihZEKFkY1enCj6j+mBdqQwmbk6c7PAJDzcF5b5PvWqUmjEWi1LFSLwTxrXp87m7YoNGGs9BH+Azsg/GLo5En7vMxeFTiDpxXpeh5GpN0BGWbz9ARFQsxT1c+Lx7a8r4eLxwv+3HzjJu4RoaVCzJj59+pN4en5jEnHU72HPmP6Ji43FzsKVb41p0alhdl2Hk6G1uoxmUSiVHt83h/JG1JCVE4+Zdifc6BWLr5JXrfmcPrOLk7sXER4fj4O5Pww7jcfHMLJvzh9dw+dRmwu9cJDkpjoHTT2BiZqXjaLJTKpUc2zaHC0cz42vYKRAbR69c9zt7YBWndy8mPiYcBzd/6meJ78LhNYSc2syjuxdJSYpjwNcnMC6E+IL3r+JkUGYbbdgx9zZ65YyqjUY/uYeNoxd124zGp3RmG1UqlRzeOocLh9eSmBCNu3clGnV5cXvQFbkGc/amXINvexvNyNORrZp12Kjzi/MUvH8Vp3Zrls3zdZiaksT+Dd8QcnoraanJeJasw3udJmJu5aDjiMSb6O3rHhFvPQsLC+zt7Qs7G4XCzs4OS0vLHN93cXHB2Ni4AHOkydra+qVHmBSGy6e2snf9dGq2GMxHYzfgVMSfdT/1IS4mQmv6ezdOs3npKMrU7EiPcRvxK9eIjb8MJvz+FXWalKR43H0rUa/N6IIKI0f65mZEnwvhwtBJL5Xe1KsIVTctJGLvMQ5WacPNucspu3AqDk3qqNO4dmpOye/HcXXqzxys1o6Yc5epvmUxRo52ugojVzuOn+OHNVsZ8H4jfp84mOIernwycylPomNz3e/+46f8+Oc2Khb3yvbeD6u3cvjCFab168z6aSPo3qQ23676h71nLukoipy97W00w8mgXzmzfyWNOgfSdcSfGBqZsmFBH1JTknLcJ+T0VvZvmE6NgMF88NkGHN382TC/D/HPlU1KcgJe/nWp2mRgQYSRo1NBvxK8fyUNOwXSZcSfGBiZsvEF8V05vZUDG6dTvdlguo7egIO7P38vyB6fZ8nCjS/k1Fb2bZhOjeaD+XDMBhzd/Vk/TzOfz7t/4zRblqna6Iefq9ropl8H8/i5Nnpi168E71tJoy6BfDDqTwyNTVk/L/fy0hW5Bt/8a/Btb6MZTu5Sfc407hxIt5GqOlw//yXrsNlgun+m+pzJWjb71n/NjYt7aPnxLDoNXUlc1CP+WTykIEIqMAo9RaG93jbSmfAOS0pKYujQoTg5OWFiYkKdOnU4ceIEAHv37kWhULBlyxbKlSuHiYkJNWrU4MKFC+r3e/fuTVRUFAqFAoVCQWBgoPq4o0ePxt3dHXNzc6pXr87evXs1zr1s2TKKFi2KmZkZ7dq1IyJC+we8NjkNrZ8xYwaurq7Y29szePBgUlJSXnisBg0acPv2bUaMGKGOI8Nff/1F6dKlMTY2xsvLix9++OGl8+jl5cXUqVPp0aMHFhYWeHp6smnTJsLDw2nTpg0WFhaUK1eOkydPqveJiIigW7duuLu7Y2ZmRtmyZfnjjz+y5Te3ERTPT3O4desWCoWC9evX07BhQ8zMzChfvjxHjhzR2OfXX3/Fw8NDXRczZ8585Q6BrNMc1q1bR9myZTE1NcXe3p7GjRsTFxdHYGAgy5cv5++//1aXe9Y2ogsng5ZStlZnytbsgIOrH026TsLQyIQLR/7Smv70nhV4l6pLtSZ9sXfxpU7r4Th7lCJ432/qNKWrt6VWiyF4+tfUef5fJHzHfq5MnMXDv3e9VHrP/l1JuHmXS2O+JfbyDW7PW8WDv3bgPayXOo338N7cWfwnd5evJ/bSdc5/MpG0+EQ8enXQURS5+23HQdrXq0qbupXxdXfmyx5tMDEyYuOBUznuk5aezhe/rGFgm8YU0dIJcvb6bVrVqkQVfx/cHGzp0KAaxT1cuHjzji5D0eptb6Ogupt2Zt8KqjcdhG/Zxji6+xPw4XfERT3i+vmc2+7pvUspU6szpWt0wN7Fj0adJ2FgZMLFo5llU6lBL6o26Y+LV/mCCEUrpVJJ8P4VVHsWn4ObP027q+K7kUt8Z/YupUzNzpSqrorvvU6q+P47lhlfxQa9qNK4Py6ehRffqT2qfJap0QF7Vz8ad1HlM8c2uncFXiXrUrWxqo3WbjUcJ49SBO9XtVGlUsmZvSuoHjAIv3Kq9tDso++IjXrEtXMv91mWn+QafPOvwbe9jWbk6fS+Z58zz+UpLuoR13PJ0+k9z9Whqx+Nn9XhhWd1mJQQw4Wjf1Gv7ViKFq+Jc9EyNO3+NWE3zxB2M7iAohNvEulMeIeNGTOGv/76i+XLl3P69Gn8/PwICAjgyZMn6jSfffYZP/zwAydOnMDR0ZHWrVuTkpJCrVq1mDVrFlZWVoSFhREWFsbo0aoe9yFDhnDkyBFWr17NuXPn6NSpE82aNePq1asAHDt2jD59+jBkyBCCg4Np2LAhU6dO/b9i2bNnD9evX2fPnj0sX76cZcuWsWzZshfut379eooUKcLkyZPVcQCcOnWKzp0707VrV86fP09gYCDjx49/qWNm+PHHH6lduzZnzpyhZcuWfPTRR/To0YMPP/yQ06dP4+vrS48ePdTTAhITE6lcuTJbtmzhwoUL9O/fn48++ojjx4+/SpGoffnll4wePZrg4GCKFy9Ot27dSE1NBeDQoUMMHDiQYcOGERwcTJMmTZg2bdr/db4MYWFhdOvWjY8//phLly6xd+9e2rdvj1KpZPTo0XTu3JlmzZqpy71WrVr5ct6cpKUm8/DORTz9M8+j0NOjqH8t7t84o3Wf+zeD8Syh+c+fV8k63H9L/qDa1KjA492anUvhOw9iW6MCAApDQ6wrleZx0OHMBEolj3cfxqZGxQLMqUpKaiqXbt+neik/9TY9PT2ql/Ll3PXQHPf7ZdNu7CwtaFevitb3y/t6si/4Eo+eRqFUKjlx6Tq3HzymRuli+R5Dbt6VNhodcZf46HA8imfGaWxqiYtnecJuao8zLTWZR3cuauyj0NOjaPFahN3Svk9hySk+Z8/yOeY1LTWZR3ezx+fxmsWnbqMlNPPpWSLnfIbd0tJG/TPbaFTEXeKiwylaIkt78Mq5PeiKXINv/jX4trfRDFHP6jBbnjzLcz+Xz5mHdy5q7KPQ06NoiVrqOB7euUB6WopGGjtnXyxt3Qi7FaybYMQbTdZMeEfFxcUxf/58li1bRvPmzQHVHeqdO3eyePFiqlatCsDEiRNp0qQJAMuXL6dIkSJs2LCBzp07Y21tjUKhwMXFRX3c0NBQli5dSmhoKG5uboBqjYPt27ezdOlSvv76a2bPnk2zZs0YM2YMAMWLF+fw4cNs3779leOxtbXlp59+Ql9fH39/f1q2bElQUBD9+vXLdT87Ozv09fWxtLTUiGPmzJk0atSI8ePHq/P433//8f3339OrV6+XylOLFi0YMGAAABMmTGD+/PlUrVqVTp06AfD5559Ts2ZNHj58iIuLC+7u7uoOGYBPP/2UHTt28Oeff1KtWrW8FIeG0aNH07JlSwAmTZpE6dKluXbtGv7+/sydO5fmzZurz5tRF5s3b37l82UICwsjNTWV9u3b4+npCUDZsmXV75uampKUlKRR7rqUEPsUZXoa5paaU2TMLe158uCG1n3ioh9jlmWOoJmVPXHRj3WWz4Jk7OxA0kPNWJIePsbQ2hI9E2MMba3RMzAg6VFEljQRmJfwKcisAvA0Jp609HTsrCw0tttbWXArLFzrPmeu3GLjgZOsDsx5nZXPu7dmyvINBIz6FgN9PRQKBeN7tqNyCe98zf+LvCttNC5GVVdZ4zSztCcuRnu+E+JUZWOmZZ8nj7SXTWGJfxaftrzG51AvucX39OHrE586n1Za6iGHfMZFP8bM0iFb+vhndR0frb28zC0Lvh3LNfjmX4NvexvNkFOe/t/Pmfjox+jrG2Zb58LM0p64aO1/Z99Eb+N0g8IinQnvqOvXr5OSkkLt2rXV2wwNDalWrRqXLl1SdybUrJnZU2tnZ0eJEiW4dCnnecTnz58nLS2N4sWLa2xPSkpSr3Nw6dIl2rVrp/F+zZo1/6/OhNKlS6Ovr6/+3dXVlfPnX32BuEuXLtGmTRuNbbVr12bWrFmkpaVpnCsn5cplLmbj7OwMaH6Zztj26NEjXFxcSEtL4+uvv+bPP//k3r17JCcnk5SUhJmZ2SvHkTUfrq6u6nP6+/sTEhKSrS6qVauWL50J5cuXp1GjRpQtW5aAgACaNm1Kx44d87RAZFJSEklJmnP/VGtCFN66EOLNEZeQxFeL1jK+ZztsLc1zTLc66Ajnr99h1tCPcLW34fSVW3zz2yYcbayoUdovx/3Ey7l8chNBayaqf28zYGEh5ib/XT65iT1/ZsbXuv/bFZ94873t1+C74NIJzTpsK3UoXhPSmSDyVWxsLPr6+pw6dSrbF24LC4sc9vr/ZX3CgUKhID09XWfnexnP5yljLQZt2zLy+f333zN79mxmzZpF2bJlMTc3Z/jw4SQnJ+d7PgqibPT19dm5cyeHDx/m33//Ze7cuXz55ZccO3YMb++Xu+M7ffp0Jk3SXExw4sSJuNcJzHN+TC1sUejpZ1tEKy4mIscVis2tHLL18MdH55z+TZP08DHGzpqxGDs7kBIVQ3piEsmPn5Kemoqxk32WNPYkPSj4uzG2lmbo6+llW2wxIjoWe+vsC5PeDY/g/uOnDJ+zUr0t/dm0oip9v2LD1yNwtLFi7l//MnNId+qW9weguIcrIaFhrNxxoEA7E97WNupT5j2NOf5pqarPtLiYCMytndTb42MicHT313oMU3NV2WRdQC0+JgJzy8KNNaf44vMpvqx3vQuTOp/RWuohtzaa5W53fEyE+k6wmZWjepvFc+UVFxOBUw7lpStyDb6Z1+Dz3tY26lv2PVyfW4ci9bnPGYusdVjkFT5n1LE6kJaWQmJ8tMboBFX5OeZbPIXtTXpE488//8z333/PgwcPKF++PHPnzs11xPKsWbOYP38+oaGhODg40LFjR6ZPn46JiYlO8vfmlKTIV76+vhgZGXHo0CH1tpSUFE6cOEGpUqXU244ePar++enTp1y5coWSJVWPMzIyMiItLU3juBUrViQtLY1Hjx7h5+en8coYzl6yZEmOHTumsd/z5ylo2uIoWbKkRtmAan2B4sWLv9SohFdx6NAh2rRpw4cffkj58uXx8fHhypUrL97x/1CiRAn1opsZsv7+/1AoFNSuXZtJkyZx5swZjIyM2LBB9dhBbeWe1bhx44iKitJ4jRs37pXyom9ghLNHaUJDMtcIUKanExpyBDcf7fP/3bwrcDtEs23evnwYN+8Kr5SH103k0WDs36uhsc2hUS2eHg0GQJmSQtTpizi899xcUoUC+4Y1iTxa8PNEDQ0MKOnpxrFL19Tb0tPTOX7pOuV8i2ZL7+XqyNrJQ1kdOET9ql/Bn6r+3qwOHIKLnTWpaWmkpqVpLL4KoK+nUHc8FJS3tY0amVhg4+ipftm5+GFm5cidK5lxJiXG8uD2WVy9tcepb2CEk0dpjX2U6encuXIEV6+CX7/jeTnGd1Uzvoe3z+aYV30DI5yKlNbY53WJ73nqNpqlHkJzyaerVwVCr2RpoyGZbdTavgjmVo4a7T4pIZYHt3JuD7oi1+CbeQ0+721to1nr0F5bHSao6tAtl88ZZ211GHJEHYezRxn09A010jx5eIOYp/dx9aqgm+BEjtasWcPIkSOZOHEip0+fpnz58gQEBPDo0SOt6X///XfGjh3LxIkTuXTpEosXL2bNmjV88cUXOsujjEx4R5mbmzNo0CA+++wz7OzsKFq0KN999x3x8fH06dOHs2fPAjB58mTs7e1xdnbmyy+/xMHBQb1av5eXF7GxsQQFBVG+fHnMzMwoXrw43bt3p0ePHvzwww9UrFiR8PBwgoKCKFeuHC1btmTo0KHUrl2bGTNm0KZNG3bs2PF/TXH4f3l5ebF//366du2KsbExDg4OjBo1iqpVqzJlyhS6dOnCkSNH+Omnn5g3b57O8lGsWDHWrVvH4cOHsbW1ZebMmTx8+FCjcye/ffrpp9SrV4+ZM2fSunVrdu/ezbZt27J9sXoVx44dIygoiKZNm+Lk5MSxY8cIDw9Xd0Z5eXmxY8cOQkJCsLe3x9raOtsIE2Nj43x91GWVRr3ZtuJznIuWwdWrHKd2LyclKYEyNdoDsHX5GCxsnKnXZhQAlRr2YM2PH3Fi1xJ8ytTn8qmtPAi9QJMPJquPmRAXScyTMGKjVB/sTx7dBFR3OsytC7YXX9/cDHO/zC/VZt5FsCrvT/KTKBLvhFFi6khM3J052/tzAG7/shrPT7rjP/0z7iz7C4eGNXDt1JwT7w9QH+PmrKWUX/ItkacuEHXiHF5De2Jgbsqd5esLNLYMHwbUYcKidZTyKkIZ7yL8vvMQCUnJtKlTCYCvfl2Lk60VQzsGYGxoiF8RzTU5LM1MAdTbDQ0MqFzCm1lrt2FiZIirvQ2nQm6y+fAZRnZtUbDB8fa3UVB1Mlas34Pj/87HxtETa/siHN46G3NrJ3zLNlan++unnviWa0KFeh8CUKlBb/5dpSobl6LlOL1vOSnJCZSq3l69T1x0OHHRj4l6rFqQMyLsCobG5ljZumJiblNg8VWo14MTz+KzsivC0Wfx+TwX3/qfVfGVr6uKr2KD3uz8/XOcPcrgXLQcwfuWk6olvvjox0Q+i+9x2BWMjM2xLMD4KjfszfbfntWDZzlO71W10dLP2ui2Fao2Wvf9Z220QQ/+nP0RJ4OW4FO6PpdPb+Vh6AWadFW1UYVCQcUGPTi2Yz62Tp5Y2Rfh8ObZWFg74VeucY750BW5Bt/8a/Btb6MZeapUX5UndR1ueVaHz+Vp3U898Xu+Dhv2Zsdvn+PkoSqbM3tVdVj6WR0am1pSpkYH9m34BhMza4xMLNizbiquXhVxfY06yP5fb8qaCTNnzqRfv3707t0bgAULFrBlyxaWLFnC2LFjs6U/fPgwtWvX5oMPPgBU/2t369Yt203c/CSdCe+wb775hvT0dD766CNiYmKoUqUKO3bs0JjT/s033zBs2DCuXr1KhQoV+OeffzAyMgKgVq1aDBw4kC5duhAREcHEiRMJDAxk6dKlTJ06lVGjRnHv3j0cHByoUaMGrVq1AqBGjRr8+uuvTJw4kQkTJtC4cWO++uorpkyZUijlMHnyZAYMGICvry9JSUkolUoqVarEn3/+yYQJE5gyZQqurq5Mnjz5pRdffBVfffUVN27cICAgADMzM/r370/btm2JiorS2Tlr167NggULmDRpEl999RUBAQGMGDGCn3766f8+tpWVFfv372fWrFlER0fj6enJDz/8oF7ws1+/fuzdu5cqVaoQGxvLnj17aNCgwf993tz4V25BfMwTDm2eQ3xMOI7uJek4eJF66GP00zAUiswBW+4+lWjZewYH/5nFwX9mYuPoRdv+P+PolrkmyPVzu9n+W+Zoic1LRgBQs8UQarfMedE/XbCuXIaaQZlD+kvNUPVE31mxnnN9xmHs6oiph6v6/YRbdznx/gBK/TAOr097kHj3AecHfMXjnQfVacLWbsPI0Y7iE4di7OJI9NlLHG/Vl+RHL/841/wUUK0cT2PimL9xFxFRMZTwcOXnEb3V0xwePIlEL4//JHwzsCtz1+3gi1/+JDouHld7Gwa3b0qnBtV1EUKu3vY2mqFKo36kJicQtGYCSQnRuPlUpt3ARRgYZnYeRkbcISHuqfr3EpVakBD7hCNb5xAfHY5DkZK0HbhIY+jyuUOrObY98/Nr7ZzuADT5YLr6n+WCUPlZfLufi6/NAM34oh7fISE2M77ilVqQEPeEo9vmEBetqvs2AxZpLAx3/tBqju/IjO+vuar4GnebrvGFTpdKVG5BfOwTDm/JbKPtP8msh5gsbdTNpxItes3g0OZZHNqsaqPv9/sZh+faaNXG/UhJTmDnH6rycvepTPtPNMuroMg1+OZfg297G81Q5Vmedq3OrMP2g3L/nMlah45FStJukGYd1m//BQqFHv8sGUpaajJe/nV4r/NERP7IaT2wrDfPkpOTOXXqlMaIXD09PRo3bpztMe8ZatWqxW+//cbx48epVq0aN27cYOvWrXz00Uf5H8gzCqWygMdxijfC3r17adiwIU+fPsXGxqawsyMKUL9+/bh8+TIHDhwo7Kzk6NfCeaxzgenXGLYYlijsbOhMy5QQ4g9pf97328Csdod3oo3OL7wBZTo3qBn8vK2wc6E7g5vDwn8LOxe6NaDp2/234l24Bt+FNrpgR2HnQncGBhR2DnJ255MOhXbuxU5lta4HFhgYqLHt/v37uLu7c/jwYY0F8ceMGcO+fftyHG0wZ84cRo8ejVKpJDU1lYEDBzJ//vx8jyODjEwQ4h03Y8YMmjRpgrm5Odu2bWP58uU6nc4hhBBCCCFEYSnMBRjHjRvHyJEjNbbl15TevXv38vXXXzNv3jyqV6/OtWvXGDZsGFOmTFE/7j6/SWeCeO2ULl2a27dva31v4cKFdO/e/aWPdeDAAfWwem1iY2NzfK8gj1mYjh8/znfffUdMTAw+Pj7MmTOHvn37AvlbF0IIIYQQQrzLXnY9MAcHB/T19Xn48KHG9ocPH6oXtc9q/PjxfPTRR+r/48uWLUtcXBz9+/fnyy+/RE8HnSjSmSC0atCgAYU1A2br1q2kpKRofc/Z2TlPx6pSpQrBwcH5kCvdHrMw/fnnnzm+l591IYQQQgghRKHLh4XGdc3IyIjKlSsTFBSkXvw+PT2doKAghgwZonWf+Pj4bB0GGU+h09X3OulMEK8dT0/PfDuWqakpfn75+5x4XRzzdZWfdSGEEEIIIYR4OSNHjqRnz55UqVKFatWqMWvWLOLi4tRPd+jRowfu7u5Mnz4dgNatWzNz5kwqVqyonuYwfvx4WrdurbNH20tnghBCCCGEEEII8Rrp0qUL4eHhTJgwgQcPHlChQgW2b9+uHh0cGhqqMRLhq6++QqFQ8NVXX3Hv3j0cHR1p3bo106ZN01kepTNBCCGEEEIIIcQ7QZHHR0gXpiFDhuQ4rWHv3r0avxsYGDBx4kQmTiy4R3kW3lKWQgghhBBCCCGEeCPJyAQhhBBCCCGEEO+Ewnw05NtGSlIIIYQQQgghhBB5IiMThBBCCCGEEEK8E96kNRNedzIyQQghhBBCCCGEEHkinQlCCCGEEEIIIYTIE5nmIIQQQgghhBDinSALMOYfKUkhhBBCCCGEEELkiYxMEEIIIYQQQgjxTpAFGPOPjEwQQgghhBBCCCFEnkhnghBCCCGEEEIIIfJEpjkIIYQQQgghhHgnyDSH/CMjE4QQQgghhBBCCJEnMjJBCCGEEEIIIcS7QR4NmW+kJIUQQgghhBBCCJEnMjJBCCGEEEIIIcQ7QaGQNRPyi4xMEEIIIYQQQgghRJ4olEqlsrAzIYQQQgghhBBC6Fr4V70L7dyOU5cW2rl1QaY5CCHeOIuCCjsHutW3EcQf+quws6EzZrU7sMWwRGFnQ2dapoSw8N/CzoVuDWjKWx3jgKYwd8vbe6/l05YKFuwo7Fzo1sCAt7+Nzt9e2LnQnUHN3u76A1Udvs3X4cCAws5BzhSyAGO+kZIUQgghhBBCCCFEnsjIBCGEEEIIIYQQ7wSFnizAmF9kZIIQQgghhBBCCCHyRDoThBBCCCGEEEIIkScyzUEIIYQQQgghxLtBFmDMN1KSQgghhBBCCCGEyBMZmSCEEEIIIYQQ4p0gCzDmHxmZIIQQQgghhBBCiDyRkQlCCCGEEEIIId4JCoXcT88vUpJCCCGEEEIIIYTIE+lMEEIIIYQQQgghRJ7INAchhBBCCCGEEO8GWYAx38jIBCGEEEIIIYQQQuSJjEwQQgghhBBCCPFOUOjJ/fT8IiUphBBCCCGEEEKIPJHOBCGEEEIIIYQQQuSJTHMQQgghhBBCCPFOUMgCjPlGRiYIIYQQQgghhBAiT2RkghBCCCGEEEKId4NC7qfnFynJd4yXlxezZs3KNY1CoWDjxo3/13l69epF27ZtXyqtUqmkf//+2NnZoVAoCA4O/r/O/brISxnkRX7Uz/8rMDCQChUqvDDdy7Q3IYQQQgghxJtHRiaIQrd9+3aWLVvG3r178fHxwcHBobCz9FoIDAxk48aN2TpXwsLCsLW1LZxM5dGJEycwNzcv7GxoOL1vFSd2LiYuOhynIv406jweV69yOaYPOb2Ng//MJiriHrZOXtRvOxqfMvXV71858y/BB1bz8M5FEuMi6TFuI84eJQsiFK3WBB1h+fYDRETFUtzDhc+7t6aMj8cL99t+7CzjFq6hQcWS/PjpR+rt8YlJzFm3gz1n/iMqNh43B1u6Na5Fp4bVdRmGVnZ1quAzqg/Wlcpg4ubEyQ6f8HBTUO771KtGqRljsShVjMQ7YVybPp+7KzZopPEc9AE+I/tg7OJI9LnLXBw+hagT53UZSq6C96/iZJCqjTq6+9OwY+5t9MqZbRzaPJvoJ/ewcfSibpvR+JTObKNKpZLDW+dw4fBaEhOicfeuRKMugdg6eRVANNnld3xXg//l3KHVPAy9SGJ8JB9+vhGnIoV3DYKqzI9vn8vFo2tJSojG1bsSDTpOxMbRK9f9zh1cxZk9i4mPeYyDmz/12n2Fs6eqbBLjIjm2Yy53Qg4R8zQMUws7fMo0onrzYRibWhZAVJmUSiVHts7h/BFVfG7elWjU+cVtKnj/Kk7t1qx7F8/Muk9NSWL/hm8IOb2VtNRkPEvW4b1OEzG3Kvj/C97261CpVHJ0m2Ydvtfpxfk5e2AVJ3cvJj46HAd3fxp20KzD84fXcPnUZsLvXCQ5KY6B009gYmal42iye9vrD158PWV15cw2Dm95Lsb3R+OdJcZXua7Fu01GJohCd/36dVxdXalVqxYuLi4YGOS9j0upVJKamqqD3OVdWloa6enpOju+i4sLxsbGOjt+fkhOTgbA0dERMzOzQs5Npssnt7L3r+nUajmYHuM24Ojuz9q5fYiLidCa/t710/yzZBRla3Wk57iNFCvfiA0LBxN+/4o6TUpyPEX8KlG/7eiCCiNHO46f44c1WxnwfiN+nziY4h6ufDJzKU+iY3Pd7/7jp/z45zYqFvfK9t4Pq7dy+MIVpvXrzPppI+jepDbfrvqHvWcu6SiKnOmbmxF9LoQLQye9VHpTryJU3bSQiL3HOFilDTfnLqfswqk4NKmjTuPaqTklvx/H1ak/c7BaO2LOXab6lsUYOdrpKoxchZzayr4N06nRfDAfjlG10fXz+hCfQxu9f+M0W5aNokzNjnz4+Ub8yjVi06+DefxcGz2x61eC962kUZdAPhj1J4bGpqyf14fUlKSCCktNF/GlJMfj5lOJum0K/xrMcHr3Is4eWEmDToF0Gv4nhkambFrYN9cyv3pmKwf//oaqAYPpMnI99m4l2PRLX3XZxEU/Ii7qEbXfH8MHY/6hcbfp3A45wO41XxZUWGond/1K8P6VNO4cSLeRqvjWz8+9TYWc3sr+DdOp0Www3T/bgIOWut+3/mtuXNxDy49n0WnoSuKiHvHP4iEFEZJmXt/y6xDgZNCvnNm/kkadA+k6QlWHGxa8ZB0GDOaDzzbg6ObPhvma5ZKSnICXf12qNhlYEGFoz+c7UH8vcz097/6N02xdroqx+5hnMS7SjPFVrus3lUJPUWivt410JrxG0tPTmT59Ot7e3piamlK+fHnWrVsHwN69e1EoFAQFBVGlShXMzMyoVasWISEh6v2vX79OmzZtcHZ2xsLCgqpVq7Jr165s54mJiaFbt26Ym5vj7u7Ozz//nGu+7ty5Q+fOnbGxscHOzo42bdpw69Yt9ftpaWmMHDkSGxsb7O3tGTNmDEql8qVi7tWrF59++imhoaEoFAq8vLwASEpKYujQoTg5OWFiYkKdOnU4ceKEer+M8ti2bRuVK1fG2NiYgwcP5nqujKH5S5YsoWjRolhYWPDJJ5+QlpbGd999h4uLC05OTkybNk1jv5kzZ1K2bFnMzc3x8PDgk08+ITY288vZsmXLsLGxYdOmTZQqVQpjY2NCQ0Oznf/EiRM4Ojry7bffAhAZGUnfvn1xdHTEysqK9957j7Nnz6qPOWnSJM6ePYtCoUChULBs2TJAc5rDrVu3UCgUrF+/noYNG2JmZkb58uU5cuSIxrl//fVXPDw8MDMzo127dsycORMbG5sX1k+Gb775BmdnZywtLenTpw+JiYka72dM6Zg2bRpubm6UKFECyD7NQaFQMH/+fJo3b46pqSk+Pj7qNl4QTu5eSrnanSlbswMOrn407TYJQyMTLhz+S2v6U3tW4F2qLtWa9MXe1Zc6rYfj7FGKM3t/U6cpXb0ttVoMwdO/ZkGFkaPfdhykfb2qtKlbGV93Z77s0QYTIyM2HjiV4z5p6el88csaBrZpTBEtX6DPXr9Nq1qVqOLvg5uDLR0aVKO4hwsXb97RZShahe/Yz5WJs3j4d/bPNW08+3cl4eZdLo35ltjLN7g9bxUP/tqB97Be6jTew3tzZ/Gf3F2+nthL1zn/yUTS4hPx6NVBR1Hk7tSepZSp2ZkyNTpg7+pH4y6TMDAy4cIR7W309N4VeJWsS9XGfbF38aV2q+E4eZQieL+qjSqVSs7sXUH1gEH4lWuMo7s/zT76jtioR1w793LlmJ/yOz6AUtXaUrP5EIqWKPxrEFRlfnb/Cqo0GYhPmUY4uJWg8QffEhf9iBsXci7z4H3LKF2jE6WqdcDOxY+GHSdhYGjCpeOqsrF3LU6L3nPxLv0e1g5FKVKsBjWbj+DmxT2kpxVcZ7pSqeT0vhVUazoI3+faVFzUI67n0qZO71lKmVqdKZ1R952f1f1RVXxJCTFcOPoX9dqOpWjxmjgXLUPT7l8TdvMMYTeDCyg6lbf9OlQqlZzZt4LqTQfhW1aVn4APn9Xh+VzqcO9zdejiR6NndXjxaGa5VGrQi6pN+uPiVb4gQtHqba8/ePH1lNWZfaoYqzRSxVir5XCcipQi+EBmjK9yXQshnQmvkenTp7NixQoWLFjAxYsXGTFiBB9++CH79u1Tp/nyyy/54YcfOHnyJAYGBnz88cfq92JjY2nRogVBQUGcOXOGZs2a0bp162xfbL///nvKly/PmTNnGDt2LMOGDWPnzp1a85SSkkJAQACWlpYcOHCAQ4cOYWFhQbNmzdR3n3/44QeWLVvGkiVLOHjwIE+ePGHDhg1aj5fV7NmzmTx5MkWKFCEsLEzdYTBmzBj++usvli9fzunTp/Hz8yMgIIAnT55o7D927Fi++eYbLl26RLlyOQ/tynD9+nW2bdvG9u3b+eOPP1i8eDEtW7bk7t277Nu3j2+//ZavvvqKY8eOqffR09Njzpw5XLx4keXLl7N7927GjBmjcdz4+Hi+/fZbFi1axMWLF3FyctJ4f/fu3TRp0oRp06bx+eefA9CpUycePXrEtm3bOHXqFJUqVaJRo0Y8efKELl26MGrUKEqXLk1YWBhhYWF06dIlx7i+/PJLRo8eTXBwMMWLF6dbt27qkRqHDh1i4MCBDBs2jODgYHU+Xtaff/5JYGAgX3/9NSdPnsTV1ZV58+ZlSxcUFERISAg7d+5k8+bNOR5v/PjxdOjQgbNnz9K9e3e6du3KpUu6v8udlprMg9CLeJaopd6m0NPD078W92+e0brP/ZvB2ToJvErV4X4B/2P7MlJSU7l0+z7VS/mpt+np6VG9lC/nrmfv3Mrwy6bd2Fla0K5eFa3vl/f1ZF/wJR49jUKpVHLi0nVuP3hMjdLF8j2G/GZTowKPd2t2rIXvPIhtjQoAKAwNsa5UmsdBhzMTKJU83n0YmxoVCzCnKmmpyTy8o6WNlqhF2C3tbTTsVjCeWb5Ee/lnttGoiLvERYdT9LljGpta4uJVnrAc2r2u6CK+11H0k7vEx4TjUVyzzJ2LluPBrWCt+6SlJvPo7kWNfRR6ehQpXjPHfQCSEmMwMrFAT7/gZq1GRdwlXlub8izP/RzqMaPui2ap+6Ilaqnb4cM7F0hPS9FIY+fsi6WtG2G5lEF+e9uvQ4DoZ3WYtY26eOacn7TUZB7dyd5GixbPuVwKw7tQfy9zPWUVdiuYosU1Y/QsWUfdUfcq1/UbTU+v8F5vGVkz4TWRlJTE119/za5du6hZU3Wx+/j4cPDgQRYuXEj//v0BmDZtGvXrq+Y3jR07lpYtW5KYmIiJiQnly5enfPnMnuApU6awYcMGNm3axJAhmcMEa9euzdixYwEoXrw4hw4d4scff6RJkybZ8rVmzRrS09NZtGgRCoVqaM7SpUuxsbFh7969NG3alFmzZjFu3Djat28PwIIFC9ixY8dLxW1tbY2lpSX6+vq4uLgAEBcXx/z581m2bBnNmzcHVHfWd+7cyeLFi/nss8/U+0+ePFlrvnOSnp7OkiVLsLS0pFSpUjRs2JCQkBC2bt2Knp4eJUqU4Ntvv2XPnj1Ur66aEz58+HD1/l5eXkydOpWBAwdqfKFOSUlh3rx5GuWfYcOGDfTo0YNFixapOwQOHjzI8ePHefTokXrKwowZM9i4cSPr1q2jf//+WFhYYGBgoC6X3IwePZqWLVsCMGnSJEqXLs21a9fw9/dn7ty5NG/enNGjVUOAixcvzuHDh3P9wv+8WbNm0adPH/r06QPA1KlT2bVrV7bRCebm5ixatAgjI6Ncj9epUyf69u0LqNrozp07mTt3rtYOivyUEPsUZXoaZlb2GtvNLO158vCG1n3ioh9jbqk5V9fc0p646Mc6y+erehoTT1p6OnZWFhrb7a0suBUWrnWfM1dusfHASVYHfprjcT/v3popyzcQMOpbDPT1UCgUjO/ZjsolvPM1/7pg7OxA0kPNukp6+BhDa0v0TIwxtLVGz8CApEcRWdJEYF7CpyCzCkBC3Ku1UbMsbdTM0p74GFXc8dHh6m3PK4x2rIv4Xkc5lbmZpUOO+c4oG1Mt+0Q+uql9n9innNw5n9I1O+dDrl9ezvHZE59Dm1LXvZZ9nj6r+/jox+jrG2abX29maU9ctPbPMF14269DgLiYcPX5n2dmaU/cC9qotjp88kh7uRSGd6H+XuZ6yiou+jFmVtn/n3lRjLld10KAdCa8Nq5du0Z8fHy2L8bJyclUrJh5h+z5u++urq4APHr0iKJFixIbG0tgYCBbtmwhLCyM1NRUEhISso1MyOiseP73nFbcP3v2LNeuXcPSUnNxp8TERK5fv05UVBRhYWHqL94ABgYGVKlS5aWnOmR1/fp1UlJSqF27tnqboaEh1apVy3YHu0oV7XdTc+Ll5aURi7OzM/r6+ug911Po7OzMo0eP1L/v2rWL6dOnc/nyZaKjo0lNTSUxMZH4+Hj1egBGRkZaR0YcO3aMzZs3s27dOo0nO5w9e5bY2Fjs7TU/tBMSErh+/XqeYoKc24W/vz8hISG0a9dOI321atVeujPh0qVLDByoOfexZs2a7NmzR2Nb2bJlX9iRkLFv1t9zeoJHUlISSUmac/VUnS+v95oRb4K4hCS+WrSW8T3bYWuZ8yKZq4OOcP76HWYN/QhXextOX7nFN79twtHGihql/XLcT4h3Rcipf9i7dqL691Z9F+j8nMmJsWxeNABbZ1+qBeh2TYFLJzYRtCYzvrYDFur0fCL/XT6pWYdtpA7FOy7jBqn4/0lnwmsiYw7+li1bcHd313jP2NhY/QXT0NBQvT3jQshY7G/06NHs3LmTGTNm4Ofnh6mpKR07dlRPR3jVfFWuXJlVq1Zle8/R0fGVj5tf8vqkgOfLD1RlqG1bRpneunWLVq1aMWjQIKZNm4adnR0HDx6kT58+JCcnqzsTTE1NtX4w+fr6Ym9vz5IlS2jZsqX6XLGxsbi6urJ3795s++RlLQNtcWVtFwVFF09tmD59OpMmaS62N3HiRIrUDczzsUwtbFHo6RMfrXkXOj4mIseVws2tHLLdpYnLJX1hsrU0Q19PL9tiixHRsdhbZ1/p/W54BPcfP2X4nJXqbenPOgCr9P2KDV+PwNHGirl//cvMId2pW94fgOIeroSEhrFyx4HXvjMh6eFjjJ0168rY2YGUqBjSE5NIfvyU9NRUjJ3ss6SxJ+lBwd+JMTV/tTaa9W53fEyE+i6bmZWjepuFdeb0q7iYCJzc/fMz+y+ki/heB96lG+JcNLNDNy1N9TdXFVdmmcfHPMbBXftTJjLKJiEma9lkv2OanBjLpl/6YmhsToveP6Gvr/k3LL/5ln0P1+fmv6emZsb3fJuKj4nAsYj2NqWu+2zxPd9WHUhLSyExPlpjdIKqHAvu/4238Tr0KfMeLp6ZdZj2rA7jYiIwz1qHOeQntzrMOoKvML2N9ZfVy1xPWZlbOWQbYRD3EjHmdl0LAbJmwmvj+YX7/Pz8NF4eHi9+rBuo5sb36tWLdu3aUbZsWVxcXDQWSsxw9OjRbL+XLKn9H5xKlSpx9epVnJycsuXL2toaa2trXF1dNdYYSE1N5dSpnBd8exFfX1+MjIw4dOiQeltKSgonTpygVKlSr3zcV3Hq1CnS09P54YcfqFGjBsWLF+f+/fsvvb+DgwO7d+/m2rVrdO7cmZSUFEBVrg8ePMDAwCBbuWY8GtPIyIi0tLT/O4YSJUpoLF4JZPs9NyVLltSoX8jehvIiL+1v3LhxREVFabzGjRv3SufVNzDCpWhpbodkzqFXpqdzO+QIbt7a58e7eVcg9LJmfm9fOoybd4VXyoMuGRoYUNLTjWOXrqm3paenc/zSdcr5Fs2W3svVkbWTh7I6cIj6Vb+CP1X9vVkdOAQXO2tS09JITUvL1lGmr6dQdzy8ziKPBmP/Xg2NbQ6NavH0aDAAypQUok5fxOG950bLKBTYN6xJ5NGCnyOqb2CEs0dpQq9ottHQK0dw9dLeRl29KhB6JUsbDclso9b2RTC3ciT0uXaflBDLg1tncc2h3euKLuJ7HRiZWGDj6Kl+2Tn7YWbpyN2rmXEmJ8byMPQcLl4VtB5D38AIpyKluXNVs2zuXj2qsU9yYix/L+yDnr4hLfvMw8BQ96O0ssZn7+KHmZUjd65kaVO3z+KWQz1m1P2dLHV/J+SIuh06e5RBT99QI82ThzeIeXof1xzKTRfexuswWxvVVoeJqjrMKT/6BkY4aavDXMqlMLyN9ZfVy1xPWWmLMfTyYVyfizGv17UQICMTXhuWlpaMHj2aESNGkJ6eTp06dYiKiuLQoUNYWVnh6en5wmMUK1aM9evX07p1a9W85vHjtd6dPnToEN999x1t27Zl586drF27li1btmg9Zvfu3fn+++9p06aNeqHE27dvs379esaMGUORIkUYNmwY33zzDcWKFcPf35+ZM2cSGRn5ymVhbm7OoEGD+Oyzz7Czs6No0aJ89913xMfHq+ftFxQ/Pz9SUlKYO3curVu35tChQyxYkLchrE5OTuzevZuGDRvSrVs3Vq9eTePGjalZsyZt27blu+++U3dSbNmyhXbt2lGlShW8vLy4efMmwcHBFClSBEtLy1d6JOSnn35KvXr1mDlzJq1bt2b37t1s27btpYd4DRs2jF69elGlShVq167NqlWruHjxIj4+rzanfO3atVSpUoU6deqwatUqjh8/zuLFi7WmNTY2ztfHYFZ5rzdbV3yOi2cZXD3LcXLPclKSEihTU7Xex5ZlY7C0caZe21EAVG7Yg9U/fsSJXUvwKVOfyye38iD0Ak27T1YfMyEukugnYcRFqabGPH2omt9sbuWAhXXBjt75MKAOExato5RXEcp4F+H3nYdISEqmTZ1KAHz161qcbK0Y2jEAY0ND/IporsdhaWYKoN5uaGBA5RLezFq7DRMjQ1ztbTgVcpPNh88wsmuLAo0NVI+GNPfL7Bgx8y6CVXl/kp9EkXgnjBJTR2Li7szZ3qpFTm//shrPT7rjP/0z7iz7C4eGNXDt1JwT7w9QH+PmrKWUX/ItkacuEHXiHF5De2Jgbsqd5esLPD6Ayg17s/23z3EuWgYXz3Kc3qtqo6VrqNrothVjsLBxpu77qjZaqUEP/pz9ESeDluBTuj6XT2/lYegFmnRVtVGFQkHFBj04tmM+tk6eWNkX4fDm2VhYO+FXrvEbHx+orsGYp2HEarkGC/KOdgaFQkH5ej04uXMBNg5eWNq5c2z7HMytnPApk1nmG+f3wqdMY8rV/RCACvV7seuPsTh5lMG5aDnO7ltOanICJaupyiY5MZa/F/QhNSWBpt2/JzkxluRE1UgkUws79PT0Cyy+SvVVbcrG0RNr+yIc3jIbc2snfJ9rU+t+6olfuSZUqKeKr1LD3uz47XOcPFR1f2bvclKSEyhdXRWfsaklZWp0YN+GbzAxs8bIxII966bi6lVR/YWnoLzt16FCoaBi/R4c//e5Otz6rA7LZubnr5964vt8HTbozb+rnpVL0XKc3qeqw1LP6hAgLjqcuOjHRD1WTbGNCLuCobE5VraumJjbFEh8b3v9wYuvp+0rx2Bh7UydZzFWrN+DtXM+4tTuJXiXrk/Iqa08vHOBxs/F+DLX9VvjLVwIsbBIZ8JrZMqUKTg6OjJ9+nRu3LiBjY0NlSpV4osvvnipIeszZ87k448/platWjg4OPD5558THR2dLd2oUaM4efIkkyZNwsrKipkzZxIQEKD1mGZmZuzfv5/PP/+c9u3bExMTg7u7O40aNcLKykp9vLCwMHr27Imenh4ff/wx7dq1Iyoq6pXL4ptvviE9PZ2PPvqImJgYqlSpwo4dO7C1tX3lY76K8uXLM3PmTL799lvGjRtHvXr1mD59Oj169MjTcVxcXNi9ezcNGjSge/fu/P7772zdupUvv/yS3r17Ex4ejouLC/Xq1cPZ2RmADh06qB/5GBkZydKlS+nVq1eeY6hduzYLFixg0qRJfPXVVwQEBDBixAh++umnl9q/S5cuXL9+nTFjxpCYmEiHDh0YNGjQSy+ymdWkSZNYvXo1n3zyCa6urvzxxx8FNuLEv0oL4mOfcGjzHOKiw3EqUpKOQxaphz7GPA1D8dwfGHffSrT6eAYHNs3iwKaZ2Dp60W7Azzi6FVenuX5uN9tWZo6W+GfJCABqtRhC7VY5L2yoCwHVyvE0Jo75G3cRERVDCQ9Xfh7RWz3N4cGTSPTy+IzjbwZ2Ze66HXzxy59Ex8Xjam/D4PZN6dSg+ot3zmfWlctQMyhzWkapGV8AcGfFes71GYexqyOmHq7q9xNu3eXE+wMo9cM4vD7tQeLdB5wf8BWPd2Y+RjZs7TaMHO0oPnEoxi6ORJ+9xPFWfUnOsihjQSlRWdVGD2+ZQ3xMOI7uJWn/SZY2qshso24+lWjRawaHNs/i0OaZ2Dh68X6/n3F4ro1WbdyPlOQEdv4xgaSEaNx9KtP+k0UFcle7IOK7cX43O1ZlXoNblqmuwRrNh1CrRcFegxkqvdeX1OQE9qxVlbmrd2Va9/9Vo8yjHoeSEPdU/Xuxii1IiH3C8e1ziYtWlU3r/r+qhyE/unuRh6Gqxwev/Lqpxvl6fLULK7siBRCZSpVnbWrXalV8bj6VaT9oUZb47pAQmxlfiUqq+I5snUN8dDiORUrSbtAijaHn9dt/gUKhxz9LhpKWmoyXfx3e6zyRgva2X4cAVRr1IzU5gaA1mXXYbqBmfiIj7mi00ax16FCkJG0HatbhuUOrObY98/+LtXO6A9Dkg+nqL7q69i7U34uuJ20xNu85g8NbZnHon5nYOHnxfl/NGF/muhYiK4XyVVfJE0K8sfr168fly5c5cOBAgZ5XoVCwYcMGjcUoX8WioPzJz+uqbyOIP6T9WdFvA7PaHdhiWKKws6EzLVNCWPhvYedCtwY05a2OcUBTmLvl7f336NOWCha8Wn/wG2NgwNvfRudvL+xc6M6gZm93/YGqDt/m63Cg9vuUr4XYn8e8OJGOWAz+rtDOrQsyMkGId8CMGTNo0qQJ5ubmbNu2jeXLl+v8UYxCCCGEEEKIt5dMGBE6FRoaioWFRY6vrI+t/H+ULl06x/NoexrFu+T48eM0adKEsmXLsmDBAubMmUPfvn0BKTchhBBCCCFE3snIBKFTbm5uBAcH5/p+ftm6dav6aQlZZaxD8K76888/c3yvIMtNZlUJIYQQQohCpZD76flFOhOETmU8+rAgvMwTL0R2Um5CCCGEEEKIvJLOBCGEEEIIIYQQ74Y8PtlK5EzGeAghhBBCCCGEECJPZGSCEEIIIYQQQoh3gkLWTMg3UpJCCCGEEEIIIYTIE+lMEEIIIYQQQgghRJ7INAchhBBCCCGEEO8GWYAx38jIBCGEEEIIIYQQQuSJjEwQQgghhBBCCPFOUOjJ/fT8IiUphBBCCCGEEEKIPJHOBCGEEEIIIYQQQuSJTHMQQgghhBBCCPFuUMgCjPlFRiYIIYQQQgghhBAiT2RkghBCCCGEEEKId4MswJhvpCSFEEIIIYQQQgiRJzIyQQghhBBCCCHEu0HWTMg3MjJBCCGEEEIIIYQQeSKdCUIIIYQQQgghhMgTmeYghBBCCCGEEOKdoJAFGPONlKQQQgghhBBCCCHyRKFUKpWFnQkhhBBCCCGEEELXEn77utDObfrhF4V2bl2QaQ5CiDfOuauPCjsLOlWumBO/7irsXOhOv8aw8N/CzoXuDGgKWwxLFHY2dKplSgiTV6UWdjZ0ZkJ3A6b88fbGN76bAb8deLvvJX1YV8H87YWdC90Z1AymrU4r7GzozJdd9d/qv4Og+lu4Yl9h50J3etQv7ByIgiDTHIQQQgghhBBCCJEnMjJBCCGEEEIIIcS7QU9R2Dl4a8jIBCGEEEIIIYQQQuSJdCYIIYQQQgghhHgnKBR6hfbKq59//hkvLy9MTEyoXr06x48fzzV9ZGQkgwcPxtXVFWNjY4oXL87WrVtftaheSKY5CCGEEEIIIYQQr5E1a9YwcuRIFixYQPXq1Zk1axYBAQGEhITg5OSULX1ycjJNmjTBycmJdevW4e7uzu3bt7GxsdFZHqUzQQghhBBCCCHEu+ENWTNh5syZ9OvXj969ewOwYMECtmzZwpIlSxg7dmy29EuWLOHJkyccPnwYQ0NDALy8vHSaR5nmIIQQQgghhBBC6FhSUhLR0dEar6SkpGzpkpOTOXXqFI0bN1Zv09PTo3Hjxhw5ckTrsTdt2kTNmjUZPHgwzs7OlClThq+//pq0NN09RlY6E4QQQgghhBBCCB2bPn061tbWGq/p06dnS/f48WPS0tJwdnbW2O7s7MyDBw+0HvvGjRusW7eOtLQ0tm7dyvjx4/nhhx+YOnWqTmIBmeYghBBCCCGEEOJd8QoLIeaXcePGMXLkSI1txsbG+XLs9PR0nJyc+OWXX9DX16dy5crcu3eP77//nokTJ+bLObKSzgQhhBBCCCGEEELHjI2NX6rzwMHBAX19fR4+fKix/eHDh7i4uGjdx9XVFUNDQ/T19dXbSpYsyYMHD0hOTsbIyOj/y7wWMs1BCCGEEEIIIcS7QaEovNdLMjIyonLlygQFBam3paenExQURM2aNbXuU7t2ba5du0Z6erp625UrV3B1ddVJRwJIZ4IQQgghhBBCCPFaGTlyJL/++ivLly/n0qVLDBo0iLi4OPXTHXr06MG4cePU6QcNGsSTJ08YNmwYV65cYcuWLXz99dcMHjxYZ3mUaQ5CCCGEEEIIIcRrpEuXLoSHhzNhwgQePHhAhQoV2L59u3pRxtDQUPT0MscGeHh4sGPHDkaMGEG5cuVwd3dn2LBhfP755zrLo3QmCCGEEEIIIYR4N+i9OYPzhwwZwpAhQ7S+t3fv3mzbatasydGjR3Wcq0xvTkkKIYQQQgghhBDitSAjE4QQQgghhBBCvBsK8dGQbxspSSGEEEIIIYQQQuSJjEwQQgghhBBCCPFu0Hv5RzSK3MnIBCGEEEIIIYQQQuSJdCYIoWMNGjRg+PDhBX7eW7duoVAoCA4OLvBzvywvLy9mzZpV2NkQQgghhBBC5JFMcxBCx9avX4+hoWFhZyPfeHl5MXz48ELpIMkP2zevZ9P6P4h8+gRPb18+HjCcYiVKaU27a/sm9u3ewZ3bNwDw8StBtx79c0z/y08z2Ln9b3r1+5SWbTrrLIbcnNm3ihO7FhMXHY6juz+NOo/H1atcjulDTm/j0ObZREXcw9bJi3ptRuNTpr76/SvB/3L2wGoe3rlIYlwkPcZuxMmjZEGEkqPg/as4GZQZY8OOucd45Ywqxugn97Bx9KJum9H4lM6MUalUcnjrHC4cXktiQjTu3pVo1CUQWyevAohGk12dKviM6oN1pTKYuDlxssMnPNwUlPs+9apRasZYLEoVI/FOGNemz+fuig0aaTwHfYDPyD4YuzgSfe4yF4dPIerEeV2G8kINyulR0U+BiSHcCVey9UQ6T2Jy36dKcQW1SuphYQoPn8K2k2ncj8h839YCmlTSw8NRgYE+XLuvZPvJdOISdRuLNvXL6lHR91l8j5VsO5HOk9jc96lSTEFN/8z4tp9K4/6TzPfNTaBxBT18XBQYGUJENBy8mM7lu0rdBpPFid2rOLJjMbFRj3H28KdZt69w98n5Gvzv5Hb2bpxN5ON72Dl70qjDaIqVq6817ZaVEzm9bw1Nu4yjepOeugrhhZRKJUe3zeH8kbUkJUTj5l2J9zq9+HPh7IFVnNy9mPjocBzc/WnYYTwunpllc/7wGi6f2kz4nYskJ8UxcPoJTMysdByNdvXKKKjoq8DYEO4+hm0n03n6gjZa2U9BjZIKLEzgYST8eyo9WxttVEGBt7OqjT6JhoP/pRNyV6ehZPMu/C08uWcVR/9dTGxUOM5F/GnabTzu3jnHeOnkNvb9PZvIiHvYOXnxXofR+JXNjHH/prn8d2IL0U8foG9giEvR0jRoOwJ3n/IFEU7BkgUY842UpBA6Zmdnh6WlZWFnQwCH9gexfNFPdOrWi29nL8LT249pE0YRFflUa/qL54OpU78xE6fPYdqMBdg7OjF1wigiHodnS3vs8H6uhFzE1s5B12Hk6PKprexdP52aLQbz0dgNOBXxZ91PfYiLidCa/t6N02xeOooyNTvSY9xG/Mo1YuMvgwm/f0WdJiUpHnffStRrM7qgwshVyKmt7NswnRrNB/PhmA04uvuzfl4f4nOI8f6N02xZporxw89VMW76dTCPn4vxxK5fCd63kkZdAvlg1J8YGpuyfl4fUlOSCiosNX1zM6LPhXBh6KSXSm/qVYSqmxYSsfcYB6u04ebc5ZRdOBWHJnXUaVw7Nafk9+O4OvVnDlZrR8y5y1TfshgjRztdhfFCtUopqFZCwZbj6SzekUZKKnRvqI9+Lv+VlPJU0LSSHvvOp/PL1jQePFXSvaE+Zsaq9w31oft7+iiVsDIojaX/pqGvB13r6xdMUM+pVVJBteIKtp5IZ8lOVXwfvCi+ogqaVNRj/4V0ft2exsNIJR88Fx9Amxp62FspWLM/jYVb07h8N50OtfVwsdV9TBkuHt/Kzj+/oV7rwfSbsB5njxL8PqsvcdHar8E7106z/pdRVKjTkX4TNlCiYmP+/HkIj+5dyZb28umd3LtxFksbJ12H8UIng37lzP6VNOocSNcRf2JoZMqGBbl/LoSc3sr+DdOpETCYDz7bgKObPxvma34+pSQn4OVfl6pNBhZEGDmq6a+ganEF206ms2xnOimp0K2BXq5ttKSHgsYVFRy4oGTxjnQeRSrp2kBPo42+X0MPe0sFaw+k8+s2VUdX+1p6ONvoPCS1d+Fv4X8ntrJr7XTqthpMn6824OThz+rZfXK8Du9eP82GRaMoX6cjfcdvpHjFRqydN1jjOrRz9iKg2wT6TfyHHmN+x9rBnT9mfUxczBOtxxQCpDNBCJ17fprDvHnzKFasGCYmJjg7O9OxY8eXOsb27dupU6cONjY22Nvb06pVK65fv66R5vjx41SsWBETExOqVKnCmTNnsh1n3759VKtWDWNjY1xdXRk7diypqakaeR0yZAhDhgzB2toaBwcHxo8fj1KpVL9/+/ZtRowYgUKhQKHIXMDm4MGD1K1bF1NTUzw8PBg6dChxcXHq9x89ekTr1q0xNTXF29ubVatWvXQZ5pfNG9fQKKA1DZu0xKOoN/0Hj8bI2ITdO7doTT/sswkEtGyHt08x3D08Gfjp5yjT07lw9pRGuojH4SxZOIthoydgYFB4A75OBi2lbK3OlK3ZAQdXP5p0nYShkQkXjvylNf3pPSvwLlWXak36Yu/iS53Ww3H2KEXwvt/UaUpXb0utFkPw9K9ZUGHk6tSepZSp2ZkyNTpg7+pH4y6TMMgtxr0r8CpZl6qNVTHWbjUcJ49SBO9XxahUKjmzdwXVAwbhV64xju7+NPvoO2KjHnHt3K6CDA2A8B37uTJxFg//frlze/bvSsLNu1wa8y2xl29we94qHvy1A+9hvdRpvIf35s7iP7m7fD2xl65z/pOJpMUn4tGrg46ieLHq/nocuJDOlbtKHkXCxiPpWJqBv0fOi2LV9Nfj9DUlZ28oeRwNW46nk5IGFX1V+3g4KrAxh7+PpPMoEh5Fqn52swdvl4JdbKtaCT0OXEznyj1VfH8fTcfSFPyL5JyPGiX0OHNdydmbz+I7ofqCV8Encx8PBwUnrqjuBEfGwcGLShJTwMW24OI7unMZFet2okKdDji6+dHyQ9XnTPBB7dfg8V0r8StTh1rN+uDo5kvDtsNw9SzFid2afwOinz5k+x9Tadv3e/T0C3fgrFKp5My+FVRvOgjfsqrPhYAPvyMu6hHXz+d8bZ7eu5QytTpTukYH7F38aNRZ9fl08Whm2VRq0IuqTfrj4lW4d3urlVBw8KKSK/fgURRsOqZqoyVyaaPV/RUEX1dy7lkb3XpCSWoqlH+ujRaxhxNXleo2eug/VRt1tSu4Nvou/C08tnMpFep0pnxt1XXYoruqrZ09lMN1GLQC39J1qRnQFwdXXxq0GY5L0VKc3JMZY5nqrfEuVQtbRw8c3YrRpNM4khJjeXQ3pKDCKjgKReG93jLSmSBEATl58iRDhw5l8uTJhISEsH37durVq/dS+8bFxTFy5EhOnjxJUFAQenp6tGvXjvT0dABiY2Np1aoVpUqV4tSpUwQGBjJ6tGbv+b1792jRogVVq1bl7NmzzJ8/n8WLFzN16lSNdMuXL8fAwIDjx48ze/ZsZs6cyaJFiwDVlI0iRYowefJkwsLCCAsLA+D69es0a9aMDh06cO7cOdasWcPBgwcZMmSI+ri9evXizp077Nmzh3Xr1jFv3jwePXr0yuWZVykpKdy4doVyFSqrt+np6VGuQhWuXL74UsdITkoiNS0Vi+dGmqSnpzN35lTeb98ND0/vfM/3y0pLTebhnYt4+tdSb1Po6VHUvxb3b2TvWAK4fzMYzxKa/xh5lazD/ZvBuszqK1PHWEIzRs8StQi7pT3GsFtaYvTPjDEq4i5x0eEUfe6YxqaWuHiVJ+ym9mO+TmxqVODx7iMa28J3HsS2RgUAFIaGWFcqzeOgw5kJlEoe7z6MTY2KBZjTTDYWYGmq4MaDzKH5SSlw7zEUcdD+j5aeHrjawc0HmsP5bz5QqvcxeDYAIS098/3UNFAqoahjwf0DZ2Ouiu9m1vgiwD2v8T1UapTJncdKShVVYGKk+r10UdV0jtuPCmaaQ1pqMmG3L+JdSvMa9C5Zk7s3grXuc/dGMN4la2ls8yldm7vXM9Mr09P5e/EYagb0wcm9mC6ynifREXeJjw7Ho3iWzwXPnD8X0lKTeXTnosY+Cj09ihbP+fOpsNiYg4WpglsPtbRRe+376OmBq62qTT7v5kMlRewz2+jdCCjlkdlGSxVCG30X/haGhV7UuK5U12Et7uYQ473rwXiX1IzRp3Qd7uVw3aalJnPmwBqMTS1xLlIi3/Iu3j6yZoIQBSQ0NBRzc3NatWqFpaUlnp6eVKz4cv/Md+igeQdxyZIlODo68t9//1GmTBl+//130tPTWbx4MSYmJpQuXZq7d+8yaNAg9T7z5s3Dw8ODn376CcX/2Lvv8KiKtoHDv03vvQdIhSSETuggJSBVRRBQUYo0FUVEirxK81VBP1RAFHnpIEqRIkqTFnqHUEIIGgKhhDRI79n9/ljYZNMgmE00ee7r2gtydubsPGdO2Z0zM0ehwN/fn7t37zJlyhSmT5+Onp66bbF27dp88803KBQK/Pz8uHTpEt988w2jRo3Czs4OfX19LC0tcXFx0ax79uzZDB48WNMDo27duixYsICOHTuyaNEioqOj2blzJ6dOnaJFixYALFu2jICAyhtvmJqSjFKZj7WNdtduaxtb7ty++UTr+HHlIuzsHGjYJEiz7Ndf1qKvr0+v55+sl4muZKY9QKXMx9xS+5uguaU99+9dLzFPekoCZlbawzLMrOxJT0nQWTn/jsx0dYxmVtoxmlnacz+2jBgtHYqlz0hVx5iREq9ZVpi55T93OxRm7OxAdqx2ObNjEzC0tkTPxBhDW2v0DAzIjksskiYRcz/vyiyqhoWJ+t/0TO3laVkqLExLzmNmDHp6CtKztH+QpGeBg5X6h8ztBBU5eRDcVI/9oUoUqP+vp6fAwrTy5hR4FEPReRrSs1Sa2It6FF9aSfFZFvxQ23RUPaxhUn8D8pUqcvNg4+HHj3OvKBkPzzMWRY5BcysHEu5FlZgnLTkB8yLpLawcSE8u2G+P7lqCnp4+LYNfr/hCP4X0VPV5oej51MzSnvTUks8LmvNTCXnux5V8fqoq5o+OwZL20dKOQaNHx2DRPGBfaMqHzUeVvNhWjw/66Wv20V+OVN4+WhOuhY+Ow6LHlbmlPYkxJceYlpKAeZEYza3stY5DgD8vHmDLkgnk5mRiYe3Iq+8vx8yy6obEiX8+aUwQopJ069YNDw8PvL296dGjBz169ODFF1/EzMzssXn//PNPpk+fzsmTJ0lISND0SIiOjqZBgwaEh4fTqFEjTEwKvqm2aaPdAh0eHk6bNm20hia0a9eOtLQ0bt++TZ06dQBo3bq1Vpo2bdrw1VdfkZ+fj75+yWOPL1y4wMWLF7WGLqhUKpRKJVFRUVy7dg0DAwOaNy/oFeDv74+NjU2ZcWdnZ5OdrT0+1djYuJTUurVl448cPbSPWbMXYGSkLkPkXxFs3/YLX85fprXNhBAFGngq6NOyoCPkzyH5OvmcjGz45bCSXi31aOWnnjvh8k0VdxNVqHTYltDAQ0HvFoXiO6ib+EA9aaWJoYI1+/PJzFbhV0tB/3Z6rNqbT1yyzj5Wp2JuXObU3jWMmr6pys6jV89sY9/6GZq/XxizuErKoSuBHgp6BRVs2/WHlGWk/ns6NlT3Slh7IJ+MbPBzV9CvrR6r9ymJ/5fuozWJh18rRk7bSmbaA84f3sDmxeMZPnVjsYaLfz096ZxfUaQxQYhKYmlpyblz5wgJCeGPP/5g+vTpzJw5k9OnTz/2R/Vzzz2Hh4cHS5Yswc3NDaVSSYMGDcjJyamcwj9GWloaY8aMYdy4ccXeq1OnDteuFZ9o60nMnj2bWbO0J6KbMWMG/Qa/Xe51WVpZo6enT3KS9kRCyUkPsLEt+yK5bfPPbP1lLdM//QYPL1/N8qthF0hJfsBbwwt6JSiV+axa9h3bf93I98s3lrucT8vUwhaFnn6xCabSUxOL3Y14xNzKgYwid14yUkpPX9VMzdUxZhSZYCrjcTEWuZOYkZqo6a1gZuWoWWZhXTDpW3pqIk7u/hVZfJ3Ijk3A2Fk7dmNnB3KTU1FmZZOT8ABlXh7GTvZF0tiTfa9y7rpdu61icULBD+xHwxHMTSGt0F1OCxMF9x6U/Ks/IxuUShXmJgqgII25CaRlFvx9/Z6KhdvyMTUGpVLddXtCP33CbuquNeHaHRV3EgvFp1eobIXiM3+C+CxKiu9hbwVbC2hZT48ftucRn6J+PzZJRW1HFUF19dhxRnc/EB8xe3ieSStyDKanJGBhXfIxaGHtUGxSuLSUBMwfpo/+8yzpqYnMn9xF875Kmc+eDV9wcu8qxn2xv4KjKM67QRdcPArmMMjPU19b01MTMS90XshITcSxlPOC5vyUWsL5ybJqz6l/3lGxNLFgv9IvYx+NLW0fzXl0DGovNzcp6GVkYwEt6umxeEc+CQ/30bgkFbUdFQTVVbDzjO57CNWEa+Gj47DocaXeX0s5Dq0civW0SE8pnt7I2Aw7Jw9w8sDduwnff/wsoUd/oV3PMRUbhKg2pFlGiEpkYGBA165d+fLLL7l48SI3btxg//6yvyglJiYSERHBxx9/THBwMAEBATx4oP30gYCAAC5evEhWVsG3ghMnThRLc/z4cc1kigBHjx7F0tKSWrVqaZadPHlSK9+JEyeoW7eupleCkZER+fnad96aNWvGlStX8PX1LfYyMjLC39+fvLw8zp4tmLgwIiKCpKSkMmOfOnUqycnJWq+pU6eWmac0hoaGePvW41KhyROVSiWXLpylnn9gqfl+/WUtv6xbxUez5uJTV/tL5DOduzP325X834LlmpetnQPP93uFjz756qnK+bT0DYxwrh1IdETB+HmVUkl0xHHcvEseTuPm1YSbEdr7yc2rx3DzaqLLoj41TYzXisR47TiuniXH6OrZhOhrRWKMKIjR2r4W5laOWtstOzONezcu4OpVNXMKlEfSiVDsu7TWWuYQ3JYHJ0IBUOXmknwuDIcuhXoqKRTYd25D0onKGcedkwcP0gpe8cmQmqnCy7ngTqmRAbg7qIcqlESphJj7xSdS9HJRlJgnM1vdkODprMDcRN2goSvF4kt5GJ9Lkfjs4c5j4vMsGp9zQXyGDxthiq5Bpaq8Ob30DYxw9QjkRrj2MRh19QS1vJuUmKeWdxOiwrXn9Yi6coxaPur0Dds8z5iZvzJ6xhbNy9LGiTbdR/Dq+0t1FYoWIxMLbBw9NC87F1/MrBy5Vehck52Vxr2bpZ8X9A2McKodqJVHpVRyq4zzU2Upuo8mpKgb4TyLHoP26nkTSqJUQswDtPKA+u/biWXvo8pK3kdrwrXQtU4gN65qx3gj/Di1SonR3acJUVe1Y4y6cgz3Uo7bwuvNz/1n3LiqUDIBY4WRxgQhKsnvv//OggULCA0N5ebNm6xevRqlUomfX9kT29ja2mJvb8///vc//vrrL/bv38+ECRO00rz66qsoFApGjRrFlStX2LFjB3PnztVK8/bbb3Pr1i3effddrl69yq+//sqMGTOYMGGCZr4EUA+dmDBhAhEREfz88898++23vPfee5r3PT09OXToEHfu3CEhQd3KPWXKFI4dO8Y777xDaGgof/75J7/++qtmAkY/Pz969OjBmDFjOHnyJGfPnmXkyJGYmpYyOPMhY2NjrKystF5/Z5hDn76D2Lf7d0L27eT2rRss+f4rsrMy6dy1FwDffvUpa1f+oEm/9Ze1rPtxGW+/9yGOzi48eJDIgweJZGZmAOreDnU8vbVeBgYG2Nra4V6rzlOX82kFBQ/n4tENXD6xhcR7kexZN5Pc7EwatO4HwI5Vkzn0a0EjR7POQ7hx5TCn9y4n8V4kR7d/y73oyzTp+JomTWZ6EnG3wkmMUT895H5cFHG3wklPLv54zMrQvPNwLh3bQNhJdYx7N6hjDHwY487Vkzm8rVCMndQxntm3nPv3Ijm241tioy/T5Bl1jAqFgqadhnBy9yIiL+0j/m4Eu9ZMxsLaCd9GXSs9Pn1zM6wa+2PVWN1wZeZVC6vG/pjUdgXA79MJNF7xhSb9zf+tw8yrNv6zJ2Hu543Hm6/iOqAnUfNXatJEzVtB7REDcX+9Lxb+3jT4biYG5qbcWrW5UmMr7ORVJR0a6FHPXYGTDfRtq0dqBly9VfAz5PVgPVrUK/jidfyqkma+Chp5KXCwgt4t9TDUh9DrBXkaeytwt1ffxW/oqeClDnqcuKoiMbUyo4NTEUraBz6Mzxr6ttEjNROuFmrUeK2zHkF1C+I7EaGkmU9BfL1a6GFoABei1HkSUiAxVUWvFvq42aljbO2vwNtFQYQOG0uKat1tGOcObeTC0S3E341kx4/qY7BxO/UxuHXZFPZtKjgGW3Z9nciwIxzfvZyEmOsc/PVb7t4Io0WXwYD6LquTez2tl56+ARbWDji4VM28HgqFgqYdh3DqD/V5IeFuBLt/nIy5tRM+DQvOC5sWDtU8GQagWafhXD6+gSuntnD/XiT7Ns4kNyeT+q36adKkp8QTdzuc5IRoABJjrhF3O5ys9KRKiw/gVISKdoEK6rqBo7X6kY6pmWjtS68W2UdPXlXR1EdBQ08F9lbQM0iBoQFcfHgMJqbA/VQVvYL0cLNT91Ro5afA24VK3UdrwrWwVbfhnD+8gYvHtpAQE8nOtep9rdHD43Db8skc2FzoOAwewvXLhznxx3ISYiI5tO1bYm5eJqizOsac7AwObPmaO9dDSU68Q8zNy/y2ciqpSbEEBPWokhjFv4MMcxCiktjY2LB582ZmzpxJVlYWdevW5eeffyYwsPS74qB+4sC6desYN24cDRo0wM/PjwULFtCpUydNGgsLC3777TfefPNNmjZtSv369fniiy+0Jm50d3dnx44dTJo0icaNG2NnZ8eIESP4+OOPtT5vyJAhZGZm0rJlS/T19XnvvfcYPXq05v1PPvmEMWPG4OPjQ3Z2NiqVikaNGnHw4EE++ugjOnTogEqlwsfHh0GDBmnyrVixgpEjR9KxY0ecnZ359NNPmTZt2t/cquXT7plgUpKTWP/jMpIe3MfT25ePPpmLja16cqGE+FgUegVfnP7YsZW8vFy+mq1dzgGvDGfg4DcqtexPwr95LzJS73P09wVkpMbj6B7AS2OXarpqpjyIQaEoaDhy925G7+FzOfLbPI789jU2jp70Hf0djm71NGkiL+5n148FvUF+X/4+AG16vUO73u9WUmQF/Jr3IiPtPse2F8TY7+2CGFOLxOjm3Yxew+Zy9Pd5HP1dHePzo77DoVCMLbqOIjcnkz0/Tyc7MwV37+b0e3spBoaVPz+HdfMGtNm3RvN3/bn/AeDW6s1cHDEVY1dHTB82LABk3rjN6efHUP+rqXi+O4Ss2/e4NOZjEvYc0aSJ2bgTI0c76s0Yh7GLIykXwjnVZyQ5caXcgqwEx66oMDJQ0aeVHiZGEB2nYu2BfK0nMdhaKB4+v179I+TKTRXmxko6NdbDwgRiH8BPB/K1JoRzsFIQ3EQPU6OHj068rOTE1cr7EfPIsXAVhgYqerd4GF+8ip9CHhNftAozYyUdGxaKL6QgPqUK1oXk06WJHoM66mNkAA9S1Y+d/Cum8mIMbKk+Bg/++i1pKfE41w7g1fFLNMMcUhLvas19UNu3GS+OmsuBLfM4sOUb7Jw8GTh2IU7u9Ur7iH+EoOBR5OVksm+9+rzg5t2cF9/UPi8kJd4iM72gp6Bfs15kpt3n+I4FZKTE41ArgL5vLtXqLn/x6DpO7lqo+XvjAnWjSrdXZxNYqNFB145fVWFooG60MjGCW/Gw7qCyyD4KpoVOg+G31MMcOjZUqIdEJMG6ECXpD6c2UqrU6+jSWI8Bz+hp9tFtJ1VExlRaaDXiWli/RS/SU+9zcNsC0lPica4VwMvjlmLxMMbk+9ox1vJpRt+Rcwn5dR4hW7/GzsmTAW9/pzkO9fT0Sbx3nV+ObyEz7QGm5ja4ejZkyOS1OLpV/RNWKpxC7qdXFIVKpctpiYQQ/yadOnWiSZMmzJs3r6qLUqaLf1beIyWrQqO6Tiwp/VHm/3qjusLiP6q6FLoz5lnYbli9H6XVOzeCT9bmVXUxdGb6YAP++3P1jW/aKwb8eLh6f/17rYOCRbuquhS681YP+Gyd7ib7rGofvaxfra+DoL4Wrj5Y1aXQnSEdq7oEpcva8b8q+2yTXqMfn+hfRJplhBBCCCGEEEIIUS4yzEGIKhYdHU39+vVLff/KlSuaxzYKIYQQQggh/gZ5NGSFkcYEIaqYm5sboaGhZb5fWUJCQirts4QQQgghhBD/XtKYIEQVMzAwwNfXt6qLIYQQQgghRPVXDR/RWFWkj4cQQgghhBBCCCHKRRoThBBCCCGEEEIIUS4yzEEIIYQQQgghRM2gkPvpFUW2pBBCCCGEEEIIIcpFeiYIIYQQQgghhKgZZALGCiM9E4QQQgghhBBCCFEu0pgghBBCCCGEEEKIcpFhDkIIIYQQQgghagY9uZ9eUWRLCiGEEEIIIYQQolykZ4IQQgghhBBCiBpBJRMwVhjpmSCEEEIIIYQQQohykZ4JQgghhBBCCCFqBoXcT68osiWFEEIIIYQQQghRLtKYIIQQQgghhBBCiHKRYQ5CCCGEEEIIIWoGGeZQYWRLCiGEEEIIIYQQolykZ4IQQgghhBBCiBpBHg1ZcaRnghBCCCGEEEIIIcpFGhOEEEIIIYQQQghRLgqVSqWq6kIIIYQQQgghhBC6lnFoQ5V9ttkzA6vss3VB5kwQQvzrrD5Y1SXQrSEdYdGuqi6F7rzVAxb/UdWl0J0xz8Ina/Oquhg6NX2wAdsN/aq6GDrTOzeC73ZWdSl0Z2xPqnV8oI5x6b6qLoXujAyGb7dX3/uB7/ZWVOv6A3UdVvdroaj+pDFBCCGEEEIIIUTNIBMwVhiZM0EIIYQQQgghhBDlIj0ThBBCCCGEEELUDHpyP72iyJYUQgghhBBCCCFEuUhjghBCCCGEEEIIIcpFhjkIIYQQQgghhKgRVDIBY4WRnglCCCGEEEIIIYQoF+mZIIQQQgghhBCiZlDI/fSKIltSCCGEEEIIIYQQ5SKNCUIIIYQQQgghhCgXGeYghBBCCCGEEKJGUMkwhwojW1IIIYQQQgghhBDlIj0ThBBCCCGEEELUDPJoyAojPROEEEIIIYQQQghRLtIzQQghhBBCCCFEjSBzJlQc2ZJCCCGEEEIIIYQoF2lMEEIIIYQQQgghRLnIMAchhBBCCCGEEDWDTMBYYaRnghBCCCGEEEIIIcpFGhNEjadQKNi6dWuVlmHlypXY2NhUaRlKMnPmTJo0aVLVxRBCCCGEEKJiKPSq7lXNyDAHUWPMnDmTrVu3EhoaqrU8JiYGW1vbSiuHp6cn48ePZ/z48ZplgwYNolevXpVWhprszIG1nPhjGWnJ8TjX8ufZV6bh7tWo1PThZ3Zy8Nf5JCXewc7Jky79J+LbsKPm/UPbvuXK6e2kPLiHvoEhLnUC6dT3fdy9G1dGOCVSqVSc2LmAS8c3kp2ZgptXM7oMmImtk2eZ+S4cXsuZ/cvISInHwd2fzv2n4eJRsG0uHVvP1bO/E38rjJzsdN6cfRoTMysdR1Nc6KG1nNm3jPSUeBzd/en80jRcPUuvw2vnd3L09/mk3L+DjaMnHV6YiHdgQR3+GfoHF4+uIzY6jKyMJF6bshWnWgGVEUqpOjXSo6mvAhNDuBWvYsdpJfdTy84TVE9B2wA9LEwh9gHsPJPP3cSC920toFszPWo7KjDQh7/uqth1Rkl6lm5jKcyufRDeH4zAulkDTNycONP/bWK37Ss7zzMtqT/3Qyzq1yXrVgx/zV7E7dVbtNJ4vPUq3hNGYOziSMrFq4SN/y/Jpy/pMpQyqVQqTu5cwOUTBcdg5wEzsXH0LDPfhcNrObd/GRmp8Ti4+dOxyDF4+dh6Is7+TtztMHKz0xnz+WmMq+AYrO7xAZw7uJbTe9TnGada/gQPLPs8E3FuJ0d+m09y4h1snTzp2Hci3g3U55n8/FyObJvH9bBDJCfcwsjUAg+/tnTs+wEWNs6VFZIWlUrFqV3fEvawDl29mtHppRmPrcOLR9Zy/sAyMlITcHDz55kXP8a5UB0e2DCdW38eJz05DkNjM1w9m9K2z0Rsnb11HJG26l5/UPHXQpVKxbEdC7h8bCNZmSm4ezUjeNDjvzuImq36NY+Iaic3N1en63dxccHY2Finn/E4pqamODk5VWkZaoIrp3ewd+NsOvQZy4iPt+BU259180eQnpJYYvrbkefYsvQDGrd/iZHTtlKvaTAbvx9L3J1rmjR2zp50f2U6o2b8xpDJP2Ht4M7P894gPfV+ZYVVzJl9Szh/aA3BA2fy8vsbMDQyZcsPI8jLzS41T8S5HRzaMpvW3cfy6qQtOLr5s2XRCDJSC7ZNbk4mnv4daNHtzcoIo+Rynt3BwS2zad1zLK9N3oKjuz+bv9cuZ2F3r59j+8oPaNDmJV6bshXfRsFsWzKWhLsFdZibk4GbdzM6vDCxssIoU9v6Clr6Kdh+Ssmy3fnk5sHgzvrol3HFru+h4Nlmehy8pOR/O/K590DF4M76mD08tRnqw+Au+qhUsGZfPiv+yEdfD17uqF85QT2kb25GysUILo+b9UTpTT1r0WLbYhJDTnIk6AWivl1Fw8Wf4tCtvSaN64CeBPzfVP789DuOtHyR1ItXabV9GUaOdroK47HO7ltC6KE1dB4wk0Hvb8DAyJStjzkGr53bweGts2nVYywvT9yCg7s/v/5Q/Bj0CKjaYxCqf3xXz+wgZNNs2vYey5Cp6vPMxm9HkF7KeeZO5Dl+W/4BDdu+xNCpW6nbOJgti8cS//A8k5eTReytK7Tp+RZDpm6m7+iFPIiLYvMPb1VmWFrO7V/KhcNr6DRgJgPGq68T2xaPLLMO/zy/gyO/zqFF97EMmrAZezc/tv1vpFYdOtYOJPjlzxn84XaeH7MUFSp+XTwCpTK/MsICakb96eJaeHrvEkIPriF40Exe/WADhsambP6+7ONaCGlMEFVCqVTy5Zdf4uvri7GxMXXq1OGzzz7jxo0bKBQK1q9fT8eOHTExMWHt2rUALF26lICAAExMTPD39+f777/XWueUKVOoV68eZmZmeHt7M23aNE1DxMqVK5k1axYXLlxAoVCgUChYuXIlUHyYw6VLl+jSpQumpqbY29szevRo0tLSNO8PGzaMvn37MnfuXFxdXbG3t2fs2LFP1OjRqVMnbt68yfvvv68px6PyFR7m8Gh4wfLly6lTpw4WFha8/fbb5Ofn8+WXX+Li4oKTkxOfffaZ1vqTkpIYOXIkjo6OWFlZ0aVLFy5cuPDE9TJnzhycnZ2xtLRkxIgRZGVp37I8ffo03bp1w8HBAWtrazp27Mi5c+c077/xxhv06dNHK09ubi5OTk4sW7YMgF9++YWGDRtqtm/Xrl1JT09/4jL+HSf3rKBJ+4E0btcfRzdfeg2ehYGRCReObiox/al9q/EJ7ECb7iNxcPWh0wvjcalTnzMHftSkadDqObzqt8XWsTaObnXpNmAq2VlpxN2OqJSYilKpVJw/uJpWz76FT8OuOLr70/21L0lPjiPy0t5S850LWUGDtgMJbN0fexdfggeqt03YiYJt06zTMFp0G42LZ9X1ujh7YAUN2gykQev+2Lv60nWQupyXj5dch+dCVuMZ0IEWXUdi7+JDuz7jcapdn9BDBXVYv2Vf2vR8hzp+bSorjDK18tfj8GUl126riEuCrceVWJqBf+3SJ4xq46/Hub9UXLiuIiEFtp9SkpsPTX3UeWo7KrAxh1+PK4lLgrgk9f/d7MHLpfImoorffYhrM+YR+2vp+2JhHqNfJjPqNuGTvyDt6nVufr+We5t24/XeME0ar/HDubVsA7dXbSYtPJJLb88gPyOL2sP66yiKsqlUKkIPrablw2PQwc2fZwerj8HrZRyD50PU+3b9VupjsMsA9b595WTBvt200zCCuo7GxaNqez5V5/gAzuxfQaN2A2nYpj8Orr48+8osDI1MuHys5PPM2QOr8arfgZbdRmLv6kP758bjXLs+50PU5xljU0sGjluBf/Ne2Dl74+bVhOCB04iNDiPl/t3KDA1Q1+GFQ6sJ6vYm3g2CcXDzo+urX5CeEsf1y6XXYejBlQS2HkD9lv2xc/Gl80uzMDA0IfxUwXZp0GYQ7j4tsLKrhVOtQFr3HE9aUgyp9+9URmhA9a8/dZkr9lqoUqk4H7KaVt3fwreR+rtDj9e/JC05jr8uPtn5+t9EpVBU2au6kcYEUSWmTp3KnDlzmDZtGleuXOGnn37C2bmgq9iHH37Ie++9R3h4ON27d2ft2rVMnz6dzz77jPDwcD7//HOmTZvGqlWrNHksLS1ZuXIlV65cYf78+SxZsoRvvvkGUA8j+OCDDwgMDCQmJoaYmBgGDRpUrFzp6el0794dW1tbTp8+zcaNG9m7dy/vvPOOVroDBw4QGRnJgQMHWLVqFStXrtQ0TpRl8+bN1KpVi08++URTjtJERkayc+dOdu3axc8//8yyZcvo3bs3t2/f5uDBg3zxxRd8/PHHnDx5UpNnwIABxMXFsXPnTs6ePUuzZs0IDg7m/v3H3yXfsGEDM2fO5PPPP+fMmTO4uroWa7BJTU1l6NChHDlyhBMnTlC3bl169epFaqq6//XIkSPZtWuXVly///47GRkZDBo0iJiYGF555RXeeOMNwsPDCQkJoV+/fqhUqseW7+/Kz8shJjoMr4C2mmUKPT28Atpy+/r5EvPciQzFK0D7B6Z3YHvuXA8t9TPOH16PsaklzrX8Kqzs5ZGSeJuMlHhq1yuI09jUEhePxsRElRxnfl4OcbfCtPIo9PSoU68tMTdKzlMV8vNyiL0Vhoefdjk9/EovZ8yNUDyKNBJ4+rfnblSoLov61GwswNJUwfV7BcdEdi7cSYBaDiV/CdHTA1c7iLqnfRxF3VNp8hg87ICQryx4Py8fVCqo4/jP/XJj07oJCfuPay2L33ME29ZNAFAYGmLdLJCEfccKEqhUJOw/hk3rppVY0gKlHYPOHo1L3U/z83KIu138GKz9DzsGofrHl5+Xw73oEs4z/m25W8o59G5UKB7+Rc4z9cs+z2RnpYFCgbFp5Q/jSLl/m4zUEuqwTiPu3QgtMU9pdVirXptS8+RmZxB+ajNWdrWwsHGpyBBKVRPqTxfXwuTE26SnxFPHr8h3B8/SvzsIATJngqgCqampzJ8/n4ULFzJ06FAAfHx8aN++PTdu3ABg/Pjx9OvXT5NnxowZfPXVV5plXl5eXLlyhcWLF2vW8fHHH2vSe3p6MnHiRNatW8fkyZMxNTXFwsICAwMDXFxKv6D99NNPZGVlsXr1aszNzQFYuHAhzz33HF988YWmwcPW1paFCxeir6+Pv78/vXv3Zt++fYwaNarM2O3s7NDX18fS0rLMcoC698by5cuxtLSkfv36dO7cmYiICHbs2IGenh5+fn588cUXHDhwgFatWnHkyBFOnTpFXFycZtjG3Llz2bp1K7/88gujR48u8/PmzZvHiBEjGDFiBACffvope/fu1eqd0KVLF608//vf/7CxseHgwYP06dOHtm3b4ufnx5o1a5g8eTIAK1asYMCAAVhYWHDt2jXy8vLo168fHh4eADRs2LDMclWUjLQHqJT5mFvZay03t7QnMeZ6iXnSUhIwt3LQTm9lT3pygtayPy8eYMuSCeTmZGJh7cir7y/HzLJqulinp8YD6rgKM7O0Jz01oaQsZKart41ZCXnux5W8baqCppxWJZQztuRypqckYGbpUCx9RinboqpZmKj/Tc/UXp6WpcLCtOQ8Zsagp6cgPUu7MSE9Cxys1A0FtxNU5ORBcFM99ocqUaD+v56eAgtT3TfmPS1jZweyY7XrKjs2AUNrS/RMjDG0tUbPwIDsuMQiaRIx96vcMdqPZDw8Bks6njJSyn8MPihl364q1T2+zLSnO8+YFznPmFvak17K9sjLzebQlrkEBPXG2NSiYgpeDhkppdWhQ6nnxkd1aFpCnqS4KK1ll47+xLHf5pKbk4GNkxcvvLkcfQOjCoygdDWh/nRxLSxtnyhrO/yrVcOJEKuKNCaIShceHk52djbBwcGlpgkKCtL8Pz09ncjISEaMGKH1Yz0vLw9ra2vN3+vXr2fBggVERkaSlpZGXl4eVlblazEODw+ncePGmoYEgHbt2qFUKomIiNA0JgQGBqKvXzDW2NXVlUuXKnayL09PTywtLTV/Ozs7o6+vj56entayuLg4AC5cuEBaWhr29toXgszMTCIjIx/7eeHh4bz5pvY41TZt2nDgwAHN37GxsXz88ceEhIQQFxdHfn4+GRkZREdHa9KMHDmS//3vf0yePJnY2Fh27tzJ/v37AWjcuDHBwcE0bNiQ7t278+yzz/LSSy+VOgFmdnY22dnaY/XUDSVVO8dFUR5+rRg5bSuZaQ84f3gDmxePZ/jUjcUaLnTh6plt7Fs/Q/P3C2MW6/wzRcVp4KmgT8uCY/rnEN2MK87Ihl8OK+nVUo9Wfuq5Ey7fVHE3UUUldAyq1q6e2caBDQXH4HOjq9cxWN3jq2z5+blsW/oeKlR0e/nJ5g75uyLO/kbIxoI67DPyB51+Xr1mz1G7XlvSU+I5H7KcXavH0//dnzEw/Gddu59GVdSfEP9k0pggKp2paSm31wop/GP+0XwFS5YsoVWrVlrpHv2gP378OIMHD2bWrFl0794da2tr1q1bx1dffVWBJS9gaGio9bdCoUCpVJaSuuI+o6zPTUtLw9XVlZCQkGLrqqjHTg4dOpTExETmz5+Ph4cHxsbGtGnThpycHE2aIUOG8OGHH3L8+HGOHTuGl5cXHTp0ANT1tWfPHo4dO8Yff/zBt99+y0cffcTJkyfx8vIq9nmzZ89m1izti/WMGTPw7jyz3GU3s7BFoadfbLLF9NREzK0dSsxjYeVQrEU+PaV4eiNjM+ycPMDJA3fvJnz/8bOEHv2Fdj3HlLuc5eXdoIvW+OL8PHVdqOMqmNQzIzURR3f/Etdhaq7eNkUnbspITSx2t6YqacqZUkI5rUoup7lV8TttGamJxe7QVJVrt1UsTihoQHg0HMHcFNIKTVliYaLg3oOSf/VnZINSqcLcRAEUpDE3gbTMgr+v31OxcFs+psagVKqHT0zop0/YzX9ua0J2bALGztp1ZezsQG5yKsqsbHISHqDMy8PYyb5IGnuy71XO3bTSjsGMCjoGzUrZtytLdY+vKFOLpzvPFO35lV5CevUP0fGk3L/LoPdWVdpdba/AzjjXKZjlPz+/UB1aFa7DBBzcS36SzaM6zCxWh8XveBubWmJsaomNoycuHo1Z8nErrl/aQ71m2nMq6UJ1rL+idHEtNLNy1CyzKHRcp6cm4lTKcf1vpuKfO7zv30b6eIhKV7duXUxNTdm3r+zHgT3i7OyMm5sb169fx9fXV+v16AfosWPH8PDw4KOPPiIoKIi6dety8+ZNrfUYGRmRn1/2Xb+AgAAuXLigNSHg0aNHNcMKKsKTlONpNGvWjHv37mFgYFBsOzk4PP7LWkBAgNb8CwAnTpzQ+vvo0aOMGzeOXr16ERgYiLGxMQkJ2hcne3t7+vbty4oVK1i5ciXDhw/Xel+hUNCuXTtmzZrF+fPnMTIyYssW7ce8PTJ16lSSk5O1XlOnTn2SzVGMvoERrnUCuXG1YPy1SqnkRvhxanmXPLba3acJUVe1t0HUlWO4ezcp87NUSiX5uTllpqkoRiYW2Dh6aF52Lr6YWTly61pBnNlZady7eQFXr5Lj1Dcwwql2oFYelVLJrWvHcfWsmnHnJdE3MMK5diDRRcoZXUY5XT2bEH1Nuw5vRhzDzauJLov6xHLy4EFawSs+GVIzVXg5F3zRMTIAdwf1UIWSKJUQc7/4RIpeLooS82RmqxsSPJ0VmJuoGzT+qZJOhGLfpbXWMofgtjw4EQqAKjeX5HNhOHQpNBZYocC+cxuSTlTOON9Sj8E/tY/B2JsXSt1P9Q2McKoVqJXnn3IMVvf4itI3MMKlTiA3I7TLejPiOG6lnEPdvJoQXeRacTNc+zzz6IdoUtxNBo5bialF5T2SulgdOvtiZunI7UL1kZOVRmz0RVw8m5S4jtLq8PafJ0rNU5BQpWmE0rXqWH9F6eJaaG1fC3MrR6ILbbfszDTu3Sj9u4MQID0TRBUwMTFhypQpTJ48GSMjI9q1a0d8fDxhYWGlDn2YNWsW48aNw9ramh49epCdnc2ZM2d48OABEyZMoG7dukRHR7Nu3TpatGjB9u3bi/1A9fT0JCoqitDQUGrVqoWlpWWxR0IOHjyYGTNmMHToUGbOnEl8fDzvvvsur7/+utYEkX+Hp6cnhw4d4uWXX8bY2PiJfug/ia5du9KmTRv69u3Ll19+Sb169bh79y7bt2/nxRdf1Bo6UpL33nuPYcOGERQURLt27Vi7di1hYWF4exeMO65bty5r1qwhKCiIlJQUJk2aVGJPk5EjR9KnTx/y8/M1c1oAnDx5kn379vHss8/i5OTEyZMniY+PJyCg5DshxsbGFfrYzlbdhrNtxRRcPRrg5tWIU3tXkZuTSaN26rk4ti2fjKWNM537fQBAy+AhrPm/1znxx3J8G3bkyukdxNy8TK/XPwEgJzuDozt+oF7jLlhYO5KR9oAzB9aSmhRLQFCPCit3eSgUCpp2HMKpPxZh4+iBtX0tju2Yj7m1Ez4Nu2rSbVo4FJ9G3WjyzGsANOs0nD/WTsG5TgNc6jTi3EH1tqnfqmDukvSUeNJTEkhOUA9rSYy5hqGxOVa2rpiY21RKfM07D2fXjw/L6dGIcyGryM3OJLC1upw7V0/GwsaZDs9/8DCuIWyY/zpn9i3HO7AjV8/tIDb6Mt1e/kSzzsz0JFIfxJCWrB4y9CBWPf7X3MoB84d3ayrTyatKOjTQ436qkqR0FZ0a6ZGaAVdvFfzofz1Yj6u3VJy+pl52/KqSvm30uJuo4G6iilb+ehjqQ+j1gjyNvRUkJKvIyFZP5tg9SI8TV1UkplZebPrmZpj71tH8beZVC6vG/uTcTybrVgx+n07AxN2ZC8OnAHDzf+vweHsw/rMncWvlJhw6t8Z1QE9OP1/Q6ydq3goaL/+CpLOXST59Ec9xQzEwN+XWqs2VF1ghCoWCJs8M4fTDY9DKrhYnHh6D3oWOwc3fqY/Bxh3Ux2DTTsPZ89MUnGs3wLlOI0IPriKvhGMwIyWBpIfHYELMNYyMzbGsxGOwuscHENRlODtWT8HFowGuHo04c0B9nmnQRl3W7SvV14pn+qrPM807D2HdN69zeu9yvBt05OqZHdyLvsyzg9Xnmfz8XLYtGUds9BX6vb0YpTKftGT1GHVTc+tKm0/gEYVCQeNnhnBmzw/YOHhiaefOyV0LMLdywrtBQR1uXTQM7wZdafSwDpt0HMbenz/E6WEdXnhYhwEt1dslOfEWf57fQR2/dpha2JGWdI+z+5egb2iMR0DHSouvutefuswVey1UKBQ07TSEk7sXYevkgZV9LY79Ph8Layd8G3UttRxCSGOCqBLTpk3DwMCA6dOnc/fuXVxdXYuN1y9s5MiRmJmZ8X//939MmjQJc3NzGjZsyPjx4wF4/vnnef/993nnnXfIzs6md+/eTJs2jZkzZ2rW0b9/fzZv3kznzp1JSkpixYoVDBs2TOtzzMzM2L17N++99x4tWrTAzMyM/v378/XXX1dY7J988gljxozBx8eH7OzsCnuSgUKhYMeOHXz00UcMHz6c+Ph4XFxceOaZZ56oIWTQoEFERkYyefJksrKy6N+/P2+99Ra7d+/WpFm2bBmjR4+mWbNm1K5dm88//5yJEycWW1fXrl1xdXUlMDAQNzc3zXIrKysOHTrEvHnzSElJwcPDg6+++oqePXtWyDZ4nPotepGeep+D2xaQnhKPc60AXh63FIuH3QKT78egKDQpTy2fZvQdOZeQX+cRsvVr7Jw8GfD2dzi51wNAT0+fxHvX+eX4FjLTHmBqboOrZ0OGTF6Lo1vdSompJEHBo8jLyWTf+ulkZ6bg5t2cF99cqjVeNSnxFpnpDzR/+zXrRWbafY7vWEBGSjwOtQLo++ZSrS6TF4+u4+SuhZq/Ny4YDEC3V2cTWOgHgS75Ne9FRtp9jm1fQEZqPI7uAfR7u6CcqQ+069DNuxm9hs3l6O/zOPr719g4evL8qO9wcKunSXP90n52ry3o8bJ95fsAtO75Dm17vVspcRV27IoKIwMVfVrpYWIE0XEq1h7I13oSg62FAjNjeDSs4cpNFebGSjo11sPCBGIfwE8H8kkvNFTCwUpBcBM9TI0gKR2OXFZy4mrl9kqwbt6ANvvWaP6uP/c/ANxavZmLI6Zi7OqIaW1XzfuZN25z+vkx1P9qKp7vDiHr9j0ujfmYhD1HNGliNu7EyNGOejPGYeziSMqFcE71GUlOkUkZK1Pzh8fg/kLH4AtjtI/B5IRbZKYVHIP1mvUiM/0+J3aqz0+O7gG8MGapVhfyS0fXcWp3wTG46Vv1Mdj1ldlaP8p1rbrH5x+kPs8c/V1dVqdaAbz0TpHzTKH5i9x9mtHnjbkc3jaPw9u+xtbRkxfHfIfjw/NMWlIsf11Uzx206vMXtD5r0PjV1KmnPYSzMjTrMpK8nEwObFTXoatXc54bvaRIHUZrXSfqNlVfJ07t+lZTh8+NXqKpQ30DI2Kun+XCodVkZ6ZgZmmPm3cQL437udjEfrpUE+pPF9fCFl1HkZuTyZ6f1fuEu3dz+r29tFrMdVGUSiZgrDAKVWU8k00IUaOkpaXh7u7OihUrtJ7KUVFWH6zwVf6jDOkIi3ZVdSl0560esPiPqi6F7ox5Fj5Zm1fVxdCp6YMN2G5YNY8/rQy9cyP4bmdVl0J3xvakWscH6hiXPtloyn+lkcHw7fbq+xX+3d6Kal1/oK7D6n4t/KdKOr+/yj7bpmmXxyf6F5GeCUKICqNUKklISOCrr77CxsaG559/vqqLJIQQQgghRAHpmVBhZEsKUYEOHz6MhYVFqa+qFBgYWGq51q5dWyGfER0djbOzMz/99BPLly/HwEDaK4UQQgghhKiO5Ju+EBUoKCiI0NDQqi5GiXbs2EFubm6J71Xk5JIyckoIIYQQQojqTxoThKhApqam+Pr6VnUxSuTh4VHVRRBCCCGEEKJKqRSKxycST0SGOQghhBBCCCGEEKJcpDFBCCGEEEIIIUSNoFLoVdmrvL777js8PT0xMTGhVatWnDp16onyrVu3DoVCQd++fcv9meUhjQlCCCGEEEIIIcQ/yPr165kwYQIzZszg3LlzNG7cmO7duxMXF1dmvhs3bjBx4kQ6dOig8zJKY4IQQgghhBBCiJpBoai6Vzl8/fXXjBo1iuHDh1O/fn1++OEHzMzMWL58eal58vPzGTx4MLNmzcLb2/vvbqnHksYEIYQQQgghhBBCx7Kzs0lJSdF6ZWdnF0uXk5PD2bNn6dq1q2aZnp4eXbt25fjx46Wu/5NPPsHJyYkRI0bopPxFSWOCEEIIIYQQQgihY7Nnz8ba2lrrNXv27GLpEhISyM/PL/b4dmdnZ+7du1fiuo8cOcKyZctYsmSJTspeEnk0pBBCCCGEEEKIGuFpJkKsKFOnTmXChAlay4yNjf/2elNTU3n99ddZsmQJDg4Of3t9T0oaE4QQQgghhBBCCB0zNjZ+osYDBwcH9PX1iY2N1VoeGxuLi4tLsfSRkZHcuHGD5557TrNMqVQCYGBgQEREBD4+Pn+z9MXJMAchhBBCCCGEEDWCCkWVvZ6UkZERzZs3Z9++fZplSqWSffv20aZNm2Lp/f39uXTpEqGhoZrX888/T+fOnQkNDaV27doVsu2Kkp4JQgghhBBCCCHEP8iECRMYOnQoQUFBtGzZknnz5pGens7w4cMBGDJkCO7u7syePRsTExMaNGigld/Gxgag2PKKJI0JQgghhBBCCCHEP8igQYOIj49n+vTp3Lt3jyZNmrBr1y7NpIzR0dHo6VXtQANpTBBCCCGEEEIIUSNU5QSM5fXOO+/wzjvvlPheSEhImXlXrlxZ8QUq4t+zJYUQQgghhBBCCPGPID0ThBBCCCGEEELUDIonnwhRlE16JgghhBBCCCGEEKJcpGeCEEIIIYQQQogaQSX30yuMbEkhhBBCCCGEEEKUizQmCCGEEEIIIYQQolxkmIMQQgghhBBCiBpBJRMwVhiFSqVSVXUhhBBCCCGEEEIIXYsNP1tln+0c0LzKPlsXpGeCEOJfZ9Guqi6Bbr3VA77bWdWl0J2xPeHb7dW3Hfvd3gr++3NeVRdDp6a9YlDt99Hthn5VXQyd6Z0bwQ+7q7oUuvVmd6p1jG92h6X7qroUujMyGBbuqL7XCYB3eimqfR3+U6kUMtK/osiWFEIIIYQQQgghRLlIY4IQQgghhBBCCCHKRYY5CCGEEEIIIYSoEVTIBIwVRXomCCGEEEIIIYQQolykZ4IQQgghhBBCiBpBJmCsOLIlhRBCCCGEEEIIUS7SmCCEEEIIIYQQQohykWEOQgghhBBCCCFqBJVCJmCsKNIzQQghhBBCCCGEEOUiPROEEEIIIYQQQtQI8mjIiiM9E4QQQgghhBBCCFEu0jNBCCGEEEIIIUSNII+GrDiyJYUQQgghhBBCCFEu0pgghBBCCCGEEEKIcpFhDkIIIYQQQgghagSZgLHiSM8EIYQQQgghhBBClIv0TBBCCCGEEEIIUSPIBIwVR7akEEIIIYQQQgghykUaE4QQQgghhBBCCFEuMsxBCCGEEEIIIUSNIBMwVhxpTBBCVLqQkBA6d+7MgwcPsLGxqdTPVqlUnNi5gEvHN5KdmYKbVzO6DJiJrZNnmfkuHF7Lmf3LyEiJx8Hdn879p+Hi0Ujz/qVj67l69nfib4WRk53Om7NPY2JmpeNoSqZSqTi5cwGXTxTE2HnATGwcPcvMd+HwWs7tX0ZGajwObv50LBLj5WPriTj7O3G3w8jNTmfM56cxroIYVSoVp3Z9S9jD+Fy9mtHppRmPje/ikbWcP7CMjNQEHNz8eebFj3F+GF9WehInd3/LrYijpD6IwdTCDu8GwbTq+R7GppaVEJW2jg31aOqjwMQQbiWo2Hlayf20svME1VXQxl8PC1OIfQC7zuZz937B++Ym0LWJHt4uCowMITEFjoQpuXpbpdtgSlBd91G79kF4fzAC62YNMHFz4kz/t4ndtq/sPM+0pP7cD7GoX5esWzH8NXsRt1dv0Urj8dareE8YgbGLIykXrxI2/r8kn76ky1DKpFKpOL5D+zwaPPDx59HQQ2s5u38Z6SnxOLr70/kl7frLy83m0JY5RJzbQX5eDh4B7ekyYAbmVg46jqj8ZS3q2vmdHNs+n5T7d7Bx9KTD8xPxCuyoef9pt5munDu4ltN71PE51fIneOA0XD1Ljy/i3E6O/Daf5MQ72Dp50rHvRLwbFMR37fwfhB5eR+ytMLLSkxgydSvOtQMqI5RSqVQqTu76lrDjG8nOSsHVsxmdBzzZtUJ9nnl4rej3sabus9KTOLnrW6IjjpKaFIOpuR3eDYNpXQXXippQh+KfT4Y5CPEvoVKpyMvLq+pi/Oud2beE84fWEDxwJi+/vwFDI1O2/DCCvNzsUvNEnNvBoS2zad19LK9O2oKjmz9bFo0gIzVRkyY3JxNP/w606PZmZYRRprP7lhB6aA2dB8xk0PsbMDAyZetjYrx2bgeHt86mVY+xvDxxCw7u/vz6Q/EYPQKqPsZz+5dy4fAaOg2YyYDx6jrctnhkmfH9eX4HR36dQ4vuYxk0YTP2bn5s+99ITXzpKXGkJ8fR7vnJvDr5N7q+MpubEYfZv/6jygpLo22Agpb1FOw4rWT5nnxy8+DVzvrol3HFrl9HQbemehy6rGTJrnxik1S82lkfM+OCNC+01sPeSsH6Q/ks3pHP1dtK+rfTw8VW9zEVVV33UX1zM1IuRnB53KwnSm/qWYsW2xaTGHKSI0EvEPXtKhou/hSHbu01aVwH9CTg/6by56ffcaTli6RevEqr7cswcrTTVRiPdWavuv66DpzJKxPUx+DmRU94Hu0xlsGT1PW3+Xvt+ju4+XOuhx2g9xvzGDBuDenJcfy27J3KCKncZS3s7vVz7Fj1AQ3avMTgyVvxbRTMtqVjSbh7TZPmabaZrlw9s4OQTbNp23ssQ6ZuwdHdn43fjiC9lPjuRJ7jt+Uf0LDtSwydupW6jYPZsngs8YXiy83JoJZvMzr2nVhZYTzWuf1LufDwPDNw/AYMjU359YeyrxXXzu/g8NY5tOw+lpc/2IyDmx/bFhe5VqTE0f75yQye/BtdX51N9NXD7FtXudeKmlKHuqJS6FXZq7qpfhEJ8S+SnZ3NuHHjcHJywsTEhPbt23P69GlAffdeoVCwc+dOmjdvjrGxMUeOHCE1NZXBgwdjbm6Oq6sr33zzDZ06dWL8+PFP/JlTpkyhdu3aGBsb4+vry7JlyzTvHzx4kJYtW2JsbIyrqysffvihViOGp6cn8+bN01pnkyZNmDlzpuZvhULB0qVLefHFFzEzM6Nu3bps27YNgBs3btC5c2cAbG1tUSgUDBs2rPwb7ymoVCrOH1xNq2ffwqdhVxzd/en+2pekJ8cReWlvqfnOhaygQduBBLbuj72LL8EDZ2FgZELYiU2aNM06DaNFt9G4eDaujFBKpVKpCD20mpYPY3Rw8+fZweoYr5cR4/mQFTRoM5D6rdQxdhmgjvHKyYIYm3YaRlDX0bh4VF2MKpWKC4dWE9TtTbwbBOPg5kfXV78gPSWO65dLjy/04EoCWw+gfsv+2Ln40vmlWRgYmhB+Sh2fvWs9eg3/Fq/ALlg71KFW3da06fk+UWEHUOZXbiNeSz89DocpuXZHRVwS/HpCiaUp+NcqvVtmaz89zkequBClIiEFtp9WkpsHTbwL8tR2UHD6mpK79yEpHY6EqcjKBRfbyu3uWZ330fjdh7g2Yx6xv5YeR2Eeo18mM+o24ZO/IO3qdW5+v5Z7m3bj9d4wTRqv8cO5tWwDt1dtJi08kktvzyA/I4vaw/rrKIqyqVQqzh18WH+N1OfRHq8/PI9eLOM8eqDQedTVl64Pz6OXH55HszNTuXxiE8/0/ZA69drgXKcBzw7+nJio88REhVZSdE9W1qLOH1yNZ0AHgoJHYu/iQ9ve43GqVZ/Qwz8CT7/NdOXM/hU0ajeQhm364+Dqy7OvzMLQyITLx0qO7+yB1XjV70DLbiOxd/Wh/XPjca5dn/MhP2rSBLbqS9te7+Dh36aywiiTSqUi9OBqWjz7Jt4N1deKbo+uFWWcZ0JDVhLYZgD1Wz28VhQ5z2iuFQ3U14radVvTulflXytqQh2KfwdpTBCiCk2ePJlNmzaxatUqzp07h6+vL927d+f+/YK+yR9++CFz5swhPDycRo0aMWHCBI4ePcq2bdvYs2cPhw8f5ty5c0/8mUOGDOHnn39mwYIFhIeHs3jxYiwsLAC4c+cOvXr1okWLFly4cIFFixaxbNkyPv3003LHNmvWLAYOHMjFixfp1asXgwcP5v79+9SuXZtNm9QXu4iICGJiYpg/f3651/80UhJvk5EST+16bTXLjE0tcfFoTEzU+RLz5OflEHcrTCuPQk+POvXaEnOj5DxVqbQYnT0al1re/Lwc4m4Xj7H2PzDGlPu3yUgtIb46jbh3I7TEPKXFV6tem1LzAGRnpWJkYoGefuWNCLQxB0tTBVH3CoYeZOfCnURwdyj5R7+eHrjaoZUHICpWRa1CeW4lqKhfR4GJkfrvwDoKDPThZlzlDnOo7vtoedi0bkLC/uNay+L3HMG2dRMAFIaGWDcLJGHfsYIEKhUJ+49h07ppJZa0QPLD+qvjV/w8ereM+ou9FaaVR6GnRx2/tppzb+ytyyjzc7XS2Dn7YGnrRkwZx2lFe5KyFhVzI5Q69bR/gHkEtNc0gjzNNtOV/Lwc7kWH4VEkPg//ttwtJb67UaHFfmB61m/P3Upu5CmPlMRSrhUe5b9W1K7bhns3S84DkFPJ14qaUoe6pEJRZa/qRuZMEKKKpKens2jRIlauXEnPnj0BWLJkCXv27GHZsmW0aNECgE8++YRu3boBkJqayqpVq/jpp58IDg4GYMWKFbi5uT3RZ167do0NGzawZ88eunbtCoC3t7fm/e+//57atWuzcOFCFAoF/v7+3L17lylTpjB9+nT09J68/XHYsGG88sorAHz++ecsWLCAU6dO0aNHD+zs1N1znZycKnXOhPTUeADMLe21lptZ2pOemlBinsz0B6iU+ZiVkOd+3HXdFPRvyHgYY0nlzUgpf4wPYv9ZMWaklBafAxmPqUPTEvIkxUWVnCftAWf2LCKwzcAKKPWTszBV/5uepb08PUuFhUnJecyMQU9PQVqWqkgecLAs+OKy6ah6WMOk/gbkK1Xk5sHGw0oePGYuhopW3ffR8jB2diA7Vjvm7NgEDK0t0TMxxtDWGj0DA7LjEoukScTcz5uqUPox+PfqLyMlAX19w2JzzZhZ2pP+8DMrw9Psa+kpCZgVmdfB3NJec056mm2mK5lpD+OzKuGaVkZ85pbF40uv5LKXh+Y8Y1EkTguHp7jeO/CgjGvF6T8W0aASrxU1pQ7Fv4M0JghRRSIjI8nNzaVdu3aaZYaGhrRs2ZLw8HBNY0JQUJDm/evXr5Obm0vLli01y6ytrfHz83uizwwNDUVfX5+OHTuW+H54eDht2rRBoSj4AdKuXTvS0tK4ffs2derUeeL4GjUqmATI3NwcKysr4uLinjg/qIdkZGdrj200NjYGjEvOUMTVM9vYt36G5u8Xxiwu1+f/G1w9s40DGwpifG509Yox4uxvhGwsiK/PyB90/pk5WWn8vnQMts4+tOyu2/HaDTwU9G5R0Ej388F8nX1Wp0Z6mBgqWLM/n8xsFX61FPRvp8eqvfnEJevsY6v9PlrdhZ/WPo/2rYbnUfHvF3H2N+3zzKjKuVb8tuThtaJH5c/tIcQ/gTQmCPEPZ25uXmHrMjU1/dvr0NPTQ6XSvgOam5tbLJ2hoaHW3wqFAqVSWa7Pmj17NrNmaU9kNmPGDJxbz3yi/N4NumiNnc7PywEgPTURc2snzfKM1EQc3f1LXIepuS0KPf1iE29lpCYWa+WvCqXFmFFBMRa921bZvAI741ynoGEqP79QfFaF40vAwb3kWacfxZdZLL4EzIrUYU5WGtv+NxJDY3N6DV+Ivr72flzRrt1RcSexoAHB4GG7grkJpBXqnWBuouDeg5KHI2Rkg1KpwsJEAagK5UHTW8HWAlrW0+OH7XnEp6jfj01SUdtRRVBdPXacKd+xWR7VfR/9O7JjEzB21i6/sbMDucmpKLOyyUl4gDIvD2Mn+yJp7Mm+Vzl3FH0adsG10FwweYXqz6Jo/dV6ivp7eAyaWTmQn59LVkaKVu8E9bHuWGHxPM6TlLUocyuHYj0M0rVic9Ss40m3ma6YWjyML6WEa1opx5K5VfG7+ellpK8KXoGdcZ5Y6FrxaD9NK3KeSUvA0a3sa0Xxui/e8yQnK41fF6uvFb3f0P21Qquc1bQOK5NKUf2GG1QVmTNBiCri4+ODkZERR48e1SzLzc3l9OnT1K9fv8Q83t7eGBoaaiZpBEhOTubatWslpi+qYcOGKJVKDh48WOL7AQEBHD9+XKux4OjRo1haWlKrVi0AHB0diYmJ0byfkpJCVFTJ3f9KY2SkHrSdn1/2XdipU6eSnJys9Zo6deqTf46JBTaOHpqXnYsvZlaO3LpWMEY5OyuNezcv4OpV8vhjfQMjnGoHauVRKZXcunYcV8+qGbNcWKkx/qkdY+zNC6WWV9/ACKdagVp5/ikxFovP2RczS0duFyprTlYasdEXcfFsUuI6Sovv9p8ntPKovxyOQE/fkN4jvsfA8Ml6wPwdOXnwIK3gFZ8CqZkqvFwKvugYGYC7PdxJKLkxQamEmPvg6aL95cjLWcHth3kM9dXLiq5BpQJdf6eq7vvo35F0IhT7Lq21ljkEt+XBiVAAVLm5JJ8Lw6FLobHOCgX2nduQdKJyxtoXrT/7ks6jmerzqFsZ9edc0nk04rjm3OtcuwF6+oZaae7HXif1wV1cSzm2deFJylqUq2cToq+d0FoWffUYrl5NALC2r1XubaYr+gZGuNQJ5GaEdnw3I47jVkp8bl5NiL6qHd/N8GO4PYzvn6DE84yl9jbPyUoj9ubjrxW3i9b9nydw8SjIk5OVxq8/jEBf35A+IyvnWlG0nNWxDsW/kzQmCFFFzM3Neeutt5g0aRK7du3iypUrjBo1ioyMDEaMGFFiHktLS4YOHcqkSZM4cOAAYWFhjBgxAj09Pa2hCaXx9PRk6NChvPHGG2zdupWoqChCQkLYsGEDAG+//Ta3bt3i3Xff5erVq/z666/MmDGDCRMmaOZL6NKlC2vWrOHw4cNcunSJoUOHoq+vX67YPTw8UCgU/P7778THx5OWVvKgbWNjY6ysrLRe6mEOT0ehUNC04xBO/bGIyEv7SLgbwe4fJ2Nu7YRPw66adJsWDiX0UMEMx806Defy8Q1cObWF+/ci2bdxJrk5mdRv1U+TJj0lnrjb4SQnRAOQGHONuNvhZKUnPXV5n4ZCoaDJM0M4/ccirl9Wx7jnYYzehWLc/N1QLhwuiLFpp+GEHd9A+MMYD2ycSV4JMcbfDifpYYwJMdeIr+QYFQoFjZ8Zwpk9PxB1eb86vp+mYG7lhHeDgvi2LhrGxULxNek4jCsnNhJ+egv3YyMJ+UUdX0BLdXyPvhzm5WQSPOgzcrLSSE+JJz0lHqVSd0MPSnIqQkn7QD3quStwsoa+bfRIzYSrtwuaAl7rrEdQ3YJj/kSEkmY+Chp5KXCwgl4t9DA0gAtR6jwJKZCYqqJXC33c7NQ9FVr7K/B2URBxu+RGCl2pzvuovrkZVo39sWqsvtts5lULq8b+mNR2BcDv0wk0XvGFJv3N/63DzKs2/rMnYe7njcebr+I6oCdR81dq0kTNW0HtEQNxf70vFv7eNPhuJgbmptxatblSYipKoVDQrOMQTu4u4TzaqKD+fil6Hu08nEvHNhB2cguJ9yLZt0F9Hg18WH/GppY0aN2fg1vmcOvaCWKjL/PH2v/g6tlU86O8sjyurLvWTObItq806Zt2HMLN8MOc3b+c+7GRHN/xLbG3LtOkw2vAk2+zyhLUZTgXj27g8oktJMZE8se6meRmZ9KgjTq+7Ssnc2hrQXzNOw8h6sphTu9dTuK9SI7+/i33oi/TtNNrmjSZ6UnE3gonMSYSgAexUcTeCictufLmuyhMoVDQpKP6WnH94bXij7UPrxWFzjNbvh+mdZ5p0mkYYSc2qs8zsZEc+EX7PJOTlcbWH0aQm5NJ8MtVd62oCXWoSyqVospe1Y0McxCiCs2ZMwelUsnrr79OamoqQUFB7N69G1vb0h/8/vXXX/Pmm2/Sp08frKysmDx5Mrdu3cLEpJTZ2YpYtGgR//nPf3j77bdJTEykTp06/Oc//wHA3d2dHTt2MGnSJBo3boydnR0jRozg448/1uSfOnUqUVFR9OnTB2tra/773/+Wu2eCu7s7s2bN4sMPP2T48OEMGTKElStXlmsdTysoeBR5OZnsWz+d7MwU3Lyb8+KbS7XuLCQl3iIz/YHmb79mvchMu8/xHQvISInHoVYAfd9cqtU98OLRdZzctVDz98YFgwHo9upszRfQytL8YYz7C8X4whjtGJMTbpGZVhBjvWa9yEy/z4mdC0hPicfRPYAXxizV6tZ76eg6Tu0uiHHTt+oYu74yW+sHna416zKSvJxMDmxUx+fq1ZznRi8pEl+0Vh3Wbaquw1O7vtXE99zoJZr44m6HERt9AYA1nz+r9XlDPt6LlV2tSohM7Vi4CkMDFb1b6GFiBNHxKn4KySe/0EgEWwsFZsbwqK/BlWgVZsZKOjbUw8IEYh/ATyH5mokclSpYF5JPlyZ6DOqoj5EBPEhVP3byr5jKbUyA6ruPWjdvQJt9azR/15+rPrfeWr2ZiyOmYuzqiOnDhgWAzBu3Of38GOp/NRXPd4eQdfsel8Z8TMKeI5o0MRt3YuRoR70Z4zB2cSTlQjin+owkp8ikjJUpqOsocnMy2buuoP76vVV2/RU9jzrWCuDFt7TPox37/QeFQo/flo8jPy8HT//2dBk4g8r2uLKmPohBUeh58W7ezeg5dC7Hts/j6G9fY+PkyfMjv8PBrZ4mzZNss8riH9SLjLT7HP1dfSw51QrgpXeKxFdowmV3n2b0eWMuh7fN4/C2r7F19OTFMd/hWCi+yIv72bmmoOfgb8vfB6Btr3do1+fdSopMW7MuI8nNyeTAhoJrxfNjil8rsgpdK+o9vFacLHSteH5MkWvFTfW1YvVn2teKodMq71pRU+pQ/PMpVEUHPwsh/lXS09Nxd3fnq6++KrVHQ3WzaFdVl0C33uoB3+2s6lLoztie8O326nvpebe3gv/+XHnPG68K014xqPb76HbDJ5vY9t+od24EP+yu6lLo1pvdqdYxvtkdlu6r6lLozshgWLij+l4nAN7ppaj2dfhP9Vdk+W6CVSRfH68q+2xdkJ4JQvzLnD9/nqtXr9KyZUuSk5P55JNPAHjhhRequGRCCCGEEEL8s6lkpH+FkcYEIf6F5s6dS0REBEZGRjRv3pzDhw/j4ODA4cOH6dmzZ6n5SpubQAghhBBCCCHKQxoThPiXadq0KWfPni3xvaCgIEJDQyu3QEIIIYQQQvxLqKh+EyFWFWlMEKIaMTU1xdfXt6qLIYQQQgghhKjmpDFBCCGEEEIIIUSNID0TKo7MPiGEEEIIIYQQQohykcYEIYQQQgghhBBClIsMcxBCCCGEEEIIUSPIMIeKIz0ThBBCCCGEEEIIUS7SM0EIIYQQQgghRI0gPRMqjvRMEEIIIYQQQgghRLlIY4IQQgghhBBCCCHKRYY5CCGEEEIIIYSoEVQqGeZQUaRnghBCCCGEEEIIIcpFeiYIIYQQQgghhKgRZALGiiM9E4QQQgghhBBCCFEu0jNBCCGEEEIIIUSNID0TKo70TBBCCCGEEEIIIUS5SGOCEEIIIYQQQgghykWGOQghhBBCCCGEqBFkmEPFkZ4JQgghhBBCCCGEKBfpmSCEEEIIIYQQokZQqaRnQkWRnglCCCGEEEIIIYQoF4VKpVJVdSGEEEIIIYQQQghdu/hnXJV9dqO6TlX22bogwxyEEP86P+yu6hLo1pvdYfEfVV0K3RnzbPWuwze7w4+Hq3c7/WsdFHy3s6pLoTtje1b/fXS7oV9VF0OneudG0PWVM1VdDJ3Z+3MQI/4bX9XF0Jll0xyrdXygjvHdeSlVXQyd+Xa8VVUXoVRKmYCxwsgwByGEEEIIIYQQQpSL9EwQQgghhBBCCFEjyKMhK470TBBCCCGEEEIIIUS5SM8EIYQQQgghhBA1gjwasuJIzwQhhBBCCCGEEEKUizQmCCGEEEIIIYQQolxkmIMQQgghhBBCiBpBJmCsONIzQQghhBBCCCGEEOUiPROEEEIIIYQQQtQIMgFjxZGeCUIIIYQQQgghhCgXaUwQQgghhBBCCCFEucgwByGEEEIIIYQQNYJMwFhxpGeCEEIIIYQQQgjxD/Pdd9/h6emJiYkJrVq14tSpU6WmXbJkCR06dMDW1hZbW1u6du1aZvqKII0JQgghhBBCCCFqBJVKUWWv8li/fj0TJkxgxowZnDt3jsaNG9O9e3fi4uJKTB8SEsIrr7zCgQMHOH78OLVr1+bZZ5/lzp07FbHZSiSNCUIIIYQQQgghxD/I119/zahRoxg+fDj169fnhx9+wMzMjOXLl5eYfu3atbz99ts0adIEf39/li5dilKpZN++fToro8yZIIQQQgghhBCiRlBW4WdnZ2eTnZ2ttczY2BhjY2OtZTk5OZw9e5apU6dqlunp6dG1a1eOHz/+RJ+VkZFBbm4udnZ2f7/gpZCeCUIIIYQQQgghhI7Nnj0ba2trrdfs2bOLpUtISCA/Px9nZ2et5c7Ozty7d++JPmvKlCm4ubnRtWvXCil7SaRnghBCCCGEEEIIoWNTp05lwoQJWsuK9kqoCHPmzGHdunWEhIRgYmJS4et/RBoThBBCCCGEEELUCOWdCLEilTSkoSQODg7o6+sTGxurtTw2NhYXF5cy886dO5c5c+awd+9eGjVq9LfK+zgyzOFfTqFQsHXr1qouhhBCCCGEEEKICmBkZETz5s21Jk98NJlimzZtSs335Zdf8t///pddu3YRFBSk83JKz4R/iZkzZ7J161ZCQ0O1lsfExGBra1s1hapG/vrrLz7//HP27t1LbGwsDg4O+Pv788YbbzBo0CAMDAy4ceMGXl5enD9/niZNmmjl79SpE02aNGHevHkAeHp6cvPmzWKfM3v2bD788EMAtmzZwhdffEF4eDhKpZI6derQrVs35s2bR6dOnTh48GCp5e3YsSMhISFlxuTp6cn48eMZP368VpmOHz9O69atNenGjx9PaGgoISEhvPvuu+zdu5fw8PBi64uOjsbLy4stW7bw/PPPo1Ao2LJlC0lJSQwfPrzMskRFRbFy5UpmzZpV7D0/Pz+uXr1aZv6KpFKpOL5jAZeObyQ7MwU3r2YED5yJrZNnmflCD63l7P5lpKfE4+juT+eXpuHiUdDam5ebzaEtc4g4t4P8vBw8AtrTZcAMzK0cdBxR8XKe2addTlfP0lulr53fydHf55Ny/w42jp50eGEi3oEdNe+rVCqO7VjA5WMbycpMwd2rGcGDHr+9dKm61+Hp/Ws5vnsZackJONf2p8crH+PuXXodXjmzi5Ct80lKuIOdswfB/SdSt1HHEtNuXzODcwfX8+ygqbTqNlRXITyWSqXi5M4FXD5RUIedB8zExtGzzHwXDq/l3P5lZKTG4+DmT8f+2nV4+dh6Is7+TtztMHKz0xnz+WmMzax0HE1x1XkftWsfhPcHI7Bu1gATNyfO9H+b2G1lzxRu90xL6s/9EIv6dcm6FcNfsxdxe/UWrTQeb72K94QRGLs4knLxKmHj/0vy6Uu6DOWxhr7kRq8uDliYGxAWkcb85Te5cy+71PTPdXXkuW6OODuo7zrevJ3Jms13OX0hRZPmq2l+NK5vqZXvt71xzF8WrZsgyvBCRzOeaWqCmYkef93KZc3ONOLu55eavlc7U5r5G+Nqr09OHkTezmXjvnRiE9V5zE0UvNDRnEAfQ+ys9EnNUHI+IputIRlkZqsqKywt1T3GXq2NadvQEFNjBVF381m/P4v4pNKnF/Rx1ye4uRF1nPSxttBjyW8ZXIzM00rz7fiSz5lbD2ex72xOhZa/qqioup4J5TFhwgSGDh1KUFAQLVu2ZN68eaSnp2u+dw8ZMgR3d3fNnAtffPEF06dP56effsLT01Mzt4KFhQUWFhY6KaP0TNCx3Nxcna7fxcVFJ+Ns/ilycnR/0jp16hTNmjUjPDyc7777jsuXLxMSEsLIkSNZtGgRYWFhT7XeTz75hJiYGK3Xu+++C8C+ffsYNGgQ/fv359SpU5w9e5bPPvtMs79s3rxZk+fUqVMA7N27V7Ns8+bNT1UmExMTpkyZUur7I0aM4OrVqxw7dqzYeytXrsTJyYlevXppLR80aJBWjG3atGHUqFFay2rXrg1AYGBgsW1y5MiRp4rlaZ3Zu4TQQ2voOnAmr0zYgKGRKZsXjSAvt/QviBHndnBoy2xa9xjL4ElbcHD3Z/P3I8hITdSkObj5c66HHaD3G/MYMG4N6clx/LbsncoIqaCcZ3dwcMtsWvccy2uTt+BYQjkLu3v9HNtXfkCDNi/x2pSt+DYKZtuSsSTcvaZJc3rvEkIPriF40Exe/WADhsambP6+7O2la9W5DsNO7WDPhjk889xYRk3fjHNtP36aN5L0lJLr8NZf59j8vw9o0v4lRk3fgl/Trmz47h3i7lwrlvbquT3cuX4BSxsnXYfxWGf3qeuw84CZDHp/AwZGpmz9oew6vHZuB4e3zqZVj7G8PFFdh7/+oF2HuTmZeAR0oEW3NysjjFJV531U39yMlIsRXB5XvHG4JKaetWixbTGJISc5EvQCUd+uouHiT3Ho1l6TxnVATwL+byp/fvodR1q+SOrFq7TavgwjR93NQP44g55z4cUeTsxfFs0708LJys5nzof1MDQs/UdI/P0clv58h7c/usLbH13hfFgqn0z0xaOW9njl7fviGfBmqOa15Kfbug6nmJ5tTena0pQ1O9L4bPkDsnNVTHjVGgP90vPUq2PEgdOZfLYiia/WJqGvBx+8ao2Rofp9G0s9bCz12LAnnemL77N8WyoNfIwY9pxl6SvVoeoeY9cgIzo2NWL9viy+WpdOdq6Kt180KzM+Y0MFd+KVbDiQVWqa//wvVev14x+ZKFUqQv/U7W8aUdygQYOYO3cu06dPp0mTJoSGhrJr1y7NpIzR0dHExMRo0i9atIicnBxeeuklXF1dNa+5c+fqrIzSmPAUlEolX375Jb6+vhgbG1OnTh0+++wzbty4gUKhYP369XTs2BETExPWrl0LwNKlSwkICMDExAR/f3++//57rXVOmTKFevXqYWZmhre3N9OmTdP8sHx0R/fChQsoFAoUCgUrV64Eig9zuHTpEl26dMHU1BR7e3tGjx5NWlqa5v1hw4bRt29f5s6di6urK/b29owdO/aJGz2+//576tati4mJCc7Ozrz00kua97Kzsxk3bhxOTk6YmJjQvn17Tp8+rXl/5cqV2NjYaK1v69atKBQFF+aZM2fSpEkTli5dipeXl2bCkKSkJMaMGYOzszMmJiY0aNCA33//XZPvyJEjdOjQAVNTU2rXrs24ceNIT09/bDwqlYphw4ZRr149jh49ynPPPUfdunWpW7cur7zyCkeOHHnqsUaWlpa4uLhovczNzQH47bffaNeuHZMmTcLPz4969erRt29fvvvuOwDs7Ow0eRwdHQGwt7fXLHvaR7yMHj2aEydOsGPHjhLfb9KkCc2aNSv2/FqVSsXKlSsZOnQoBgbaHZpMTU21YjQyMsLMzExrmb6++spmYGBQbJs4OFTeHTWVSsW5g6tp+exb+DTqiqO7Pz1e/5L05DgiL+4tNd+5Ayto0HYgga37Y+/qS9eBszAwMuHyiU0AZGemcvnEJp7p+yF16rXBuU4Dnh38OTFR54mJCq2k6ODsgRU0aDOQBo/KOehhOY9vKjmukNV4BnSgRdeR2Lv40K7PeJxq1yf00I+AenudD1lNq+5v4Vtoe6Ulx/FXGdtLl6p7HZ7Ys5KmHQbQpH1/HN186f3aLAyNTAg9UnIdntq7Bt8G7WnbYwSObj507vserh71Ob1/rVa6lAex7Pr5U/qO/D/09Ku2U6JKpSL00MM6bNgVBzd/nh2srsPrl0qvw/Mh6v27fqv+2Lv40mWAug6vnCzYNk07DSOo62hcPBpXRiglqu77aPzuQ1ybMY/YX5/sHOAx+mUyo24TPvkL0q5e5+b3a7m3aTde7w3TpPEaP5xbyzZwe9Vm0sIjufT2DPIzsqg9rL+Ooni8fj2dWLslhmNnk4iKzuSL729gb2tIuyCbUvOcOJfMqdBk7tzL5s69bFZsuENmlpIAX+07glk5Sh4k52leGZmV/6C6ri1N+f1wBqHXcrgdl8+yX1OxsdSjmX/pN6jm/ZzM0YvZ3I3P53ZsPsu2pWJvo4+nq/qX9p34fL7/JYULf+YQ/0DJ1Ru5bDmQTuO6RuhVwY3g6h5jp6ZG7D6ZzaXredxNULJmdybW5goa+ZR+jr9yI4/tx7OL9UYoLDVDpfVq5GPAn7fySUypmt4lNd0777zDzZs3yc7O5uTJk7Rq1UrzXkhIiOY3IcCNGzdQqVTFXjNnztRZ+aQx4SlMnTqVOXPmMG3aNK5cucJPP/2k9diODz/8kPfee4/w8HC6d+/O2rVrmT59Op999hnh4eF8/vnnTJs2jVWrVmnyWFpasnLlSq5cucL8+fNZsmQJ33zzDaBulfrggw+07uoOGjSoWLnS09Pp3r07tra2nD59mo0bN7J3717eeUf7rsWBAweIjIzkwIEDrFq1ipUrV2rtiKU5c+YM48aN45NPPiEiIoJdu3bxzDPPaN6fPHkymzZtYtWqVZw7dw5fX1+6d+/O/fv3y7V9//rrLzZt2sTmzZsJDQ1FqVTSs2dPjh49yo8//siVK1eYM2eO5gdqZGQkPXr0oH///ly8eJH169dz5MiRYnGXJDQ0lPDwcCZOnIieXsmHQ+HGjori4uJCWFgYly9frvB1l8XLy4s333yTqVOnolSW/OVlxIgRbNiwQasxJiQkhKioKN54443KKqpOJCfeJiMlnjp+bTXLjE0tcfFozN0b50vMk5+XQ+ytMK08Cj096vi1JSZKnSf21mWU+blaaeycfbC0dSPmRqhugimlnB5Fyunh15aYUmKLuRGKh5/2uDtP//bcffjDJDnxNuklbS/PxprYK1t1r8OYm2F41dcup1dAG25fL7kMt6+H4hXQVmuZd2A7bkcWpFcplfy6bDJtuo/Ayb2uLopeLikP67B2Pe06dPZoXOq+mp+XQ9ztMK08Cj09atcrff+uKtV5H30aNq2bkLBf+5no8XuOYNu6CQAKQ0OsmwWSsK9QjziVioT9x7Bp3bQSS1rA1ckIe1sjzl0uGJ6QnplPeGQ69es+WVdhPQV0amOLibEeV/5M03ovuJ0dm/7XmCVfBjLiZXeMjSr367iDjR42lvpciSro/ZmZreL6nVx83J+8sdHMWP39KL2MxhBTYz2yslUoK/l3aHWP0d5KgbW5HhG3ChoFsnLgxr18vFzL6JpQTpZmCgI9DTgeVj2GNzyiUimq7FXdSGNCOaWmpjJ//ny+/PJLhg4dio+PD+3bt2fkyJGaNOPHj6dfv354eXnh6urKjBkz+OqrrzTL+vXrx/vvv8/ixYs1eT7++GPatm2Lp6cnzz33HBMnTmTDhg2A+s6vhYWF1l1dU1PTYmX76aefyMrKYvXq1TRo0IAuXbqwcOFC1qxZozUTqK2tLQsXLsTf358+ffrQu3dvrck9ShMdHY25uTl9+vTBw8ODpk2bMm7cOEDdkLFo0SL+7//+j549e1K/fn2WLFmCqakpy5YtK9c2zsnJYfXq1TRt2pRGjRqxd+9eTp06xebNm+nWrRve3t706dOHnj17Aup5CAYPHsz48eOpW7cubdu2ZcGCBaxevZqsrNK7cQFcu6buCuzn56dZFhcXpxlbZGFhUawXyZOaMmWK1nosLCw4fPgwAO+++y4tWrSgYcOGeHp68vLLL7N8+XKys3Xfdfzjjz8mKipK02umqFdffZXc3Fw2btyoWbZixQrat29PvXr1/tZnX7p0qdg2efPNyuuOnJESD4CZpb3WcjNLezJSEkrMk5n+AJUyv+Q8qQkP15uAvr4hJkXGZptZ2pP+8DN1TVNOq+LlTC8ltvSUBMwsHYqlL4ir5O1lXsY6da0612FGmrqcFkXq0NzKgbTkkmNLS07AvEh6CysH0gulP7prCXp6+rQMfr3iC/0UMlIruA6raF8sTXXeR5+GsbMD2bHacWfHJmBobYmeiTFGDrboGRiQHZdYJE0ixi6VO1/JI7bW6rvQD5K1794mJediZ2NYZl6v2qb8tqIpO9c0Z/wID2Z+HUn0nYLvIvuPJjLnuygm/vcaP/8aQ9f29nw41qvigyiDtYX6639Kuvav35R0JVYWT/bTQAG8/KwFf0bncie+5DkILEwVPNfBjIPnM/9WeZ9GdY/RylwdQ2qR+FIzVJr3KkLLAEOycuHCX6X3ZBA1m0zAWE7h4eFkZ2cTHBxcaprCM2emp6cTGRnJiBEjGDVqlGZ5Xl4e1tbWmr/Xr1/PggULiIyMJC0tjby8PKysyjdpVHh4OI0bN9Z0pQdo164dSqWSiIgITe+JwMBAzV19AFdXVy5devwkR926dcPDwwNvb2969OhBjx49ePHFFzEzMyMyMpLc3FzatWunSW9oaEjLli1LnMyvLB4eHpqu/aDuPVCrVq1Sf8heuHCBixcvav04VqlUKJVKoqKiCAgIKNfn29vbaya67NSp01PP2zBp0iSGDRumtczd3R0Ac3Nztm/frukhcuLECT744APmz5/P8ePHMTMze6rPfBKOjo5MnDiR6dOnl9jDxcbGhn79+rF8+XKGDRtGSkoKmzZt0gzB+Dv8/PzYtm2b1rKy9vPs7OxiDSzqOUKebJ6Q8NPb2Ld+hubvvmMWl5Fa/BNJHf49MTcuc2rvGkZN36STXlZP4uqZbRzYUFCHz42uXnUo++i/X5d2drw/0kPz90df/vnU67p1N4sxH17B3EyfZ1rZMvktTyZ8EqFpUNi+v6BhJepWJveTcpn7sR+uTsbExOnmhkKrBsYM6V0wpn/+z8l/e52De1rg7mTAnJVJJb5vYqTgvVesuZuQz7aDGX/78x6nuscY5GfAy8EFNxJ/+FX32xSgTaAhZ67mklf6nJX/Sv+WCRj/DaQxoZxK6hFQVOEf84/mK1iyZInWGBdA84P++PHjDB48mFmzZtG9e3esra1Zt24dX331VQWWvIChoXarukKhKLXLe2GWlpacO3eOkJAQ/vjjD6ZPn87MmTO15kUoi56eHiqVdgtqSXM1FN5+8PhtnpaWxpgxYzS9JAqrU6dOmXnr1lV3+Y2IiKBpU3V3Sn19fXx9fQG05gd49KM3Obn4BSopKUmrcQjUz4d9tJ7S+Pj44OPjw8iRI/noo4+oV68e69evf+zTEf6uCRMm8P3335fa62LEiBEEBwfz119/ceDAAfT19RkwYMDf/lwjI6PHbpPCZs+eXewJEDNmzMClzcwnyu/TsAuungVjp/Py1A1DGamJWFgXTEKXkZqIYy3/Etdham6LQk+/2CSGGamJmrv6ZlYO5OfnkpWRonXXMCM1EXMrRyqDppwpxctZ2kzv5lYOmruehdMXxOWoWVZ4e6WnJuLkXvL2qmg1qQ7NLNTlTCtSh+kpCVhYl1yHFtYOxSZnTEtJwPxh+ug/z5Kemsj8yV0076uU+ezZ8AUn965i3Bf7KziK4rwbdNGawyC/UB2aF63DUvarMuuwkp+2UVRN2kefRnZsAsbO2nVk7OxAbnIqyqxschIeoMzLw9jJvkgae7LvVU6vk+Nnk7j6V8HQvkeTLNpaG3A/qeB7io21IZE3yv4Rl5ev4m6sulHgz6gM/LzN6dfDmXnLij/hCdB8rruL7hoTLlzLYdadgiGnBgbq+KzMFSQXGoFhZa7HrXuPvwP9ag8LGtc14ovVSTxILf790cRIwfuvWpOVrWLhhmTyK2FKiOoe46Xredy4VxCIgb46PktzBSkZBd+tLc0UpfaiKC8fN32c7fRZsaPye5aIfw8Z5lBOdevWxdTU9ImGBQA4Ozvj5ubG9evX8fX11Xp5eam7tR07dgwPDw8++ugjgoKCqFu3brHHChoZGZGfX/bJISAggAsXLmiNdT969Ch6enpa3fj/DgMDA7p27cqXX37JxYsXuXHjBvv378fHxwcjIyOOHj2qSZubm8vp06epX78+oL4jnpqaqlW+oo+6LEmjRo24ffu2ZkhCUc2aNePKlSvFtq+vry9GRkZlrrtp06b4+/szd+7cxzao2NnZ4eDgwNmzZ7WWp6Sk8Ndff/3tIQCenp6YmZk90cSRf5eFhQXTpk3js88+IzU1tdj7nTt3xsvLixUrVrBixQpefvnlYo08lWHq1KkkJydrvaZOnfrE+Y1MLLBx9NC87F18MbNy5Na1gvG72Zlp3Lt5ATfPksfm6hsY4Vw7UCuPSqnkVsRxXL3UeZxrN0BP31Arzf3Y66Q+uIurZ5NyRv10HpUzukg5o68dx7WU2Fw9mxB97YTWspsRx3DzagKAtX0tzK0ciY4osr1uXNDErms1rQ5dPQK5Ea5dzqirJ6jlXXIZank3ISpcezx61JVj1PJRp2/Y5nnGzPyV0TO2aF6WNk606T6CV99fqqtQtBStQ7tHdfhnoTrMSiP25oVS91V9AyOcagVq5VEpldwqY/+uLDVpH30aSSdCse/SWmuZQ3BbHpwIBUCVm0vyuTAcuhSav0WhwL5zG5JOVM58GJlZSu7GZmteN29nkfggh6YNChptzEz1CPAxLzb/weMo9CjzCRA+HuqeiIlJupspPytHRdwDpeZ1Nz6fpNR8ArwKviOZGCnwdjck8k7ZP7Rf7WFBMz8j/u/HZBJKeAShiZGCCYOtyctX8e365Eq7o13dY8zOhYRkleZ1776S5HQlfrULbnqZGIGniz5RMRVToDYNDImOzedOQuVPECr+PaRnQjk9erTe5MmTMTIyol27dsTHxxMWFlbq0IdZs2Yxbtw4rK2t6dGjB9nZ2Zw5c4YHDx4wYcIE6tatS3R0NOvWraNFixZs376dLVu0n7/s6elJVFSUpsu/paVlsUdCDh48mBkzZjB06FBmzpxJfHw87777Lq+//rrWBJFP6/fff+f69es888wz2NrasmPHDpRKJX5+fpibm/PWW28xadIk7OzsqFOnDl9++SUZGRmMGDECgFatWmFmZsZ//vMfxo0bx8mTJ59o4seOHTvyzDPP0L9/f77++mt8fX25evUqCoWCHj16MGXKFFq3bs0777zDyJEjMTc358qVK+zZs4eFCxeWuW6FQsGKFSvo1q0b7dq1Y+rUqQQEBJCbm8uhQ4eIj4/XGhIyYcIEPv/8c5ydnWndujWJiYn897//xdHRkX79+mmtOzU1VfN810fMzMywsrJi5syZZGRk0KtXLzw8PEhKSmLBggXk5ubSrVu3J6yRv2f06NF88803/PTTT8V6zSgUCt544w2+/vprHjx4oJkM9O/Ky8srtk0UCkWp+6exsXGFPvpUoVDQrOMQTu5ehI2jB9b2tTi2fT7m1k74NOqqSffLwqH4NupGk2deA6BZ5+Hs/nEKTrUb4OLRiPMhq8jNySSwlbrOjU0tadC6Pwe3zMHEzBojEwsO/PIprp5NcX34w7wyNO88nF0/TsG5jrqc50JWkZudSWBrdTl3rp6MhY0zHZ7/QB1XpyFsmP86Z/YtxzuwI1fP7SA2+jLdXv5Es72adlJvL1snD6zsa3Hs9/lYWDvhW2h7VabqXoetuw3j1+Uf4urRADevRpzaq67Dxu3U5dy6bAqWNk4E91fXYcuur7P6/4ZwfPdy6jbqRNip7dy9EUbvIeo6NLOwxczCVusz9PQNsLB2wMHFu9LiKkyhUNDkmSGc/kNdh1Z2tTixQ12H3g0L6nDzd0PxadSNxh3Uddi003D2/DQF59oNcK7TiNCDq8jLyaR+q4Jzb3pKPBkpCSQlRAOQEHMNI2NzLG1dMTG3qbT4qvM+qm9uhrlvQa8/M69aWDX2J+d+Mlm3YvD7dAIm7s5cGK5+DPHN/63D4+3B+M+exK2Vm3Do3BrXAT05/fwYzTqi5q2g8fIvSDp7meTTF/EcNxQDc1NurXq6xyBXhM074xjc15U797K4F5fDsAFuJD7I5eiZJE2aLz+qx9HTD/j1D/WcFSNedudUaDJxCTmYmerTpZ0djQMs+XCOetiEq5MxXdrZcSo0mZTUPLw9THnr9dpcCE8lKrpy7/7uPZVJn/ZmxN7PJyEpnxc7mZOUquTc1YLeERNfs+bc1Wz2n1EP0XitpwWtGhjz7foUsrKVWJmrG0kys1Xk5hX8yDYyVLBkawomxgpMHl7CUzNUqCp5EsbqHmPI+Ry6tzQmLklJYrKSPm2NSU5XaT2p4Z1+ZlyMzOXQBXVjlZEhONoU3Eu2t9LD3VGPjCwVD1ILCm9iBE3qGrLlUNlzj/1bVfaEoNWZNCY8hWnTpmFgYMD06dO5e/curq6uZU4iN3LkSMzMzPi///s/Jk2ahLm5OQ0bNmT8+PEAPP/887z//vu88847ZGdn07t3b6ZNm6b1GI/+/fuzefNmOnfuTFJSEitWrCg2Ht/MzIzdu3fz3nvv0aJFC8zMzDQ/wCuCjY0NmzdvZubMmWRlZVG3bl1+/vlnAgMDAZgzZw5KpZLXX3+d1NRUgoKC2L17N7a26i+ydnZ2/Pjjj0yaNIklS5YQHBzMzJkzGT169GM/e9OmTUycOJFXXnmF9PR0fH19mTNnDqDuuXDw4EE++ugjOnTogEqlwsfHp8T5AErSunVrzp49y+eff87YsWO5d+8e5ubmNG7cmG+++UbrCQaTJ0/GwsKCL774gsjISOzs7GjXrh0HDhwoNhxj+vTpTJ8+XWvZmDFj+OGHH+jYsSPfffcdQ4YMITY2FltbW5o2bcoff/xRYb1IHsfQ0JD//ve/vPrqqyW+P2zYMGbMmEFgYGCxxoanFRYWhqurq9YyY2Pjx06UWZGCuo4iNyeTveumk52Zgpt3c/q9tRQDw4JGi+SEW2SmPdD87desF5lp9zm+YwEZKfE41grgxbeWag0f6NjvPygUevy2fBz5eTl4+reny8AZVCa/5r3ISLvPse0LyEiNx9E9gH5vF5Qz9UEMCkXBlwg372b0GjaXo7/P4+jvX2Pj6Mnzo77Dwa2gl02Lh9trz8/q7eXu3Zx+b2tvr8pWneswsKW6Dg/++i1pKfE41w7g1fFLNMMcUhLvas19UNu3GS+OmsuBLfM4sOUb7Jw8GTh2IU7uf6+nlK41Dx5FXk4m+9cX1OELY8quw3rNepGZfp8TOxeQnqLev18Ys1RrEtFLR9dxandBI/KmbwcD0PWV2VqNDrpWnfdR6+YNaLNvjebv+nP/A8Ct1Zu5OGIqxq6OmNYuOM9n3rjN6efHUP+rqXi+O4Ss2/e4NOZjEvYc0aSJ2bgTI0c76s0Yh7GLIykXwjnVZyQ5RSZlrEzrf7uHibEe74/0xMJMn8sRaXw45xq5uQW/QtycjbG2LBg6amNlwJS3vbCzMSQ9I5+o6Ew+nPMn5y6pnwqRl6ekWUMr+vd0xsRYj7jEHA6fSmLtlruVHt/OY5kYGSoY2tsSMxMFf0bn8s1P2nfZHW31sTAruGZ0DlJ/z5ky1EZrXct/TeHoxWw8XA3wqaXeHnPe0R62MnlBIonJlXuHu7rHuPdMDkYGCl4JNsHUWMH1u/l8vyVDKz4HGz3MTQviq+Osz3svFfQ07ddR/Qj2k1dy+PGPgu9izeoZogDORuiux4yoHhSqooPYhRDiH+6H3VVdAt16szss/qOqS6E7Y56t3nX4Znf48XD1vrS+1kHBdzuruhS6M7Zn9d9HtxtWTsN1VemdG0HXV85UdTF0Zu/PQYz47z/3KR5/17JpjtU6PlDH+O68lMcn/Jf6dnz5JpKvTAfDKmcCy5J0DNTdJOtVQeZMEEIIIYQQQgghRLlIY4LQOHz4MBYWFqW+/o2qY0wAa9euLTWmR8NOhBBCCCGEENpUKkWVvaobmTNBaAQFBT3R0xX+TapjTKCeZ6O0eQyKPvpTCCGEEEIIISqaNCYIDVNTU3x9fau6GBWqOsYEYGlpiaWlZVUXQwghhBBCCFFDSWOCEEIIIYQQQogaQR4/UHFkzgQhhBBCCCGEEEKUi/RMEEIIIYQQQghRIyipfhMhVhXpmSCEEEIIIYQQQohykcYEIYQQQgghhBBClIsMcxBCCCGEEEIIUSOoVDLMoaJIzwQhhBBCCCGEEEKUi/RMEEIIIYQQQghRI8ijISuO9EwQQgghhBBCCCFEuUjPBCGEEEIIIYQQNYJKHg1ZYaRnghBCCCGEEEIIIcpFGhOEEEIIIYQQQghRLjLMQQghhBBCCCFEjaCUCRgrjPRMEEIIIYQQQgghRLlIzwQhhBBCCCGEEDWCSiUTMFYU6ZkghBBCCCGEEEKIcpHGBCGEEEIIIYQQQpSLDHMQQgghhBBCCFEjqGQCxgojPROEEEIIIYQQQghRLgqVStpmhBBCCCGEEEJUf7+fy6uyz+7TrHoNDKhe0QghaoQVB6q6BLo1vDMs2VvVpdCdUV1h8R9VXQrdGfMsLNpV1aXQrbd6wNJ9VV0K3RkZDD/srupS6M6b3aHrK2equhg6tffnILYb+lV1MXSmd24E3Qafrepi6Myetc159vXzVV0MnfpjTVMGfnCjqouhMxu+8qzqIohKII0JQgghhBBCCCFqBOmXX3FkzgQhhBBCCCGEEEKUizQmCCGEEEIIIYQQolxkmIMQQgghhBBCiBpBpVJUdRGqDemZIIQQQgghhBBCiHKRnglCCCGEEEIIIWoEpUzAWGGkZ4IQQgghhBBCCCHKRRoThBBCCCGEEEIIUS4yzEEIIYQQQgghRI2gkmEOFUZ6JgghhBBCCCGEEKJcpGeCEEIIIYQQQogaQYU8GrKiSM8EIYQQQgghhBBClIv0TBBCCCGEEEIIUSPIoyErjvRMEEIIIYQQQgghRLlIY4IQQgghhBBCCCHKRYY5CCGEEEIIIYSoEeTRkBVHeiYIIYQQQgghhBCiXKRnghBCCCGEEEKIGkF6JlQc6ZkghBBCCCGEEEKIcpHGhBpOoVCwdevWqi6GEEIIIYQQQoh/ERnmUEPMnDmTrVu3EhoaqrU8JiYGW1vbqilUNRIWFsasWbM4cOAAKSkpeHh48PLLL/Phhx9iZmamSefp6cnNmzcBMDU1xcfHh/fee4+RI0dqrU+lUrF06VKWL19OWFgYSqUSDw8Punbtyrvvvouvr+9jy1S0zmfOnMmsWbMYM2YMP/zwgyZdaGgoTZs2JSoqisTERIKCgjh+/DitW7cuts7g4GCsra3ZvHkzw4YNIykpia1bt6JQKMosy4wZMxg2bBheXl4lvl/a5+nC2ZC1nPxjGekp8TjV8qfboGm4eTUqNf3Vszs5tG0+yYl3sHPypNOLE/Fp2BGA/PxcDv06j+uXD5GUcAtjUws8/NvS6cUPsLRxrpR4ijp/cC2n96rjc3T3J3jgNFw9S48v4txOjv6ujs/WyZNnXpiId4OOmvevhf7BhcPriL0VRlZ6EkM+3IpT7YDKCKVUoYfWcmZfQYydXyo7xmvn1TGm3L+DjaMnHV6YiHdgQYwqlYpjOxZw+dhGsjJTcPdqRvCgmdg6eVZCNMWpVCpO7FzApeMbyc5Mwc2rGV0GPL48Fw6v5cz+ZWSkxOPg7k/n/tNw8SjYLpeOrefq2d+JvxVGTnY6b84+jYmZlY6jKe7cwbWc3lNwDD7JPnrkt4J9tGPfgn00Pz+XI9vmcT3sEMkJtzAytcDDry0d+36ARRUdg6DeR8/u195HC9dFUdfO7+TY9kL76PMT8Sqyjx7fob1PBA+sun0UYOhLbvTq4oCFuQFhEWnMX36TO/eyS03/XFdHnuvmiLODMQA3b2eyZvNdTl9I0aT5apofjetbauX7bW8c85dF6yaIEti1D8L7gxFYN2uAiZsTZ/q/Tey2fWXneaYl9ed+iEX9umTdiuGv2Yu4vXqLVhqPt17Fe8IIjF0cSbl4lbDx/yX59CVdhvJYQ/u70rOzIxbm+oRdS2PB8mjuxJZeh32CHXiuqyPOjgV1+OOWGK06LOyzyb60bGzNjK//4tjZZJ3E8DhD+rnQs7MDFmb6hF1LZ8HKW9x9TIx9ujjg7GgEwM3bWazdeo/TF0uJcaIPLRpbMXPe9SqJcWB3G4JbW2BuqsfVqGyWbkrkXkJeqen7drGmZUMz3J0MyclVce1mNj/+fp+YeHUeR1sDvvu4Vol5v14Vx4mLGTqJo7IpVWV/bxVPTnom/MPl5ubqdP0uLi4YGxvr9DOqUk5Ojs4/48SJE7Rq1YqcnBy2b9/OtWvX+Oyzz1i5ciXdunUrVoZPPvmEmJgYLl++zGuvvcaoUaPYuXOn5n2VSsWrr77KuHHj6NWrF3/88QdXrlxh2bJlmJiY8Omnnz51WU1MTFi2bBl//vlnie83b96cxo0bs3z58mLv3bhxgwMHDjBixIhi78XExGhe8+bNw8rKSmvZxIkTNWn37t2r9V5MTAzNmzd/6pjKI/zMDvb/Mpv2fcYy/D9bcKrlz/pvR5Ceklhi+tuR5/h12Qc0bvcSwz/aSt0mwWz6YSzxd64BkJuTRWz0Fdr2eoth/9nMi2MWcj82ik3fv1Up8RR19ewOQjbPpk2vsbz+oTq+XxaOID215PjuXD/H7ys+oEGblxgydSu+jYLZ+r+xxN+9pkmTm52Bu08zkQDu9wABAABJREFUnnlhYonrqGwRZ3dwcMtsWvccy2uTt+Do7s/m70eQUUqMd6+fY/tKdYyvTVHHuG3JWBIKxXh67xJCD64heNBMXv1gA4bGpmz+fgR5uaV/4dSlM/uWcP7QGoIHzuTl9zdgaGTKlh/KLk/EuR0c2jKb1t3H8uqkLTi6+bNlkfZ2yc3JxNO/Ay26vVkZYZTo6pkdhGyaTdveYxkyVV1/G78tYx+NPMdvyz+gYduXGDp1K3UbB7NlccE+mpeTReytK7Tp+RZDpm6m7+iFPIiLYvMPVXMMQqG66DGWwZO24PAE++iOVep9dPDkh/voUu199MzeJYQeWkPXgTN5ZYJ6n9i8qOr20UHPufBiDyfmL4vmnWnhZGXnM+fDehgalv4FPf5+Dkt/vsPbH13h7Y+ucD4slU8m+uJRy0Qr3fZ98Qx4M1TzWvLTbV2Ho0Xf3IyUixFcHjfridKbetaixbbFJIac5EjQC0R9u4qGiz/FoVt7TRrXAT0J+L+p/Pnpdxxp+SKpF6/SavsyjBztdBXGYw3q40zf7k7MX3GTd6dfJStbyewP65ZZhwn3c1m27g5jPwpn7MfhhIalMmuCDx7uJsXS9uvhBFU8Ln1gbyf6PuvIghW3GDczgqzsfGZP9nlMjDks23CXsdMieGd6BKFXUpn5vlcpMTqiqsIgX+hsRc8OViz5JZH/zI8hO0fFR6OdMTQoPb76PibsPpbKRwti+HTxPfT14OPRLhgbqfMkJOUxauYtrdf6XQ/IzFJy/mpmZYUm/kWkMaEKKJVKvvzyS3x9fTE2NqZOnTp89tln3LhxA4VCwfr16+nYsSMmJiasXbsWgKVLlxIQEICJiQn+/v58//33WuucMmUK9erVw8zMDG9vb6ZNm6ZpiFi5ciWzZs3iwoULKBQKFAoFK1euBIoPc7h06RJdunTB1NQUe3t7Ro8eTVpamub9YcOG0bdvX+bOnYurqyv29vaMHTv2iRs9vv/+e+rWrYuJiQnOzs689NJLmveys7MZN24cTk5OmJiY0L59e06fPq15f+XKldjY2Gitr+hd8ZkzZ9KkSROWLl2Kl5cXJibqk39SUhJjxozB2dkZExMTGjRowO+//67Jd+TIETp06ICpqSm1a9dm3LhxpKenPzYelUrFiBEjCAgIYPPmzbRs2RIPDw8GDBjAb7/9xvHjx/nmm2+08lhaWuLi4oK3tzdTpkzBzs6OPXv2aN5fv34969atY/369UybNo3WrVtTp04dWrduzRdffMGKFSueaFuXxM/Pj86dO/PRRx+VmmbEiBGsX7+ejAzt1ueVK1fi6upKjx49iuVxcXHRvKytrVEoFFrLLCwsNGnt7e213nNxccHQ0PCpYyqPU3tX0LjdQBq17Y+Dmy89Xp2FoaEJF49tKjH9mf2r8Q7sQKtnR+Lg6sMzz4/HpU59zob8CICJqSUvj19BQFAv7F28cfduwrMvT+NedBjJ9+9WSkxa5d23goZtB9KwTX8cXH3p9vIsDI1MuHy85PjOHViNV/0OtOw2EnsXH9o/Nx7n2vUJPfijJk1gq7607fUOHv5tKiuMMp09sIIGbQbSoHV/7F196TpoFgZlxRiyGs+ADrToqo6xXZ/xONWuT+ghdYwqlYrzIatp1f0tfBt1xdHdnx6vf0lachx/XdxbmaEVlOfgalo9+xY+DdXl6f7al6QnxxF5qfTynAtZQYO2Awls3R97F1+CB6q3S9iJgu3SrNMwWnQbjYtn48oIpURn9q+gUbuCffTZVx7uo6Ucg2cL76OuBfvo+YfHoLGpJQPHrcC/eS/snL1x82pC8MBpxEaHkVIFxyDAuQOF6sLVl64P6+LyiZJjPH9QvY8GBav30ba9x+NUqz6hhwv20XMHV9Py2bfwKbSPpifHEVkF+yhAv55OrN0Sw7GzSURFZ/LF9zewtzWkXZBNqXlOnEvmVGgyd+5lc+deNis23CEzS0mAr4VWuqwcJQ+S8zSvjEyljqPRFr/7ENdmzCP21yfbth6jXyYz6jbhk78g7ep1bn6/lnubduP13jBNGq/xw7m1bAO3V20mLTySS2/PID8ji9rD+usoisd7sYcza7fe4/jZZKJuZfLFoijsbQxp19ym1Dwnzidz6kIKd2If1uHGuw/r0FwrnY+HKS/1dmbu/27oNojHeLGHEz9ti+X4uWSibmXx5eKbD2O0LjXPifMpnL6Qwt2HMa78JeZhjGZa6bzrmNK/pxNfLam8XjNF9XrGis17kzgTlkl0TC4Lf47H1sqAFg3MSs3z+ZJYDp5O43ZsLjdjcvluXQKOdgZ411L3xFCpIDk1X+vVsqEZxy+kk51TfWYtVKmq7lXdSGNCFZg6dSpz5sxh2rRpXLlyhZ9++gln54LumB9++CHvvfce4eHhdO/enbVr1zJ9+nQ+++wzwsPD+fzzz5k2bRqrVq3S5LG0tGTlypVcuXKF+fPns2TJEs2P2EGDBvHBBx8QGBiouRM8aNCgYuVKT0+ne/fu2Nracvr0aTZu3MjevXt55513tNIdOHCAyMhIDhw4wKpVq1i5cqWmcaIsZ86cYdy4cXzyySdERESwa9cunnnmGc37kydPZtOmTaxatYpz587h6+tL9+7duX//frm2719//cWmTZvYvHkzoaGhKJVKevbsydGjR/nxxx+5cuUKc+bMQV9fH4DIyEh69OhB//79uXjxIuvXr+fIkSPF4i5JaGgoV65cYcKECejpaR9OjRs3pmvXrvz8888l5lUqlWzatIkHDx5gZGSkWf7zzz/j5+fH888/X2K+xw0peJw5c+awadMmzpw5U+L7gwcPJjs7m19++UWzTKVSsWrVKoYNG6bZbv82+Xk53IsOwzOgrWaZQk8Pz4C23Ll+vsQ8d6+H4lnkR7RX/fbcuR5a6udkZ6aBQoGJaeV2H8/PyyH2Vhge/trx1fFvy93S4osKxcNPOz7PgPbcjQrVZVGfmiZGP+0YPfzaEnOj5BhjbpQQo39BjMmJt0lPiadOoXUam1ri4tmYmKiS16lLKYm3yUiJp3a9IuXxKL08+Xk5xN0K08qj0NOjTr3St0tVeHQMFqs//7bcLSW2u1GhxRqyPOuXvY9mZ6mPQeNKPgahYB+tUyTGOn5tS62/mBuh1KmnHaNHQHtiCu2jGSXtox6NuVsF9evqZIS9rRHnLhd0+07PzCc8Mp36dS3KyFlATwGd2thiYqzHlT/TtN4LbmfHpv81ZsmXgYx42R1jo3/2V1Wb1k1I2H9ca1n8niPYtm4CgMLQEOtmgSTsO1aQQKUiYf8xbFo3rcSSFnBxNMLe1pDzYQV1mJGp5GpkOvXrmpeRs4CeAjq1fliHfxXcfDE2UjB1rBffrozmQXLp3e11zcXRCHsbQ85dTtUsy8hUcvV6erHGj9KoY7R5uJ8W3GAxNlIw9W0PFq66XWUxOtkZYGtlwMVrWZplmVkq/orOpp7Hk/c4NjNRH19pGSU32nnVMsLL3Zj9p9JKfF8ImTOhkqWmpjJ//nwWLlzI0KFDAfDx8aF9+/bcuHEDgPHjx9OvXz9NnhkzZvDVV19plnl5eXHlyhUWL16sWcfHH3+sSe/p6cnEiRNZt24dkydPxtTUFAsLCwwMDHBxcSm1bD/99BNZWVmsXr0ac3P1iXbhwoU899xzfPHFF5oGD1tbWxYuXIi+vj7+/v707t2bffv2MWrUqDJjj46OxtzcnD59+mBpaYmHhwdNm6ovpOnp6SxatIiVK1fSs2dPAJYsWcKePXtYtmwZkyZNeuJtnJOTw+rVq3F0dATgjz/+4NSpU4SHh1OvXj0AvL29Nelnz57N4MGDGT9+PAB169ZlwYIFdOzYkUWLFml6N5Tk2jV1N9SAgJLHkAcEBHDkyBGtZVOmTOHjjz8mOzubvLw87OzstOZMuHbtGn5+flp5xo8fz9KlSwGwsbHh9u2n7/bZrFkzBg4cyJQpU9i3r/g4UDs7O1588UWWL1/OkCFDAHUD0o0bNxg+fPhTf+4jbdu2LdbwUrj3i65kpD1ApczH3Mpea7m5pT2J966XmCctJQFzK4di6dNTEkpMn5ebzYEtc6kf1Btj0yf7Ul1RMh/FZ1k8vvulxJee8v/s3Xd4FNXXwPHvpvdKGoH0QOhVeg8IiCgIiIoICghIB2kizZ9IUUSKKC8dQUCkSJcO0msIkBAwhJ5ACuk9u+8fK7tZsgmJpiicz/PMo8zemb1n7uxm5865d2KweCY+C5v84ytraSnqGC2eaUMLa0fiHhUQo3W5POVTk9QxpiZGa9blVlA7l6SUpGjN++dmYe1ISpL++miOi55t4h7rPy5l4ek5WtT2s7Qu2mfw2NZvqFIGn0EouC2eFHSO6vmeed45amHtSGoZnKP2tupMsmcvouITsnCwKzjLzLuiOQu+CMDE2IC09BymfRvO3Qfai6FDJ2J5FJNJ7JMsvD3MGfBuBSq4mTF9XnjxB1JMTF3KkfFItx0yHsVgbGuNgZkpxva2GBgZkfE49pkysVhW9qEsPG2nJwm6WaVPErKwf04belU0Y8E0bRtOn6fbhoPer0jIjRROldEcCU89jTE+T4zZmnM4P14VzJg/tZI2xvkR3H2YK8ZeFQi5mcKpi2UXo52N+sZOQlKOzvqEpBzNa8+jUEDfLg5cj0jnXpT+DOM2Day4H5XJjdtlM6SqpLyIGQJlRToTSlloaCgZGRkEBgbmW6Z+/fqa/09JSSE8PJx+/frpXKxnZ2dja6tN09q4cSMLFiwgPDyc5ORksrOzsbEp2l2Z0NBQatWqpelIAGjatClKpZKwsDBNZ0K1atV07k67ublx5crzJxFq164dnp6e+Pj40KFDBzp06EDXrl2xsLAgPDycrKwsmjZtqilvbGxMgwYNCA0NLVIcnp6emo4EUGcPVKhQQdOR8KzLly8THBysGVIC6jvxSqWSiIiIfDsKclMV4Vtp7Nix9O3bl8jISMaOHcsnn3zy3AkVJ02axNChQ9myZQtfffVVod8rP19++SVVqlRh3759ODs753n9o48+on379oSHh+Pr68uKFSto2bJloSZ+fJ6NGzcW6piCeuhLRobuHzD1HB//vnk+cnKy2LZ0BKhUtH+vcGNthbh+fjsHN07V/PvNgUvKsDb/bTk5WWxfNgIVKtq9I5/B4tKmqQOj+ntq/j1pjv45dwrj3sN0Bk4IwdLCkBYN7Rk32IvRX4RpLkZ3HdJelEfcSyMuPotvPq+Mm7MpkY9frIuZ0tSmiQMj+3lo/v3513/+7X3df5jBoM9CsTQ3pHlDO8YO8mLMlze4+yCdxnVtqVPNmkGfFe13W3Fo08SeER9W1Pz787l/vyP1fmQGgyddx9LCkOYN7Bj7sQefzviTuw/TaVTHhtpVrRj8eVhxVLvQmtW15OPu2g7Fmcse/eN99nvLgYquJkxZFKn3dWMjBc3qWrF5f/w/fi/x4pLOhFJmbm7+3DK5L+af3rFdunQpDRs21Cn39IL+1KlT9OrVi+nTp9O+fXtsbW3ZsGEDc+fOLcaaaz07vl2hUKBUPn9Mo7W1NRcvXuTIkSPs27ePKVOmMG3aNJ15EQpiYGCQ56Jd31wNuY8fPP+YJycnM3DgQIYPH57nNQ8PDz1baD3toAgNDdVkWeSWOxviqXLlyuHn54efnx+bNm2iRo0a1K9fn6pVqwLqzIiwMN0/Uk5OTjg5Oem98P87fH19GTBgABMmTGD58uV5Xg8MDMTDw4NVq1YxduxYtmzZwpIlxXORU7FixUJ3SsycOZPp03UvCqZOnYpny2lFfl8LK3sUBoZ5JltMSYrNk33wlJVNuTx3QPWVz8nJYtv/jSQh9iHvjVpdJndEzZ/Gl1T4+CxtyuW5s5mamH/5smZuqY4x9Zk2TH1ejM/c0U9NitVkK1jYOGnWWdlqP18pSbE4uwcUZ/X18qneBldP7RwGOdmZmve3zFWf1KRYnPKpj+a4JOk5Ltb/nrZ8eo4Wtf2ezcjI7zO4fdlIEuMe0nNE2XwGoeC2eDZD5il9n8OUQpyjqUmxOFUo+XP01IV4rudKY386eZ29rRFx8dq/wXa2xoTfLnim9+wclWYm/ZsRqVT2seStDi58t/yO3vJP39fd9d/bmZDxKAZTF922NXUpR1ZCEsr0DDJjnqDMzsbU2fGZMo5kRJVOZsmpi/FcD8/VhkZP29CYuHhthom9rTHhd4rQhrfVbdi1vTPzV9yldlVr3JxN2ba0ts42U0b6cvV6Mp/OuKFnj8Xj1MWEZ85TdQakna0xcQm5YzQi/E7BEwlm56h4+Fj9XXzzdhqVvC3p2t6J+SvvaWLcukT36SyTh3tzNSyZsV/9/Y6agpy/lsrNO9rPwNM2tLU2JD5XdoKttSG3Hzx/8vGPujpQt6oFU7+PIi4hR2+ZRrUsMDVWcPS8DHEQ+ft3D0R7Afn7+2Nubq43vVwfFxcXypcvz61btzQXoE+Xp4/ZO3nyJJ6enkyaNIn69evj7++vefzgUyYmJuTk6P+yeKpKlSpcvnxZZ+LBEydOYGBgkCft/u8yMjKibdu2zJkzh+DgYG7fvs2hQ4fw9fXFxMSEEydOaMpmZWVx7tw5zUW2k5MTSUlJOvV79lGX+tSsWZP79+9rhiQ8q27duoSEhOQ5vn5+fjpzGehTu3ZtAgICmDdvXp4OlcuXL3PgwAHefffdfLevWLEiPXv2ZOLEiZp17777LmFhYfz222/Pje2fmDJlCjdu3GDDhg15XjMwMODDDz9k9erV/Pzzz5iYmOhMlllaJk6cSEJCgs6S+1gVhaGRCa4e1bh9XTu2VaVUcuf6Kdx99I9bLe9Tm9vXT+usux16Enef2pp/P+1IeBJ9h3dHrsLcqmwetWpoZIJLxWrcDdON727YKcrnF593be6E6cZ35/pJynvXLsmq/m2aGG88E+ONU7h56Y/Rzas2d288E2OYNkZbxwpY2jjpHLeMtGSibl/GzbvkxzObmFlh5+SpWRxc/bCwceJerhgz0pOJupN/fQyNTHCuWE1nG5VSyb0CjktZePoZvPPMOXon7BTl84mtvHdt7j7zGbwTqnuOPu1IiH98h7eHl91nELTnaJ62CDuVb/vpO0fvXj+JW65zNM85kaY+J8qXQvumpSt5+ChDs9y5n07sk0zqVNdmP1qYG1DF1zLP/AfPozCgwJn1fT3VE8nFxpfsk63+ifjTQTi20X20cbnAJjw5HQSAKiuLhIvXKNcm17wYCgWOrRsTf7p05rzI04YP0ol9kkWdatrHcFqYGxDga0nIzedPPp2bQgEmf7Xhhh1RDJwYwqDPtAvAj2vvlfhkjGnpSh4+ztQsdx6kExv/TIxmBgT4WBL6Z9FiNMh1nm7c+YhBk64z+HPtArBk3YMSnYwxPUPFo9hszXL/URZPErOp4a8dimtuqsDPw5QbdwruePuoqwMNaljwxQ9RRMflP+dDmwbWnL+WSlJK6U6CWhqUqrJbXjTSmVDKzMzMGD9+POPGjWPNmjWEh4dz+vRpvXeHn5o+fTozZ85kwYIF3LhxgytXrrBy5Uq+/fZbQN1BcffuXTZs2EB4eDgLFixg61bd5xt7eXkRERFBUFAQMTExeVLHQT3xnpmZGX369OHq1ascPnyYYcOG0bt3b50JIv+unTt3smDBAoKCgrhz5w5r1qxBqVRSuXJlLC0tGTx4MGPHjmXv3r2EhIQwYMAAUlNTNY8ibNiwIRYWFnz22WeEh4fz888/F2rix5YtW9KiRQu6devG/v37iYiIYM+ePezduxdQz2Fw8uRJhg4dSlBQEDdv3uS3334r1ASMCoWC5cuXExISQrdu3Th79ix3795l06ZNdO7cmcaNG2vmYsjPiBEj2LFjh2ZCxHfeeYfu3bvzzjvv8MUXX3DmzBlu377N0aNH2bhxY7FNgOji4sLo0aNZsGCB3tc//PBDHjx4wGeffca7775bqKyawoiNjSUqKkpnSU9P11vW1NQUGxsbneWfPMq0QdsPuXz8F66c2kpMZDi/r59GZmYaNZuo5yPZsXIcR7ZqM3rqt/mAiGt/cGb/CmKjwvljx0Ii71ylXqv3AfVFzNYlw4m6e5XOH32DUplDckI0yQnRmjvMpal+4IcEn/iFq6e3EhsVzv4N08jKSKN6I3V8u1eP49hv2vjqtv6A2yF/cO6AOr4TuxYSdfcqtVu+rymTlhLP43uhxEaqxyzHPY7g8b1QUhKiSze4v9Rr/SFXTv7CtTPqGA/8oo6x2l8x7lkzjj+254qxlTrG8wdXEBcVzsndC3l09yq1W6hjVCgU1Gn1AWd+/4HwKweJfhjG3p/GYWXrjF/NtqUen0KhoE7LDzi7T12fmIdh/L52HJa2zvjW0NZn86I+midSqOP8kKunfiHk7FbiosI5uGkaWZlpVG2onX8nJTGax/dDSYhR/+CNjbzB4/uhpKfEl1p89dvkOkcjw9n39BxtrK7nrlXjOLZN2371Wn9ARO5zdKf6HK2T6zO4felwHt25SqcPy/4zCFD3mXP04C/qtqj2V1vs/Wkcx3Odo3VafsCd0D+4cGgFcY/CObV7IY/uXaV2c+05Wrel9hzVOSfK4BwF2LLnMb26uNG4ni3eFc0ZP9ib2CdZnDgfrykzZ1Il3nxVO+Sw3zvu1AiwwqWcCd4Vzen3jju1qlhz8IR6kmU3Z1N6dXXD39sCl3ImNK5ny/hPvLgcmkTE3dJ7JJ2hpQU2tQKwqaXO+rDwroBNrQDMKroBUPnL0dRaOVtT/s7/bcDCuyIBM8diWdkHz0Hv4dajIxHzV2nKRHy3kor93sa9dxesAnyo/v00jCzNubd6S6nF9aytex/xXhc3Gte1xauiGeMGeRMbn8WJC/GaMnMm+vNmO20bftSzvKYNvSqa8VHP8jpt+CQhm9v303UWgMcxmURFl/7ncevex7z3pguN6tjgVcGMcYM8/4pRO9fB7Al+vNFWm1ny0dtu1KhsqY6xghkfve1GzQArDp18AhQQY2zpx7j7WCJvtbWlXjVzKroaM/Q9J54kZnPuqja7ZPIgF9o31Xao9HvLgeb1rJi/Npq0DBW21obYWhvmeZyki6MRVXxMOXhGshJEwWSYQxmYPHkyRkZGTJkyhYcPH+Lm5sagQfk/97t///5YWFjw9ddfM3bsWCwtLalRo4bmIvWNN95g1KhRDB06lIyMDDp16sTkyZOZNm2aZh/dunVjy5YttG7dmvj4eFauXEnfvn113sfCwoLff/+dESNG8Morr2BhYUG3bt00nRb/lJ2dHVu2bGHatGmkp6fj7+/P+vXrqVatGqB+yoBSqaR3794kJSVRv359fv/9d+zt1XeZHBwcWLt2LWPHjmXp0qUEBgYybdo0Pv744+e+9+bNm/n000959913SUlJwc/Pj1mzZgHqzIWjR48yadIkmjdvjkqlwtfXV+8TL/Rp0qQJp0+fZvr06XTs2JGkpCQ8PDzo06cPEydOfO7Fb9WqVXn11VeZMmUKu3fv1jwedOnSpaxcuZI5c+aQlZVFhQoVCAwMLLb2APj000/54Ycf9F7Me3h40LZtW/bt28dHH31UbO/Ztm3eH7/r16/nnXfeKbb3yE+V+q+RmhTHHzsWkJIYjXOFKvQctkyTMp0YF4lCoe1jreBblzf6fcOx7d9x7LdvsXf2otug73FyVw9dSXryiD+DDwGw8ss3dd7r3VFr8KysOzSppAXUU8d3YucCUpOicXKvQvchueJ7ohufu09dOn34Dcd3fMfxHd9i5+RFl4+/x6m8dmhOePAh9q7VZoPsXDEKgMavDaVpp2GlFJlW5XqvkZocx8ld2hjf+kQbY9IzMZb3qctrfb/hxM7vOLFTHeMbA76nXK4YX2k7gKzMNPavn0JGWiLuPvV465NlGBmXzdwc9QMHkJ2ZxsGN6vqU96lH10G69YmPvUdayhPNvyvXfY205DhO7V5AamI05SpUocugZTrDAYJPbODM3kWaf29a0AuAdu/N1FzolrSA+ur2O7FT+xnsPvSZ9ss1Qau7b11e/+gb/tj+HX9s/xZ7Jy+6DtSeo8nx2s/g6q90P4M9R67Bo1LpfgYhb1s4VahC18EFn6Md+3zDyV3fcWLHt9g5e/FGf91ztP5f5+iBDdpz4q3BZXeObtwRhZmpAaP6e2FlYcjVsGQmzLpBVpb2tlt5F1NsrbXDIu1sjBj/iTcOdsakpOYQcTeNCbNucvGK+okC2dlK6tawoVtHF8xMDXgcm8kfZ+NZt7V0H/FpW686jQ/+pPl31W8+A+Demi0E95uIqZsT5n91LACk3b7PuTcGUnXuRLyGfUD6/SiuDPycmP3ayZcjN+3BxMmBSlOHY+rqROLlUM6+3p/MZyZlLE0bdz7CzNSAkf081W14I5mJs2/qtKGbiyk21tpLBTsbY8YN8tK24b00Js6+qfPEhH+TX3Y9Vsf4kcdfMabw2dfhujE6m2D7TIxjB3riYGdMaloOt+6m89nX4f/KGH87nIipiQEDu5fDwtyA6xHpfPV/j8jK1sbn4miMjaX2JlT7puqMoulD3HT29f2GGI6e03YctGlgRVxCDsE3Sq8jrzSpVP/syWhCS6EqysxxQgjxL7DycFnXoGR92BqWls3j40vFgLawZF9Z16LkDHwVfthb1rUoWYM7wLLCjdb7T+ofCD/+Xta1KDmD2kPbd/U/HvhFcWB9fXYZF88QzX+jTllhtOt1oayrUWL2r6vHq73/PY+2LQn7fqrD22Nul3U1Sswvc73Kugr5+ulY2b137xZl994lQYY5CCGEEEIIIYQQokhkmIMoNn/88QcdO3bM9/WnT6b4L/k3x2Rllf9s5Xv27KF58+alWBshhBBCCCH+/SQvv/hIZ4IoNvXr1y/U0xX+S/7NMRVUL3d399KriBBCCCGEEOKlI50JotiYm5vj5+dX1tUoVv/mmP6t9RJCCCGEEOLf6kV8RGNZkTkThBBCCCGEEEIIUSSSmSCEEEIIIYQQ4qUgcyYUH8lMEEIIIYQQQgghRJFIZ4IQQgghhBBCCCGKRIY5CCGEEEIIIYR4Kcgwh+IjmQlCCCGEEEIIIYQoEslMEEIIIYQQQgjxUpBHQxYfyUwQQgghhBBCCCFEkUhnghBCCCGEEEIIIYpEhjkIIYQQQgghhHgpyASMxUcyE4QQQgghhBBCiH+Z77//Hi8vL8zMzGjYsCFnz54tsPymTZsICAjAzMyMGjVqsHv37hKtn3QmCCGEEEIIIYR4KSiVZbcUxcaNGxk9ejRTp07l4sWL1KpVi/bt2/P48WO95U+ePMm7775Lv379uHTpEl26dKFLly5cvXq1GI6aftKZIIQQQgghhBBC/It8++23DBgwgA8//JCqVavy448/YmFhwYoVK/SWnz9/Ph06dGDs2LFUqVKF//3vf9StW5dFixaVWB2lM0EIIYQQQgghhChhGRkZJCYm6iwZGRl5ymVmZnLhwgXatm2rWWdgYEDbtm05deqU3n2fOnVKpzxA+/bt8y1fHKQzQQghhBBCCCHES0GlKrtl5syZ2Nra6iwzZ87MU8eYmBhycnJwcXHRWe/i4kJUVJTeuKKioopUvjjI0xyEEEIIIYQQQogSNnHiREaPHq2zztTUtIxq889JZ4IQQgghhBBCiJdCWT4a0tTUtFCdB+XKlcPQ0JBHjx7prH/06BGurq56t3F1dS1S+eIgwxyEEEIIIYQQQoh/CRMTE+rVq8fBgwc165RKJQcPHqRx48Z6t2ncuLFOeYD9+/fnW744SGaCEEIIIYQQQoiXgrIMMxOKYvTo0fTp04f69evToEEDvvvuO1JSUvjwww8B+OCDD3B3d9fMuTBixAhatmzJ3Llz6dSpExs2bOD8+fP83//9X4nVUaFSlWWihxBCCCGEEEIIUTq+31N27z2kY9HKL1q0iK+//pqoqChq167NggULaNiwIQCtWrXCy8uLVatWacpv2rSJzz//nNu3b+Pv78+cOXN47bXXijECXdKZIIT4z2nW+WhZV6FEHd/Rkh/2lnUtSs7gDrzw8c3YkFPW1ShRk94xZOGuF/fnw7BOCpYdfH65/6r+gdDvf9FlXY0StXyyE+16XSjrapSY/evqscu4cllXo8R0ygp7Kc7REfOTyroaJWb+COuyrkK+/kudCf92MsxBCCGEEEIIIcRLoWzvpSvK8L2Ln0zAKIQQQgghhBBCiCKRzAQhhBBCCCGEEC8FGeRffCQzQQghhBBCCCGEEEUinQlCCCGEEEIIIYQoEhnmIIQQQgghhBDipaBUlnUNXhySmSCEEEIIIYQQQogikcwEIYQQQgghhBAvBZmAsfhIZoIQQgghhBBCCCGKRDIThBBCCCGEEEK8FJSSmVBsJDNBCCGEEEIIIYQQRSKdCUIIIYQQQgghhCgSGeYghBBCCCGEEOKlIBMwFh/JTBBCCCGEEEIIIUSRSGaCEEIIIYQQQoiXgqpMZ2BUlOF7Fz/JTBBCCCGEEEIIIUSRSGeCEEIIIYQQQgghikSGOQghhBBCCCGEeCmU6SiHF4xkJgghhBBCCCGEEKJIXtrOBIVCwbZt28q6GkIIIYQQQgghSolKVXbLi+aFH+Ywbdo0tm3bRlBQkM76yMhI7O3ty6ZSL4hWrVpx9OhRAExNTfHx8WHo0KF88sknAKxatYoPP/wwz3ampqakp6cD0LdvX1avXg2AkZERFSpUoEePHnzxxReYmZlptjl69CjTp08nKCiI9PR03N3dadKkCUuXLsXExASAnJwcFixYwIoVK7h58ybm5uY0atSIzz//nKZNm2r29bRe7du3Z+/evZr18fHx2Nvbc/jwYVq1aqVT54EDB7Js2TI2bNhAjx49dF7L7xwr7mOoUChwcXGhRYsWfP3113h4eOjs69q1a0yfPp3Dhw+TmJiIp6cn77zzDhMmTMDCwkJTzsvLi5EjRzJy5EjNv+/cuZOnbjNnzmTChAmaf2/evJmFCxdy6dIlcnJy8PHxoXv37gwdOpS33npLE4c+LVu25MiRI1y+fJnJkydz+vRpEhMTcXV1pWHDhixcuBBnZ+ciH7+/q18vLzq/6oq1pRFXQhP5ZvFN7kem5Vu+S0c3unQsj5uL+pyMuJvKqg13OH0hTlOmvKsZQz/ypUZVG0yMDThzMY55S/7kSXxWicfzLJVKxek9C7hyahMZaYmU965Lmx7TsHf2KnC7y3+s4/yh5aQmRlPOPYDW3Sbj6llT8/qVkxu5fmEn0feukZmRwqCZ5zCzsCnhaPJ60eMDaFFdQR1fBabGcD8G9pxX8iS54G3q+SloVEWBlRk8iod9F5Q81J6iWJpBYG0F3i4KTIwhLhGOhygJu1+ioeilUqk4u3ch106r29DNuy6tuk/FzsmrwO2Cj6/j0uHlpCbFUK58AC26fo5LrjY8/MsU7t08RUrCY4xNLXDzqkOT1z/F3sWnhCPSdfHoOs7tX05KYjTOFQIIfHsybl418y0fdnEPx3fMJyH2AfbOXrTs8ik+1VtqXr9xaR9Bf2zg0b1rpKfE88HEbbhUrFIaoeTrzZYWtKhjhoWZAX/ey+KnPck8jsvJt/xrTc2pG2CKm6MhmdkQfj+LTQdTeBSr3sbSTMGbLS2p5muMg40hSalKLoVlsO1IKmkZZfMLvE83Nzq2dsLK0pBrN5JZsOIuDx5l5Fv+9cBydG7rhIuTKQB37qexdmsk5y4n6i0/Y5wfDWrZMvXbPzl5IaFEYtDHoVl9fMb0w7ZudczKO3O+2yc82n6w4G1aNKDqNxOwqupP+r1I/pz5A/fXbNUp4zn4PXxG98PU1YnE4OtcG/k/Es5dKclQClTc5yhAizpmNKxuiqebEeamBgydE1Nm5ydAx0YmNK5ujLmpgoiHOWw6nE50fP718S1vSJt6JlR0NsDWyoBlO9K4citbp8z8EdZ6t/3tj3QOXSz93zTi3+1fm5mQlVWyJ6urqyumpqYl+h5lKTMzs1TeZ8CAAURGRhISEsLbb7/NkCFDWL9+veZ1GxsbIiMjdZZnL1w7dOhAZGQkt27dYt68eSxZsoSpU6dqXg8JCaFDhw7Ur1+fY8eOceXKFRYuXIiJiQk5OeoveJVKxTvvvMMXX3zBiBEjCA0N5ciRI1SsWJFWrVrlyUIxMjLiwIEDHD58+LkxpqamsmHDBsaNG8eKFSv+wdHSr7DH8MGDB2zevJmwsLA8HRqnT5+mYcOGZGZmsmvXLm7cuMGMGTNYtWoV7dq1e+758MUXX+Rpp2HDhmlenzRpEj179uSVV15hz549XL16lblz53L58mV++ukntmzZotnu7NmzABw4cECzbsuWLURHRxMYGIiDgwO///47oaGhrFy5kvLly5OSklKMR7RgvbpVpPvr7nyz+CYff3qJtPQcvv2iBibG+T+qJzomkx9XR9Bv5EX6j7rIxeAnzJxUDW8PdSeNmakB876oiUqlYsSkYAaPC8LIyIDZk6ujKIMnAJ0/uJRLx34i8O1pvDPqF4xNzNn6Yz+ys/L/ERx2cTfHts6kUfshvDd2K07lA9j6Qz9Sk2I1ZbIy0/AKaM4r7QaVRhj5etHjaxyg4JVKCvacV7Jqv5KsbHi3lQGGBfzFrlJRQds6Cv64qmL570oex6t4p5UBFrn+zL3RyABHawWb/lCydI+S6/dVvNXEABe7Eg8pj4uHlnH5j59o1WMaPUaq23D7kv4FtuHNS7s5/tssXmk/hJ6jt+BYvjLb/6+/Ths6VaxG4Dtf0WvCLt4YuAwVKn5b0g+lMv8LiOJ2/fxujmyeSZNOQ/hg4lac3APYtLAfKbnqmduD8IvsWDGGGk2602fiNvxrBbJ1yRCiH97QlMnKTKWCX11advm0tMIoUMcm5rRtYM5Pu5OZseIJGVkqRr9ni5Fh/ttU8jDh8Lk0ZqyMZ+66eAwNYMx7tpgYq1+3szbAztqAX/anMGVJHCu2J1Hd14S+nfVf2JS0nq+70KW9M/NX3mHYlOukZyiZOcEf4wL+VsTEZbF8wwOGTAplyOehBF1LYvpoXzzdzfKUfauDM5TRNaihpQWJwWFcHT69UOXNvSrwyvYlxB45w/H6bxKxcDU1lnxJuXbNNGXcenSkytcTufnl9xxv0JWk4Os03LUcEyeHkgqjQCVxjgKYGCu4Gp7JruOpJR/EcwTWM6FFbRN+OZTBvI2pZGapGNTFosAYTYzhQUwOvx7J/7v286XJOsvP+9NQqlRc/jM7323+a5RKVZktL5pS7UxQKpXMmTMHPz8/TE1N8fDwYMaMGdy+fRuFQsHGjRtp2bIlZmZmrFu3DoBly5ZRpUoVzMzMCAgIYPHixTr7HD9+PJUqVcLCwgIfHx8mT56s6YhYtWoV06dP5/LlyygUChQKBatWrQLyDnO4cuUKbdq0wdzcHEdHRz7++GOSk7W3gfr27UuXLl345ptvcHNzw9HRkSFDhhS602Px4sX4+/tjZmaGi4sL3bt317yWkZHB8OHDcXZ2xszMjGbNmnHu3DnN66tWrcLOzk5nf9u2bUOR6ypl2rRp1K5dm2XLluHt7a25qx8fH8/AgQNxcXHBzMyM6tWrs3PnTs12x48fp3nz5pibm1OxYkWGDx9epAs7CwsLXF1d8fHxYdq0afj7+7N9+3bN6wqFAldXV53FxcVFZx+mpqa4urpSsWJFunTpQtu2bdm/f7/m9X379uHq6sqcOXOoXr06vr6+dOjQgaVLl2Jubg7AL7/8wq+//sqaNWvo378/3t7e1KpVi//7v//jjTfeoH///jpxWVpa8tFHH+ncec/Ppk2bqFq1KhMmTODYsWPcu3ev0MenMAp7DN3c3GjSpAn9+vXj7NmzJCaq73SoVCr69etHlSpV2LJlCw0aNMDT05MePXqwY8cOTp06xbx58wqsg7W1dZ52srS0BODs2bN89dVXzJ07l6+//pomTZrg5eVFu3bt2Lx5M3369MHBwUGznZOTEwCOjo6adQ4ODpw4cYKEhASWLVtGnTp18Pb2pnXr1sybNw9vb+9iPaYF6fGGO2t+ucPxM7GE307hy3nXcXQwpXmjcvluc+JcLKcvxHE/Mo17D9P4v59uk5aeQ9XK6rvWNara4upsxozvwrh1J4Vbd1KYMe86AX7W1KtpV0qRqalUKi4dXUPDVwfjW6MtTu4BtH9/DikJjwm/ciDf7S4eWUn1Jm9TrVE3HF39CHx7OkYmZlw7vVlTpm6rvrzS7mNcvWqVRih6vejxATSorOD4NRU3HsDjBNh+Rom1OVSukP9FTMMABUHhKoIjVMQkwu5zKrKzoZaPdpsKjnDupoqHcRCfAidCVKRngZtD6fZ4qVQqLh9bQ/12g/CpHki58pVp+95sUhIfc+tq/m0YdHQV1Rr1oGqDbji4+tG6+3SMjM0IPattw+qNe+Lu+wo2DhVwrlCNRh1HkhwfSVLcg9IIDYDzh1ZSs+nb1GjcjXJufrz67nSMTcy4enKz3vIXDq/Bu2pzGrTrj6ObL806j8SlYlUuHVmrKVOtYReavDYUz4DGpRVGgdo2MGfnH6kE3cjk/uMclv+WhJ21AXUD8r9J8936BE4EZ/AwOof7j3JYvj0JRztDvNzUV2oPonNY/Gsil29mEv1EyfXbWWw9nEItfxMMyqBTtmsHF9Zti+LUhQQi7qUx+4cIHO2MaVrPLt9tTl9K4OzlRB48yuBBVAYrNz0kLV1JFT9LnXK+nuZ07+TCN/93u2SDyEf078e4MfU7Hv2W/+ctN8+P3yEt4j6h42aTfP0WdxavI2rz73iP6Ksp4z3yQ+4t/4X7q7eQHBrOlU+mkpOaTsW+3UooioKVxDkKcOBsGntOpnHrQdlfWLesY8y+sxlcvZXNwxgla/elY2upoIZv/onnoXdy2H0qk+Dw/OuflKrSWar7GPHn/RxiE1+8C2Hxz5VqZ8LEiROZNWsWkydPJiQkhJ9//lnnwnLChAmau8rt27dn3bp1TJkyhRkzZhAaGspXX33F5MmTNWnxoL4IWrVqFSEhIcyfP5+lS5dqLpx69uzJmDFjqFatmuYOac+ePfPUKyUlhfbt22Nvb8+5c+fYtGkTBw4cYOjQoTrlDh8+THh4OIcPH2b16tWsWrVK0zlRkPPnzzN8+HC++OILwsLC2Lt3Ly1atNC8Pm7cODZv3szq1au5ePEifn5+tG/fnri4uAL2mteff/7J5s2b2bJlC0FBQSiVSjp27MiJEydYu3YtISEhzJo1C0NDdZdleHg4HTp0oFu3bgQHB7Nx40aOHz+eJ+6iMDc3/0dZEVevXuXkyZOaoQugziKJjIzk2LFj+W73888/U6lSJTp37pzntTFjxhAbG6vTQQHqDpgrV67w66+/Flin5cuX8/7772Nra0vHjh0L1eb/REHH8PHjx2zduhVDQ0NNOwYFBRESEsLo0aMxMND9SNeqVYu2bdvqZDoU1bp167CystIMvXjWsx1d+XF1dSU7O5utW7eiKqNBY+VdzCjnYMq5oCeadSmpOYTcSKR6QOHS2Q0MILC5E2Zmhly7ru7QMTEyQAVkZSk15TIzlShVULOqbbHG8DyJsfdJTYymYqUmmnWm5ta4etYiMuKS3m1ysjN5fO+azjYKAwM8KjUh8rb+bcrKix6fnSVYmSu4/Uj7GcnIggex4O6ofxsDA3Czh4hHup+riEcqKjhqr8Lux0LVigrM/vp6reqhwMgQ7jwu3c9jYtx9UpPytqGLR02ibgfp3SYnO5PH9/O2YYVKjfPdJisjldCzW7BxqICVnWtxhpCvnOxMou5ew7Oybj09A5rwMJ/z82FEUJ5OAq+qzXgYEVSSVf3bytkZYGdtSEiE9u9UWoaKWw+y8HUv/OhZC1P1uZmSpsy3jLmpAekZqlKfed3VyQRHe2MuXdMOT0hNU3I9PIWq/pYFbKlloIBWjewxMzUg5E/tzQxTEwUTh3izcNVdniSU/QVpYdg1qk3MoVM666L3H8e+UW0AFMbG2NatRszBk9oCKhUxh05i16hOKdZUrTTP0bLiaKPA1tKAG3e1WVfpmXAnKgdv1wJSE4rI2kJBNS8jTl+T4Q1Cv1KbMyEpKYn58+ezaNEi+vTpA4Cvry/NmjXj9u3bAIwcOZK33npLs83UqVOZO3euZp23tzchISEsWbJEs4/PP/9cU97Ly4tPP/1Uk5Jubm6OlZUVRkZGuLrm/0Pi559/Jj09nTVr1mjuxi5atIjOnTsze/ZsTYeHvb09ixYtwtDQkICAADp16sTBgwcZMGBAgbHfvXsXS0tLXn/9daytrfH09KROHfWXa0pKCj/88AOrVq2iY8eOACxdupT9+/ezfPlyxo4dW+hjnJmZyZo1azR3hvft28fZs2cJDQ2lUqVKAPj4aMeNzpw5k169emnGzvv7+7NgwQJatmzJDz/8oDNnwfPk5OSwfv16goOD+fjjjzXrExISsLKy0inbvHlz9uzZo/n3zp07sbKyIjs7m4yMDAwMDFi0aJHm9R49evD777/TsmVLXF1dadSoEYGBgXzwwQfY2KgvAG/cuEGVKvrHjz5df+PGDZ315cuXZ8SIEUyaNIkuXbro3fbmzZucPn2aLVu2APD+++8zevRoPv/8c53MkOLwvGOoUqlITVWn1Q0fPlxzrj6Nq6D4jx8/XuB7jx8/XuezBLBnzx6aN2/OzZs38fHxwdjYOJ+tC6dRo0Z89tlnvPfeewwaNIgGDRrQpk0bPvjggzzZKiXFwV59FfXsPAZP4jM1r+XHx9OSH7+ug4mJAWlpOXw24xq376nb41pYIunpOQzu68OSnyJQAIP6+GBkqMDRoeD9FreUpGgALK11rzwtrB1JSYrRu01ayhNUyhws9GwT9/hWyVT0b3rR47P862s3JV13fUq6Citz/dtYmICBgULPNuCYq49sywklXZsYMOYtQ3KUKrKy4dfjz5+LobilJqrbMG97lCP1OW1ormeb+McROuuunPiZkzu+ISszFTtnb94ctAJDo9L5HKYl/3Wu2eg51x7pP9dSEmOwtNbNjLK0diQlUf+xKGu2VupO68QU3Sv8xBQlNlaFu0elAN551Yqbd7N4EK1/CIqVuYLOzS04ein/+WxKioOd+u/dk4Rn/lYkZGFvV/DfQq+KZiyYFoCJsQFp6TlMnxfO3QfaD+eg9ysSciOFU6U4R8I/ZepSjoxHuudjxqMYjG2tMTAzxdjeFgMjIzIexz5TJhbLyqU7XwmU3jlalqwt1b9Bk1J1Y0xKVWleKw6vVDEmPYsXaogDvJgTIZaVUutMCA0NJSMjg8DAwHzL1K9fX/P/KSkphIeH069fP52L9ezsbGxttXf6Nm7cyIIFCwgPDyc5OZns7GzNBWZR6larVi3NxRlA06ZNUSqVhIWFaS50qlWrprkbDODm5saVK8+fWKZdu3Z4enri4+NDhw4d6NChA127dsXCwoLw8HCysrJ0Jgg0NjamQYMGhIaGFikOT09PTUcCqO9YV6hQQdOR8KzLly8THBysGVIC6vRTpVJJREREvhenuS1evJhly5aRmZmJoaEho0aNYvDgwZrXra2tuXjxos42T4cmPNW6dWt++OEHUlJSmDdvHkZGRnTrpk2LMzQ0ZOXKlXz55ZccOnSIM2fO8NVXXzF79mzOnj2Lm5ubpu5FNX78eJYsWcKKFSt4++2387y+YsUK2rdvT7ly6h96r732Gv369ePQoUMFnstFUdhjmJWVxZ49e1i3bh0zZszIs59/crd/7Nix9O3bV2edu7v7P97vs2bMmMHo0aM17fjjjz/y1VdfcezYMWrUqJGnfEZGBhkZuuP6ijLXSbuWzowdoj3/x33x9yeCuvsglQ9HnMfKwohWTZ2YNKoywyZe5va9VOITs5g8O4RPB/vTvbM7ShUcOPaYsD+TUJbwDY3r57dzcKN2jpE3By4p2TcsZS96fNU8FbxWX/vDb+OxkjthWtZQZyWsO5xDagZUdlfwVhMD1hxUEl2C1zVhF3ZwZJO2DV/v/2PJvRlQqW5nKlZqQkpiNJeOrGDvmpF0G7YeI+MXd56kktSwuikfdNLOWzB//T8/WXp1tMLd2YhZq+L1vm5momDEu7Y8jMlh+9GSH5vepokDI/tpJzX+/Os///a+7j/MYNBnoViaG9K8oR1jB3kx5ssb3H2QTuO6ttSpZs2gz4r2+04UrCzO0dJWr7IRPdtob/It2V46nWyNqhpx4XoW2f++/hTxL1FqnQnPXkDqk/ti/ul8BUuXLqVhw4Y65Z5e0J86dYpevXoxffp02rdvj62tLRs2bGDu3LnFWHOtZ+/MKhQKlIW4Unh6MXjkyBH27dvHlClTmDZtms68CAUxMDDIc0Gnb66G3McPnn/Mk5OTGThwIMOHD8/z2rNPCshPr169mDRpEubm5ri5ueVJszcwMMDPz6/AfVhaWmrKrFixglq1arF8+XL69eunU87d3Z3evXvTu3dv/ve//1GpUiV+/PFHpk+fTqVKlfLtfHm6Xl+nip2dHRMnTmT69Om8/vrrOq/l5OSwevVqoqKiMDIy0lm/YsWKYutMKMoxrFKlCuHh4QwePJiffvpJJ67Q0FBNxktuuTNT8lOuXLl826lSpUocP36crKysf5ydAOq5FHr06EGPHj346quvqFOnDt98843O8KWnZs6cyfTpuhNEqSfnbF2o9zp+NpaQG+c1/zYxVh9beztjYp9o0x/t7Uz481bBt2ezs1U8iFTfXQoLT6aKvzU93nDn6+9vAnDu0hN6fnwWWxsjcnJUJKfk8NuaxjyMelyouv5dPtXb4OqpHeOfk62OKyUpFktb7RMyUpNicXIP0LsPc0t7FAaGOhPZPd3m2Tumpe1Fj+/mAxXLYrXf708nWbQ0g+RcmQaWZgoePdHfsZeaqZ5MyvKZZDJLM0j56/emnRW8UsmAJbtziPkrc/txvIqKTgrq+yvYc77kbtN4V2uNi4f2SQY5Oeo2TE2KxdImdxvGUM5dfyf20zZMy9OGMVg804am5taYmltj5+SFq2ctln7ekFtX9lOpru53fEkwt/rrXEvUc67Z6D/XLG3K5cmqSSmgfGm7fCOT6Q+0wy6NjNSdXzaWChJyfW3aWBpwL+r5dy/f62BFLX8TZq+J50lS3t9QZiYKRr1nS3qGikW/JJBTChnmpy7Gcz1cOxTB+K8Y7W2NiYvXxmRva0z4nYI7N7JzVDz864kPN2+nUtnHkq7tnZm/4i61q1rj5mzKtqW1dbaZMtKXq9eT+XTGDT17LHsZj2IwdXnmc+ZSjqyEJJTpGWTGPEGZnY2ps+MzZRzJiCr5DJvSPkfLwtVb2dyJ0p6jRobqGK0tFCTmyk6wtlDwILp46uxT3hAXB0NW7Ul/fuH/GMlMKD6lNmeCv78/5ubmHDxY8KNnnnJxcaF8+fLcunULPz8/neXpZG0nT57E09OTSZMmUb9+ffz9/fM8KSD3jP/5qVKlCpcvX9aZoO/EiRMYGBhQuXLlIkaqn5GREW3btmXOnDkEBwdz+/ZtDh06hK+vLyYmJpw4cUJTNisri3PnzlG1alUAnJycSEpK0qlfYR5DWLNmTe7fv58nvf+punXrEhISkuf4+vn56cxZUBBbW1v8/Pxwd3fPcxH8dxgYGPDZZ5/x+eefk5aWf6+rvb09bm5ummPyzjvvcPPmTXbs2JGn7Ny5c3F0dKRdu3Z69zVs2DAMDAyYP3++zvrdu3eTlJTEpUuXCAoK0izr169ny5YtxMfH//1AcynqMZwwYQIbN27UZHzUrl2bgIAA5s2bl6dz6/Llyxw4cIB33333b9fvvffeIzk5Oc/kp0/9k+NgYmKCr69vvpN+Tpw4kYSEBJ1l4sSJhd5/WloODyLTNUvE3VRi4jKoX0v7WFgLc0OqVrLh6nX9j+7Kj0IBxsZ52yshMZvklBzq1rTD3taY42f1z+BeXEzMrLBz8tQsDq5+WNg4ce+GdnxrRnoyUXcu4+atf+yqoZEJzhWr6WyjUiq5d+MUbl6lP941txc9vsxseJKsXWISITlNhZeLNlvBxEg9X8KDfE4lpRIin6CzDaj/ff+vjgrjv5Lqnv39pFRR4k8cydOGLn5YWDtx/6a2PTLTk3l0NxhXr9p692FoZIJzhWrcu6nbhvdvns53G21BlaYTqqQZGpng6lGNO2G69bwTdory+Zyf5b1rc/f6aZ11d0JPUt67dklWtdDSM1U8fqLULA+jc4hPyqGKt/Z3gpmJAh93Y8KfMyndex2sqFvZhK/XJhATr78jYXQvW7JzVCzcmFBqd0PT0pU8fJShWe48SCf2SRZ1qmnvdluYGxDga0nIzaI9fUihQPO0oA07ohg4MYRBn2kXgB/X3iuzyRgLI/50EI5tGumsKxfYhCengwBQZWWRcPEa5drkmvtDocCxdWPiT5f8vDSleY6WlYwsiElQaZaoOCUJKUoqVdRmTJuagKerIRFRxfPBaVTNmLuPcngY8+85DuLfp9QyE8zMzBg/fjzjxo3DxMSEpk2bEh0dzbVr1/K9wzt9+nSGDx+Ora0tHTp0ICMjg/Pnz/PkyRNGjx6Nv78/d+/eZcOGDbzyyivs2rWLrVt1n3nr5eVFRESEJuXf2to6T5p0r169mDp1Kn369GHatGlER0czbNgwevfuXSxjuXfu3MmtW7do0aIF9vb27N69G6VSSeXKlbG0tGTw4MGMHTsWBwcHPDw8mDNnDqmpqZo78w0bNsTCwoLPPvuM4cOHc+bMmUJNAtiyZUtatGhBt27d+Pbbb/Hz8+P69esoFAo6dOjA+PHjadSoEUOHDqV///5YWloSEhLC/v37deYs+CdUKhVRUVF51js7O+d74dyjRw/Gjh3L999/z6effsqSJUsICgqia9eu+Pr6aua3uHbtGgsXLgTUnQmbNm2iT58+fP311wQGBpKYmMj333/P9u3b2bRpU57MjafMzMyYPn06Q4YM0Vm/fPlyOnXqRK1aujO7V61alVGjRrFu3TrNNmlpaXk6eKytrfH19S3UcSqKihUr0rVrV6ZMmcLOnTtRKBQsX76cdu3a0a1bNyZOnIirqytnzpxhzJgxNG7cWDMvRn6SkpLytJOFhQU2NjY0bNiQcePGMWbMGB48eEDXrl0pX748f/75Jz/++CPNmjVjxIgRz633zp072bBhA++88w6VKlVCpVKxY8cOdu/ezcqVK/VuY2pqWuyPcN20/QF9enpw72EakY/S6f++F7FxGfxxWnv35Lsva3LsVAxbdj0EYOAH3py+EMej6HQszI1o19KZOjXsGD1VO2zitUAX7txP5UlCFtUDbBgxwI9ffrvPvQelO95XoVBQp+UHnN33A3ZOntg6VuDk7vlY2jrjW6OtptzmRX3wrdmO2i3eB6Buqw/Zt248Lh7VcfWoycWjq8nKTKNqQ+08NimJ0aQkxpAQcxeA2MgbGJtaYmPvhpmlncRXTM6GqWhaTUFckor4FGhZw4CkNAi7r+0KeK+1ATfuqzh/U73uzHUVbzRSEBkHD+NUNKikwNgIgm+pX49NhLgkFa/VN+BgkJLUTPUwBx9X2HisdG/RKBQKarX4gPP7f8SunBfWDu6c2bsASxtnfKpr23DbD33xqd6Wms3VbVi7ZV8OrJ+Ac8XquHjU5PLR1WRnplGlgboNE2LvcfPSbjwqN8XcyoHk+CguHFqKobEpnlVallp89dt8yO4143H1rI6bZ03OH15NVkYa1Rur67lr1Tis7Vxo0WUMAPVaf8CGeb05d2AFPtVbcv38bqLuXuXVXl9o9pmWEk9iXCQpCepMpyeP1PNEWNqUw8rWidJ24Gwarzez4FFcDjHxOXRtZUl8kpKL17XD0j5935aL1zM4dF59V/P9jlY0rG7Kwo2JpGcosflrXHdahnr+jqcdCSbGCpZuS8TMVIHZX1//SamqUr+TuHXvI97r4saDqAwiozPo292d2PgsTlyI15SZM9GfE+fj+W2/eh6Qj3qW59zlRB7HZGJubkCbJg7UqmLNxNnqDLYnCdl6J118HJNJVHTpdHiB+tGQln7aDFQL7wrY1AogMy6B9HuRVP5yNGbuLlz+cDwAd/5vA56f9CJg5ljurdpMudaNcOvRkXNvDNTsI+K7ldRaMZv4C1dJOBeM1/A+GFmac2/1llKLK7eSOEdBne1ga2WAs736Ir6CsxHpmUriEpSkpJfuSXr0UhavNjAlOl5JbKKK1xqbkJCi4kquJzUMecuc4D+z+SNYndFsYgxOttrf3462CtzLGZCaoeJJkrb+piZQ29+I3/7I/xGSQkApdiYATJ48GSMjI6ZMmcLDhw9xc3Nj0KD8n+fdv39/LCws+Prrrxk7diyWlpbUqFFDc2H0xhtvMGrUKIYOHUpGRgadOnVi8uTJTJs2TbOPbt26sWXLFlq3bk18fDwrV67MMzbcwsKC33//nREjRvDKK69gYWGhuQAvDnZ2dmzZsoVp06aRnp6Ov78/69evp1q1agDMmjULpVJJ7969SUpKon79+vz+++/Y26vvnjo4OLB27VrGjh3L0qVLCQwMZNq0aTqT9OVn8+bNfPrpp7z77rukpKTg5+fHrFmzAHXmwtGjR5k0aRLNmzdHpVLh6+ur94kXf1diYqJmToPcIiMj850U08jIiKFDhzJnzhwGDx5MgwYNOH78OIMGDeLhw4dYWVlRrVo1tm3bRsuW6h+ICoWCX375he+++4558+bxySefYGZmRuPGjTly5IjOnBT69OnTh7lz5xISor5L8OjRI3bt2sXPP/+cp6yBgQFdu3Zl+fLlms6EGzdu5BliEBgYyIEDhXvsUlGNGjWKxo0bc/bsWRo0aECTJk04ffo006dPp2PHjiQlJeHh4UGfPn2YOHGizgW5UqnUGbYBMGXKFKZMmaKzbuDAgfz4o3ps8+zZs6lXrx7ff/89P/74I0qlEl9fX7p3766ZDPV5qlatioWFBWPGjOHevXuYmpri7+/PsmXL6N279z88IoW3bvM9zMwMGTe0ElaWRlwJSWDM1CtkZmn/iLq7mmNnox3SYW9rzOejAnB0MCElJZvw2ymMnnqF87meCuFRwYKBfXywsTIi6nE6a365y8bf7pdaXLnVDxxAdmYaBzdOISMtkfI+9eg6aJnOmPH42HukpWjrX7nua6Qlx3Fq9wJSE6MpV6EKXQYt00m1Dj6xgTN7tR2Nmxb0AqDdezOpluuivKS96PGduq7C2Ahee8UAMxO4Fw0bjip10r3trcA8Vz9b6D31MIeWNRTqIRHxsOGIkpS/fgcqVep9tKllQI8WBpgYwZMk2H5GRXhkqYWmUbdNf7Iz0zi8Sd2Gbt716PzxUp02TIi5q9OG/nXUbXh270JSEqNxcq9C54+XaoY5GBqZEHnrApePrSEjLRELa0fK+9Sn+/D1eSZ7LEkB9V8jNTmOEzsXkJIYjXOFKnQfqj3Xkp5EosjVme7uW5fXP/qGP7Z/xx/bv8XeyYuuA7/Hqbx2eFp48CH2/KTNytqxYhQATV4bStPXh5VSZFp7TqZhYqygTydrLMwU3LybxbyfdTMJnOwNsbLQxtm6vnro5fg+djr7WvFbIieCM/B0M8K3gvp7d9ZQ3fYatyCW2ITSvTu6cecjzEwNGNnPEysLQ67eSGbi7Jtk5fpb4eZiio219u+pnY0x4wZ54WBnTEpqDhH30pg4+yYXryaVat2fx7ZedRof/Enz76rffAbAvTVbCO43EVM3J8wran+7pd2+z7k3BlJ17kS8hn1A+v0orgz8nJj92smdIzftwcTJgUpTh2Pq6kTi5VDOvt6fzMclm52Xn5I4RwFa1TPnzZbam1MT+trlKVNaDl7IxMQYegaaYW6q4NbDHH7clqoTo6OtAZbm2vQzD2dDhnW30Py7awv1+LgzIVn8vF87nKFuJWMUwIWwF/MpDkoZ51BsFKqyekabEKLU5eTkYGNjw+rVq+nevXtZV+dva9b5aFlXoUQd39GSH/aWdS1KzuAOvPDxzdjwYs9WNekdQxbuenF/PgzrpGBZ4UZl/if1D4R+/4su62qUqOWTnWjX60JZV6PE7F9Xj13GxTMU99+oU1bYS3GOjpj/7+poKk7zR1g/v1AZ+d/6sns6xeR3S/Vefol7saIRQuTr/v37rFmzhpycHJo1a1bW1RFCCCGEEKLUqWQaiGIjnQnF4I8//qBjx475vv70yRT/JS9iTKXt33YMa9eujaOjIz/99FO+Q0yEEEIIIYQQojCkM6EY1K9fv1BPV/gveRFjKm3/tmMYE1Pyj2cSQgghhBDi30xG+Rcf6UwoBubm5vj5+ZV1NYrVixhTaZNjKIQQQgghhHhRPf+h9kIIIYQQQgghhBC5SGaCEEIIIYQQQoiXglImYCw2kpkghBBCCCGEEEKIIpHMBCGEEEIIIYQQLwWZgLH4SGaCEEIIIYQQQgghikQ6E4QQQgghhBBCCFEkMsxBCCGEEEIIIcRLQSmjHIqNZCYIIYQQQgghhBCiSCQzQQghhBBCCCHES0ElqQnFRjIThBBCCCGEEEIIUSSSmSCEEEIIIYQQ4qUgT4YsPpKZIIQQQgghhBBCiCKRzgQhhBBCCCGEEEIUiQxzEEIIIYQQQgjxUlDKBIzFRjIThBBCCCGEEEIIUSSSmSCEEEIIIYQQ4qWgkhkYi41kJgghhBBCCCGEEKJIpDNBCCGEEEIIIYQQRSLDHIQQQgghhBBCvBRUyrKuwYtDoZJBI0IIIYQQQgghXgLjfkwrs/eeM8i8zN67JEhmghDiP+dESHJZV6FENa1qxZJ9ZV2LkjPwVV74+JYeKOtalKwBbWHZwbKuRcnpHwiLdr+491qGvqag3/+iy7oaJWr5ZCde7X2prKtRYvb9VOeFbsPlk53YZVy5rKtRojplhTFiflJZV6PEzB9hXdZVyJdS7qUXG5kzQQghhBBCCCGEEEUimQlCCCGEEEIIIV4KMsq/+EhmghBCCCGEEEIIIYpEOhOEEEIIIYQQQghRJDLMQQghhBBCCCHES0GplGEOxUUyE4QQQgghhBBCCFEkkpkghBBCCCGEEOKlIPMvFh/JTBBCCCGEEEIIIUSRSGeCEEIIIYQQQgghikSGOQghhBBCCCGEeCmoZALGYiOZCUIIIYQQQgghhCgSyUwQQgghhBBCCPFSUMoMjMVGMhOEEEIIIYQQQghRJNKZIIQQQgghhBBCiCKRYQ5CCCGEEEIIIV4KMgFj8ZHMBCGEEEIIIYQQQhSJZCYIIYQQQgghhHgpSGZC8ZHMBCGEEEIIIYQQQhSJZCYIIYQQQgghhHgpSGJC8ZHMBFFmFAoF27ZtK+tqCCGEEEIIIYQoIslMECVu2rRpbNu2jaCgIJ31kZGR2Nvbl02lXhARERFMmjSJI0eOEBcXR7ly5ahXrx6zZ88mICAAUHfabN26lS5dumi2O3z4MHPnzuXMmTMkJSXh7u5O/fr1GTJkCC1atADgyJEjtG7dmqpVqxIcHIyhoaFmezs7O7777jv69u2b73sA9O3bl/j4eE2nUatWrTh69CgApqam+Pj4MHToUD755JOSOUB6HNz9C3u3rSEhPpaKXv706j8On0rV9ZZ9cDecbet/5HZ4KLHRkbzz0Rhe7fyeThllTg7bNi7h9NE9JMTHYmdfjqZtOtO5R38UCkVphKQj6Ng6zh9cTkpiNE7uAbTuPhk3r5r5lr9xaQ8nds4nMe4Bdk5eNH/zU3yqtdS8rlKpOLl7AVdPbiI9LRF377oE9pyGvbNXKUSj34se46Wj6zh3QBtf4NsFxxd2UR1fQuwD7J29aPHmp/hU18Z3I2gfl//YwKN710hPieeDCdtwrlilNELR6+LRdZzbr47PuULh4ju+Qxtfyy7a+HJysji+/TtuXTtGQsw9TMyt8KzchJZdxmBl51JaIeWhUqk4s3ch105tIiM9ETevurTuMRU7J68Ctws+vo6Lh5aTmhRDufIBtHjrc1w91ccmPSWeM3sXcjfsBEnxkZhbOuBTI5BGHUdgam5dClHperOlBS3qmGFhZsCf97L4aU8yj+Ny8i3/WlNz6gaY4uZoSGY2hN/PYtPBFB7FqrexNFPwZktLqvka42BjSFKqkkthGWw7kkpaRtncRvzgLVc6ti6HlYUh126ksGDVPR4+ysi3/OuB5Xi9TTlcnEwAuHM/nXXbojgXnKi3/IxPfXmllg3TvrvFyQsJJRJDQYq7DQFa1DGjYXVTPN2MMDc1YOicmFJvP4dm9fEZ0w/butUxK+/M+W6f8Gj7wYK3adGAqt9MwKqqP+n3Ivlz5g/cX7NVp4zn4PfwGd0PU1cnEoOvc23k/0g4d6UkQ3mujo1MaFzdGHNTBREPc9h0OJ3o+PyPt295Q9rUM6GiswG2VgYs25HGlVvZOmXmj9D/ffLbH+kcuphVrPUX/32SmSDylZVVsl8Yrq6umJqaluh7lKXMzMwS3X9WVhbt2rUjISGBLVu2EBYWxsaNG6lRowbx8fH5brd48WICAwNxdHRk48aNhIWFsXXrVpo0acKoUaPylL916xZr1qwptnoPGDCAyMhIQkJCePvttxkyZAjr168vtv0X5OzxfWxc+S1v9PyYqXPXUdGrEt9+MZTE+Di95TMz0nFycad772HY2jvqLbN762qO7P2VXgPGMWPhr/T4YDh7tq7hwK4NJRmKXmEXdnN060wadRzC++O24uQewJbF/UhNitVb/uGti+xaNYbqjbvz/vht+NUMZPvSIcQ8vKEpc+7AUoKO/kRgz2m8N+YXjE3N2bK4H9lZ+f+gLkkveozXL+zmyJaZNH5tCL0nbMW5QgC/LupHSj7xPbh1kZ0r1fF9MFEd37b/G0J0rviyMlJx961Lizc/La0w8nX9/G6ObJ5Jk05D+GCiuv02LSwgvvCL7FgxhhpNutNn4jb8awWydYk2vuzMdB7dC6Fxx8F8MHELXT5exJPHEWz5cXBphpXHxUPLuHzsJ1r3mMbbI9Xn1G8/9i/wnLpxaTd/bJtFg/ZDeGfMFsqVr8z2Jf0153ZK4mNSEh/T7I1x9Bq3g7bvzeTu9T84uGFSaYWl0bGJOW0bmPPT7mRmrHhCRpaK0e/ZYmSY/zaVPEw4fC6NGSvjmbsuHkMDGPOeLSbG6tftrA2wszbgl/0pTFkSx4rtSVT3NaFv59LvKAF4u5MzXV51YsHKewyfFkZ6Rg4zx/libJx/J3FMXCbLf3nIkMlhDJ0SRlBIEtNGeePpbpan7FsdnFBRdrnWJdGGACbGCq6GZ7LreGrJB5EPQ0sLEoPDuDp8eqHKm3tV4JXtS4g9cobj9d8kYuFqaiz5knLtmmnKuPXoSJWvJ3Lzy+853qArScHXabhrOSZODiUVxnMF1jOhRW0TfjmUwbyNqWRmqRjUxaLANjQxhgcxOfx6JP/vos+XJussP+9PQ6lScfnP7Hy3+a9RKVVltpSUuLg4evXqhY2NDXZ2dvTr14/k5OQCyw8bNozKlStjbm6Oh4cHw4cPJyGhaB2b0pnwklEqlcyZMwc/Pz9MTU3x8PBgxowZ3L59G4VCwcaNG2nZsiVmZmasW7cOgGXLllGlShXMzMwICAhg8eLFOvscP348lSpVwsLCAh8fHyZPnqzpiFi1ahXTp0/n8uXLKBQKFAoFq1atAvIOc7hy5Qpt2rTB3NwcR0dHPv74Y50PQd++fenSpQvffPMNbm5uODo6MmTIkEJ3eixevBh/f3/MzMxwcXGhe/fumtcyMjIYPnw4zs7OmJmZ0axZM86dO6d5fdWqVdjZ2ensb9u2bTp3nqdNm0bt2rVZtmwZ3t7emJmpfzzEx8czcOBAXFxcMDMzo3r16uzcuVOz3fHjx2nevDnm5uZUrFiR4cOHk5KS8tx4rl27Rnh4OIsXL6ZRo0Z4enrStGlTvvzySxo1aqR3m7t37zJy5EhGjhzJ6tWradOmDZ6entSsWZMRI0Zw/vz5PNsMGzaMqVOnkpFRPBdWFhYWuLq64uPjw7Rp0/D392f79u3Fsu/n+X37Wlq060rzwDdwr+jDB4M+w8TUjD8O/qa3vLd/Nd7uO5KGzdtjZGSit8yf1y9Tu0EratVvTjnn8tRv0pbqtRsRcfNaSYai14XDK6ne+G2qN+qGo5sfbXtOx8jEjKunNustf/HIGryqNOeVtv1xdPWl6esjca5YlaBjawH13dVLR9bQsP1g/Gq2xck9gA6955Cc8Jg/gw+UZmgaL3qM5w+upEaTt6nRuBvl3Pxo9850jAuK7/AavKs2p0E7dXzNOo/EpWJVgo6u1ZSp1rALTV4bimdA49IKI1/nD62kZlNtfK+++1d8J/XHdyF3fG7a+C4dUcdnam7N28NXElDvNRxcfCjvXZvAtyfz6O41EuMelmZoGiqViqCja3jl1UH41AikXPnKtHtvNimJj7l1Jf9zKujIKqo17kHVht1wcPWjdQ/1uR1yRn1sHN0q8dqHC/Gu3gbbch5U9G9Eo9dGEXHtMMqc0v2R37aBOTv/SCXoRib3H+ew/Lck7KwNqBuQ/w2C79YncCI4g4fROdx/lMPy7Uk42hni5aa+En0QncPiXxO5fDOT6CdKrt/OYuvhFGr5m2BQ+kledO3gzM/bH3HqYgIR99KZs+QOjnbGNK1nm+82py8lcu5yIg8fZfAgKoNVv0aSlq6kip+FTjkfD3O6dXRm7tK7JR1GvkqiDQEOnE1jz8k0bj0ouwvP6N+PcWPqdzz6rXDf4Z4fv0NaxH1Cx80m+fot7ixeR9Tm3/Ee0VdTxnvkh9xb/gv3V28hOTScK59MJSc1nYp9u5VQFM/Xso4x+85mcPVWNg9jlKzdl46tpYIavvknnofeyWH3qUyCw/Nvn6RUlc5S3ceIP+/nEJsoEw38m/Xq1Ytr166xf/9+du7cybFjx/j444/zLf/w4UMePnzIN998w9WrV1m1ahV79+6lX79+RXpf6Ux4yUycOJFZs2YxefJkQkJC+Pnnn3Fx0aaCTpgwgREjRhAaGkr79u1Zt24dU6ZMYcaMGYSGhvLVV18xefJkVq9erdnG2tqaVatWERISwvz581m6dCnz5s0DoGfPnowZM4Zq1aoRGRlJZGQkPXv2zFOvlJQU2rdvj729PefOnWPTpk0cOHCAoUOH6pQ7fPgw4eHhHD58mNWrV7Nq1SpN50RBzp8/z/Dhw/niiy8ICwtj7969mnR+gHHjxrF582ZWr17NxYsX8fPzo3379sTF6b9jnZ8///yTzZs3s2XLFoKCglAqlXTs2JETJ06wdu1aQkJCmDVrlmbIQHh4OB06dKBbt24EBwezceNGjh8/nidufZycnDAwMODXX38lJyf/tMTcNm/eTFZWFuPGjdP7ur60/JEjR5Kdnc3ChQsL9R5FZW5uXuJZHADZWVncCb9O1VoNNOsMDAyoWrMB4WF/P03RL6AWocFniXpwB4C7ETe4GRpEjbpN/nGdiyInO5NH967hWVn7vgoDAzwrNyHy9iW920TeDsKzsu4FpldAMx5GBAGQEHuflMRoPHLt09TcGlevWkRG6N9nSXrRY9TEF6Abn0dAEx7e0l+XhxF64quije/fJCc7k6i7etovoAkP8znWDyOC8nSCeFUtOL6M9GRQKDA1tymWehdVYux9UpOiqVhJ95xy8axJ1O0gvdvkZGfy+P41nW0UBgZU9G9M1B392wBkpidhYmaFgWHpjVotZ2eAnbUhIRHa7+20DBW3HmTh6174eliYqv/epKQp8y1jbmpAeoaq1CdLc3UywdHOmItXkzTrUtOUXL+VQhU/y0Ltw0ABrRrZYWZqQMhN7V16UxMFEz/xZNHq+zxJKJsL7tJsw/8Cu0a1iTl0Smdd9P7j2DeqDYDC2BjbutWIOXhSW0ClIubQSewa1SnFmmo52iiwtTTgxl3t77/0TLgTlYO3awGpCUVkbaGgmpcRp6+9WMMbVCpVmS0lITQ0lL1797Js2TIaNmxIs2bNWLhwIRs2bODhQ/0d69WrV2fz5s107twZX19f2rRpw4wZM9ixYwfZ2YX/bpI5E14iSUlJzJ8/n0WLFtGnTx8AfH19adasGbdv3wbUF45vvfWWZpupU6cyd+5czTpvb29CQkJYsmSJZh+ff/65pryXlxeffvopGzZsYNy4cZibm2NlZYWRkRGurq751u3nn38mPT2dNWvWYGmp/kO9aNEiOnfuzOzZszUdHvb29ixatAhDQ0MCAgLo1KkTBw8eZMCAAQXGfvfuXSwtLXn99dextrbG09OTOnXUfwBSUlL44YcfWLVqFR07dgRg6dKl7N+/n+XLlzN27NhCH+PMzEzWrFmDk5MTAPv27ePs2bOEhoZSqVIlAHx8fDTlZ86cSa9evRg5ciQA/v7+LFiwgJYtW/LDDz9oshv0cXd3Z8GCBYwbN47p06dTv359WrduTa9evXTeI7cbN25gY2Oj0xabN2/WtCXAqVOnqFGjhubfFhYWTJ06lc8++4wBAwZga5v/XZmiyMnJYf369QQHBxfYc1pckpLiUSpzsLHVHa5gY+dI5IPbf3u/r73Vl7TUZCYN64aBgQFKpZK3en1C45av/cMaF01ayhNUyhwsbHTjs7B2JO7RLb3bpCTGYGFdLk/51KQYAFITozXrcrO0diQlMaa4ql5oL3qMacnq+Cz11CUuqoD4bJ6Jz6Zs2ud5nsZX1PazfKb9Cmqb7KwMjm39hir1O2FqblU8FS+i1KS/zimrZ+K0KkdKkv56a85t62ePTTmePI7Qv03yE87t+4Hqjd8uhloXnq2V+j5UYoruj+LEFCU2VoW7R6UA3nnVipt3s3gQrb8z3MpcQefmFhy9lPaP6vt3ONip77THJ+heQD1JyMbe1ljfJhpeFcyYP7USJsYGpKXnMH1+BHcfpmteH9SrAiE3Uzh1sfTnSHiqtNrwv8LUpRwZj3Q/mxmPYjC2tcbAzBRje1sMjIzIeBz7TJlYLCvr/71V0qwt1R05Sam6bZiUqtK8VhxeqWJMehYv1BCHspaRkZEn29fU1PQfDf0+deoUdnZ21K9fX7Oubdu2GBgYcObMGbp27Vqo/SQkJGBjY4ORUeG7CKQz4SUSGhpKRkYGgYGB+ZbJfRKmpKQQHh5Ov379dC7Ws7OzdS4oN27cyIIFCwgPDyc5OZns7GxsbIp2Ryg0NJRatWppOhIAmjZtilKpJCwsTNOZUK1aNZ2JAN3c3Lhy5fl3ldu1a4enpyc+Pj506NCBDh060LVrVywsLAgPDycrK4umTZtqyhsbG9OgQQNCQ0OLFIenp6emIwEgKCiIChUqaDoSnnX58mWCg4M1Q0pA3VuqVCqJiIigSpWCJ0kbMmQIH3zwAUeOHOH06dNs2rSJr776iu3bt9OuXTu92zybfdC+fXuCgoJ48OABrVq10pvl0K9fP+bOncvs2bP56quvCqzT8yxevJhly5aRmZmJoaEho0aNYvBg/eOb8/vC/Tc5d2I/p4/t5eNRM3D38OFuxA3WL5+Lnb0TTdt0LuvqCfHSyMnJYvuyEahQ0e6dwo2VLg5hF3Zw+Jepmn93HvBjib9nZnoyO5YOxN7FlwYdnp/J9k80rG7KB5208xbMX//PL4J7dbTC3dmIWavi9b5uZqJgxLu2PIzJYfvRkh9736aJPSM+rKj59+dz9XduFcb9yAwGT7qOpYUhzRvYMfZjDz6d8Sd3H6bTqI4NtataMfjzsOKodqGVRRuK4lWvshE922hvMC3ZXjqdbI2qGnHhehbZ/+3+on+VmTNnMn267t+oqVOnMm3atL+9z6ioKJydnXXWGRkZ4eDgQFRUVKH2ERMTw//+978i3+CTzoSXiLm5+XPL5L6YfzpfwdKlS2nYsKFOuacX9KdOnaJXr15Mnz6d9u3bY2try4YNG5g7d24x1lzL2Fj3joBCoUCpfH56nbW1NRcvXuTIkSPs27ePKVOmMG3aNJ15EQpiYGCQJzVJ31wNuY8fPP+YJycnM3DgQIYPH57nNQ8Pj0LVzdrams6dO9O5c2e+/PJL2rdvz5dffqm3M8Hf35+EhASioqI02QlWVlb4+fkV2AtpZGTEjBkz6Nu3r94hGNbW1nonbImPj8+TydCrVy8mTZqEubk5bm5uGBjkfxckvy/cdm8XfSI5a2s7DAwMSUzQvbOQGB+LrV25fLZ6vl9Wz+e1t/rSsHl7ACp4+hMbHcmuLStLtTPB3NIehYEhqYm68aUmxWJpoz8+S5tymjv0ucs/vZNvYeOkWWdlq/0jlZIUi7N7QHFWv1Be9BjNrdTxPTsZYcrz4nvmLn1qYv7ly9LT+Irafs/ezdd3PNQdCSNJjHtIzxGrSzUrwbtaa1w+1T6NIidbnTqemhyLZa5zKjU5Bqfy+juINed20rPHJm/mSWZ6Mr8t6Y+xqSWdPlqEoWHBd8r/qcs3Mpn+QDvkz8hI3SFtY6kgIdfcXjaWBtyLev7dy/c6WFHL34TZa+J5kpT377eZiYJR79mSnqFi0S8J5JRCBv2piwlc/1M7V5Gxsfrvkp2tMXG5hiLY2xoRfqfgi7jsHBUPH6vPgZu306jkbUnX9k7MX3mP2lWtcXM2ZesS3aeXTB7uzdWwZMZ+9WdxhaSjtNvwvybjUQymLrqfM1OXcmQlJKFMzyAz5gnK7GxMnR2fKeNIRlTpZIFdvZXNnSjtOWpkqG5DawsFibmyE6wtFDyILp428SlviIuDIav2pD+/8H+MsrTHTuUyceJERo8erbMuvxtlEyZMYPbs2QXur6g3PvVJTEykU6dOVK1atcidGjJnwkvE398fc3NzDh4s+PE4T7m4uFC+fHlu3bqFn5+fzuLt7Q3AyZMn8fT0ZNKkSdSvXx9/f3/u3Lmjsx8TE5PnjumvUqUKly9f1pl48MSJExgYGFC5cuUiRqqfkZERbdu2Zc6cOQQHB3P79m0OHTqEr68vJiYmnDhxQlM2KyuLc+fOUbVqVUA9P0FSUpJO/Z591KU+NWvW5P79+9y4cUPv63Xr1iUkJCTP8fXz88PERP+EfwVRKBQEBATkO4Fj9+7dMTY2fu4Xkz49evSgWrVqeS7uASpXrsyFCxd01uXk5HD58uU8WRm2trb4+fnh7u5eYEcCqL9wExISdJaJEycWue4ARsbGePoGEBqs7UBSKpWEXjmHb+UaBWxZsMyMdAyemR3MwMCgRGfs1cfQyASXitW4e0M77lOlVHL3xincvPSP6XTzqs3dG6d11t0JO0l579oA2DpWwNLGibth2n1mpCUTdfsybt6lP070RY9RE1/YM/GFnaK8j/66lPeuzZ2wZ+K7ro3v38TQyARXj2rceSa+O2GnKJ/PsS7vXZu715+JL1Q3vqcdCfGP7/D28FWYW5XuI4dNzKywc/LULA6uflhYO3Ev13mamZ7MozvBuHrV1rsPQyMTnCtU4/4z5/a9m6dx9dRuk5mezG8/9sPQ0JjX+y/GyLjkM7XSM1U8fqLULA+jc4hPyqGKt/ZvlJmJAh93Y8KfM+neex2sqFvZhK/XJhATr78jYXQvW7JzVCzcmFBqd0PT0pU8fJypWe48SCc2Pos61bR38y3MDAjwsST0z+dPkJybgQGaJ0Bs3PmIQZOuM/hz7QKwZN2DEp2MsTTb8L8o/nQQjm10J64uF9iEJ6eDAFBlZZFw8Rrl2uSav0WhwLF1Y+JPl87cOhlZEJOg0ixRcUoSUpRUqqjN1jU1AU9XQyKiiueD06iaMXcf5fAw5sVo538LU1NTbGxsdJb8OhPGjBlDaGhogYuPjw+urq48fvxYZ9vs7Gzi4uIKHGYO6mHwHTp0wNramq1bt+a5cfs8kpnwEjEzM2P8+PGMGzcOExMTmjZtSnR0NNeuXct36MP06dMZPnw4tra2dOjQgYyMDM6fP8+TJ08YPXo0/v7+3L17lw0bNvDKK6+wa9cutm7VfS6vl5cXERERmpR/a2vrPB+aXr16MXXqVPr06cO0adOIjo5m2LBh9O7dW2eCyL9r586d3Lp1ixYtWmBvb8/u3btRKpVUrlwZS0tLBg8ezNixY3FwcMDDw4M5c+aQmpqqmdG0YcOGWFhY8NlnnzF8+HDOnDlTqIkfW7ZsSYsWLejWrRvffvstfn5+XL9+HYVCQYcOHRg/fjyNGjVi6NCh9O/fH0tLS0JCQti/fz+LFi0qcN9BQUFMnTqV3r17U7VqVUxMTDh69CgrVqxg/Pjxerfx8PBg7ty5jBgxgri4OPr27Yu3tzdxcXGsXaueHT33MJJnzZo1i/bt2+dZP3r0aPr160dAQADt2rUjJSWFhQsX8uTJE/r37//c45Sf/MeQ/b2JgNq/8T7LFkzFy7cK3v7V2b/zZzLS02gW+AYAS+dPwd7Bie69hwHqSRsf3lenu2ZnZxEf+5i7EWGYmlng4qZOia39SnN2/roCh3KuuHv4cufWdX7fvo7mgW/+rTr+E/Vaf8jeteNx8aiOq2dNLh5ZTVZGGtUaqec82bNmHFZ2LjR/YwwAdVt9wC/ze3P+4Ap8qrXk+sXdPLp7lXbvfAGoO6fqtPqAM7//gL2zJzaOFTi5cz5Wts741Wxb6vG9DDHWD/yQPWvU8bl51eTCIXV81f+Kb/dqdXwt3vwrvtYfsHFeb84dWIFP9ZZcv7CbqLtXaffeF5p9pqXEkxQXSXKC+odG3F9j8C1tymFp60Rpqt/mQ3avGY+rZ3XcPGty/vBf8TVWx7dr1Tis7Vxo0UUdX73WH7Ahd3zn1fG92ksdX05OFtuXDufR3RDe+mQJSmUOyQnqOQvMLW0xzOcpLCVJoVBQu+UHnN//I3ZOXtg4uHN6zwIsbZzxqaE9p7Yu7otPjbbUav4+ALVb9eXAzxNwrlgdF8+aBB1dTXZmGlUbqo9NZnoy237sR3ZmGq++/zWZ6clkpqtvK5tbOWBgUHyTrj3PgbNpvN7MgkdxOcTE59C1lSXxSUouXtcOS/v0fVsuXs/g0Hn1Xc33O1rRsLopCzcmkp6hxOavcd1pGSqysrUdCSbGCpZuS8TMVIHZX1//SakqSmjesnxt3fuY99504UFUOlHRmfTt7kZsfBYnLmiz8GZP8OPE+Xi2H1Dfnf7obTfOXU7kcWwW5mYGtGliT80AKz77OhxQz7mgb9LFx7GZREWX/ETEuZVEG4I628HWygBne/X5WMHZiPRMJXEJSlLSS6cRDS0tsPTTZndaeFfAplYAmXEJpN+LpPKXozFzd+Hyh+rfSnf+bwOen/QiYOZY7q3aTLnWjXDr0ZFzbwzU7CPiu5XUWjGb+AtXSTgXjNfwPhhZmnNv9ZZSiUmfo5eyeLWBKdHxSmITVbzW2ISEFBVXcj2pYchb5gT/mc0fwerfTSbG4GSrvZHjaKvAvZwBqRkqniRp28fUBGr7G/HbH2XzGOiSVlITIRY3JycnneHT+WncuDHx8fFcuHCBevXqAXDo0CGUSmWe7PLcEhMTad++Paampmzfvr3AudryI50JL5nJkydjZGTElClTePjwIW5ubgwaNCjf8v3798fCwoKvv/6asWPHYmlpSY0aNTQTBr7xxhuMGjWKoUOHkpGRQadOnZg8ebJOiky3bt3YsmULrVu3Jj4+npUrV9K3b1+d97GwsOD3339nxIgRvPLKK1hYWGguwIuDnZ0dW7ZsYdq0aaSnp+Pv78/69eupVq0aoL5IViqV9O7dm6SkJOrXr8/vv/+Ovb36DpeDgwNr165l7NixLF26lMDAQKZNm1aocUWbN2/m008/5d133yUlJQU/Pz9mzZoFqDMXjh49yqRJk2jevDkqlQpfX1+9T7x4VoUKFfDy8mL69OmaR3s+/feoUaPy3W7YsGFUqVKFb7/9lu7du5OYmIijoyONGzdm7969OpMvPqtNmza0adOGffv26ax/9913UalUfPvtt0yYMAELCwvq1avHsWPHiqUzqLg0aPYqSYlP2LbhRxKexFLRuxKjpizE1k6duhgXHYVBrjkl4p9EM230e5p/7/3tJ/b+9hOVq9Vj/Jf/B8B7A8ax9ecfWPt/s0hMeIKdfTlavdqNN94ueFLQklC53mukJsdxctcCUpOicXKvwlufLNOkhCc9iUSh0P6IKO9Tl9f6fsOJnd9xYue32Dl58caA7ylXXptN8krbAWRlprF//RQy0hJx96nHW58sK5U7ovq86DEG1HuN1KQ4TuzUxtd9iDa+xGfic/epS6cPv+H4ju84vkMdX5ePv8cpV3zhwYfYu1ab0bNzhfr7ofFrQ2naaVgpRaYWUF/dfid2LiAlMRrnClXoPvSZ9suVseTuW5fXP/qGP7Z/xx/bv8XeyYuuA7XxJcc/4s/gQwCs/kq3A6/nyDV4VMr/R1RJqtumP1mZaRz+RX1OuXnX442BS3XOqYSYu6SnPNH8u1Kd10hLjuPM3oWkJKrb/o2BSzVDch7fv8ajO5cBWDPjVZ336zP5ADYOFUohMrU9J9MwMVbQp5M1FmYKbt7NYt7PupkETvaGWFlo27J1ffWwv/F97HT2teK3RE4EZ+DpZoRvBfUdsVlDddPJxy2IJTahdO+O/rLrMWamBoz8yAMrC0Ou3kjhs6/DycrSXoS4OZtga639KW1nY8zYgZ442BmTmpbDrbvpfPZ1uM5TIf4tSqINAVrVM+fNltohnxP62uUpU9Js61Wn8cGfNP+u+s1nANxbs4XgfhMxdXPCvKKb5vW02/c598ZAqs6diNewD0i/H8WVgZ8Ts/+4pkzkpj2YODlQaepwTF2dSLwcytnX+5P5zKSMpenghUxMjKFnoBnmpgpuPczhx22pOm3oaGuApbn2d42HsyHDumsfVdq1hfri8UxIFj/v1w5nqFvJGAVwIezFeorDi6pKlSp06NCBAQMG8OOPP5KVlcXQoUN55513KF++PAAPHjwgMDCQNWvW0KBBAxITE3n11VdJTU1l7dq1JCYmkpiYCKg7MQq6uZibQvVf6ZoRQoi/nAhJfn6h/7CmVa1Ysu/55f6rBr7KCx/f0sI93vw/a0BbWFa4EXP/Sf0DYdHuF/fn0dDXFPT7X3RZV6NELZ/sxKu9S/8RtqVl3091Xug2XD7ZiV3GxTPM9d+qU1YYI+b/+zqaisv8EdbPL1RGyvKzs3xyyWQExsXFMXToUHbs2IGBgQHdunVjwYIFWFmp5xC6ffs23t7eHD58mFatWnHkyBFat26td18RERF4eXkV6n0lM0EIIYQQQgghhPiPcnBw4Oeff873dS8vL53hHa1atSqW4R4yAaN4Ifzxxx9YWVnlu/wXvYgxCSGEEEIIIV4MkpkgXgj169cv1NMV/ktexJiEEEIIIYQoS6X9xK0XmXQmiBeCubk5fn5+ZV2NYvUixiSEEEIIIYR4MUhnghBCCCGEEEKIl4JSnj9QbGTOBCGEEEIIIYQQQhSJdCYIIYQQQgghhBCiSGSYgxBCCCGEEEKIl4JMwFh8JDNBCCGEEEIIIYQQRSKZCUIIIYQQQgghXgoqmYCx2EhmghBCCCGEEEIIIYpEMhOEEEIIIYQQQrwUlDJnQrGRzAQhhBBCCCGEEEIUiXQmCCGEEEIIIYQQokhkmIMQQgghhBBCiJeCPBqy+EhmghBCCCGEEEIIIYpEMhOEEEIIIYQQQrwU5NGQxUcyE4QQQgghhBBCCFEk0pkghBBCCCGEEEKIIpFhDkIIIYQQQgghXgoqpbKsq/DCkMwEIYQQQgghhBBCFIlkJgghhBBCCCGEeCko5dGQxUYyE4QQQgghhBBCCFEkCpU8G0MIIYQQQgghxEvg7TG3y+y9f5nrVWbvXRJkmIMQ4j/nfNiTsq5Ciapf2Z4ffy/rWpScQe154eNbc7Ssa1GyPmgJS/aVdS1KzsBXYdnBsq5FyekfCMO+SyzrapSohSNtyvSCoaT9MteLEfOTyroaJWb+COsXOj5Qx7jLuHJZV6PEdMoKK+sqiFIgwxyEEEIIIYQQQghRJJKZIIQQQgghhBDipaCSCRiLjWQmCCGEEEIIIYQQokgkM0EIIYQQQgghxEtBMhOKj2QmCCGEEEIIIYQQokikM0EIIYQQQgghhBBFIsMchBBCCCGEEEK8FJQqZVlX4YUhmQlCCCGEEEIIIYQoEslMEEIIIYQQQgjxUpAJGIuPZCYIIYQQQgghhBCiSCQzQQghhBBCCCHES0EyE4qPZCYIIYQQQgghhBCiSKQzQQghhBBCCCGEEEUiwxyEEEIIIYQQQrwUVCoZ5lBcJDNBCCGEEEIIIYQQRSKZCUIIIYQQQgghXgpKpbKsq/DCkMwEIYQQQgghhBBCFIl0JgghhBBCCCGEEKJIZJiDEEIIIYQQQoiXgkopEzAWl/90ZoJCoWDbtm1lXQ0hhBBCCCGEEOKl8p/ITJg2bRrbtm0jKChIZ31kZCT29vZlU6kXREREBJMmTeLIkSPExcVRrlw56tWrx+zZswkICADUnTZbt26lS5cumu0OHz7M3LlzOXPmDElJSbi7u1O/fn2GDBlCixYtADhy5AitW7ematWqBAcHY2hoqNnezs6O7777jr59++b7HgB9+/YlPj5e02nUqlUrjh49CoCpqSk+Pj4MHTqUTz75pFDxZmZmMn/+fNavX09YWBhGRkZ4eXnRuXNnPvnkE8qXL68pe+/ePaZOncrevXuJiYnBzc2NLl26MGXKFBwdHXX2e+3aNaZPn87hw4dJTEzE09OTd955hwkTJmBhYaFT9tKlS8yaNYtjx44RFxeHq6srNWrUYODAgbz++usoFApu376Nt7c3ly5donbt2nniWLVqFR9++GGe9aampqSnpxfqWACcOnWKZs2a0aFDB3bt2qXz2tP2e/LkCXZ2djqveXl5MXLkSOzs7PTWI7eIiAhWrVql9zP8vDhLwr5dv7Jr61oSnsTh4e1Hn4/H4Fupmt6yh37fxvHDe7h35xYA3n6V6dl7sKZ8dnY2m9b+SNCFU0RHPcDc0orqtV7hnQ8+wd7RqVTi0UelUnFq9wKunNpERloi5b3rEvj2NOydvQrcLujYOi4cWk5KYjRO7gG07j4ZV8+amtezszI4tnUWYRd3k5OdiWeVZrTpMRVLm3IlHFHR6vmsG5f2cHLXfBLjHmDn5EXzNz7Fu1pLzet/93iVlPOH13F633KSE6JxqRDAq+9Oxt07//hCz+/h6G/ziY99gIOzF226fYpfDW18x7YvJOTcLhKfRGFoZIyrRzVadRmFu0+t0ggnj6Bj6zh/ULf93LwKbr8TO3O135uf4vNM+53cvYCrJzeRnpaIu3ddAnuWXfsBXDy6jnP71TE6Vwgg8O2CYwy7uIfjO+aTEPsAe2cvWnb5FJ/q2hhvXNpH0B8beHTvGukp8XwwcRsuFauURij5eq2RKU1qGGNuqiDiYQ4bD6UTHZ//pGa+7oYE1jPBw9kQWysDlu5IJTg8W6fMwpE2erfd9kc6By9kFmv9C+Pt9nYENrLC0tyA6xEZLNscS1RMdr7lu7SxpUENC9ydjcnMUnHjTgZrd8YRGa3exsneiO8/r6B3229XP+Z0cGqJxJGfjo1MaFxd24abDqcTHZ//HVvf8oa0qWdCRWcDbK0MWLYjjSu3dI/H/BHWerf97Y90Dl3MKtb6P8+LGp9Ds/r4jOmHbd3qmJV35ny3T3i0/WDB27RoQNVvJmBV1Z/0e5H8OfMH7q/ZqlPGc/B7+Izuh6mrE4nB17k28n8knLtSkqGUGZVKJmAsLiWamZCVVbIfKldXV0xNTUv0PcpSZmbJ/uHMysqiXbt2JCQksGXLFsLCwti4cSM1atQgPj4+3+0WL15MYGAgjo6ObNy4kbCwMLZu3UqTJk0YNWpUnvK3bt1izZo1xVbvAQMGEBkZSUhICG+//TZDhgxh/fr1z90uIyODdu3a8dVXX9G3b1+OHTvGlStXWLBgATExMSxcuFCnzvXr1+fmzZusX7+eP//8kx9//JGDBw/SuHFj4uLiNGVPnz5Nw4YNyczMZNeuXdy4cYMZM2awatUq2rVrp9OOv/32G40aNSI5OZnVq1cTGhrK3r176dq1K59//jkJCQmFPg42NjZERkbqLHfu3Cn09gDLly9n2LBhHDt2jIcPHxZpW4CePXvqvH/jxo017fN0qVixYpH3W1JO/bGfdcvn89Y7/fly3mo8vPyZNXUkCfFxesuHXr1I4xbtmDTje6Z/vRTHci7MmjqCuNjHAGRmpHM7PIyuPT/ky3mrGTlhFpEP7jB3xtjSDCuP8weWEnTsJ9q+PY13R/+CsYk5W37oR3ZWRr7bhF3czbGtM2nUYQi9xm6lnHsAWxb3IzUpVlPm6JavuHXtMJ0++o4ew38iJeExO5YPLY2QilTP3B7eusju1WOo3rg7vcZtw69mINuXDSHm4Q1Nmb9zvEpKyLndHNg0k+avD6Hf51txrhjAhvn9SEnUH9/98ItsXTaGWs2603/yNirVCWTT4iE8fqCNz8HFi/bvTmHA1B18MO5nbMu5s/67j0hJ0n/el6SwC7s5unUmjToO4f1xW3EqRPvtWqVuv/fH/9V+S3Xb79yBpQQd/YnAntN4b8wvGJuas2Vx2bQfwPXzuzmyeSZNOg3hg4nqGDct7EdKPjE+CL/IjhVjqNGkO30mbsO/ViBblwwhOleMWZmpVPCrS8sun5ZWGAVqW9+ElnVM2HgwnbkbUsjIUvFJVwuMDPPfxtRYwYNoJb8czr/D+7P/S9JZ1u5LQ6lSEXSzdC9CAd5sbUPH5jYs/TWWz+ZHkpGpYtLHLhgbKfLdpqqvGb+fTGLSgki+XBKFoQF8/rErpibqbWLisxkw7Z7OsnHvE9LSlVy6nlZaoQEQWM+EFrVN+OVQBvM2ppKZpWJQl4Lb0MQYHsTk8OuR/D9bny9N1ll+3q9uw8t/5t8JUxJe5PgMLS1IDA7j6vDphSpv7lWBV7YvIfbIGY7Xf5OIhaupseRLyrVrpinj1qMjVb6eyM0vv+d4g64kBV+n4a7lmDg5lFQY4gVR5M4EpVLJnDlz8PPzw9TUFA8PD2bMmMHt27dRKBRs3LiRli1bYmZmxrp16wBYtmwZVapUwczMjICAABYvXqyzz/Hjx1OpUiUsLCzw8fFh8uTJmo6IVatWMX36dC5fvoxCoUChULBq1Sog7zCHK1eu0KZNG8zNzXF0dOTjjz8mOTlZ83rfvn3p0qUL33zzDW5ubjg6OjJkyJBCd3osXrwYf39/zMzMcHFxoXv37prXMjIyGD58OM7OzpiZmdGsWTPOnTuneX3VqlV57u5u27YNhUL7R2natGnUrl2bZcuW4e3tjZmZGQDx8fEMHDgQFxcXzMzMqF69Ojt37tRsd/z4cZo3b465uTkVK1Zk+PDhpKSkPDeea9euER4ezuLFi2nUqBGenp40bdqUL7/8kkaNGund5u7du4wcOZKRI0eyevVq2rRpg6enJzVr1mTEiBGcP38+zzbDhg1j6tSpZGQUzw87CwsLXF1d8fHxYdq0afj7+7N9+/bnbjdv3jyOHz/OoUOHGD58OPXq1cPDw4OWLVvy448/8tVXX2nKDhkyBBMTE/bt20fLli3x8PCgY8eOHDhwgAcPHjBp0iRAfUesX79+VKlShS1bttCgQQM8PT3p0aMHO3bs4NSpU8ybNw+AlJQU+vXrR6dOndi1axevvvoqPj4+VKlShX79+nH58mVsbW0LfRwUCgWurq46i4uLS6G3T05OZuPGjQwePJhOnTppPldFYW5urvP+JiYmmvZ5uuTOSClre35bT+tX36Rl29ep4OHNR5+Mx9TUjKMHduotP2TMF7R7rTtePpUoX8GLAUM/Q6lUcu2y+jy3sLRi4v8W0qhZW8pX8MQ/oDp9Bn5KxJ/XiYmOKs3QNFQqFRePrqHBq4PxrdkWJ/cAOvSeQ0rCY8KDD+S73cXDK6ne5G2qNeqGo5sfbd+ejpGJGVdPbwYgIy2Jq6c306LLBDwqNcbFozqv9vqKyIhLREYElVJ0z6/nsy4dXYNXlebUD+yPo6svTTqNxLlCVYL+WAv8/eNVUs7sX0ntZm9Tq2k3nMr78VovdXyXT+iP7+zBNfhWa07j9v0p5+ZLqzdH4upRlfOH12rKVG/YGe+qTbB3qohTeX/a9ZhIRnoyj++HlVZYGhcOr6R647ep/rT9ev7Vfqf0x3fxiLr9Xmmrbr+mr4/EuWJVgo5p2+/SkTU0bD8Yv1ztl5zwmD/LoP0Azh9aSc2mb1OjcTfKufnx6rvTMTYx4+pJ/TFeOLwG76rNadCuP45uvjTrPBKXilW5dETbhtUadqHJa0PxDGhcWmEUqFUdE34/k8GVW9k8jFHy0+9p2FoqqOmbf8JryO1sdp3KyJONkFtSqkpnqelrxM17OcQmlv745tda2LDlQDznr6VxNzKLReujsbcx4pXqFvlu89XSRxw9l8z9R1nciczi+w0xODkY4VPBBACVChKScnSWBjUsOHU5hYzM0o2xZR1j9p3N4Opfbbh2Xzq2lgpqFNCGoXdy2H0qs0htWN3HiD/vl34bvsjxRf9+jBtTv+PRb4X7jvP8+B3SIu4TOm42yddvcWfxOqI2/473iL6aMt4jP+Te8l+4v3oLyaHhXPlkKjmp6VTs262EoihbKqWqzJYXTZE7EyZOnMisWbOYPHkyISEh/PzzzzoXMBMmTGDEiBGEhobSvn171q1bx5QpU5gxYwahoaF89dVXTJ48mdWrV2u2sba2ZtWqVYSEhDB//nyWLl2quQDr2bMnY8aMoVq1apo7nT179sxTr5SUFNq3b4+9vT3nzp1j06ZNHDhwgKFDde+aHT58mPDwcA4fPszq1atZtWpVoS6izp8/z/Dhw/niiy8ICwtj7969mnR+gHHjxrF582ZWr17NxYsX8fPzo3379jp3sAvjzz//ZPPmzWzZsoWgoCCUSiUdO3bkxIkTrF27lpCQEGbNmqW5QAsPD6dDhw5069aN4OBgNm7cyPHjx/PErY+TkxMGBgb8+uuv5OTkFKp+mzdvJisri3Hjxul9PXfnyFMjR44kOztb585/cTI3Ny9UFsf69etp164dderU0fv607rHxcXx+++/88knn2Bubq5TxtXVlV69erFx40ZUKhVBQUGEhIQwevRoDAx0P061atWibdu2mqyJffv2ERsbm++xy12H0vDLL78QEBBA5cqVef/991mxYgUq1Yv3JfdUdlYWEX+GUb32K5p1BgYGVK/1CjevFy6NLyMjnZycHCyt9afiAqSlJKNQKLCw1J8KWdISYu+TmhiNR+UmmnWm5ta4etbi4e1LerfJyc7k0b1rOtsoDAzwqNyEyAj1No/uXUWZk6VTxsHFF2v78kTeDiqZYP5GPZ8VeTsIj0q6F2CeVZppOkD+zvEqKTnZmUTevYZ3Fd34vKs04f4t/XV5EB6EdxXd+HyqNePBraB83+PSHxsxNbfGpULlYqt7YTxtP89n2s+zchMi8znWkbeD8KysG59XQDMe5mq/FH3t51Ur33OiJOVkZxJ1V0+MAU14mE99HkYE5ekk8KqqjfHfxtFGga2lAWH3tBdc6ZlwOyoHb7fi6zy2tlBQzcuIU9dKf3iDs4MR9jZGBN/QZlGkpav4824GlTwLnxFrYab+XZCcqj+l2ruCCd7uphw6m6z39ZLytA1v3NX+9kvPhDtROXi7Fn8bnr5WupklL3p8RWXXqDYxh07prIvefxz7RrUBUBgbY1u3GjEHT2oLqFTEHDqJXSP9v5mFeKpInQlJSUnMnz+fOXPm0KdPH3x9fWnWrBn9+/fXlBk5ciRvvfUW3t7euLm5MXXqVObOnatZ99ZbbzFq1CiWLFmi2ebzzz+nSZMmmrHrn376Kb/88gugvlC0srLCyMhIc6fz2Qs8gJ9//pn09HTWrFlD9erVadOmDYsWLeKnn37i0aNHmnL29vYsWrSIgIAAXn/9dTp16sTBgwWPMwL1HXlLS0tef/11PD09qVOnDsOHDwfUHRk//PADX3/9NR07dqRq1aosXboUc3Nzli9fXpRDTGZmJmvWrKFOnTrUrFmTAwcOcPbsWbZs2UK7du3w8fHh9ddfp2PHjgDMnDmTXr16MXLkSPz9/WnSpAkLFixgzZo1zx077+7uzoIFC5gyZQr29va0adOG//3vf9y6dSvfbW7cuIGNjQ2urq6adZs3b8bKykqzXLmie2FmYWHB1KlTmTlzZpHS+J8nJyeHtWvXEhwcTJs2bZ5b/saNG1SurPvjuWvXrpp6N2mi/vF38+ZNVCoVVaroH49apUoVnjx5QnR0NDdu3NCsy6/s0zJP/5u7DufOndM5drkzTp4nISFBZ1srKyvNeVEYy5cv5/333wegQ4cOJCQkaOajKAlXrlzJU99q1fTPVVASkhLjUSpzsLXTTdmzsbMnIV5/+vGzNqz+HnuHclSv9Yre1zMzM1i/+nsat2iHhYXlP67z35GaGA2AhbXuvB4W1o6kJsbo3SYt5QkqZY7+bZJi/tpvDIaGxphZ2OQpk/LXe5a0wtTzWSmJMVg8M6eDpU5cRT9eJSU1WR2fpY1uXSytHUlJ0F+X5MSYPHNWWNrkLX8z+DBzhtVh1pCanDmwivdGrcDCunTTVzXtZ5P3WKfkc6xTEmOwsC6Xp/zz2s+ygH2WpLTkvxejpXXec7Qs6l8YNpbqn45JKbqdz0mpKs1rxaFBFWPSsyj19HgAOxv1BWdCku6NloSkHM1rz6NQQN8uDlyPSOdelP6LzTYNrLgflcmN26U7JMfaUn3jIik1bxs+fa04vFJGbfiix1dUpi7lyHik+32S8SgGY1trDMxMMSlnj4GRERmPY58pE4upa+nOiST+e4o0AWNoaCgZGRkEBgbmW6Z+/fqa/09JSSE8PJx+/foxYMAAzfrs7GyddO6NGzeyYMECwsPDSU5OJjs7Gxub/O/85Ve3WrVqYWmp/QHftGlTlEolYWFhmuyJatWq6aRdu7m55bn41addu3Z4enri4+NDhw4d6NChA127dsXCwoLw8HCysrJo2rSppryxsTENGjQgNDS0SHF4enri5KSduC0oKIgKFSpQqVIlveUvX75McHCwZkgJqNM+lUolERER+V7kPjVkyBA++OADjhw5wunTp9m0aRNfffUV27dvp127dnq3efbuefv27QkKCuLBgwe0atVKb5ZDv379mDt3LrNnz9YZTvB3LF68mGXLlpGZmYmhoSGjRo1i8ODBf3tfKSkpLFiwgGPHjum8VpS79H/3jn7NmjU1kxL6+/uTnV34P0jW1tZcvHhRZ52+jjZ9wsLCOHv2LFu3qiffMTIyomfPnixfvpxWrVoVug5FUbly5TzDUZ6eM/nJyMjIMzymrOZJ2f7rGk79cYDPZ3yPiUneOmRnZ7NwziRQqfhw8PhSq1foue0c3DhV8+8uA5cUUFq8rDwrN6T/5G2kJT/h0h+/sGXJSD6cuClPx4UQz6pf2Yh3ArV/W378rXQmCWxczZjz17PILlzi5D/SrK4lH3fXfhZmLntUQOnC6feWAxVdTZiyKFLv68ZGCprVtWLz/vh//F7PU6+yET3bmGn+vWR76czP0KiqERdKoQ1f9PhE8XsRhxuUlSJ1JhTmQiX3xfzT+QqWLl1Kw4YNdco9vaA/deoUvXr1Yvr06bRv3x5bW1s2bNjA3Llzi1K1QjM2Ntb5t0KhQKl8/oyeTy/cjhw5wr59+5gyZQrTpk3TmRehIAYGBnkuOPXN1ZD7+MHzj3lycjIDBw7UZEnk5uHhUai6WVtb07lzZzp37syXX35J+/bt+fLLL/V2Jvj7+5OQkEBUVJQmO8HKygo/Pz+MjPI/nYyMjJgxYwZ9+/bVOwTD2tpab9ZCfHx8nnkEevXqxaRJkzA3N8fNzS3P8IL8+Pv7ExamO0bYzc0NAAcH7R06Pz8/FAoFoaGhdO3aNc9+QkNDsbe3x8nJSdPJExoaqnf4RGhoqKaMv78/oL6QfzonhampKX5+foWq/7MMDAz+9rbLly8nOztb5+kVKpUKU1NTFi1ahK2traZDLyEhIc98H/ra5XlMTEzy1LegcwbUmTfTp+tOMDR16lRef3dEkd4bwNrGDgMDwzyTLSbGP8HWruALql1b17Fj8xomfrEQD2//PK8/7UiIeRzFZ19+X6pZCb412uDmpZ2VPztbnRKcmhSLla2zZn1qUixOFQL07sPc0h6FgWGeSfBSk2I1d4UtbMqRk5NFemqiTnZCalIsljal8+SKwtTzWZY25fJkGKToxOWk2Udhj1dJsbBSx/fsZIspSbFY2uqPz8qmXJ472CmJecubmFrg4OwJzp64+9Rm8eevEnTiV5p2HFi8QRRA036JedsvvyeCWNqUy5N1klqI9ktJisXZvXTbD8Dc6u/FmJKU9xwt7aek5OfKrWxuR2nT8I0M1TcUrC0VJOa682ttoeBBdPFcVfmWN8TFwZCVu0vnovD8tVRu3tF2XD+dZNHW2pD4XNkJttaG3H7w/GEXH3V1oG5VC6Z+H0Vcgv5j0qiWBabGCo6eL/khDldvZXMnSjuXlqYNLfS1YfHMcu/zVxuu2lP4J0z9XS96fP9UxqMYTF10v09MXcqRlZCEMj2DzJgnKLOzMXV2fKaMIxlR/84MKfHvUaR8NH9/f8zNzQs1LADAxcWF8uXLc+vWLfz8/HQWb29vAE6ePImnpyeTJk2ifv36+Pv755mR3sTE5Llj+qtUqcLly5d1Jh48ceIEBgYGeVLb/y4jIyPatm3LnDlzCA4O5vbt2xw6dAhfX19MTEw4ceKEpmxWVhbnzp2jatWqgHp+gqSkJJ36PfuYPH1q1qzJ/fv3NSnyz6pbty4hISF5jq+fnx8mJiZFjlGhUBAQEJDvBI7du3fH2NiY2bNnF3nfPXr0oFq1ankuDkF91/rChQs663Jycrh8+XKerAxbW1v8/Pxwd3cvdEcCwLvvvsv+/fu5dKngcbSOjo60a9eOxYsXk5am+0MmKiqKdevW0bNnTxQKBbVr1yYgIIB58+bl6ZS6fPkyBw4c4N133wXg1VdfxcHB4W8du+KUnZ3NmjVrmDt3LkFBQZrl8uXLlC9fXjPHg7+/PwYGBnna5datWyQkJOSbLVOcJk6cSEJCgs4yceLEv7UvI2NjvP0qc+2ytgNQqVRyNfgc/gE18t1ux+af2LpxBeOmfoePf95Mn6cdCVEP7zHxfwuxtilaJ8s/ZWJmhZ2Tp2ZxdPXDwsaJeze04yMz0pKJunOZ8l76xz4aGpngUrGazjYqpZJ7Yadw81Zv41KxOgaGxjpl4h7dIunJQ9y8apdMcH+jns9y86rN3RunddbdvX4SN+/aANg6Vijy8SophkYmuHlU4/Z13fhuh56igo/+urj71ibium58ESEncfepXeB7qZRKcrJKdyz60/a7+0z73b1xCrd8jrW+9rsTdpLyudrP0saJu2HPtN/ty/meEyXJ0MgEV49q3AnTjfFO2CnK51Of8t61uftMG94J1cZY1jKyICZBpVmi4pQkpCipXFHbGWxmAl6uhkREFk9nQuPqxtx9lMODmNJ5fFt6hopHsdma5f6jLJ4kZlPDX3u329xUgZ+HKTfuFDwk4aOuDjSoYcEXP0QRHZd/tmGbBtacv5ZKUkrJx5hfG1aqqM3UNTUBT1dDIqKKpw0bVVO34cNSaMMXPb5/Kv50EI5tdCdWLxfYhCengwBQZWWRcPEa5drkmrtFocCxdWPiT5f+3DOlQalSltnyoilSZoKZmRnjx49n3LhxmJiY0LRpU6Kjo7l27Vq+Qx+mT5/O8OHDsbW1pUOHDmRkZHD+/HmePHnC6NGj8ff35+7du2zYsIFXXnmFXbt2aVKvn/Ly8iIiIkKT8m9tbZ0n1blXr15MnTqVPn36MG3aNKKjoxk2bBi9e/cu0gz3+dm5cye3bt2iRYsW2Nvbs3v3bpRKJZUrV8bS0pLBgwczduxYHBwc8PDwYM6cOaSmptKvXz8AGjZsiIWFBZ999hnDhw/nzJkzhZr4sWXLlrRo0YJu3brx7bff4ufnx/Xr11EoFHTo0IHx48fTqFEjhg4dSv/+/bG0tCQkJIT9+/ezaNGiAvcdFBTE1KlT6d27N1WrVsXExISjR4+yYsUKxo/Xn6bt4eHB3LlzGTFiBHFxcfTt2xdvb2/i4uJYu1Y983RBs/fPmjWL9u3b51k/evRo+vX7f/buPK7GvP0D+OecSEUrFaF904LSSHayxcgSsm/F2CKFGI99a2wlZjCEspUhM4wtkyaEsVWWUloopshSaSHV+f3RrzNOZatTX/fd9X69vH7OfZ/f83zu5+R0znV/v9flAlNTU/Tu3Rt5eXnYunUrXr9+LdGTozrmzp2LU6dOwd7eHsuWLUOXLl2gqqqKhIQEnDlzRiL3tm3b0LFjR/EqDT09Pdy/fx/z589H8+bNsWbNGgClxRd/f3/07t0bTk5OWLRoEZo2bYp//vkHnp6esLOzg7u7O4DSFRy7d++Gs7MzBgwYgNmzZ8PIyAi5ubk4e/Zspf/blV9JAUDcZ0AkEiEjo+LEAA0NjU8WWf7880+8fv0aLi4uFVYXODk5wd/fH9OmTYOioiJcXV3h6emJevXqwdLSEmlpaeKfubIeEzWpQYMGH9nWULVltg6DRmGn7yroGbaCgbEZzp4Ixru3b9HNfgAAYLvPCqiqqWPkhBkAgJPHAnH04C7MnLcC6prNkPW69G6jnJw85OQVUFRUhC3ei/AoOR7zlmxCSUmJ+DmNGimhXrmVULVBIBDAutt4/HNuO1TUdaDcuAWunNqChsoaMGjdS/y8o9smwLB1b7TtWto3w7rHJJw74AWNlhZoqtMaUX8H4H1hAcxthwIobWpn0cEJEce9IaegDFm5Rgg/uhrNdK3EX8xrw+dynt2/AI2UNdHZ0RMAYNVtPH7zG4dbF/ZAz7wb4m+dxrO0e+g1cuVX/e9VW2x7T8KJvV5opmMBLb3WuP5X6fW17lR6fSf2LICiiiZ6DC29vvb247F/wzhcC90DQ8tuiL1xGumP76H/uNLrK3yXj8jTO2DcpicaKasjP/c1boYfxJusZ2hl06/Wr69dj0k4e8ALmtqlr9/tvwPw/l0BzDuUXt+ZwAVopKKJLv//+ll3H48jW8bhZtge6Jt3w4Pbp/Es9R56f/D6WXUvff1UNXSg1LgFrvy5BY2UNWDI4PUDAJuek3A60AtNdSzQTKc1boaXXqOFXek1ntpX+hp2HVx6je16jEeQzzjc+GsP9C264cHN08hIvYc+Y1aK/zML8rKQ8yodedmlY2lfP0sBULqqoZFy7awM+tDfUYXo274BnmeV4GV2Cb7v2ADZeSKJLvizhirgTtJ7XIwpXYUpWx9QV/nvd1NjJSGaqwuR/1aE12/+u3ssJwu0NaqP4xfZ3vE9fTEHQ3spI/3Fezx/WYSRDqp4nVOEG/f++/2zZJomrt/Nx7nINwBKtzZ0tm6E9XueoeCdCMqKpb/T8wtK8L7ov2vUbFwPrfQbYN3u57V7UR+IiHqPPu0bIDOrBC9zROhvJ4vsPBHufvAazhwqjzuJRbh054PXUPmD11BZgOZNhMh/J/kaNpAF2hrVwx+X2IxnBfh9fTINFdDQ8L/Vxwp6LaDUxhSFr7LxNi0dJqs9INdcEzGTSj/LP/41CDozxsB03Xyk7TuGJj06oNlwB9xw/G9lWorvXrTZ8xOybt1D9o070J09AfUayiMtIKTWr49wy1cVEwBgyZIlqFevHpYuXYp///0XzZo1w7Rp0z76fFdXVygoKGDDhg2YP38+GjZsCEtLS/EXLEdHR8ydOxezZs3Cu3fvMGDAACxZsgTLly8X/2c4OTkhJCQEPXr0QFZWFvbu3YuJEydK/PcoKCjg3LlzmDNnDr777jsoKCiIv4BLg4qKCkJCQrB8+XK8ffsWRkZGOHz4sPiLnbe3N0pKSjBu3Di8efMGNjY2OHfuHFRVVQGULqM/cOAA5s+fj127dsHe3h7Lly/H1KlTP/vffezYMcybNw+jRo1CXl4eDA0N4e3tDaB05UJERAQWL16MLl26QCQSwcDAoNKJF+W1aNECurq6WLFihXi0Z9njuXPnfvT/z83NDa1atcLmzZsxbNgw5OTkoHHjxrCzs8PZs2dhafnxu7w9e/ZEz549ERoaKnF81KhREIlE2Lx5MxYuXAgFBQW0a9cOFy9elEoxCCgthoWFhcHX1xd79+7FokWLUFJSAj09PTg4OEhcs5GREW7evIlly5ZhxIgRePXqFZo2bYrBgwdj2bJlEtsiOnbsiGvXrmHFihVwcHDAmzdvoK2tjQkTJmDRokUSX4aHDBmCK1eu4KeffsL48ePx6tUrKCsrw8bGBkFBQfj+++8lMo8cObLCdaSlpQEAcnJyxNs0PpSeni7RILM8f39/9OrVq9JtCk5OTuKVN61bt8aWLVvg7e0NLy8vPH78GE2bNkXv3r2xZs2aWp08IS12XXrjTXYWjh7ahezXL6GjbwSv5T5QVi1d2vcyM0Piuv46E4KiovfY4v2jxH/O0JEucBo9Ba9fPsft65cAAD/OGSfxnMVrfoaZZbsavqLK2fSagveFBfgraCneFeRAS78dhk7fjXr1//tZzH6RhoLc1+LHJtb9UZD7CldP+yE/JxPqLVphyPTdEkutuw39EQKBECf3zEZxUSF0TTuj54hlqE2fy/nmdToEgv8+DGrpW8NhwkZcOeWLyJOboaKhC0fXn9FE67+VNV/yv1dtMfuuP/LevELECT/k5WRCs0UrjJy9G43+//qyX0leXwsDawx23Yi///DF379vhpqGLobP+BkazUuvTyiUwcuMZBy9ehwFua8h31AFzXQtMX7BQahrVdyyU9NM2vVHfu4rXDnlh/w3mVBv3gpDZ3z69es/cSMi//RF5J+boaKuC8cpkq/fd///+p0/XPr6Nddvh6Ez2Lx+AGBqU3qNkX+WvoYaLVph2Kxy1/hBwbe5gTW+n7wRl0744tKJzVBV18WQH36G+gfXmHTnAs7s/29V1sk9pb+vOvafhU7fu9XSlf3nr5uFkK0nwCh7Ocg3ECD532L8cjxfYu94ExUhGsr/d53amjKYM+y/LWBDu5Xe9f8nthAHQv8rHFgb14cAwK14th3y/wjPQQNZIX4Y1gQK8kI8SHmLtb8+K1cUqA+lhv/dBOjbqXQL2IqZkr+bfw56gYgb/21n6Nm+EV5lF+NOQu1s46hM2K1CyNYHnD94DXf8LvkaNlYWoqH8f78TtTVk4Dbsv9GYQ7qWvYbvcej8t/Ua8vn6lNtZwC5sv/ix2cbSzyhpgSG447IIDZqpQ77lfz+DBY+e4IbjDzDbtAi6buPx9kkG7v7wP7w4f1n8nPTfzkBWXQ3Gy2ajQVN15MTE4fr3rih8/mUNqkndJRDxeRYcIYSXbsa//vyTOMzGRBU7zrFOUXOm9QXvry+w5gajfBPGdwN2hn7+eVz1Qx9g95ft6OQkV3vAzTeHdYwatdVdCSM8H7GOUWOObNLFnC1vWMeoMVvmKPL6+oDSazxVv3ZH9NamAe8rrq79VvQZx277Ruh+fo3blN4MH0IIIYQQQgghhNQJVEz4f5cuXUKjRo0++oeL+HhNn2Jubv7Ra/1wdCbfpaamfvJ1T01NZR2REEIIIYQQJkQlJcz+8M1X90zgKxsbmy+arsAlfLymTzl9+nSl4zYBSK3vAhdoaWl98nX/cBwkIYQQQgghhFQFFRP+n7y8PAwNDVnHkCo+XtOn6OjosI7wTahXr16det0JIYQQQgghtY+KCYQQQgghhBBC6gRRCc0fkBbqmUAIIYQQQgghhJCvQisTCCGEEEIIIYTUCSIR/xohskIrEwghhBBCCCGEEPJVaGUCIYQQQgghhJA6oYR6JkgNrUwghBBCCCGEEELIV6FiAiGEEEIIIYQQQr4KbXMghBBCCCGEEFIniEqoAaO00MoEQgghhBBCCCGEfBVamUAIIYQQQgghpE4QUQNGqaGVCYQQQgghhBBCCPkqVEwghBBCCCGEEELIV6FtDoQQQgghhBBC6gSRiBowSgutTCCEEEIIIYQQQshXoZUJhBBCCCGEEELqBGrAKD20MoEQQgghhBBCCCFfhVYmEEIIIYQQQgipE0Ql1DNBWmhlAiGEEEIIIYQQQr4KFRMIIYQQQgghhBDyVQQikYg6UBBCSCXevXuHdevWYdGiRWjQoAHrODWC79dI18d9fL9Gvl8fwP9rpOvjPr5fI9+vj7BDxQRCCPmInJwcKCsrIzs7G0pKSqzj1Ai+XyNdH/fx/Rr5fn0A/6+Rro/7+H6NfL8+wg5tcyCEEEIIIYQQQshXoWICIYQQQgghhBBCvgoVEwghhBBCCCGEEPJVqJhACCEf0aBBAyxbtozXzYr4fo10fdzH92vk+/UB/L9Guj7u4/s18v36CDvUgJEQQgghhBBCCCFfhVYmEEIIIYQQQggh5KtQMYEQQgghhBBCCCFfhYoJhBBCCCGEEEII+SpUTCCEEEIIIYQQQshXoWICIYQQQgghhBBCvgoVEwghpI65ePEiioqKKhwvKirCxYsXGSQiRFJBQQHy8/PFjx8/fgxfX1+EhoYyTCU9kydPxps3byocz8vLw+TJkxkkIl/q+vXrKC4u/uj5d+/e4ciRI7WYiHyt4OBgjBkzBsOHD8eOHTtYxyGE02g0JCGEVCIpKQl79+5FUlIStmzZAg0NDZw5cwba2towNzdnHa9aZGRkkJ6eDg0NDYnjL1++hIaGxic/KHNFfHw8tm7diri4OABAq1at4ObmBhMTE8bJyJfo06cPhg4dimnTpiErKwumpqaoX78+Xrx4gc2bN2P69OmsI1bLx/4NvnjxAk2bNq202McFZmZmuHz5MtTU1AAAM2bMwMqVK9GkSRMAwPPnz6GrqytRKOKa8q+dkpISoqOjoa+vDwB49uwZtLS0OPs++uLFC+Tl5UFHR0d87P79+9i4cSPy8vIwePBgjB49mmHC6tm+fTtmzpwJIyMjyMvL4+7du/Dw8MCGDRtYR5OaO3fufNHzWrduXcNJSF1Qj3UAQgj51kRERMDBwQGdOnXCxYsXsWbNGmhoaCAmJgb+/v44evQo64jVIhKJIBAIKhx/+fIlGjZsyCCRdB07dgwjR46EjY0N7OzsAADXrl2DhYUFgoKC4OTkxDhh1fj5+X3xc2fPnl2DSWre7du34ePjAwA4evQoNDU1ERUVhWPHjmHp0qWcLSbk5ORAJBJBJBLhzZs3kJOTE58rLi7G6dOnKxQYuOTBgwcShZADBw5g3rx54mKCSCTC27dvWcWTivL34Cq7J8fl+3Rubm7Q0tLCpk2bAJQWgLp06QItLS0YGBhg4sSJKC4uxrhx4xgnrZpt27Zh2bJlWLZsGYDSn9EffviBV8WEtm3bQiAQiH8Oy37fl/3uL/u/XC14kW8LFRMIIaSchQsXYvXq1fDw8ICioqL4eM+ePbFt2zaGyapn6NChAEo/WEycOBENGjQQnysuLsadO3fQsWNHVvGkZsGCBVi0aBFWrlwpcXzZsmVYsGABZ4sJZV+uy2RmZiI/Px8qKioAgKysLCgoKEBDQ4PzxYT8/Hzxv73Q0FAMHToUQqEQHTp0wOPHjxmnqzoVFRUIBAIIBAIYGxtXOC8QCLBixQoGyWpGZV+qKytk8g2Xr/HatWvYt2+f+HFgYCDU1NQQHR2NevXqYePGjfj55585W0xITk7GhAkTxI9Hjx4NFxcXpKeno1mzZgyTSU9KSor47yKRCBYWFjh9+rTEahNCpIWKCYQQUs7du3dx6NChCsc1NDTw4sULBomkQ1lZGUDphwtFRUXIy8uLz8nKyqJDhw6YMmUKq3hSk56ejvHjx1c4PnbsWE7fffrwA+KhQ4fwyy+/wN/fX7x1Iz4+HlOmTMEPP/zAKqLUGBoa4vfff8eQIUNw7tw5zJ07F0DpXVIlJSXG6aouPDwcIpEIPXv2xLFjx8TbAYDSf4M6OjrQ0tJimJDUdRkZGdDV1RU/vnDhAoYOHYp69Uq/Mjg6OmLdunWM0lXfu3fvJFbgCYVCyMrKoqCggGEq6SpfNBAIBGjRogUVE0iNoGICIYSUo6KigvT0dOjp6Ukcj4qKQvPmzRmlqr69e/cCAHR1dTFv3jxebGmoTPfu3XHp0iUYGhpKHL98+TK6dOnCKJV0LVmyBEePHpXoAWFiYgIfHx8MGzYMY8aMYZiu+pYuXYrRo0dj7ty5sLe3F29XCQ0NhZWVFeN0VdetWzcApYWhli1bQijkVx/sslUX5Y/xTWxsLDIyMgCUFmcfPHiA3NxcAOB0wRko7QGRlZUl/uJ5/fp1uLi4iM8LBAK8e/eOVTypWLJkCRQUFMSPCwsLsWbNGnHBHQA2b97MIhohnEPFBEIIKWfkyJHw8vLCb7/9BoFAgJKSEkRGRmLevHmV3vHmmgULFkgsP378+DGOHz8OMzMz9OnTh2Ey6XB0dISXlxdu3bqFDh06AChduvvbb79hxYoVOHHihMRzuSg9Pb3SJn3FxcV49uwZg0TSNWzYMHTu3Bnp6elo06aN+Li9vT2GDBnCMJl06OjoICsrC9evX8fz589RUlIicZ6r7zMikQj29vbiu9gFBQUYOHAgZGVlAYCzjSXLs7e3l3gP/f777wFAYj86V3Xo0AF+fn7YtWsXQkJC8ObNG/Ts2VN8PiEhAS1btmSYsHq6du2K+Ph4iWMdO3ZEcnKy+DGXXz9CahtNcyCEkHIKCwsxc+ZM7Nu3D8XFxahXrx6Ki4sxevRo7Nu3DzIyMqwjVkv5TvkmJiaQlZXlTaf8L73by+UGVAMHDsTTp0+xe/duWFtbAwBu3bqFqVOnonnz5hIFEy7au3cvRo4cKbEVh09OnjyJMWPGIDc3F0pKShJfXgQCAV69esUwXdV9ab+HsuZ3XPSlPTu4uqQ8JiYGvXr1Qk5ODoqKivDjjz9i1apV4vPjxo1Dw4YNaaQihygqKuLOnTsVVlsSIg1UTCCEkI9ITU3FvXv3kJubCysrKxgZGbGOJBVNmjRBREQEzM3NsXv3bmzdulWiU37ZOEXy7crMzMSECRNw9uxZ1K9fH0DpXd++ffti3759nJ4IAACampooKCjA8OHD4eLiwovGoB8yNjZG//79sXbtWonl1lyXmpqKFi1a8G77xodWrlyJefPm8ep1K+/FixeIjIxE06ZNYWtrK3Hu1KlTMDMzoy+m3zArKyuJAuWdO3dgamoqXiFU5vbt27UdjfAQFRMIIaSOUVBQwIMHD6CtrY0RI0bA3Nwcy5YtQ1paGkxMTDg9A76uSUhIwIMHDwAApqamlU4I4KKioiKcPHkS+/btw5kzZ6Cvr49JkyZhwoQJaNq0Ket41dawYUPcvXsX+vr6rKNIlYyMDNLT0zlfzPoUvl9jz549ERISIp4SwzdlU43KU1ZWhrGxMVxdXaGurl7LqaSrLqwQIt8OKiYQQkg5IpEIR48eRXh4eKX7mUNCQhglk47WrVvD1dUVQ4YMgYWFBc6ePQs7OzvcunULAwYMEDcW4xI/Pz9MnToVcnJy8PPz++RzuT428UOFhYVISUmBgYGBeJ863zx79gwHDhxAQEAAHjx4gH79+sHFxQUDBw7k7B3woUOHYuTIkRgxYgTrKFIlFAqRkZHB2y/aAP+vke/XN2nSpEqPZ2VlISYmBllZWbh48SIsLCxqOZn01IUVQuTbQcUEQggpZ86cOdi5cyd69OgBTU3NCs2YyqYicNXRo0cxevRoFBcXw97eHqGhoQCAdevW4eLFizhz5gzjhF9PT08PN2/eROPGjT+5/FYgEEg02uKq/Px8uLm5ISAgAEDpCgV9fX24ubmhefPmWLhwIeOE0vXPP/9gz549CAgIQLNmzfD69Wuoqqpi79696N69O+t4X83f3x8rV67EpEmTYGlpKd6qUoarjUGFQiGePXvG+Tu7n8L3a+R7MeFTSkpKMGXKFDx//hwnT55kHafK+L56hnxbqJhACCHlqKmp4cCBA+jfvz/rKDUmIyND3Cm/7O7F9evXoaSkBFNTU8bpyOfMmTMHkZGR8PX1Rb9+/XDnzh3o6+vjjz/+wPLlyxEVFcU6YrU9e/YM+/fvx969e5GcnIzBgwfDxcUFvXr1Ql5eHlauXImgoKAvboj3LfnUHUMuNwYVCoWYOnXqZ/sJcHnsnlAohLKy8mc7/nO1iaZQKMSFCxegpqb2yee1bt26lhLVrpiYGDg4OODff/9lHaXK6nJBiNQ+fq6JJISQalBWVubdXubymjZtWmHvefv27RmlkZ7379/D1NQUf/75J1q1asU6To35/fffERwcjA4dOkh8qTE3N0dSUhLDZNIxcOBAnDt3DsbGxpgyZQrGjx8v8eWmYcOG8PT0xIYNGximrLryW6f45O7duxUavX2ID2P3VqxYAWVlZdYxakz50ZdlPhx9ydWC1+c0bNiQF32D+PDvjHADFRMIIaSc5cuXY8WKFdizZw9vRtMNHToU+/btg5KS0kcbUJXhck+I+vXr4+3bt6xj1LjMzMxK7zrl5eXx4kOkhoYGIiIiYGdn99HnqKurIyUlpRZTkS9x/Phx3t8RHTlyJK+v8Z9//uHtNo7POX/+PC8a2S5ZsoTXK4TIt4OKCYQQUs6IESNw+PBhaGhoQFdXt8J+Zi6OU/pwWS6f76gBwMyZM/HTTz9h9+7dvG1KaGNjg1OnTsHNzQ3Af3ehdu/e/ckv4Fzh7+//2ecIBALo6OjUQhrpW7ly5SfPL126tJaSSBcfClmfUxeuUVtbm7fFkhMnTlR6PDs7G7du3cLu3buxe/fuWk4lfXVhhRD5NlDPBEIIKWfEiBEIDw/HsGHDKm3ASOOUvm1DhgxBWFgYGjVqBEtLSzRs2FDiPJdXXpS5fPkyHBwcMHbsWOzbtw8//PADYmNjceXKFURERKBdu3asI1ZbXl4eIiIikJqaisLCQolzXJ/IYWVlJfH4/fv3SElJQb169WBgYMDJgiVQN/Zq8/0a68L1VUZRUREmJibw8PDAyJEjazmVdPH9NSTfFn7esiGEkGo4deoUzp07h86dO7OOQqpARUUFTk5OrGPUqM6dOyM6Ohre3t6wtLREaGgorK2tcfXqVVhaWrKOV21RUVHo378/8vPzkZeXBzU1Nbx48QIKCgrQ0NDgfDGhsgaZOTk5mDhxIoYMGcIgkXTs3buX9yuf+NzvAgC6dev2yTvaXMf31w+gVQekdtHKBEIIKcfU1BRHjhzhVbdqKyurL/6AwdW7ooQ/unfvDmNjY+zYsQPKysqIiYlB/fr1MXbsWMyZM+ezfT+46u7duxg4cCAePXrEOkqVfGwJeXlcHX0J4It/9ri6Aur169c4cOAAJkyYACUlJYlz2dnZCAwMrPQc+XbQygRSm2hlAiGElLNp0yYsWLAAO3bsgK6uLus4UjF48GDWEYgUfWyO+MuXL6GhocH5TuvR0dHYuXMnhEIhZGRk8O7dO+jr62P9+vWYMGECb4sJ2dnZyM7OZh2jyr7kfYbrkwCUlJR4fef3559/RkxMjLgfy4eUlZVx6dIl5OTkYPHixQzSVV9gYOAXPW/8+PE1nKTm1IUVQuTbQSsTCCGkHFVVVeTn56OoqAgKCgoVGjBydX741zp8+DAcHR0r9Bz4FtW1lRcfu/P077//wsDAAAUFBYySSYe6ujquXLkCIyMjGBsbY+vWrejbty8ePHiAdu3aIS8vj3XEavHz85N4LBKJkJ6ejv3796Nbt244dOgQo2Skrmvbti02bdoEe3v7Ss+HhYVh3rx5lW7V4QJVVdWPnhMIBMjLy0NRURGnC17l31/KKCsrw9jYmBdNesm3g1YmEEJIOb6+vqwjfBN++OEH2NraQl9fn3WUz/rwjujbt2/xyy+/wMzMTPyh6dq1a7h//z5mzJjBKKF0lH1IFAgE2L17Nxo1aiQ+V1xcjIsXL8LU1JRVPKmxsrLCjRs3YGRkhG7dumHp0qV48eIF9u/fDwsLC9bxqs3Hx0fisVAohLq6OiZMmIBFixYxSlV9f/75JwYMGMDrO/fDhg2Dq6sr+vbty8vrTEpKgpGR0UfPGxkZISkpqRYTSdfr168rPZ6eni4eCd27d+9aTiVd5d9fymRlZSE7OxsdO3bEiRMnoKamVsvJCB/RygRCCCGVUlRURExMDCeKCR9ydXVFs2bNsGrVKonjy5YtQ1paGvbs2cMoWfXp6ekBAB4/fowWLVpARkZGfE5WVha6urpYuXIlbG1tWUWUips3b+LNmzfo0aMHnj9/jvHjx4tXKuzZswdt2rRhHZFUol69etDU1MTEiRMxadIkGBoaso4kdfb29vj777+hpaWFSZMmYeLEiZx7j/wUFRUVnD17Fh06dKj0/LVr19CvXz9kZWXVbrAa8ubNG/z000/YsmULzM3NsW7dOvTo0YN1rBqTnJyMsWPHom3btvjll19YxyE8QMUEQghBaSf1soZSOTk5n3xuXWk8xdVigrKyMm7evFnh7trDhw9hY2PD6T3pZXr06IGQkJBPLtkl3PDkyRMAQIsWLRgnqb60tDTs3bsXAQEBePToETp37gxXV1cMGzYM8vLyrONJzePHj7F3714EBgbi8ePH6NatG1xdXeHk5IQGDRqwjlctPXr0gK2tLby9vSs97+XlhevXryM8PLyWk0nX+/fvsXXrVqxduxaNGzfGmjVrMGzYMNaxasXFixcxefJkJCYmso5CeKDyYauEEFLHqKqq4vnz5wBK78yoqqpW+FN2nHzb5OXlERkZWeF4ZGQk5OTkGCSSvvDwcPHPokgkAt0X4JaSkhKsXLkSysrK0NHRgY6ODlRUVLBq1SpOj65r2bIlli5diqSkJPz111/Q1dXF9OnT0axZM0ybNg03btxgHVEqdHR0sHz5ciQnJ+P8+fPQ0tLClClT0KxZM8ycORO3bt1iHbHKZs2ahU2bNmHbtm0SfQOKi4uxdetW+Pj4YObMmQwTVo9IJEJAQAAMDQ2xadMmrF27FrGxsXWmkAAA2trayMjIYB2D8AT1TCCEEAAXLlwQ7x/k+h2Xus7d3R3Tp0/H7du30b59ewDAP//8gz179mDJkiWM00mPv78/fHx88PDhQwCle5nd3d3h6urKOFnV1KUmmosXL4a/vz+8vb3RqVMnAMDly5exfPlyvH37FmvWrGGcsPp69OiBHj16YNu2bQgKCsK+ffvQoUMHWFhYICYmhnU8qenZsyd69uyJN2/e4NChQ/jxxx+xc+dOFBUVsY5WJU5OTliwYAFmz56NxYsXi1emJScnIzc3F/Pnz+f0F+/WrVsjOTkZbm5ucHd3h4KCQqUNXfm8AvHu3bvQ0dFhHYPwBG1zIISQclJTU9GyZcsKX2xEIhHS0tKgra3NKFnt4uo2BwA4cuQItmzZgri4OABAq1atMGfOHIwYMYJxMulYunQpNm/eDDc3N3GTyatXr2Lbtm2YO3cuVq5cyTjh11uxYoX4759rorlu3TpWMaVCS0sLO3bsgKOjo8TxP/74AzNmzMDTp08ZJasZycnJ2LNnD7Zv346cnBy8f/+edSSpSklJwb59+7Bv3z48ffoUvXr1wtmzZ1nHqpbr16/j4MGDSExMhEgkgrGxMUaPHi0u0HKVUPjfouzKipcikYjz40s/tlUzOzsbt27dgqenJyZMmIClS5fWcjLCR1RMIISQcmRkZJCenl5h7N7Lly+hoaHB6Q8ZX8PCwgJnzpxBy5YtWUepEVwafVmeuro6/Pz8MGrUKInjhw8fhpubG168eMEomXTwuYkmAMjJyeHOnTswNjaWOB4fH4+2bdtyfrQnABQUFOC3337Dnj17cOnSJejp6YkbFjZv3px1vGp7+/Ytjh49ij179uDixYto2bIlJk2ahEmTJvH2PZMPIiIivuh53bp1q+EkNUcoFH50lZdAIICrqyv8/PwgKytby8kIH1ExgRBCyhEKhXj27BnU1dUljj9+/BhmZmacn3FPSikpKSE6OpqTKy9UVFTEoxM/lJCQgPbt23O+0zrfm2ja2trC1ta2wjx4Nzc33LhxA9euXWOUrPquXbuGPXv24MiRIygsLMTQoUPh4uLCmw75169fx549exAcHIy3b99iyJAhmDx5Muzt7XkxKnL9+vVwc3MTN8yMjIyEjY2NuLHkmzdv4OXlRZMAvmEfK5goKSnByMhIYqQwIdVFxQRCCPl/Hh4eAIAtW7ZgypQpUFBQEJ8rLi7GP//8AxkZmUqb+3GJqqpqpR96BQIB5OTkYGhoKB7txmdc3sbh5uaG+vXrY/PmzRLH582bh4KCAvz888+MkklH06ZN4e3tjYkTJ0oc37dvH7y8vPDs2TM2waQkIiICAwYMgLa2tsQ2lbS0NJw+fRpdunRhnLBqzMzMEB8fDysrK7i4uGD06NFQVlZmHUuqhEIh2rRpAxcXF4wZM4Z3TXnLr8wrX3R99uwZtLS0eLNC7/79+xLXIiMjA3Nzc4aJase9e/dgYWHBOgbhAWrASAgh/y8qKgpA6Z7Ju3fvSiwBlJWVRZs2bTBv3jxW8aRm6dKlWLNmDRwcHMT7X69fv46zZ89i5syZSElJwfTp01FUVIQpU6YwTks+xt/fH6GhoeJ58P/88w9SU1Mxfvx4cWEMQIWCAxfwvYlmt27dEB8fj19++QUPHjwAAAwdOhQzZsyAlpYW43RV16tXLxw+fBht2rRhHaXG3Lx5E9bW1qxj1Jjy9xj5ds/x0qVL8PDwEE8W6dChA/Lz88XXKRAIcO7cOfTq1YtlzBrx5s0bHD58GLt378atW7d4UxAibNHKBEIIKWfSpEnYsmXLZ7s5P3nyBFpaWhINnbjAyckJvXv3xrRp0ySO79y5E6GhoTh27Bi2bt2KX3/9FXfv3mWUsuZxeWXCly4ZFwgEuHDhQg2nqRl8b6JJuCk1NfWLnsfVRr1CoRAZGRnilQnl3ye5vjJh1KhRsLOzw+zZswGUXt+pU6ego6MDkUgEPz8/PH78GMeOHWOcVHouXrwIf39/HDt2DFpaWhg6dCicnJzw3XffsY5GeICKCYQQUkVc3XPfqFEjREdHw9DQUOJ4YmIi2rZti9zcXCQlJaF169a87g/B5WICKcXVJpp79+5Fo0aNMHz4cInjv/32G/Lz8zFhwgRGyaqnZ8+en32OQCBAWFhYLaSpGR9rblc2BQAovUaujobkezHByMgIx48fFy/xL399UVFRGDBgAP7991+WMastIyMD+/btg7+/P3JycjBixAjs2LEDMTExMDMzYx2P8AhtcyCEkCriai1WTU0NJ0+exNy5cyWOnzx5EmpqagCAvLw8KCoqsohHvtKTJ08AAC1atGCcpPb98MMPsLW15VxBaN26ddi5c2eF4xoaGpg6dSpniwmf2t7w5s0bHDp0CO/evavFRNJXth2uPJFIhKCgIPj5+XG+wd3u3bvF11BUVIR9+/ahSZMmAEpfRy578uSJRB+PgIAANG3aVPxYTU0NL1++ZBFNagYOHIiLFy9iwIAB8PX1Rb9+/SAjI4MdO3awjkZ4iIoJhBBSxyxZsgTTp09HeHi4eD/6jRs3cPr0afGHjfPnz3N6NNaX0NHRQf369VnHqJKSkhKsXr0amzZtQm5uLoDSO2yenp5YvHgx57beVBVXC3qpqanQ09OrcFxHR+eLl9F/i3x8fCocKyoqws8//4w1a9agefPmFcZ9ck1lBZO//voLCxcuREJCAhYsWABPT08GyaRDW1sbu3btEj9u2rQp9u/fX+E5XKWoqIikpCTx+M6hQ4dKnE9JSfnsFsdv3ZkzZzB79mxMnz69wkQcQqSNigmEEFLHTJkyBWZmZti2bRtCQkIAACYmJoiIiEDHjh0BgNMfhr/UvXv3WEeossWLF8Pf3x/e3t7o1KkTAODy5ctYvnw53r59izVr1jBOSD5FQ0MDd+7cga6ursTxmJgYNG7cmE2oGnDw4EEsXboUBQUFWL58OaZOnYp69fjz0fP27dvw8vLCpUuX4OrqitOnT4u3B3DVo0ePWEeoUba2tggMDET37t0rPb9v3z7Y2trWbigpu3z5Mvz9/dGuXTu0atUK48aNw8iRI1nHInwlIoQQUiWNGjUSJSUlsY5BylFRURGpqqpW+KOmpibS0tISde3aVbRnzx7WMaulWbNmoj/++KPC8d9//12kpaXFIBEbXP03uGDBApGOjo7owoULoqKiIlFRUZEoLCxMpKOjI/L09GQdr9rOnDkjatOmjUhJSUm0cuVKUW5uLutIUpWYmCgaMWKESEZGRjRq1ChO/gzWVRcuXBAJhULRvHnzRM+ePRMff/bsmcjDw0MkIyMjCgsLY5hQenJzc0X+/v6iTp06ierXry8SCoUiX19fUU5ODutohEeoASMhhFQRVxswAqXL5BMTE/H8+XOUlJRInOvatSujVNLh4+Pz0dGXc+fORUpKCvbv34+tW7dydvSlnJwc7ty5A2NjY4nj8fHxaNu2LQoKChglq11cbaJZWFiIcePG4bfffhPfqS8pKcH48eOxY8cOibG0XHL9+nV4eXnh2rVrmDZtGhYvXizea88XM2bMgL+/P3r06AFvb2+0bduWdSSp8vPz++xz6tWrh6ZNm6Jz586cXInxyy+/YO7cuSgqKoKSkhIEAgGys7NRr149bNq0CbNmzWIdUeri4+Ph7++P/fv3IysrC71798aJEydYxyI8QMUEQgipIq5+kbl27RpGjx6Nx48fV9hzLhAIONulu0xdGH1pa2sLW1vbCh/83dzccOPGDVy7do1RstrF1X+DZR4+fIjo6GjIy8vD0tISOjo6rCNVi1AohLy8PKZOnVppT4gyZWP5uEgoFEJOTg6mpqaffN7t27drKZF0fep1K1NSUoKXL1+ipKQEBw4cqNB3gAvS0tJw9OhRPHz4EEDplIdhw4aJeynwVXFxMU6ePIk9e/aIiwlcHXNNvg1UTCCEkCpKS0uDlpYWZGRkWEf5Km3btoWxsTFWrFiBZs2aVRhz9mGnay6qC6MvIyIiMGDAAGhra8POzg4AcPXqVaSlpeH06dPo0qUL44S1w8LCAmfOnOHtFwCurX7S1dWtdGzihwQCAZKTk2spkfStWLHii563bNmyGk7CVklJCby9vbF//37ExcWxjkOqgWvvM+TbQsUEQggpJy8vD97e3ggLC6t0GwCXPwgDQMOGDRETE1PhyzZfaGtrY+7cuRVGX/r4+MDHxwepqam4c+cO+vTpg4yMDEYpq+/ff//Fzz//jAcPHgAAWrVqhRkzZkBLS4txMunIysrC0aNHkZSUhPnz50NNTQ23b9+GpqYmmjdvzjpereD6ygvCb0+fPkXbtm2RmZnJOsoX+9Kl/Y6OjjWc5NtB7zOkOvjTUpcQQqTE1dUVERERGDduXKV37rnO1tYWiYmJvC0m1JXRl1paWryd2nDnzh306tULysrKePToEaZMmQI1NTWEhIQgNTUVgYGBrCMSwltFRUXw8fHB4cOHkZCQAAAwNjbG6NGjMWfOHPFI3ebNm3OqkAAAgwcP/uxz+LDdj5DaQisTCCGkHBUVFZw6dUo8co9vjh8/jv/973+YP38+LC0txR8My7Ru3ZpRMumJjIzEtm3bEB8fD6B09KWbm5t49CUX3blz54ufy/XXsFevXrC2tsb69esl7ppduXIFo0eP5v34ujJcu2P4Jc37AG73TLCysvqiAjNXeyYUFBSgd+/euHr1Knr16oVWrVoBAOLi4vDXX3+hU6dOCA0NhZycHOOkRFq49j5Dvi20MoEQQspRVVWFmpoa6xg1xsnJCQAwefJk8TGBQACRSMSbOzKdOnXiXTGobdu2Eq9TmbJ7Ah8e4/preOPGDezcubPC8ebNm3N6awrf+fj4fPY5AoGA08WEL7mzzWXe3t5IS0tDVFRUhaJkTEwMHB0d4e3tjeXLl7MJSAj5plAxgRBCylm1ahWWLl2KgIAAKCgosI4jdSkpKawj1Dg+jr788HWLiorCvHnzMH/+fIkGjJs2bcL69etZRZSaBg0aICcnp8LxhIQEqKurM0jEBte2WNWF95avbawYGRkJGxsbNGjQoIYSSVdQUBA2b95c6eqmNm3aYOPGjVi8eDFniwkJCQnIysoSb4EDgLCwMKxevRp5eXkYPHgwfvzxR4YJax/X3mfIt4WKCYQQUs6mTZuQlJQETU1N6OrqVtgGwNXlq2W4Pn7uc/g6+vLD12348OHw8/ND//79xcdat26Nli1bYsmSJZy/e+ro6IiVK1fiyJEjAEpft9TUVHh5eYlX1tQFfN+JamlpidOnT/N2GgcAODg4cKpT/uPHjyW+aJfXoUMHpKam1mIi6fLy8oKlpaX4GlNSUjBw4EB06dIFrVu3xrp166CgoAB3d3e2QWsR399nSM2iYgIhhJTD9S9ilTlx4gQcHBxQv379z3az5noX62nTpsHGxganTp3iZQNNALh7926l8+D19PQQGxvLIJF0bdq0CcOGDYOGhgYKCgrQrVs3ZGRkwM7OjrdNJytz5swZXk+uePToEd6/f886Ro3i2hc1JSUlPH/+/KMFnoyMDCgqKtZyKum5efMmFixYIH588OBBGBsb49y5cwBKi7Jbt27ldTFBJBIhMzMTGhoaAIDY2FjeTAEitY8aMBJCSB0gFAqRkZEBDQ0NCIXCjz6Py3fuy/B99CUAWFtbw8LCArt374asrCwAoLCwEK6urrh37x7nV8+UuXz5Mu7cuYPc3FxYW1ujV69erCNJhYeHR6XHBQIB5OTkYGhoiEGDBvG6dwtQNxq/ce0anZ2dUVRUhGPHjlV63snJCTIyMuJVQ1wjLy+PhIQEcbHE3t4eHTt2xKpVqwAASUlJaNeuHbKyshimrB4FBQU8fvxYvCVswIAB2L17N5o1awYAePbsGbS0tDj/u558G2hlAiGEfMStW7cQFxcHADA3N4eVlRXjRFX3Yd+A8j0E+Ibvoy8BYMeOHRg4cCBatGgh3tt8584dCAQCnDx5knE66encuTM6d+7MOobURUVF4fbt2yguLoaJiQmA0r3cMjIyMDU1xS+//AJPT09cvnwZZmZmjNOSumTZsmWwtbVFhw4d4OHhAVNTU4hEIsTFxcHHxwexsbG4du0a65hVpqamhvT0dLRs2RIlJSW4efOmRHGvsLCQc6tJynv79q3ENVy8eBEFBQUSz+H6NZJvBxUTCCGknOfPn2PkyJH4+++/oaKiAgDIyspCjx49EBQUVKcawHGRm5sbPD09kZGRwdvRl+3bt0dycjIOHjyIBw8eACi9ozh69Gg0bNiQcTrpuHHjBsLDwyttorl582ZGqaSjbNXB3r17oaSkBADIzs6Gq6srOnfujClTpmD06NGYO3euePk1IbXBzMwM58+fh4uLC0aOHCneJiYSiWBqaorQ0FCYm5szTll13bt3x6pVq/DLL7/gt99+Q0lJCbp37y4+HxsbC11dXWb5agsft/8RNmibAyGElOPs7Izk5GQEBgaKZ2zHxsZiwoQJMDQ0xOHDhxkn/HpfOv8d4PYMeACVbuPg2+hLvlu7di3+97//wcTEBJqamhIffAUCAS5cuMAwXfU1b94c58+fr7Dq4P79++jTpw+ePn2K27dvo0+fPnjx4gWjlDWPa1sAqkJJSYlTDRg/FB0djYSEBACAsbEx2rZtyzaQFDx69Ai9e/dGUlISZGRk4Ofnh+nTp4vPDx48GHp6el805vRb9eG2RqDivzPa5kCkiVYmEEJIOWfPnsVff/0lLiQApXdrfv75Z/Tp04dhsqr70g9GXJ8BD9SN8XRlYmNjkZqaisLCQonjXG+iuWXLFuzZswcTJ05kHaVGZGdn4/nz5xWKCZmZmeKRmCoqKhVeV8I9XL5n17Zt20oLCDdv3oSNjU3tB5ICXV1dxMXF4f79+1BXV6/QeHDFihVo0aIFo3TSIRAIKhRgaSUCqSlUTCCEkHJKSkoqLI0HgPr163O230Bd+oLN99GXAJCcnIwhQ4bg7t274lUXwH9LV7l+x0koFKJTp06sY9SYQYMGYfLkydi0aRO+++47AKXbOubNmyeeJnP9+nUYGxszTPn1evbsiZCQEPH2sM/ZuXMnNDU1azYUY2/evGEdoUpyc3MhIyMDeXl58bHo6GgsWbIEp0+f5vR7TL169dCmTZtKz5U/zsWVJSKRCMbGxuLfB7m5ubCyshKv2uNygYt8e2ibAyGElDNo0CBkZWXh8OHD4rsWT58+xZgxY6Cqqorjx48zTkjKq0ujLwFg4MCBkJGRwe7du6Gnp4fr16/j5cuX8PT0xMaNG9GlSxfWEatl/fr1+Pfff+Hr68s6So3Izc3F3LlzERgYiKKiIgClX3AmTJgAHx8fNGzYENHR0QDAqaXl5ZdX81FSUhLWrFmDPXv2AAC0tbWRm5srPi8jI4PLly+LG2tyTVpaGkaMGIHr169DRkYGs2bNwurVqzFt2jQEBwdjyJAhmDt3LmxtbVlHrRVc3IoTEBDwRc+bMGFCDSchdQEVEwghpJy0tDQ4Ojri/v374vFRaWlpsLCwwIkTJzi5BNLDwwOrVq1Cw4YNPzqWrgwXm9vVpdGXANCkSRNcuHABrVu3hrKyMq5fvw4TExNcuHABnp6eiIqKYh2xWkpKSjBgwAAkJCTAzMyswkqhkJAQRsmqr7i4GJGRkeLmoMnJyQAAfX19NGrUiHG66qkLxQR3d3fIy8tj3bp1AEq/bC5dulR8zcHBwdDW1saOHTtYxqyykSNHIj4+Hi4uLggJCUFERASsra1ha2uLhQsXcvL3X3VwsZjwOUVFRXj+/HmFLR6EVAVtcyCEkHJatmyJ27dv46+//hJ3ym/VqhWnZ9xHRUXh/fv34r9/DFf3Vdal0ZdA6RdSRUVFAKWFhX///RcmJibQ0dFBfHw843TVN3v2bISHh6NHjx5o3LgxZ38uKyMjI4M+ffogLi4Oenp6vJgu8qHY2FhkZGR88jlcvuawsDD4+/tLHHNychJ/2dTV1YWrqyuLaFJx8eJFhISEoEOHDhgxYgSaNm2KMWPGwN3dnXU0IiX379+HtbU1LwrrhD0qJhBCSCUEAgF69+6N3r17s44iFeHh4ZX+nY8CAwPh7OyMBg0aSBwvLCxEUFAQxo8fzyiZ9FhYWCAmJgZ6enqwtbXF+vXrISsri19//ZUXd9ACAgJw7NgxDBgwgHWUGmFhYYHk5GTo6emxjiJ19vb2le7J5stElUePHknc0XV1dYWysrL4sa6uLp48ecIimlQ8e/ZM/HOpoaEBBQUFODg4ME5FCPlWUTGBEEJQOjpx6tSpkJOT++wYRa5PO+C7SZMmoV+/fhWWWr958waTJk3iRTHhf//7H/Ly8gAAK1euxPfff48uXbqgcePGCA4OZpyu+tTU1GBgYMA6Ro1ZvXo15s2bh1WrVqFdu3Zo2LChxHklJSVGyarvn3/+gbq6OusYNUYoFOLff/8VL/cvPynn2bNnlTbw5ZIPt4oJhULIysoyTMMWn1ZFEVITqGcCIYQA0NPTw82bN9G4ceNP3i0UCATiPc5cdvPmTRw5cqTSsYJc3o8OlH74ffbsWYUvNDExMejRowdevXrFKFnNevXqFVRVVSU+/D558gRaWlqf7CPxLdq7dy/Onj2LvXv3QkFBgXUcqfvw9fjw9eL6nfu60DOhY8eO+P777/Hjjz9Wen7VqlU4c+YMrly5UsvJpEMoFEJZWVn8c5mVlQUlJaUK7yF8fR8tj489E2JiYmibA5EaWplACCGQHJ3I9zGKZUv9+/bti9DQUPTp0wcJCQl49uwZhgwZwjpelVlZWYnnadvb26Nevf9+xRUXFyMlJQX9+vVjmLBmqampVThmZmbGubFmQOlKoaSkJGhqakJXV7fCnd7bt28zSiYdfN9qxGeTJk2Cu7s72rRpU2EbzsmTJ+Ht7c3pKSR79+5lHaFWFRYWIiUlBQYGBhK/M8qcOXMGzZs3Z5Cs6u7cufPJ83zoq0O+HVRMIISQclauXIl58+ZVuCNaUFCADRs2YOnSpYySScfatWvh4+ODmTNnQlFREVu2bIGenh5++OEHNGvWjHW8Khs8eDCA0lnoffv2leiMLysrC11dXTg5OTFKxwZXFx+WvZZ81a1bN2RlZcHf3x9xcXEASgs/Li4uEvvvuaZbt268XxI/ZcoUXLhwAQMHDoSpqal4BGR8fDzi4+Ph5OSEKVOmME5ZdXVlXGB+fj7c3NzEYxQTEhKgr68PNzc3NG/eHAsXLgQAdO7cmWXMKmnbtq24R0l5H/YuIUQaaJsDIYSUIyMjg/T09ApLdV++fAkNDQ3OLw1s2LAh7t+/D11dXTRu3Bh///03LC0tERcXh549eyI9PZ11xGoJCAiAs7Mz5OTkWEdhjo9LdPng5s2b6NevH+Tk5NC+fXsAwI0bN1BQUIDQ0FBYW1szTig9b9++RXBwMPLy8tC7d28YGRmxjiQVQUFBCAoKQkJCAgDAyMgIo0aNwsiRIxknq77g4GCcOHEChYWFsLe3x7Rp01hHkro5c+YgMjISvr6+6NevH+7cuQN9fX388ccfWL58OafH6z5+/PiLnqejo1PDSUhdQCsTCCGknI9V7WNiYipdSs41qqqqePPmDQCgefPmuHfvHiwtLZGVlYX8/HzG6apvwoQJyMrKwoEDB5CUlIT58+dDTU0Nt2/fhqamJueWrBL+mTt3LgYOHIhdu3aJl1YXFRXB1dUV7u7uuHjxIuOEVePh4YH3799j69atAEqXkNvZ2eH+/ftQUFDAggULcP78edjZ2TFOWn0jR47kReGgvO3bt2PmzJkwMjKCvLw8QkJCkJSUhA0bNrCOJlW///47goOD0aFDB4nf9+bm5khKSmKYrPqoSEBqExUTCCHk/5U1rxMIBDA2Npb4gFFcXIzc3Fxe3KHp2rUrzp8/D0tLSwwfPhxz5szBhQsXcP78edjb27OOV2137txBr169oKysjEePHmHKlClQU1NDSEgIUlNTERgYyDoiqYSamhoSEhLQpEmTCo0ky+N687ebN29KFBIAoF69eliwYAFsbGwYJque0NBQrF27Vvz44MGDePz4MR4+fAhtbW1MnjwZq1evxqlTpximrFm3b9/G0qVL8eeff7KOUiXbtm3DsmXLsGzZMgDAgQMH8MMPP/CumJCZmVlpo9C8vDxebAHIyckRT4U5ffo0ioqKxOdkZGR4O3aX1D4qJhBCyP/z9fWFSCTC5MmTsWLFCom9y2V77vlwR23btm14+/YtAGDx4sWoX78+rly5AicnJ/zvf/9jnK765s6di4kTJ2L9+vVQVFQUH+/fvz9Gjx7NMFnt49KHYh8fH/Hr5ePjw6nsX0tJSQmpqakwNTWVOJ6WlibxM8s1qampMDMzEz8ODQ3FsGHDxHdK58yZg/79+7OKJzXnzp3D+fPnISsrC1dXV+jr6+PBgwdYuHAhTp48ib59+7KOWGXJyckSfRNGjx4NFxcXpKenc7qnTnk2NjY4deoU3NzcAPz3Xrl7927O/57/888/sWTJEvFWDWdnZ/EoYaD0WoODgzFs2DBWEQmPUDGBEEL+X9kHKD09PXTs2JHzs8I/5sOtGkKhUNxoii9u3ryJX3/9tcLx5s2bIyMjg0EidrjUFunDLzATJ05kF6QWODs7w8XFBRs3bkTHjh0BAJGRkZg/fz5GjRrFOF3VCYVCiZ+5a9euYcmSJeLHKioqeP36NYtoUuPv7y9e7fT69Wvs3r0bmzdvhpubG5ydnXHv3j20atWKdcwqe/fuHRo2bCh+LBQKISsri4KCAoappG/t2rVwcHBAbGwsioqKsGXLFsTGxuLKlSuIiIhgHa9afv31V3GRpExiYqK4d8769euxZ88eKiYQqaBiAiGElNOtWzfx39++fYvCwkKJ82VLB7nu+fPneP78OUpKSiSOt27dmlEi6WjQoAFycnIqHE9ISIC6ujqDRDUvJycHFy5cgImJicQXmdjYWGhpaTFMVjV8b4K6ceNGCAQCjB8/Xrz8uH79+pg+fTq8vb0Zp6u6Vq1a4eTJk/Dw8MD9+/eRmpqKHj16iM8/fvwYmpqaDBNW35YtW/DTTz9h/vz5OHbsGIYPH45ffvkFd+/eRYsWLVjHk4olS5ZITDMqLCzEmjVrJFbrbd68mUU0qencuTOio6Ph7e0NS0tLcePTq1evwtLSknW8arl79+4nt6U4ODhg48aNtZiI8BlNcyCEkHLy8/OxYMECHDlyBC9fvqxwnutfZG7duoUJEyYgLi6uwp1rgUDA+etzdXXFy5cvceTIEaipqeHOnTuQkZHB4MGD0bVrV07PgC8zYsQIdO3aFbNmzUJBQQHatGmDR48eQSQSISgoiPMjMIVCITIyMioUE/79918YGBjw5i5pfn6+uNmbgYFBhXG0XHP8+HGMHDkSnTt3xv379/Hdd9/h5MmT4vNeXl5ISUnBkSNHGKasng+n4YhEIjRo0ADh4eHo1KkT62hS0b17989uMRIIBLhw4UItJSJfS05ODg8ePICuri6A0tV6bdq0Ea+2TElJgampKd69e8cwJeELWplACCHlzJ8/H+Hh4di+fTvGjRuHn3/+GU+fPsXOnTs5fdewzOTJk2FsbAx/f39oamrybm/6pk2bMGzYMGhoaKCgoADdunVDRkYG7OzssGbNGtbxpOLixYtYvHgxgNIvcCKRCFlZWQgICMDq1as5W0zw8/MDUPplZffu3WjUqJH4XHFxMS5evFihzwCXKSgocP4u6IeGDBmC06dP488//0SfPn0qLLVWUFDAjBkzGKWTjoKCAnHRRyAQoEGDBrzqJfD333+zjlArTp8+DRkZmQr9Lc6dO4eSkhI4ODgwSlZ9ampqSExMFBcTyjd1ffjwIS8mU5FvA61MIISQcrS1tREYGIju3btDSUkJt2/fhqGhIfbv34/Dhw/j9OnTrCNWi6KiIqKiomBoaMg6So2KjIxETEwMcnNzYW1tjV69en107CfXyMvLIyEhAS1btsT48eOhpaUFb29vcQO83Nxc1hGrRE9PD0DpcvgWLVpARkZGfK6sCerKlStha2vLKiKp44RCIVavXi0udHl5eWH+/Plo0qSJxPNmz57NIl6tU1JSQnR0tHg/Ple0bt0a3t7eFRqCnj17Fl5eXoiJiWGUrPpGjhyJ/Px8nDhxotLz33//PRo2bIjg4OBaTkb4iFYmEEJIOa9evRJ/MFJSUhKPoevcuTOmT5/OMppU2NvbIyYmhrfFhA0bNmD+/Pno1KmTxNLj4uJijB07FocPH2aYTjpatmyJq1evQk1NDWfPnkVQUBAA4PXr15CTk2OcrupSUlIAAD169EBISAhUVVUZJyJfY/369XBzc4O8vDyA0oKejY0NGjRoAAB48+YNvLy88Msvv7CMWS3a2trYtWuX+HHTpk2xf/9+iecIBII6U0zg6j3Jhw8fSkweKWNqaorExEQGiaTHy8sLdnZ2GD58OBYsWABjY2MAQHx8PH766Sf89ddfuHLlCuOUhC+omEAIIeXo6+sjJSUF2traMDU1xZEjR9C+fXucPHkSKioqrONV2+7duzFhwgTcu3cPFhYWFaZWODo6MkomHRs2bICamhpcXFzEx4qLizFy5Ejcu3ePYTLpcXd3x5gxY9CoUSNoa2uje/fuAEq3P/Bh2Xx4ePgXPY+rd0X5atGiRZg4caK4mODg4CDx+uTn52Pnzp2cLiY8evSIdQQiBcrKykhOThZvBSiTmJgoMc2Ci6ysrBAcHAxXV1eEhIRInFNVVUVQUBCsra0ZpSN8Q8UEQggpZ9KkSYiJiUG3bt2wcOFCDBw4ENu2bcP79+8538EaAK5evYrIyEicOXOmwjk+NGA8deoU+vTpA2VlZQwbNgxFRUUYMWIEHjx48MVfUr91M2bMgK2tLVJTU9GnTx8IhUIApYUwvvSF+BJcvSvKV+VfD3p9yLdq0KBBcHd3x/Hjx2FgYACgtJDg6enJ+YI6UHp9vXv3xrlz5/Dw4UMAgJGREfr06cP5Ygn5tlDPBEII+YzHjx/j1q1bMDQ05PzYRADQ1dXF999/jyVLlnB+TNvHXLhwAYMHD8aBAwfg7++PxMREXLhwgdPX6+HhgVWrVqFhw4bw8PD45HP5UPT6EoqKioiJiaGVCd+I8lM4yr8+z549g5aWFucLlkVFRfDx8cHhw4eRkJAAADA2Nsbo0aMxZ86cCqu9+Iyr/wazs7PRr18/3Lx5UzzS88mTJ+jSpQtCQkJ4sQqRkNpAKxMIIeQT3r59Cx0dHejo6LCOIjUvX77E3LlzOf3F+nN69uyJwMBAODk5oVWrVoiIiKjQII1roqKi8P79e/HfP4YPDSYJ+VYVFBSgd+/euHr1Knr16oWuXbsCAOLi4uDl5YUTJ04gNDSU071LvgZX32+UlZVx5coVnD9/HjExMZCXl0fr1q3FryfXUcGL1BYqJhBCSDnFxcVYu3YtduzYgWfPniEhIQH6+vpYsmQJdHV1Jfbic9HQoUMRHh4uXtrJB0OHDq30uLq6OlRUVDB16lTxsfJ7SLniwy0afNmuQfjnw5GeRUVF2Ldvn7iQ9+bNG5bRpMLb2xtpaWmIioqqsFItJiYGjo6O8Pb2xvLly9kErGVcXOD8/v17yMvLIzo6Gn369EGfPn1YR5IqKniR2kTFBEIIKWfNmjUICAjA+vXrMWXKFPFxCwsL+Pr6cr6YYGxsjEWLFuHy5cuwtLSscIeCi13IlZWVKz1efoY44Reu3hXlqy+ZdKCtrV3bsaQqKCgImzdvrnTLW5s2bbBx40YsXryYt8WE5ORkTJs2DaGhoQCAM2fOoHnz5oxTfZ369etDW1ub89ttPoYKXqQ2Uc8EQggpx9DQEDt37oS9vb3EftAHDx7Azs4Or1+/Zh2xWvT09D56TiAQIDk5uRbTSJdIJEJaWhrU1dXFHeUJf3F1vzbhLjk5OTx8+BAtW7as9HxaWhqMjIzw9u3bWk5WO2JiYmBtbc35L+L+/v4ICQnB/v37oaamxjqOVJmYmGDt2rVwcnKq9Pxvv/2GxYsXi7c/EFIdtDKBEELKefr0KQwNDSscLykpEe9Z57KUlBTWEWqMSCSCoaEh7t+/DyMjI9ZxSA3j4l1Rwm1KSkp4/vz5R4sJGRkZUFRUrOVU5Gtt27YNiYmJ0NLSgo6OToUJB7dv32aUrPoeP36M9u3bf/R8hw4dkJqaWouJCJ9RMYEQQsoxMzPDpUuXKjRdPHr0KKysrBilqn1KSkoSM+K5QCgUwsjICC9fvqRiAocVFxdj3759CAsLw/Pnz1FSUiJx/sKFCwCAzp07s4hHPuJjU0aUlZVhbGyMoUOHokGDBrWcSrp69OiBtWvX4tixY5We9/b2Ro8ePWo5FflagwcPZh2hxlDBi9QmKiYQQkg5S5cuxYQJE/D06VOUlJQgJCQE8fHxCAwMxJ9//sk6Xq3h6i44b29vzJ8/H9u3b4eFhQXrOKQK5syZg3379mHAgAGwsLCg3ggc8bEpI1lZWUhMTMSSJUtw4cIFTvdNWLZsGWxtbdGhQwd4eHjA1NQUIpEIcXFx8PHxQWxsLK5du8Y6JvmMZcuWsY5QY6jgRWoT9UwghJBKXLp0CStXrkRMTAxyc3NhbW2NpUuX8q7r86dwdT+6qqoq8vPzUVRUBFlZ2Qq9E169esUoGflSTZo0QWBgIPr37886CpGSnJwcjBkzBoqKijh06BDrONVy7do1uLi4IC4uTlzoEolEMDU1hb+/P+zs7BgnrDorK6tPFu/y8/Px8OFDzvdM4LPY2FjY2trC3Nz8kwUvc3Nz1lEJD9DKBEII+UBRURHWrl2LyZMn4/z586zjkCrw9fVlHYFUk6ysbKV9Swh3KSkpYcmSJRg+fDjrKNXWoUMH3L9/H9HR0eImdsbGxmjbti3bYFLA5+X/HxIKhZ8smnC5WGJmZobz58/DxcUFI0eOrFDwCg0NpUICkRpamUAIIeU0atQI9+7dg66uLusoTHF1ZQLhvk2bNiE5ORnbtm2jLQ48kpycjDZt2uDNmzeso9QaLvaeqQv++OMPicfv379HVFQUAgICsGLFCs6PgC4TFRWFhw8fAuBPwYt8W2hlAiGElGNvb4+IiIg6X0zgw5e4t2/forCwUOKYkpISozTkS12+fBnh4eE4c+YMzM3NUb9+fYnzISEhjJKR6rh27RoMDAxYx6hVfLpnl5OTg4MHD8Lf3x83b95kHadaBg0aVOHYsGHDYG5ujuDgYN4UE6ysrMSNGJs0acI4DeEjKiYQQkg5Dg4OWLhwIe7evYt27dpVGBnl6OjIKFnt4uqH4Ly8PHh5eeHIkSN4+fJlhfNcXr5aV6ioqGDIkCGsY5CvdOfOnUqPZ2dn49atW1i7di2vG9/xVXh4OPbs2YOQkBAoKyvz+t9mhw4dMHXqVNYxqi0rKwuLFy9GcHAwXr9+DaC0n9DIkSOxevVqqKiosA1IeIO2ORBCSDlCofCj5wQCAa++jJb9CqhsFcLly5fx3XffcW6U28yZMxEeHo5Vq1Zh3Lhx+Pnnn/H06VPs3LkT3t7eGDNmDOuIhPBS2T70yj5aNmnSBB4eHvDy8uLFqqcvxdXtYk+fPsW+ffuwd+9eZGVl4fXr1zh06BBGjBjB29evoKAAixYtwpkzZxAfH886TpW9evUKdnZ2ePr0KcaMGYNWrVoBKG3MeOjQIbRs2RJXrlyBqqoq46SED6iYQAghdVBgYCA2bNggsZdy/vz5GDduHONk1aetrY3AwEB0794dSkpKuH37NgwNDbF//34cPnwYp0+fZh2RfKHMzEzxh3oTExOoq6szTkQ+5fHjx5UeV1JSqrNfXLhWTDh27Bj8/f1x8eJFODg4YOzYsXBwcEDDhg0RExMDMzMz1hGlQlVVVaIoIhKJ8ObNGygoKODAgQOcXoHo7u6OsLAw/PXXX9DU1JQ4l5GRgT59+sDe3h4+Pj6MEhI+oW0OhBBSx2zevBlLlizBrFmz0KlTJwClqxCmTZuGFy9eYO7cuYwTVs+rV6/EH9yVlJTEoyA7d+6M6dOns4xGvlBeXh7c3NwQGBiIkpISAICMjAzGjx+PrVu3QkFBgXFCUhkdHR3WEb45XLuL7+zsDC8vLwQHB0NRUZF1nBpTfuqPUCiEuro6bG1tOV/4+v3337Fz584KhQQAaNq0KdavX49p06ZRMYFIBRUTCCGknNmzZ8PQ0BCzZ8+WOL5t2zYkJiZyfvTg1q1bsX37dowfP158zNHREebm5li+fDnniwn6+vpISUmBtrY2TE1NceTIEbRv3x4nT56kfaIc4eHhgYiICJw8eVKi4DV79mx4enpi+/btjBOSypSUlOD+/fuwtLQEAOzYsUOiAaqMjAymT5/+ya1kfMO1BcAuLi74+eef8ffff2PcuHFwdnbm/JfrykyYMIF1hBqTnp7+ydGPFhYWyMjIqMVEhM9omwMhhJTTvHlznDhxAu3atZM4fvv2bTg6OuLJkyeMkkmHnJwc7t27B0NDQ4njDx8+hKWlJd6+fcsomXT4+PhARkYGs2fPxl9//YWBAwdCJBLh/fv32Lx5M+bMmcM6IvmMJk2a4OjRo+jevbvE8fDwcIwYMQKZmZlsgpFPOnToEHbs2IGLFy8CKF3ir6Kignr1Su9dvXjxAr6+vrzplA8AhYWFSElJgYGBgfg6P8TF3jMFBQU4cuQI9uzZg3/++Qd9+/bFqVOnEB0dDQsLC9bxpCYrKwv+/v6Ii4sDAJibm2Py5MlQVlZmnKx6mjdvjuDgYHTu3LnS85cuXYKzszP+/fffWk5G+KjulIYJIeQLvXz5stIPE0pKSnjx4gWDRNJlaGiII0eOVDgeHBwMIyMjBomka+7cueJVJb169cKDBw9w6NAhREVFUSGBI/Lz8ytdoquhoYH8/HwGiciX2Lt3L2bOnClxLCIiAikpKUhJScGGDRtw4MABRumkKz8/Hy4uLlBQUIC5uTlSU1MBAG5ubvD29hY/r3PnzpwqJACAvLw8JkyYgIiICNy9exfm5ubQ1NREp06dMHr0aF6MZr158yYMDAzg4+ODV69e4dWrV9i8eTMMDAxw+/Zt1vGqpW/fvli8eHGFscgA8O7dOyxZsgT9+vVjkIzwEa1MIISQciwsLDBt2jTMmjVL4njZ9oDY2FhGyaTj2LFjcHZ2Rq9evcRLyCMjIxEWFoYjR47weuwX4QZ7e3s0btwYgYGBkJOTA1B6t3TChAl49eoV/vrrL8YJSWVatmyJv//+GwYGBgAqNh+Mi4tDp06dxH1MuGzOnDmIjIyEr68v+vXrhzt37kBfXx9//PEHli9fjqioKNYRpaqkpASnTp2Cv78/zpw5g3fv3rGOVC1dunSBoaEhdu3aJV5RUlRUBFdXVyQnJ4tX13DRkydPYGNjgwYNGmDmzJkwNTWFSCRCXFwcfvnlF7x79w43b95Ey5YtWUclPEDFBEIIKWfPnj2YNWsW5s+fj549ewIAwsLCsGnTJvj6+mLKlCmME1bfrVu34OPjI17e2apVK3h6esLKyopxMum4ceMGwsPD8fz5c3EDvzKbN29mlIp8qXv37qFv37549+4d2rRpAwCIiYmBnJwczp0798n9wIQdOTk53L9/X1xMyMzMROPGjcU9EhITE2Fubs75L6JAabPJ4OBgdOjQQaJokpiYCGtra+Tk5LCOWGOeP38ODQ0N1jGqRV5eHlFRUTA1NZU4HhsbCxsbG86vgEpJScGMGTMQGhoqMQK6d+/e2LZtW4VtjoRUFTVgJISQciZPnox3795hzZo1WLVqFQBAV1e3QtNCLmvXrh1vlhuXt3btWvzvf/+DiYkJNDU1Jbqpc62zel1lYWGBhw8f4uDBg3jw4AEAYNSoURgzZgzk5eUZpyMfo6mpifj4eHExofwoz7i4ODRt2pRFNKnLzMys9At1Xl4ep99nvvSOPNeLCUpKSkhNTa1QTEhLS+PFFAs9PT2cOXMGr1+/Fo+ANjQ0hJqaGuNkhG9oZQIhhHxCZmYm5OXl0ahRowrnIiMjxUsJuURGRgbp6ekVPgy+fPkSGhoaKC4uZpRMOjQ1NfHTTz9h4sSJrKMQUqdMnjwZ8fHxiIyMrHBOJBKhU6dOMDU1xZ49exikk66uXbti+PDhcHNzg6KiIu7cuQM9PT24ubnh4cOHOHv2LOuIVfKpSRtlRRKBQICioqLailQjZs+ejePHj2Pjxo3o2LEjgNLf6fPnz4eTkxPnpzYRUltoZQIhhHxC+TtrH3JwcEB0dLR4PzBXfKyG/O7dO8jKytZyGukTCoXiXhCEO06cOAEHBwfUr18fJ06c+ORzHR0daykV+RqLFy+GtbU1bG1tMW/ePBgbGwMA4uPjsXHjRsTHxyMwMJBxSulYu3YtHBwcEBsbi6KiImzZsgWxsbG4cuUKIiIiWMerstevX1d6PD8/H1u2bIGfnx/nfudVZuPGjRAIBBg/fry4MFK/fn1Mnz5dooEmF6Wnp2Pbtm1Ys2YNgNImoB9u25CRkcHvv/+O5s2bs4pIeIRWJhBCSBWVby72rfPz8wNQOu1g1apVEqstiouLcfHiRTx69IjzjcPWr1+Pf//9l+4scYxQKERGRgY0NDQ+e3eU66tn+Oz69euYOHEiHjx4IL6TLRKJYGpqir1798LW1pZxQulJSkqCt7c3YmJikJubC2tra3h5ecHS0pJ1NKkpKSnBnj17sGLFCgiFQixfvhwTJkz45L9RLsnPz0dSUhIAwMDAAAoKCowTVd+SJUvw8uVL/PLLLwBKP6tMnjxZvMXhzJkz6Ny5MzZu3MgyJuEJKiYQQkgVca2YoKenBwB4/PgxWrRoARkZGfE5WVlZ6OrqYuXKlZz/sF9SUoIBAwYgISEBZmZmqF+/vsR5Pow1I+RbFx0djYSEBACAkZERb5q71iUhISH48ccfkZmZiUWLFsHNzY1z2/q+VE5ODi5cuAATExO0atWKdZxqsbKygp+fH7p06QKg4meVc+fOwcPDA/fv32cZk/AEbXMghJA6IiUlBQDQo0cPhISEQFVVlXGimjF79myEh4ejR48eaNy4MaebodVVgYGBcHZ2rvDFpbCwEEFBQbxphMpnbdu2Rdu2bT/5HCUlJU5uFQOA06dPQ0ZGBn379pU4fu7cOZSUlMDBwYFRsuqLiIiAl5cX7t69izlz5sDLywvKysqsY0nViBEj0LVrV8yaNQsFBQWwsbHBo0ePIBKJEBQUBCcnJ9YRq+zRo0fimwcA0Lt3bzRs2FD82MTERPx5gJDq4scaJUIIIV8sPDz8iwoJSkpKSE5OroVE0hUQEIBjx47hzJkz2LdvH/bu3Svxh3z7Jk2ahOzs7ArH37x5g0mTJjFIRGoClxfHLly4sNLtNiKRCAsXLmSQSDr69++P3r17o23btkhKSsLatWt5V0gASqdWlN25P378OEQiEbKysuDn54fVq1czTlc979+/R2ZmpvhxSEgINDU1xY9fv37Nm20qhD36SSKEkCri+x1vrn7QV1NTE4+mI9wkEokq/ff15MkTXn6xIdzz8OFDmJmZVThuamqKxMREBomko2wKRXBwMMzMzKCmplbpH67Lzs4WX8fZs2fh5OQEBQUFDBgwQDxKkatMTExw5cqVj56/dOmSuDkqIdVF2xwIIaSKuPplm++WL1+OZcuWYe/evbxoplWXWFlZQSAQQCAQwN7eHvXq/fcxpbi4GCkpKejXrx/DhISUUlZWRnJyMnR1dSWOJyYmSiwp55q6snqrZcuWuHr1KtTU1HD27FkEBQUBKL1rLycnxzhd9YwcORJLly5Fly5d0Lp1a4lzMTExWLlyJby8vBilI3xDxQRCCKmiN2/esI5AKuHn54ekpCRoampCV1e3QgPG27dvM0pGPmfw4MEASpv39e3bV2LiSFmTUC7vZSb8MWjQILi7u+P48ePilVCJiYnw9PTk9OjSCRMmsI5QK9zd3TFmzBg0atQIOjo66N69O4DS7Q9cn8bh7u6OP//8E+3atUPv3r1hYmICoHRE6/nz52FnZwd3d3e2IQlv0DQHQggp59mzZ5g3bx7CwsLw/PnzCisQ6spYOq5NqyizYsWKT55ftmxZLSUhVRUQEABnZ2fO3yEkn8blBozZ2dno168fbt68iRYtWgAo3YbTpUsXhISEQEVFhW3AaiooKMD58+fFEzlMTEzQq1cvyMvLM04mPbdu3UJqaip69+4tLlyeOnUKKioq6NSpE+N01VNYWIjNmzcjKChIYqrKqFGjMHfuXN5O5SC1j4oJhBBSjoODA1JTUzFr1iw0a9aswt7tQYMGMUpWu7j8Qf9LHD58GI6OjpxekkwIl3G1YFlGJBLh/PnziImJgby8PFq3bo2uXbuyjlVtJ06cgKurK168eCFxvEmTJvD398fAgQMZJat9fP89CNDvQlI9VEwghJByFBUVcenSpc+ONeM7rn/Q/5y68CGRq4qLi+Hj44MjR44gNTUVhYWFEudfvXrFKBn5GoWFhUhJSYGBgYFE/4syly9fxnfffce5u6Tv37+HvLw8oqOjYWFhwTqOVF25cgXdu3eHo6MjPD090apVKwBAbGwsNm3ahD///BMRERHo0KED46S1g++/BwH6XUiqh6Y5EEJIOS1btqTmigDOnDmD5s2bs45RY+g1/natWLECmzdvhrOzM7Kzs+Hh4YGhQ4dCKBRi+fLlrOORz8jPz4eLiwsUFBRgbm6O1NRUAICbmxu8vb3Fz+vcuTPnCgkAUL9+fWhra/Nyy9vq1asxadIkHD16FHZ2dlBRUYGKigo6duyIY8eOYeLEiVi5ciXrmESK6HchqQ4qJhBCSDm+vr5YuHAhHj16xDpKjSguLoa/vz9Gjx6NXr16oWfPnhJ/ynD1gz7hvoMHD2LXrl3w9PREvXr1MGrUKOzevRtLly7FtWvXWMcjn7Fo0SLExMTg77//luh70atXLwQHBzNMJj2LFy/Gjz/+yLtVMteuXcOsWbM+en7mzJm4evVqLSYihHzLaJoDIYSU4+zsjPz8fBgYGEBBQaHCNACuf3icM2cO9u3bhwEDBsDCwqJCTwhCWMvIyBB3VG/UqBGys7MBAN9//z2WLFnCMhr5Ar///juCg4PRoUMHifcXc3NzJCUlMUwmPdu2bUNiYiK0tLSgo6NTYb85V6fGFBQUQElJ6aPnlZWV8fbt21pMRAj5llExgRBCyvH19WUdoUYFBQXhyJEj6N+/P+sohFSqRYsWSE9Ph7a2NgwMDBAaGgpra2vcuHGDVstwQGZmJjQ0NCocz8vL403xsmyMKd8YGRnhwoULmDRpUqXnw8LCYGRkVMup2OHLzyshNYWKCYQQUg7f52zLysrC0NCQdQxCPmrIkCEICwuDra0t3NzcMHbsWPj7+yM1NRVz585lHY98ho2NDU6dOgU3NzcA/30h2717N+zs7FhGkxq+jpidNGkS5s2bB01NzQoF51OnTmHBggX48ccfGaWrfdRPgJBPo2ICIYRUori4GL///jvi4uIAlC7PdXR0hIyMDONk1efp6YktW7Zg27ZtvLvrUlxcjMjISLRu3fqzc951dHQqbGEh34YPm/Q5OztDW1sbV69ehZGRUZ0aS8dVa9euhYODA2JjY1FUVIQtW7YgNjYWV65cQUREBOt45BPmzJmDK1eu4Pvvv4eJiQlatWoFkUiEuLg4PHz4EIMHD4a7uzvrmLWG742IAfpdSKqHRkMSQkg5iYmJ6N+/P54+fQoTExMAQHx8PFq2bIlTp07BwMCAccLqGTJkCMLDw6GmpgZzc/MKHyJCQkIYJZMOOTk5xMXFQU9Pj3UUQuqspKQkeHt7IyYmBrm5ubC2toaXl5e4FwbXCYXCTxZjuT7pITg4GIcPH0ZCQgIAwNjYGCNHjsTIkSMZJ5OO4uJi7Nu3D2FhYXj+/DlKSkokzl+4cIFRMukIDg7GiRMnUFhYCHt7e0ybNo11JMJTtDKBEELKmT17NgwMDHDt2jWoqakBAF6+fImxY8di9uzZOHXqFOOE1aOiooIhQ4awjlFjLCwskJycTMUEjtu/fz927NiBlJQUXL16FTo6OvD19YWenh4GDRrEOh75DAMDA+zatYt1jBpz/Phxicfv379HVFQUAgICsGLFCkappMfZ2RnOzs6sY9QYPjci3r59O2bOnAkjIyPIy8sjJCQESUlJ2LBhA+tohIdoZQIhhJTTsGFDXLt2rcIdtJiYGHTq1Am5ubmMkpEvcfbsWSxatAirVq1Cu3btKnRZ/1SncvJt2L59O5YuXQp3d3esWbMG9+7dg76+Pvbt24eAgACEh4ezjkg+4fTp05CRkUHfvn0ljp87dw4lJSVwcHBglKzmHTp0CMHBwfjjjz9YR6mSoqIiFBcXSzQ6ffbsGXbs2IG8vDwMHDgQXbp0YZhQOpo0aYLAwEBeNiI2NzfHiBEjxH09Dhw4gB9++AF5eXmMkxE+ErIOQAgh35oGDRrgzZs3FY7n5uZCVlaWQSLyNfr374+YmBg4OjqiRYsWUFVVhaqqKlRUVKCqqso6HvkCW7duxa5du7B48WKJPiU2Nja4e/cuw2TkSyxcuLDSZf4ikQgLFy5kkKj2dOjQAWFhYaxjVNmUKVMwe/Zs8eM3b97gu+++w88//4xz586hZ8+eOH36NMOE0sHnRsTJyckSjaRHjx6NoqIipKenM0xF+Iq2ORBCSDnff/89pk6dCn9/f7Rv3x4A8M8//2DatGlwdHRknK5qrK2tERYWBlVVVVhZWX1ySSdX56OXobvW3JeSkgIrK6sKxxs0aEB31zjg4cOHMDMzq3Dc1NQUiYmJDBLVjoKCAvj5+XG6YV9kZCS2bdsmfhwYGIji4mI8fPgQysrK8PLywoYNGzh/R5/PjYjfvXsnsSJPKBRCVlYWBQUFDFMRvqJiAiGElOPn54cJEybAzs5O3JywqKgIjo6O2LJlC+N0VTNo0CDxslW+zkcv061bN9YRSDXp6ekhOjoaOjo6EsfPnj2LVq1aMUpFvpSysjKSk5Ohq6srcTwxMbHCtiOuUlVVlfgSKhKJ8ObNGygoKODAgQMMk1XP06dPYWRkJH4cFhYGJycnKCsrAygdnbx3715W8aTm8uXLCA8Px5kzZ3jZiHjJkiVQUFAQPy4sLMSaNWvEryMAbN68mUU0wjNUTCCEkHJUVFTwxx9/4OHDh3jw4AEAoFWrVpxeEvnhTPQvnY9++PBhODo6cvLDf1ZWFvz9/SVGe06ePFnigxT5dnl4eGDmzJl4+/YtRCIRrl+/jsOHD2PdunXYvXs363jkMwYNGgR3d3ccP35cPP0mMTERnp6enF3dVZ6vr6/EY6FQCHV1ddja2nJ6O5WcnJzEHexr165JNO6Tk5PjRd8gPjci7tq1K+Lj4yWOdezYEcnJyeLHfFuNQdihBoyEEEIqpaSkhOjoaOjr67OO8lVu3ryJvn37Ql5eXrxN5caNGygoKEBoaCisra0ZJyRf4uDBg1i+fDmSkpIAAFpaWlixYgVcXFwYJyOfk52djX79+uHmzZto0aIFAODJkyfo0qULQkJCoKKiwjYg+Sh7e3u0b98e69atw6VLl9C9e3c8efIEzZo1AwCcP38e06dP5/V2FULIl6NiAiGEoPRO6KpVq9CwYUN4eHh88rl1ZWmgoqIiYmJiOFdM6NKlCwwNDbFr1y7Uq1e6AK+oqAiurq5ITk7GxYsXGSckn1JUVIRDhw6hb9++0NTURH5+PnJzc6GhocE6GvkKIpEI58+fR0xMDOTl5dG6dWt07dqVdSyp4uMKqIiICDg4OKBZs2ZIT0/HqFGj4O/vLz4/Y8YM5OXlISAggGFK6cnMzBTfxTcxMYG6ujrjRIRwCxUTCCEEQI8ePXD8+HGoqKigR48eH32eQCDAhQsXajEZO1wtJsjLyyMqKgqmpqYSx2NjY2FjY4P8/HxGyciXUlBQQFxcXIWeCeTb9/79e8jLyyM6OhoWFhas49QYPq+AiouLQ2hoKJo2bYrhw4dDKPxv+Nuvv/6K9u3bo23btuwCSkFeXh7c3NwQGBiIkpISAICMjAzGjx+PrVu3SvQb4JqhQ4dWelxZWRnGxsZwdXWlogmRGuqZQAghkJwAQNMAuE1JSQmpqakViglpaWlQVFRklIp8jfbt2yMqKoqKCRxUv359aGtrVzoakk/mzp0LR0fHSldAubu7c3oFVKtWrT7a6HTq1Km8mArg4eGBiIgInDx5Ep06dQJQ2pRx9uzZ8PT0xPbt2xknrLqPrYzJysrCrl27sGHDBly8eJHXxT5Se2hlAiGEfEZOTg4uXLgAU1PTCl9Q+YyrKxNmz56N48ePY+PGjejYsSOA0nFn8+fPh5OTU4XGaeTbc+TIESxatAhz585Fu3btKjQBbd26NaNk5Ev4+/sjJCQE+/fvh5qaGus4NaIuroB69+4dfv75Z6xfvx4ZGRms41RLkyZNcPToUXTv3l3ieHh4OEaMGIHMzEw2wWpYSUkJpkyZgufPn+PkyZOs4xAeoJUJhBBSzogRI9C1a1fMmjULBQUFsLGxwaNHjyASiRAUFAQnJyfWEcknbNy4EQKBAOPHj0dRURGA0rul06dPh7e3N+N05EuMHDkSQGlhqIxAIIBIJIJAIOD9XW+u27ZtGxITE6GlpQUdHZ0KxaDbt28zSiY9fF0B9e7dOyxfvhznz5+HrKwsFixYgMGDB2Pv3r1YvHgxZGRkMHfuXNYxqy0/Px+ampoVjmtoaPCyEFRGKBRi9uzZcHBwYB2F8AQVEwghpJyLFy9i8eLFAIDjx49DJBIhKysLAQEBWL16dZ0pJujo6FSYvf2tunPnDiwsLCAUCiErK4stW7Zg3bp14kkABgYGnN4DW9ekpKSwjkCqYfDgwawj1DhnZ2e4uLhUugJq1KhRjNNV3dKlS7Fz50706tULV65cwfDhwzFp0iRcu3YNmzdvxvDhwyEjI8M6ZrXZ2dlh2bJlCAwMhJycHACgoKAAK1asgJ2dHeN0Nathw4a8LpiQ2kXFBEIIKSc7O1u8NPfs2bNwcnKCgoICBgwYgPnz5zNOV3vu3bvHOsIXs7KyQnp6OjQ0NKCvr48bN26gcePGsLS0ZB2NVMGhQ4egqamJyZMnSxzfs2cPMjMz4eXlxSgZ+RLLli1jHaHG8XUF1G+//YbAwEA4Ojri3r17aN26NYqKihATEwOBQMA6ntRs2bIFffv2RYsWLdCmTRsAQExMDOTk5HDu3DnG6WrW+fPnYWxszDoG4QnqmUAIIeUYGxtj9erVGDBgAPT09BAUFISePXsiJiYG9vb2ePHiBeuIX01VVfWLPwi+evWqhtNIX+PGjXH69GnY2tpCKBTi2bNn1K2aw3R1dXHo0CHxHd8y//zzD0aOHEkrF8g3Iz8/n1croGRlZZGSkoLmzZsDKO0Ncf36dV4WZvPz83Hw4EE8ePAAQGnjyTFjxkBeXp5xsuo5ceJEpcezs7Nx69Yt7N69G7t37xZvJyOkOmhlAiGElOPu7o4xY8agUaNG0NHRETdounjxImc/UH3YdPDly5dYvXo1+vbtK17OefXqVZw7dw5LlixhlLB6nJyc0K1bNzRr1gwCgQA2NjYfXYqbnJxcy+nI18rIyECzZs0qHFdXV0d6ejqDRORrCIXCTxYv+dTzQkFBAZaWlsjJyUFoaChMTEw+OgmBC4qLiyErKyt+XK9ePTRq1IhhopqjoKCAKVOmsI4hdR/bZqSoqAgTExMqJBCpomICIYSUM2PGDLRv3x5paWno3bu3eMa2vr4+Vq9ezThd1UyYMEH8dycnJ6xcuRKzZs0SH5s9eza2bduGv/76i5PNtX799VcMHToUiYmJmD17NqZMmcLpJmh1XcuWLREZGQk9PT2J45GRkdDS0mKUinyp48ePSzx+//49oqKiEBAQgBUrVjBKJV18bdQrEokwceJENGjQAADw9u1bTJs2rUITzZCQEBbxquXEiRNwcHBA/fr1P3r3voyjo2MtpZK+kpIS1hFIHULbHAgh5DOKi4tx9+5d6OjoQFVVlXWcamvUqBGio6NhaGgocTwxMRFt27ZFbm4uo2TSMWnSJPj5+X22mPDkyRNoaWmJi0Xk27F+/XqsX78eGzZsQM+ePQEAYWFhWLBgATw9PbFo0SLGCUlVHDp0CMHBwfjjjz9YR6m2pk2b4ty5c2jTpg0OHTqEZcuWISYmBgEBAfj1118RFRXFOmKVTJo06Yuet3fv3hpOIn1CoRAZGRnQ0ND45Ps+TYwh5MtRMYEQQspxd3eHpaUlXFxcUFxcjG7duuHKlStQUFDAn3/+WWEuNdfo6Ohg9uzZ8PT0lDi+adMm+Pn54fHjx4yS1S4lJSVER0dDX1+fdRRSjkgkwsKFC+Hn54fCwkIAgJycHLy8vLB06VLG6UhVJScno3Xr1pwvWAKlvQQSEhLQsmVLjB8/HlpaWvD29kZqairMzMx4cY2EmwIDA7/oeePHj6/hJKQuoG0OhBBSztGjRzF27FgAwMmTJ5GSkoIHDx5g//79WLx4MSIjIxknrJ4VK1bA1dUVf//9N2xtbQGUNrY7e/Ysdu3axThd7aFa+rdLIBDgp59+wpIlSxAXFwd5eXkYGRmJl14T7ikoKICfn5+4sR/XtWzZEhBzm/EAADczSURBVFevXoWamhrOnj2LoKAgAMDr16/Fowb56vnz59DQ0GAdo1oCAwPh7Oxc4T2lsLAQQUFBnP6iPWfOnI+eEwgEyMvLQ1FREaevkXw7aG0nIYSU8+LFCzRt2hQAcPr0aQwfPhzGxsaYPHky7t69yzhd9U2cOBGRkZFQUlJCSEgIQkJCoKSkhMuXL2PixIms4xEi1qhRI3z33XewsLCgQgKHqKqqQk1NTfxHVVUVioqK2LNnDzZs2MA6nlSUNept0aIFtLS0eNGoFyhtSpiZmSl+PGDAAImmp8+ePau0OSrXTJo0CdnZ2RWOv3nz5ou3enyrXr9+Xemf2NhYjBgxAiKRCL1792Ydk/AErUwghJByNDU1ERsbi2bNmuHs2bPYvn07gNIxUh+bEMA1tra2OHjwIOsYhBAe+nB6DFC6V11dXR22tra86DsDlDbqtbW1RWpqKm8a9QKlDRc/XLV18eJFFBQUSDyHD6u6RCJRpRNHnjx5AmVlZQaJas6bN2/w008/YcuWLTA3N8e5c+fQo0cP1rEIT1AxgRBCypk0aRJGjBghHjPYq1cvAKVbAUxNTRmnk46kpCTs3bsXycnJ8PX1hYaGBs6cOQNtbW2Ym5uzjkcI4bAPp8fwWbt27dCuXTuJYwMGDJB4zMfeLJ8a+/mts7KygkAggEAggL29PerV+++rUHFxMVJSUtCvXz+GCaXn/fv32Lp1K9auXYvGjRtj7969GDZsGOtYhGeomEAIIeUsX74cFhYWSEtLw/Dhw8XLq2VkZLBw4ULG6aovIiICDg4O6NSpEy5evIjVq1dDQ0MDMTEx8Pf3x9GjR1lHrBVc/kBMyLcuKysL/v7+iIuLAwCYm5tj8uTJvLvr+zl8uIvPJ4MHDwYAREdHo2/fvmjUqJH4nKysLHR1dTk71rOMSCRCYGAgli5diqKiIqxduxYuLi68WVlJvi00zYEQQj7h7du3vGumZWdnh+HDh8PDwwOKioqIiYmBvr4+rl+/jqFDh+LJkyesI9aKD6+dECI9N2/eRN++fSEvL4/27dsDAG7cuIGCggKEhobC2tqaccLaw7X3GRkZGWRkZEBdXR1A6cqKmJgY6OnpASjtmaClpcX50YkBAQFwdnbm3e93ALC0tERycjLc3Nzg7u4OBQWFSp+npKRUy8kIH1ExgRBCyikuLsbatWuxY8cOPHv2DAkJCdDX18eSJUugq6sLFxcX1hGrpVGjRrh79y709PQkPug+evQIpqamePv2LeuItSItLQ1aWlp0t4YQKevSpQsMDQ2xa9cu8TLyoqIiuLq6Ijk5GRcvXmScsPZwrZggFAqhrKwsXrmVlZUFJSUlcU8IkUiEnJwczhcT+KzstQIqX4FX1i+CXkMiDbTNgRBCylmzZg0CAgKwfv16TJkyRXzcwsICvr6+nC8mqKioID09XXynqUxUVBRnx7YNHTr0i58bEhICoHS0GyFE+m7evClRSACAevXqYcGCBbCxsWGYjHzO3r17WUeoFcXFxfDx8cGRI0eQmpqKwsJCifOvXr1ilKz6wsPDWUcgdQgVEwghpJzAwED8+uuvsLe3x7Rp08TH27RpgwcPHjBMJh0jR46El5cXfvvtNwgEApSUlCAyMhLz5s3j7NzpD/dhi0QiHD9+HMrKyuIvLrdu3UJWVtZXFR0IIVWjpKSE1NTUCg1r09LSoKioyCgVG1zrzVJXmmeuWLECu3fvhqenJ/73v/9h8eLFePToEX7//XcsXbqUdbxq6datG+sIpA6hYgIhhJTz9OlTGBoaVjheUlKC9+/fM0gkXWvXrsXMmTPRsmVLFBcXw8zMDMXFxRg9ejT+97//sY5XJR/eTfPy8sKIESOwY8cO8RaG4uJizJgxg/aIElILnJ2d4eLigo0bN6Jjx44AgMjISMyfPx+jRo1inK52cXE3cXBwME6cOIHCwsIKRXW+OHjwIHbt2oUBAwZg+fLlGDVqFAwMDNC6dWtcu3YNs2fPZh1Rau7fvy+xpUFGRoamNhGpoZ4JhBBSTrt27TB37lyMHTtWYr/rypUrcf78eVy6dIl1RKlIS0vD3bt3kZubCysrKxgZGbGOJBXq6uq4fPkyTExMJI7Hx8ejY8eOePnyJaNkhNQNhYWFmD9/Pnbs2IGioiIAQP369TF9+nR4e3uLJ+TUBZcvX8Z3333HmWvevn07Zs6cCSMjI8jLy+Pu3bvw8PDAhg0bWEeTqoYNGyIuLg7a2tpo1qwZTp06BWtrayQnJ8PKygrZ2dmsI1bZpUuX4OHhgRs3bgAo7duRn58vLmwJBAKcO3dOPPaakOqglQmEEFLO0qVLMWHCBDx9+hQlJSUICQlBfHw8AgMD8eeff7KOV20rV67EvHnz0LJlS4m+AQUFBdiwYQPnl3gWFRXhwYMHFYoJDx48QElJCaNUhNQdsrKy2LJlC9atW4ekpCQAgIGBwUe7ynNRcXEx9u3bh7CwMDx//rzCe8uFCxcAAJ07d2YRr8q2bduGZcuWYdmyZQCAAwcO4IcffuBdMaFFixZIT0+HtrY2DAwMxFNGbty4wZnCz8f88ssvGDdunMSx8PBw6OjoQCQSwc/PD9u3b6diApEKWplACCGVuHTpElauXImYmBjk5ubC2toaS5cuRZ8+fVhHqzYZGRmkp6dDQ0ND4vjLly+hoaHB+Q7PHh4eCAwMxI8//igeS/fPP//A29sb48aNw+bNmxknJKRuycnJwYULF2BiYoJWrVqxjiMVs2bNwr59+zBgwAA0a9asQm8EHx8fRsmqR15eHnFxcdDV1QVQur1PXl4ejx49QrNmzdiGk6KFCxdCSUkJP/74I4KDgzF27Fjo6uoiNTUVc+fOhbe3N+uIVWZkZITjx4/DwsICQMWJIlFRURgwYAD+/fdfljEJT1AxgRBC6hihUIhnz56J54iXuXDhApydnZGZmckomXSUlJRg48aN2LJlC9LT0wEAzZo1w5w5c+Dp6UmjIAmpYSNGjEDXrl0xa9YsFBQUoE2bNnj06BFEIhGCgoLg5OTEOmK1NWnSBIGBgejfvz/rKFJV2e8Hro23rIqrV6/i6tWrMDIywsCBA1nHqRZ5eXkkJCSIVx6GhISgX79+4pVBjx8/hrGxMd69e8cyJuEJ2uZACCHlpKWlQSAQoEWLFgCA69ev49ChQzAzM8PUqVMZp6s6VVVVCAQCCAQCGBsbS9xJKy4uRm5uLi8abQmFQixYsAALFixATk4OAFDjRUJq0cWLF7F48WIAwPHjxyESiZCVlYWAgACsXr2aF8UEWVnZShv18sGSJUsktqQUFhZizZo1ElNz+LbCy87ODnZ2dqxjSIWioiKSkpLExYTyU4xSUlLodyKRGlqZQAgh5XTp0gVTp07FuHHjkJGRAWNjY1hYWODhw4dwc3PjbE+BgIAAiEQiTJ48Gb6+vhIfDGVlZaGrq8ubD1NFRUX4+++/kZSUhNGjR0NRURH//vsvlJSU0KhRI9bxCOG1D++Mjh8/HlpaWvD29kZqairMzMyQm5vLOmK1bdq0CcnJydi2bRvnxj9+Svfu3T97PQKBQNwTgsv279+PHTt2ICUlBVevXoWOjg58fX2hp6eHQYMGsY5XZQMHDoS6ujr27NlT6fmJEyfixYsXvOgBRdijlQmEEFLOvXv3xHvtjxw5AktLS0RGRiI0NBTTpk3jbDGhbH64np4eOnbsiPr16zNOVDMeP36Mfv36ITU1Fe/evUPv3r2hqKiIn376Ce/evcOOHTtYRySE11q2bImrV69CTU0NZ8+eRVBQEADg9evXkJOTY5xOOi5fvozw8HCcOXMG5ubmFd5PQ0JCGCWrnr///pt1hFqxfft2LF26FO7u7lizZo24V5CKigp8fX05XUzw8PBAr1690LhxY8yfP1/cH+n58+f46aefcODAAYSGhjJOSfiCigmEEFLO+/fvxd2c//rrLzg6OgIATE1NxXvwuaxbt24oLi7G0aNHERcXBwAwMzPDoEGDUK8e938tzJkzBzY2NoiJiUHjxo3Fx4cMGYIpU6YwTEZI3eDu7o4xY8agUaNG0NHRQffu3QGUbn+wtLRkG05KVFRUMGTIENYxmFNSUkJ0dDTn+ils3boVu3btwuDBgyWaLdrY2GDevHkMk1Vfjx49sHXrVsydOxebN2+GkpISBAIBsrOzUa9ePfj6+qJnz56sYxKe4P6nRkIIkTJzc3Ps2LEDAwYMwPnz57Fq1SoAwL///ivx5ZSr7t+/D0dHR2RkZIjHJ/70009QV1fHyZMnxR2guerSpUu4cuUKZGVlJY7r6uri6dOnjFIRUnfMmDEDtra2SE1NRe/evSEUCgEA+vr6WL16NeN00rF3717WEb4JXN0tnZKSAisrqwrHGzRogLy8PAaJpGvGjBkYOHAgjh49iocPHwIonfIwbNgwiZHQhFQXFRMIIaScn376CUOGDMGGDRswYcIEtGnTBgBw4sQJ8fYHLnN1dYW5uTlu3rwJVVVVAKXLjydOnIipU6fiypUrjBNWT0lJSaXjLZ88eQJFRUUGiQipe9q1a4d27dpJHBswYIDEY67e1f5QZmYm4uPjAQAmJiYVpuSQb5Oenh6io6Oho6Mjcfzs2bO8GV/asmVLzJ07l3UMwnNUTCCEkHK6d++OFy9eICcnR/xlGwCmTp0q0eE6MjISNjY24i0RXBEdHS1RSABKJz2sWbMG3333HcNk0tGnTx/4+vri119/BVDaLCw3NxfLli3j3Rg3QriMq3e1ASAvLw9ubm4IDAxESUkJAEBGRgbjx4/H1q1bJX5XkG+Ph4cHZs6cibdv30IkEuH69es4fPgw1q1bh927d7OOVy0nTpz4oueVbeEkpDqomEAIIZWQkZGR+LINlC6T/5CDgwMn76oZGxvj2bNnMDc3lzj+/PlzXow627RpE/r27QszMzO8ffsWo0ePxsOHD9GkSRMcPnyYdTxCCA94eHggIiICJ0+eRKdOnQCUNmWcPXs2PD09sX37dsYJyae4urpCXl4e//vf/5Cfn4/Ro0dDS0sLW7ZswciRI1nHq5bBgwd/9jkCgaDSFXyEfC0aDUkIIVWkqKiImJgYzhUTTp8+jQULFmD58uXo0KEDAODatWtYuXIlvL290blzZ/FzuTqLuqioCEFBQbhz5w5yc3NhbW2NMWPGQF5ennU0Qsj/4+p7KAA0adIER48eFTeXLBMeHo4RI0YgMzOTTbBaxsWtKkVFRTh06BD69u0LTU1N5OfnIzc3Vzz1gBDy5WhlAiGE1DHff/89AGDEiBHieeJldeWBAweKH3P5zkW9evUwduxY1jEIITyVn58PTU3NCsc1NDSQn5/PIBEbXLwnWa9ePUybNk08zUhBQYG2pRBSRVRMIISQOiY8PJx1BKn70j2iAO0TJeRbUVbM5CI7OzssW7YMgYGBkJOTAwAUFBRgxYoVsLOzY5xOegoLC5GSkgIDA4NKRwefOXMGzZs3Z5Csetq3b4+oqKgKDRj5ICEhAVlZWRINo8PCwrB69Wrk5eVh8ODB+PHHHxkmJHxCxQRCCKljunXrhqysLPj7+4vvzJiZmcHFxQXKysqM01XNl+wRBWifKCHfEi7e1S6zZcsW9O3bFy1atBBP/ImJiYGcnBzOnTvHOF315efnw83NDQEBAQBKv6Dq6+vDzc0NzZs3x8KFCwFAYlscl8yYMQOenp548uQJ2rVrh4YNG0qcb926NaNk1efl5QVLS0txMSElJQUDBw5Ely5d0Lp1a6xbtw4KCgpwd3dnG5TwAvVMIISQKuLiXlEAuHnzJvr16wc5OTnxh40bN26goKAAoaGhsLa2ZpyQEFIXXL58Gd999x3nJuKUyc/Px8GDB/HgwQMAQKtWrXjTm2XOnDmIjIyEr68v+vXrhzt37kBfXx9//PEHli9fjqioKNYRq0UoFFY4JhAIOL/FDygdCXnkyBHxCpnVq1fj6NGjiI6OBgD4+/tj69at4seEVAcVEwghpIq42jysS5cuMDQ0xK5du8TLVouKiuDq6ork5GRcvHiRcUJCCJcVFxdj3759CAsLw/Pnz8WjE8tcuHCBUTLypXR0dBAcHIwOHTpI/K5LTEyEtbU1cnJyWEeslsePH3/yPJe3P8jLyyMhIQEtW7YEANjb26Njx45YtWoVACApKQnt2rVDVlYWw5SEL2ibAyGElNOzZ0+EhIRARUVF4nhOTg4GDx4s/iD85s0bBumq7+bNmxKFBKC0IdWCBQtgY2PDMJn0hIWFwcfHR7yNo1WrVnB3d0evXr0YJyOE/+bMmYN9+/ZhwIABsLCw4HRvhA+dOHECDg4OqF+//mf7tHC9N0tmZmal0w3y8vJ48XoeOnQImpqamDx5ssTxPXv2IDMzE15eXoySVZ+amhrS09PRsmVLlJSU4ObNm/Dw8BCfLyws5PQWI/JtoWICIYSU8/fff6OwsLDC8bdv3+LSpUsMEkmXkpISUlNTYWpqKnE8LS0NioqKjFJJzy+//II5c+Zg2LBhmDNnDoDS0Zf9+/eHj48PZs6cyTghIfwWFBSEI0eOoH///qyjSNXgwYORkZEBDQ2NT/Zp4foyeQCwsbHBqVOn4ObmBuC/Zpm7d+/mRYPJnTt34tChQxWOm5ubY+TIkZwuJnTv3h2rVq3CL7/8gt9++w0lJSUSI0xjY2Ohq6vLLB/hFyomEELI/7tz547477GxscjIyBA/Li4uxtmzZznZtbo8Z2dnuLi4YOPGjejYsSMAIDIyEvPnz8eoUaMYp6u+tWvXwsfHB7NmzRIfmz17Njp16oS1a9dSMYGQGiYrKwtDQ0PWMaTuw+0a5bdu8M3atWvh4OCA2NhYFBUVYcuWLYiNjcWVK1cQERHBOl61ZWRkoFmzZhWOq6urIz09nUEi6VmzZg169+4NHR0dyMjIwM/PT6LB5P79+9GzZ0+GCQmfUM8EQgj5f0KhUHz3pbK3Rnl5eWzdurXCskiuKSwsxPz587Fjxw4UFRUBAOrXr4/p06fD29ubs83QyjRq1AjR0dEVvsw8fPgQVlZWyM3NZZSMkLph06ZNSE5OxrZt23ixJL4ygYGBcHZ2rvB+WVhYiKCgIIwfP55RMulJSkqCt7c3YmJikJubC2tra/GkAK4zMjLCsmXLMHbsWInj+/fvx7Jly5CcnMwomXQUFRXh/v37UFdXh5aWlsS5mJgYtGjRAo0bN2aUjvAJFRMIIeT/PX78GCKRCPr6+rh+/TrU1dXF52RlZaGhoQEZGRmGCaUrPz8fSUlJAAADAwMoKCgwTiQdo0ePhpWVFebPny9xfOPGjbh58yaCgoIYJSOkbhgyZAjCw8OhpqYGc3Nz1K9fX+J8SEgIo2TSIyMjg/T09Ap9BV6+fAkNDQ3Ob3Pgu/Xr12P9+vXYsGGD+C59WFgYFixYAE9PTyxatIhxwtrD1clU5NtA2xwIIeT/lXVv5vvy1TIKCgq8uMMEAH5+fuK/m5mZYc2aNfj777/Fe3uvXbuGyMhIeHp6sopISJ2hoqKCIUOGsI5Ro8pGCJb35MkTKCsrM0gkXadPn4aMjAz69u0rcfzcuXMoKSmBg4MDo2TSMX/+fLx8+RIzZswQ90iSk5ODl5dXnSokAJWvxCTkS9HKBEIIKScgIABNmjTBgAEDAAALFizAr7/+CjMzMxw+fJjTI6P4Sk9P74ueJxAIOL98lRDCjpWVFQQCAWJiYmBubi4xFae4uBgpKSno168fjhw5wjBl9bVu3Rre3t4VmmiePXsWXl5eiImJYZRMunJzcxEXFwd5eXkYGRlxfptfVXB1zDX5NtDKBEIIKWft2rXYvn07AODq1avYtm0bfH198eeff2Lu3Lm8WKLLNykpKawjEELKyczMRHx8PADAxMREYusYV5VNcYiOjkbfvn3RqFEj8TlZWVno6urCycmJUTrpefjwIczMzCocNzU1RWJiIoNENaNRo0b47rvvWMcghLOomEAIIeWkpaWJm/f9/vvvGDZsGKZOnYpOnTpJjFcihBBSUV5eHtzc3BAYGCjeNiYjI4Px48dj69atnO7PsmzZMgCArq4unJ2dIScnxzhRzVBWVkZycnKFEYKJiYkSkwEIIXUbFRMIIaScRo0a4eXLl9DW1kZoaCg8PDwAlO6nLCgoYJyOfIknT57gxIkTSE1NFe+HLbN582ZGqQipGzw8PBAREYGTJ0+iU6dOAIDLly9j9uzZ8PT0FK/84rIJEyawjlCjBg0aBHd3dxw/fhwGBgYASgsJnp6ecHR0ZJyOSBNfJ66Q2kHFBEIIKad3795wdXWFlZUVEhISxHtG79+/X+EuDfn2hIWFwdHREfr6+njw4AEsLCzw6NEjiEQiWFtbs45HCO8dO3YMR48elVjJ1b9/f8jLy2PEiBG8KCYUFxfDx8cHR44cqbRo+erVK0bJpGP9+vXo168fTE1N0aJFCwClRdouXbpg48aNjNMRaaL2eaQ6hKwDEELIt+bnn3+GnZ0dMjMzcezYMfEs5lu3bmHUqFGM05HPWbRoEebNm4e7d+9CTk4Ox44dQ1paGrp164bhw4ezjkcI7+Xn50NTU7PCcQ0NDeTn5zNIJH0rVqzA5s2b4ezsjOzsbHh4eGDo0KEQCoVYvnw563jVpqysjCtXruDUqVOYMWMGPD09ERYWhgsXLkBFRYV1PPIVCgsLER8fj6KiokrPnzlzBs2bN6/lVIQvaJoDIYQQXlFUVER0dDQMDAygqqqKy5cvw9zcHDExMRg0aBAePXrEOiIhvGZvb4/GjRsjMDBQ3FOgoKAAEyZMwKtXr/DXX38xTlh9BgYG8PPzw4ABAyTec/z8/HDt2jUcOnSIdcQqe//+PeTl5REdHQ0LCwvWcUgV5efnw83NDQEBAQCAhIQE6Ovrw83NDc2bN8fChQsZJyR8QCsTCCHkI/Lz8/HgwQPcuXNH4g/5tjVs2FC85LhZs2ZISkoSn3vx4gWrWITUGVu2bEFkZCRatGgBe3t72Nvbo2XLlrhy5Qq2bNnCOp5UZGRkwNLSEkBpn53s7GwAwPfff49Tp06xjFZt9evXh7a2NoqLi1lHIdWwaNEixMTE4O+//5ZoFNqrVy8EBwczTEb4hHomEEJIOZmZmZg4cSLOnj1b6Xn6gPVt69ChAy5fvoxWrVqhf//+8PT0xN27dxESEoIOHTqwjkcI71lYWODhw4c4ePAgHjx4AAAYNWoUxowZA3l5ecbppKNFixZIT0+HtrY2DAwMEBoaCmtra9y4cQMNGjRgHa/aFi9ejB9//BH79++Hmpoa6zikCn7//XcEBwejQ4cOEk0Wzc3NJYrshFQHFRMIIaQcd3d3ZGdn459//kH37t1x/PhxPHv2DKtXr8amTZtYxyOfsXnzZuTm5gIo3decm5uL4OBgGBkZ0SQHQmqJgoICpkyZwjpGjRkyZAjCwsJga2sLNzc3jB07Fv7+/khNTcXcuXNZx6u2bdu2ITExEVpaWtDR0akwDvL27duMkpEvlZmZCQ0NjQrH8/LyaIIDkRoqJhBCSDkXLlzAH3/8ARsbGwiFQujo6KB3795QUlLCunXrMGDAANYRySfo6+uL/96wYUPs2LGDYRpC6oYTJ07AwcEB9evXx4kTJz75XD6MFvT29hb/3dnZGdra2rh69SqMjIwwcOBAhsmkY/DgwawjkGqysbHBqVOn4ObmBuC/EZC7d++GnZ0dy2iER6gBIyGElKOkpIQ7d+5AV1cXOjo6OHToEDp16oSUlBSYm5vzphs53xUWFuL58+coKSmROK6trc0oESH8JRQKkZGRAQ0NDQiFH2/JJRAIaKsYIbXg8uXLcHBwwNixY7Fv3z788MMPiI2NxZUrVxAREYF27dqxjkh4gBowEkJIOSYmJoiPjwcAtGnTBjt37sTTp0+xY8cONGvWjHE68jkJCQno0qUL5OXloaOjAz09Pejp6UFXVxd6enqs4xHCSyUlJeIl1SUlJR/9w6dCwv79+9GpUydoaWnh8ePHAABfX1/88ccfjJMRAnTu3BnR0dEoKiqCpaUlQkNDoaGhgatXr1IhgUgNbXMghJBy5syZg/T0dADAsmXL0K9fPxw4cACysrLiEUvk2zVp0iTUq1cPf/75J5o1a0Z7QwmpZYGBgXB2dq7QiLCwsBBBQUEYP348o2TSs337dixduhTu7u5Ys2aNuEiioqICX19fDBo0iHHC6hEKhZ987+RTUYjPDAwMsGvXLtYxCI/RNgdCCPmMshGR2traaNKkCes45DMaNmyIW7duwdTUlHUUQuokGRkZpKenV2j+9vLlS2hoaPDii6iZmRnWrl2LwYMHQ1FRETExMdDX18e9e/fQvXt3zo+hLb+64v3794iKikJAQABWrFgBFxcXRsnIlzp9+jRkZGTQt29fiePnzp1DSUkJHBwcGCUjfEIrEwghBICHh8cXP5cmAnzbzMzMOP9BnhAuE4lEld7VfvLkCZSVlRkkkr6UlBRYWVlVON6gQQPk5eUxSCRdla2sGDZsGMzNzREcHEzFBA5YuHChRKPQMiKRCAsXLqRiApEKKiYQQgiAqKioL3oeLZn/9v300/+1d/fBNZ/5/8dfJ0SSI26HZBwiiVSJuJm4raaMoURZSjMjWtaMm+xuKY2kpIYiM7Z0pkuEGax76kiNZdnRVbunWisTReuYGmm3JBVmmWabJm2cROQ43z/Mnv2dX7a7Cae9+PT5mMkfuT7545nxj7zP57qut7R48WK9+eab6tOnj0JDQwOet27d2lAZYG3Jycmy2Wyy2WwaNWqUmjf/938zvV6vSktLNXbsWIOFwRMfHy+3263Y2NiA9ePHjysxMdFQ1Y/vqaee0q9+9SvTGWiEL7/8Ur169Wqw3rNnT125csVAEayIYQIASDp58qTpBATJs88+K0kaOXJkwPDnX5+WWuEVa+BR9K/rBN1ut1JTUxUZGel/1qJFC8XFxSktLc1QXXBlZWVp3rx5qq2tlc/n09mzZ7V//36tXr1a27ZtM533o6ipqVF+fr46d+5sOgWN0KZNG5WUlCguLi5g/cqVK2rZsqWZKFgOwwQAgKUwGALMWLFihSQpLi5O6enpCg8PN1z045kzZ44iIiK0bNkyeTwevfTSS3I4HFq/fr2mTp1qOu+htWvXrsEw9vvvv5fdbtc777xjsAyN9fzzzyszM1OHDx9WQkKCpPuDhOzsbE2cONFwHayCAxgBAJbzt7/9TVu2bNHVq1d18OBBde7cWXv37lV8fLyeeeYZ03kAHmP19fVyOp1KTU1VdHS0PB6PqqurGxw4+Tj7/28uCgkJUceOHTVkyBC1a9fOUBWaoqqqSmPHjtX58+fVpUsXSffPLRk2bJgOHTqktm3bmg2EJTBMAABYyh/+8Af98pe/1LRp07R3715dvnxZ3bp108aNG/Xee+/pvffeM50IWJrX69W6det04MABlZWVqa6uLuB5RUWFobLgsdvtKi4ubnBmAvAo8fl8+stf/qKLFy8qIiJCffv21fDhw01nwULY5gAAsJRVq1Zp8+bNmjFjhgoKCvzrKSkpWrVqlcEy4OchNzdX27ZtU3Z2tpYtW6alS5fqq6++0h//+EctX77cdF5QDB48WBcuXLD0MKGyslLbt29XcXGxJCkpKUmzZs2yzI0cVnb37l1FRETI7XZrzJgxGjNmjOkkWBRvJgAALMVut+vy5cuKi4sLuP+9pKREvXr1Um1trelEwNISEhKUn5+v8ePHq1WrVnK73f61M2fOyOl0mk58aAcOHNCSJUu0cOFCDRgwoMGBdn379jVUFhznz59XamqqIiIiNHjwYEnSuXPnVFNToxMnTqh///6GC/G/dOvWTYcPH1a/fv1Mp8DCGCYAACylW7du+v3vf69nn302YJiwZ88erVmzRpcvXzadCFhay5YtVVxcrK5du6pTp046duyY+vfvr5KSEiUnJ6uqqsp04kMLCQlpsGaz2Sxza8ywYcP0xBNPaOvWrf4rPuvr6zVnzhyVlJTo1KlThgvxv2zfvl2HDh3S3r171b59e9M5sCi2OQAALCUjI0OvvvqqduzYIZvNpn/84x8qKirSa6+9pjfeeMN0HmB5Xbp00c2bN9W1a1clJCT4P8k+d+6cwsLCTOcFRWlpqemEH9X58+cDBgmS1Lx5cy1evFgDBw40WIbG2rhxo65cuSKHw6HY2NgGb898+umnhspgJQwTAACW8vrrr+vevXsaNWqUPB6Phg8frrCwML322muaP3++6TzA8iZPniyXy6UhQ4Zo/vz5mj59urZv366ysjItXLjQdF5QOJ1ORUdHa9asWQHrO3bsUHl5uXJycgyVBUfr1q1VVlamnj17Bqxfv35drVq1MlSFppg0aZLpBPwMsM0BAGBJdXV1unLliqqrq9WrVy9FRkaaTgJ+loqKilRUVKTu3btrwoQJpnOCIi4uTk6nU08//XTA+scff6ypU6c+9m8uLFiwQIcPH9bbb7/t/x0LCwu1aNEipaWlKS8vz2wggEcCwwQAAACgCcLDw1VcXKz4+PiAdasc9FpXV6dFixZp8+bNqq+vlySFhobq5Zdf1po1ayyzXQXAw2l4egwAAADwEPbu3auUlBQ5HA5du3ZNkpSXl6cjR44YLguOmJgYFRYWNlgvLCyUw+EwUBRcLVq00Pr16/Xtt9/K7XbL7XaroqJC69atY5DwmAgJCVGzZs1+8AsIBs5MAAAAQNBs2rRJy5cvV2Zmpn7729/6bzZo27at8vLy9PzzzxsufHgZGRnKzMzU3bt3NXLkSEmSy+XS4sWLlZ2dbbgueOx2u/r06aPvvvtOJ06cUI8ePZSYmGg6C41w+PDhgO/v3r2rCxcuaPfu3crNzTVUBathmwMAAACCplevXnrzzTc1adKkgOtZL126pBEjRuif//yn6cSH5vP59Prrrys/P191dXWS7m99yMnJ0fLlyw3XPbwpU6Zo+PDheuWVV1RTU6N+/frpq6++ks/nU0FBgdLS0kwn4gE5nU69++67lnlLCGaxzQEAAABBU1paquTk5AbrYWFhun37toGi4LPZbHrrrbdUXl6uM2fO6OLFi6qoqLDEIEGSTp06pWHDhkm6/wm3z+dTZWWl8vPztWrVKsN1eBhPPfWUXC6X6QxYBMMEAAAABE18fLzcbneD9ePHj1vuFfnIyEgNGjRIvXv3ttRZAlVVVWrfvr2k+/9uaWlpstvtGj9+vL788kvDdXhQNTU1ys/PV+fOnU2nwCI4MwEAAABBk5WVpXnz5qm2tlY+n09nz57V/v37tXr1am3bts10HhohJiZGRUVFat++vY4fP66CggJJ0rfffqvw8HDDdWiMdu3ayWaz+b/3+Xz6/vvvZbfb9c477xgsg5UwTAAAAEDQzJkzRxEREVq2bJk8Ho9eeuklORwOrV+/XlOnTjWdh0bIzMzUtGnTFBkZqdjYWI0YMULS/e0Pffr0MRuHRsnLywv4PiQkRB07dtSQIUPUrl07M1GwHA5gBAAAQFDU19fL6XQqNTVV0dHR8ng8qq6uVlRUlOk0NNEnn3yisrIyjR49WpGRkZKkY8eOqW3btkpJSTFcB+BRwDABAAAAQWO321VcXKzY2FjTKfiRtW7dWm63W926dTOdgv+gsrJS27dvV3FxsSQpKSlJs2bNUps2bQyXwSo4gBEAAABBM3jwYF24cMF0Bn4CfCb56Dp//rwSEhK0bt06VVRUqKKiQmvXrlVCQoI+/fRT03mwCN5MAAAAQNAcOHBAS5Ys0cKFCzVgwAC1bNky4Hnfvn0NlSHYWrVqpYsXL/JmwiNo2LBheuKJJ7R161Y1b37/mLz6+nrNmTNHJSUlOnXqlOFCWAHDBAAAAARNSEjDF19tNpt8Pp9sNpu8Xq+BKvwYGCY8uiIiInThwgX17NkzYP3y5csaOHCgPB6PoTJYCbc5AAAAIGhKS0tNJwA/e61bt1ZZWVmDYcL169fVqlUrQ1WwGs5MAAAAQNA4nU65XC7FxsYGfLlcLhUUFJjOQxDZbDbTCfgB6enpmj17tt59911dv35d169fV0FBgebMmaMXX3zRdB4sgjcTAAAAEDRbtmyR0+lssJ6UlKSpU6cqJyfHQBV+DOyWfnS9/fbbstlsmjFjhurr6yVJoaGhevnll7VmzRrDdbAKzkwAAABA0ISHh6u4uFjx8fEB6yUlJerVq5dqa2sNlSHYTp8+rUGDBiksLMx0Cn6Ax+PR1atXJUkJCQmy2+2Gi2AlvJkAAACAoImJiVFhYWGDYUJhYaEcDoehKjSF1+vVrl275HK59PXXX+vevXsBzz/44ANJ0jPPPGMiD01gt9vVp08ffffddzpx4oR69OihxMRE01mwCIYJAAAACJqMjAxlZmbq7t27GjlypCTJ5XJp8eLFys7ONlyHxnj11Ve1a9cujR8/Xr179+ZshMfQlClTNHz4cL3yyiuqqanRwIED9dVXX8nn86mgoEBpaWmmE2EBDBMAAAAQNIsWLdI333yjuXPnqq6uTtL9rQ85OTlasmSJ4To0RkFBgQ4cOKBx48aZTsEDOnXqlJYuXSpJOnz4sHw+nyorK7V7926tWrWKYQKCgjMTAAAAEHTV1dUqLi5WRESEunfvzr76x4jD4dCHH36oJ5980nQKHlBERIT+/ve/KyYmRjNmzJDD4dCaNWtUVlamXr16qbq62nQiLICrIQEAABB0kZGRGjRokHr37s0g4TGTnZ2t9evXc1vDYywmJkZFRUW6ffu2jh8/rjFjxkiSvv32W4WHhxuug1WwzQEAAACA3+nTp3Xy5En9+c9/VlJSkkJDQwOeHzp0yFAZGiszM1PTpk1TZGSkYmNjNWLECEn3tz/06dPHbBwsg20OAAAAAPxmzpz5X5/v3LnzJyrBw/jkk09UVlam0aNHKzIyUpJ07NgxtW3bVikpKYbrYAUMEwAAAADgZ6h169Zyu93q1q2b6RQ8htjmAAAAAKCB8vJyffHFF5KkHj16qGPHjoaLEGx8royHwQGMAAAAAPxu376tWbNmqVOnTho+fLiGDx8uh8Oh2bNny+PxmM4D8IhgmAAAAADALysrSx999JH+9Kc/qbKyUpWVlTpy5Ig++ugjZWdnm84D8IjgzAQAAAAAfh06dNDBgwf9NwD8y8mTJzVlyhSVl5ebCUPQtWrVShcvXuTMBDwQ3kwAAAAA4OfxeBQdHd1gPSoqim0OFmOz2Uwn4DHGMAEAAACA39ChQ7VixQrV1tb612pqapSbm6uhQ4caLEOw8ZI6HgbbHAAAAAD4Xbp0Sampqbpz54769esnSbp48aLCw8P1/vvvKykpyXAhguX06dMaNGiQwsLCTKfgMcQwAQAAAEAAj8ejffv26fPPP5ckJSYmatq0aYqIiDBchsbwer3atWuXXC6Xvv76a927dy/g+QcffGCoDFbCMAEAAAAALOSVV17Rrl27NH78eHXq1KnB2Qjr1q0zVAYrYZgAAAAA/MwdPXpUzz33nEJDQ3X06NH/+rMTJ078iarwoDp06KA9e/Zo3LhxplNgYQwTAAAAgJ+5kJAQ3bp1S1FRUQoJ+eEz2m02m7xe709YhgfhcDj04Ycf6sknnzSdAgtjmAAAAAAAFvK73/1OJSUl2rhxI9c/4kfDMAEAAACA3549e5Sent7ghP+6ujoVFBRoxowZhsrQWJMnT9bJkyfVvn17JSUlKTQ0NOD5oUOHDJXBShgmAAAAAPBr1qyZbt68qaioqID1b775RlFRUWxzeAzMnDnzvz7fuXPnT1QCK2tuOgAAAADAo8Pn8/3HV+Nv3LihNm3aGChCUzEswE+BYQIAAAAAJScny2azyWazadSoUWre/N9/Kni9XpWWlmrs2LEGC9FU5eXl+uKLLyRJPXr0UMeOHQ0XwUoYJgAAAADQpEmTJElut1upqamKjIz0P2vRooXi4uKUlpZmqA5Ncfv2bc2fP1979uzRvXv3JN3fvjJjxgxt2LBBdrvdcCGsgDMTAAAAAPjt3r1b6enpCg8PN52CB/TrX/9af/3rX7Vx40alpKRIkk6fPq0FCxZo9OjR2rRpk+FCWAHDBAAAAACwkA4dOujgwYMaMWJEwPrJkyc1ZcoUlZeXmwmDpbDNAQAAAICf1+vVunXrdODAAZWVlamuri7geUVFhaEyNJbH41F0dHSD9aioKHk8HgNFsKIQ0wEAAAAAHh25ublau3at0tPTVVVVpaysLL3wwgsKCQnRypUrTeehEYYOHaoVK1aotrbWv1ZTU6Pc3FwNHTrUYBmshG0OAAAAAPwSEhKUn5+v8ePHq1WrVnK73f61M2fOyOl0mk7E/3Dp0iWlpqbqzp076tevnyTp4sWLCg8P1/vvv6+kpCTDhbAChgkAAAAA/Fq2bKni4mJ17dpVnTp10rFjx9S/f3+VlJQoOTlZVVVVphPRCB6PR/v27dPnn38uSUpMTNS0adMUERFhuAxWwZkJAAAAAPy6dOmimzdvqmvXrkpISNCJEyfUv39/nTt3TmFhYabz0Eh2u10ZGRmmM2BhDBMAAAAA+E2ePFkul0tDhgzR/PnzNX36dG3fvl1lZWVauHCh6Tz8gKNHj+q5555TaGiojh49+l9/duLEiT9RFayMbQ4AAAAAflBRUZGKiorUvXt3TZgwwXQOfkBISIhu3bqlqKgohYT88Dn7NptNXq/3JyyDVTFMAAAAAAAATcLVkAAAAAAC7N27VykpKXI4HLp27ZokKS8vT0eOHDFchsbYs2eP7ty502C9rq5Oe/bsMVAEK2KYAAAAAMBv06ZNysrK0rhx41RZWel/Jb5t27bKy8szG4dGmTlz5n+8deP777/XzJkzDRTBihgmAAAAAPDbsGGDtm7dqqVLl6pZs2b+9YEDB+qzzz4zWIbG8vl8stlsDdZv3LihNm3aGCiCFXGbAwAAAAC/0tJSJScnN1gPCwvT7du3DRShsZKTk2Wz2WSz2TRq1Cg1b/7vP/e8Xq9KS0s1duxYg4WwEoYJAAAAAPzi4+PldrsVGxsbsH78+HElJiYaqkJjTJo0SZLkdruVmpqqyMhI/7MWLVooLi5OaWlphupgNQwTAAAAAPhlZWVp3rx5qq2tlc/n09mzZ7V//36tXr1a27ZtM52H/2LFihWSpLi4OKWnpys8PNxwEayMqyEBAAAABNi3b59Wrlypq1evSpIcDodyc3M1e/Zsw2UAHhUMEwAAAABIkurr6+V0OpWamqro6Gh5PB5VV1crKirKdBqawOv1at26dTpw4IDKyspUV1cX8LyiosJQGayE2xwAAAAASJKaN2+u3/zmN6qtrZUk2e12BgmPodzcXK1du1bp6emqqqpSVlaWXnjhBYWEhGjlypWm82ARDBMAAAAA+A0ePFgXLlwwnYGHsG/fPm3dulXZ2dlq3ry5XnzxRW3btk3Lly/XmTNnTOfBIjiAEQAAAIDf3LlzlZ2drRs3bmjAgAFq2bJlwPO+ffsaKkNj3bp1S3369JEkRUZGqqqqSpL0i1/8Qm+88YbJNFgIwwQAAAAAflOnTpUkLViwwL9ms9nk8/lks9nk9XpNpaGRunTpops3b6pr165KSEjQiRMn1L9/f507d05hYWGm82ARDBMAAAAA+JWWlppOwEOaPHmyXC6XhgwZovnz52v69Onavn27ysrKtHDhQtN5sAhucwAAAADgt3r1akVHR2vWrFkB6zt27FB5eblycnIMleFBFRUVqaioSN27d9eECRNM58AiGCYAAAAA8IuLi5PT6dTTTz8dsP7xxx9r6tSpvLkAQBK3OQAAAAD4f9y6dUudOnVqsN6xY0fdvHnTQBEexN69e5WSkiKHw6Fr165JkvLy8nTkyBHDZbAKhgkAAAAA/GJiYlRYWNhgvbCwUA6Hw0ARmmrTpk3KysrSuHHjVFlZ6T80s23btsrLyzMbB8tgmAAAAADALyMjQ5mZmdq5c6euXbuma9euaceOHVq4cKEyMjJM56ERNmzYoK1bt2rp0qVq1qyZf33gwIH67LPPDJbBSrjNAQAAAIDfokWL9M0332ju3Lmqq6uTJIWHhysnJ0dLliwxXIfGKC0tVXJycoP1sLAw3b5920ARrIhhAgAAAAA/m82mt956S2+88YaKi4sVERGh7t27KywszHQaGik+Pl5ut1uxsbEB68ePH1diYqKhKlgNwwQAAAAADURGRmrQoEGmM/AAsrKyNG/ePNXW1srn8+ns2bPav3+/Vq9erW3btpnOg0VwNSQAAAAAWMy+ffu0cuVKXb16VZLkcDiUm5ur2bNnGy6DVTBMAAAAAACLqK+vl9PpVGpqqqKjo+XxeFRdXa2oqCjTabAYhgkAAAAAYCF2u13FxcUNzkwAgomrIQEAAADAQgYPHqwLFy6YzoDFcQAjAAAAAFjI3LlzlZ2drRs3bmjAgAFq2bJlwPO+ffsaKoOVsM0BAAAAACwkJKThC+g2m00+n082m01er9dAFayGNxMAAAAAwEJKS0tNJ+BngDMTAAAAAMBCnE6nXC6XYmNjA75cLpcKCgpM58EiGCYAAAAAgIVs2bJFPXv2bLCelJSkzZs3GyiCFTFMAAAAAAALuXXrljp16tRgvWPHjrp586aBIlgRwwQAAAAAsJCYmBgVFhY2WC8sLJTD4TBQBCviAEYAAAAAsJCMjAxlZmbq7t27GjlypCTJ5XJp8eLFys7ONlwHq+BqSAAAAACwEJ/Pp9dff135+fmqq6uTJIWHhysnJ0fLly83XAerYJgAAAAAABZUXV2t4uJiRUREqHv37goLCzOdBAthmAAAAAAAAJqEAxgBAAAAAECTMEwAAAAAAABNwjABAAAAAAA0CcMEAAAAAADQJAwTAAAAAABAkzBMAAAAAAAATcIwAQAAAAAANMn/AaAZybH35pqSAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"# Here we have our correlations to our is_adopted target var\n",
"is_adopted_corr_sr = correlation_matrix['is_adopted'].drop('is_adopted')"
],
"metadata": {
"id": "qLR0xzzVAUtR"
},
"execution_count": 172,
"outputs": []
},
{
"cell_type": "code",
"source": [
"# Let's split our data into X and y\n",
"X = analysis_with_dummies_df.drop('is_adopted', axis=1)\n",
"y = analysis_with_dummies_df['is_adopted']\n",
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)"
],
"metadata": {
"id": "BloFDZAIBEMz"
},
"execution_count": 151,
"outputs": []
},
{
"cell_type": "code",
"source": [
"scaler = StandardScaler()\n",
"X_train = scaler.fit_transform(X_train)\n",
"X_test = scaler.transform(X_test)\n",
"\n",
"class_weights = {0: 1, 1: 7}\n",
"model = LogisticRegression(class_weight=class_weights)\n",
"model.fit(X_train, y_train)\n",
"\n",
"\n",
"coefficients = model.coef_[0]\n",
"\n",
"c_report = classification_report(y_test, model.predict(X_test))\n",
"print(c_report)\n",
"\n",
"feature_importance_logreg = pd.DataFrame({'Feature': X.columns, 'Importance': np.abs(coefficients)})\n",
"feature_importance_logreg = feature_importance_logreg.sort_values('Importance', ascending=True)\n",
"feature_importance_logreg.plot(x='Feature', y='Importance', kind='barh', figsize=(10, 6))"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 696
},
"id": "PMAR0ectBee9",
"outputId": "b4fddc08-c224-4887-9169-eb2fa57249f7"
},
"execution_count": 161,
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
" precision recall f1-score support\n",
"\n",
" 0.0 0.99 0.97 0.98 2085\n",
" 1.0 0.84 0.92 0.87 315\n",
"\n",
" accuracy 0.97 2400\n",
" macro avg 0.91 0.95 0.93 2400\n",
"weighted avg 0.97 0.97 0.97 2400\n",
"\n"
]
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"<Axes: ylabel='Feature'>"
]
},
"metadata": {},
"execution_count": 161
},
{
"output_type": "display_data",
"data": {
"text/plain": [
"<Figure size 1000x600 with 1 Axes>"
],
"image/png": "iVBORw0KGgoAAAANSUhEUgAABFEAAAH5CAYAAABJbqGDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdcUlEQVR4nOzde3zP9f//8ft7dj6Ybc0OYsM2ZjmmHCbK4bORPpG0+vhoaijFhJw+hRGRcirp4LChhcrhU0ghSiqRNrIhQ+rT+vAJmxFme/7+8Nvr620bbyLS7Xq5vC55PZ/P1/P1eD7fW5fL+7Hn6/myGWOMAAAAAAAAcEFO1zoAAAAAAACAPwOSKAAAAAAAAA4giQIAAAAAAOAAkigAAAAAAAAOIIkCAAAAAADgAJIoAAAAAAAADiCJAgAAAAAA4ADnax0AAFwrxcXF+vnnn+Xj4yObzXatwwEAAABwjRhjdOzYMYWGhsrJqfz1JiRRAPxl/fzzz6pateq1DgMAAADAdeLHH3/UzTffXG49SRQAf1k+Pj6Szv6PsmLFitc4GgAAAADXSn5+vqpWrWp9RygPSRQAf1klj/BUrFiRJAoAAACAiz7mz8ayAAAAAAAADiCJAgAAAAAA4ACSKAAAAAAAAA4giQIAAAAAAOAAkigAAAAAAAAOIIkCAAAAAADgAJIoAAAAAAAADiCJAgAAAAAA4ACSKAAAAAAAAA5wvtYBAMC1dsuoj+Tk5nmtwwAAAAD+MvZPuPtah3BZWIkCAAAAAADgAJIoAAAAAAAADiCJAgAAAAAA4ACSKAAAAAAAAA4giQIAAAAAAOAAkigAAAAAAAAOIInyF3bnnXfqqaeeutZh/KH+imM+V3h4uKZOnXpNY1i/fr1sNpuOHj16TeMAAAAAgEtFEgW/2/79+2Wz2ZSRkXGtQ7moJUuW6LnnnrvWYVx1aWlpqlSpUqnyzZs3q3fv3n9YHGUlrZo3b67c3Fz5+vr+YXEAAAAAwJXgfK0DAP5I/v7+1zqECyosLJSLi8tV6z8wMPCq9e0oV1dXBQcHX+swAAAAAOCSsRIFkqT58+ercePG8vHxUXBwsP7xj3/o4MGDVv2RI0fUrVs3BQYGysPDQ5GRkUpNTZUkVa9eXZLUsGFD2Ww23XnnnRe93/r163X77bfLy8tLlSpVUmxsrH744Qer/t///rcaNWokd3d31ahRQ6NHj9aZM2ckScYYpaSkqFq1anJzc1NoaKiSk5Ota2fMmKHIyEi5u7srKChI999/v1V3/sqII0eO6OGHH5afn588PT3Vvn17ff/991Z9yYqOjz76SNHR0fL29lZ8fLxyc3Mdnts5c+YoJiZGbm5uCgkJUd++fa06m82m1157TX//+9/l5eWlcePGXXT8kjR58mTVrVtXXl5eqlq1qp544gkVFBRYc/vII48oLy9PNptNNptNKSkpkko/znPgwAHde++98vb2VsWKFfXAAw/ov//9r1WfkpKiBg0aaP78+QoPD5evr68efPBBHTt27KLj7tGjhz799FNNmzbNimP//v2lHucpmePly5erVq1a8vT01P33368TJ05o7ty5Cg8Pl5+fn5KTk1VUVGT1f+rUKT399NOqUqWKvLy81KRJE61fv/6CMZ06dUr5+fl2BwAAAAA4iiQKJJ1dAfHcc88pMzNTy5Yt0/79+9WjRw+rfsSIEcrKytKHH36o7Oxsvfbaa7rpppskSV9//bUkac2aNcrNzdWSJUsueK8zZ86oU6dOatWqlbZt26Yvv/xSvXv3ls1mkyRt2LBBDz/8sPr376+srCy98cYbSktLsxIMixcv1pQpU/TGG2/o+++/17Jly1S3bl1J0pYtW5ScnKwxY8Zo165dWrVqlVq2bFluLD169NCWLVv0/vvv68svv5QxRh06dFBhYaHV5sSJE3rppZc0f/58ffbZZzpw4ICefvpph+b1tdde05NPPqnevXtr+/btev/99xUREWHXJiUlRZ07d9b27dv16KOPXnT8kuTk5KSXX35ZO3bs0Ny5c/XJJ59oyJAhks4+LjN16lRVrFhRubm5ys3NLTPe4uJi3XvvvTp8+LA+/fRTrV69Wnv37lVCQoJdu5ycHC1btkzLly/X8uXL9emnn2rChAkXHfu0adPUrFkz9erVy4qjatWqZbY9ceKEXn75ZS1cuFCrVq3S+vXr1blzZ61cuVIrV67U/Pnz9cYbb+i9996zrunbt6++/PJLLVy4UNu2bVPXrl0VHx9vlwQ73/jx4+Xr62sd5cUDAAAAAGXhcR5Ikh599FHr3zVq1NDLL7+s2267TQUFBfL29taBAwfUsGFDNW7cWNLZFQ0lSh4RCQgIcOgxjfz8fOXl5aljx46qWbOmJCk6OtqqHz16tIYNG6bExEQrnueee05DhgzRqFGjdODAAQUHB6tt27ZycXFRtWrVdPvtt0s6u7LCy8tLHTt2lI+Pj8LCwtSwYcMy4/j+++/1/vvva+PGjWrevLkkKT09XVWrVtWyZcvUtWtXSWcTTK+//roVa9++fTVmzJiLT6qksWPHatCgQerfv79Vdtttt9m1+cc//qFHHnnEOn/00UcvOH5JdqtpwsPDNXbsWD3++OOaMWOGXF1d5evrK5vNdsHPY+3atdq+fbv27dtnJRPmzZunmJgYbd682YqzuLhYaWlp8vHxkSR1795da9eutUvqlMXX11eurq7y9PS86M9FYWGhXnvtNWuO77//fs2fP1///e9/5e3trTp16uiuu+7SunXrlJCQoAMHDig1NVUHDhxQaGioJOnpp5/WqlWrlJqaqueff77M+wwfPlwDBw60zvPz80mkAAAAAHAYSRRIkr755hulpKQoMzNTR44cUXFxsaSzSYk6deqoT58+6tKli7Zu3aq//e1v6tSpk5V4uFT+/v7q0aOH4uLi1K5dO7Vt21YPPPCAQkJCJEmZmZnauHGj3Zf0oqIinTx5UidOnFDXrl01depU1ahRQ/Hx8erQoYPuueceOTs7q127dgoLC7Pq4uPj1blzZ3l6epaKIzs7W87OzmrSpIlVFhAQoFq1aik7O9sq8/T0tL7cS1JISIjdo07lOXjwoH7++We1adPmgu1KElMlLjZ+T09PrVmzRuPHj9fOnTuVn5+vM2fO2NU7Ijs7W1WrVrVLItSpU0eVKlVSdna2lUQJDw+3EiiXMv5Lcf4cBwUFKTw8XN7e3nZlJffdvn27ioqKFBUVZdfPqVOnFBAQUO593Nzc5ObmdkVjBwAAAPDXweM80PHjxxUXF6eKFSsqPT1dmzdv1tKlSyVJp0+fliS1b99eP/zwgwYMGGAlBhx9pKUsqamp+vLLL9W8eXMtWrRIUVFR+uqrryRJBQUFGj16tDIyMqxj+/bt+v777+Xu7q6qVatq165dmjFjhjw8PPTEE0+oZcuWKiwslI+Pj7Zu3aoFCxYoJCREI0eOVP369X/X63TP3+jVZrPJGHPR6zw8PBzq38vLy+78YuPfv3+/OnbsqHr16mnx4sX65ptv9Oqrr0r6v8/rSipr/CVJtqt5jwvdt6CgQBUqVNA333xjN0/Z2dmaNm3aFY0NAAAAAEqwEgXauXOnfv31V02YMMFalbBly5ZS7QIDA5WYmKjExETdcccdGjx4sF566SW5urpKkt2mn45o2LChGjZsqOHDh6tZs2Z6++231bRpUzVq1Ei7du0qtXfIuTw8PHTPPffonnvu0ZNPPqnatWtr+/btatSokZydndW2bVu1bdtWo0aNUqVKlfTJJ5/ovvvus+sjOjpaZ86c0aZNm6xVNb/++qt27dqlOnXqXNJYyuLj46Pw8HCtXbtWd911l8PXXWz833zzjYqLizVp0iQ5OZ3Ng77zzjt2bVxdXS/6eURHR+vHH3/Ujz/+aH3uWVlZOnr06BUZv6NxXI6GDRuqqKhIBw8e1B133HHF+wcAAACAspBEgapVqyZXV1e98sorevzxx/Xdd9/pueees2szcuRI3XrrrYqJidGpU6e0fPlyax+TypUry8PDQ6tWrdLNN98sd3d3+fr6lnu/ffv26c0339Tf//53hYaGateuXfr+++/18MMPW/fq2LGjqlWrpvvvv19OTk7KzMzUd999p7FjxyotLU1FRUVq0qSJPD099dZbb8nDw0NhYWFavny59u7dq5YtW8rPz08rV65UcXGxatWqVSqOyMhI3XvvverVq5feeOMN+fj4aNiwYapSpYruvffeKzK3KSkpevzxx1W5cmW1b99ex44d08aNG9WvX79yr7nY+CMiIlRYWKhXXnlF99xzjzZu3KjXX3/dro/w8HAVFBRo7dq1ql+/vjw9PUs95tO2bVvVrVtX3bp109SpU3XmzBk98cQTatWqValHjC5XeHi4Nm3apP3798vb2/uKvWI6KipK3bp108MPP6xJkyapYcOGOnTokNauXat69erp7rvvviL3AQAAAIBz8TgPFBgYqLS0NL377ruqU6eOJkyYoJdeesmujaurq4YPH6569eqpZcuWqlChghYuXChJcnZ21ssvv6w33nhDoaGhF01AeHp6aufOnerSpYuioqLUu3dvPfnkk3rsscckSXFxcVq+fLk+/vhj3XbbbWratKmmTJmisLAwSVKlSpU0c+ZMxcbGql69elqzZo0++OADBQQEqFKlSlqyZIlat26t6Ohovf7661qwYIFiYmLKjCU1NVW33nqrOnbsqGbNmskYo5UrV5Z6lORyJSYmaurUqZoxY4ZiYmLUsWPHC749xpHx169fX5MnT9YLL7ygW265Renp6Ro/frxdH82bN9fjjz+uhIQEBQYGauLEiaXuY7PZ9O9//1t+fn5q2bKl2rZtqxo1amjRokVXZOzS2c1eK1SooDp16igwMFAHDhy4Yn2npqbq4Ycf1qBBg1SrVi116tRJmzdvVrVq1a7YPQAAAADgXDbjyOYOAHADys/PP/uq46fekZObYxvyAgAAAPj99k+4vlaPl3w3yMvLU8WKFcttx0oUAAAAAAAAB5BEwVXh7e1d7rFhw4ZrHd4V81cZZ1kOHDhwwfFfyUd3AAAAAOB6wMayuCoyMjLKratSpcofF8hV9lcZZ1lCQ0MvOP7Q0NA/LhgAAAAA+AOQRMFVcaHXE99I/irjLIuzs/NfevwAAAAA/npIogD4y/tudNwFN48CAAAAAIk9UQAAAAAAABxCEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAAc7XOgAAuNZuGfWRnNw8r0hf+yfcfUX6AQAAAHD9YSUKAAAAAACAA0iiAAAAAAAAOIAkCgAAAAAAgANIogAAAAAAADiAJAoAAAAAAIADSKIAAAAAAAA4gCQKcIXZbDYtW7bsmsaQlpamSpUqXdMYypKSkqIGDRpc6zAAAAAA4LKQRAEuU3kJgdzcXLVv3/4PiyM8PFxTp061K0tISNDu3bv/sBgAAAAA4K/A+VoHAPzRCgsL5eLictX6Dw4Ovmp9O8rDw0MeHh7XOgwAAAAAuKGwEgU3hOLiYk2cOFERERFyc3NTtWrVNG7cOO3fv182m02LFi1Sq1at5O7urvT0dEnSrFmzFB0dLXd3d9WuXVszZsyw63Po0KGKioqSp6enatSooREjRqiwsFDS2cdlRo8erczMTNlsNtlsNqWlpUkq/TjP9u3b1bp1a3l4eCggIEC9e/dWQUGBVd+jRw916tRJL730kkJCQhQQEKAnn3zSuteF3Hnnnfrhhx80YMAAK46S+M59nKdk1cycOXNUrVo1eXt764knnlBRUZEmTpyo4OBgVa5cWePGjbPr/+jRo+rZs6cCAwNVsWJFtW7dWpmZmQ5/LhMmTFBQUJB8fHyUlJSkkydP2tVv3rxZ7dq100033SRfX1+1atVKW7duteofffRRdezY0e6awsJCVa5cWbNnz5Ykvffee6pbt641v23bttXx48cdjhEAAAAAHMVKFNwQhg8frpkzZ2rKlClq0aKFcnNztXPnTqt+2LBhmjRpkho2bGglUkaOHKnp06erYcOG+vbbb9WrVy95eXkpMTFRkuTj46O0tDSFhoZq+/bt6tWrl3x8fDRkyBAlJCTou+++06pVq7RmzRpJkq+vb6m4jh8/rri4ODVr1kybN2/WwYMH1bNnT/Xt29dKukjSunXrFBISonXr1mnPnj1KSEhQgwYN1KtXrwuOe8mSJapfv7569+590bY5OTn68MMPtWrVKuXk5Oj+++/X3r17FRUVpU8//VRffPGFHn30UbVt21ZNmjSRJHXt2lUeHh768MMP5evrqzfeeENt2rTR7t275e/vf8H7vfPOO0pJSdGrr76qFi1aaP78+Xr55ZdVo0YNq82xY8eUmJioV155RcYYTZo0SR06dND3338vHx8f9ezZUy1btlRubq5CQkIkScuXL9eJEyeUkJCg3NxcPfTQQ5o4caI6d+6sY8eOacOGDTLGlBnTqVOndOrUKes8Pz//gmMAAAAAgHORRMGf3rFjxzRt2jRNnz7dSoDUrFlTLVq00P79+yVJTz31lO677z7rmlGjRmnSpElWWfXq1ZWVlaU33njD6uPZZ5+12oeHh+vpp5/WwoULNWTIEHl4eMjb21vOzs4XfHzn7bff1smTJzVv3jx5eXlJkqZPn6577rlHL7zwgoKCgiRJfn5+mj59uipUqKDatWvr7rvv1tq1ay+aGPH391eFChXk4+Nz0ceIiouLNWfOHPn4+KhOnTq66667tGvXLq1cuVJOTk6qVauWXnjhBa1bt05NmjTR559/rq+//loHDx6Um5ubJOmll17SsmXL9N5776l3794XvN/UqVOVlJSkpKQkSdLYsWO1Zs0au9UorVu3trvmzTffVKVKlfTpp5+qY8eOat68uWrVqqX58+dryJAhkqTU1FR17dpV3t7e2r17t86cOaP77rtPYWFhkqS6deuWG9P48eM1evToC8YNAAAAAOXhcR786WVnZ+vUqVNq06ZNuW0aN25s/fv48ePKyclRUlKSvL29rWPs2LHKycmx2i1atEixsbEKDg6Wt7e3nn32WR04cOCSY6tfv76VQJGk2NhYFRcXa9euXVZZTEyMKlSoYJ2HhITo4MGDl3SviwkPD5ePj491HhQUpDp16sjJycmurOS+mZmZKigoUEBAgN087du3z26eypOdnW2taCnRrFkzu/P//ve/6tWrlyIjI+Xr66uKFSuqoKDAbp579uyp1NRUq/2HH36oRx99VJJUv359tWnTRnXr1lXXrl01c+ZMHTlypNyYhg8frry8POv48ccfLzoOAAAAACjBShT86Tmygeq5SYyS/UhmzpxZ6kt+SSLjyy+/VLdu3TR69GjFxcXJ19dXCxcu1KRJk65g5P/n/I1ubTabiouLr/o9LnTfgoIChYSEaP369aX6ulKvT05MTNSvv/6qadOmKSwsTG5ubmrWrJlOnz5ttXn44Yc1bNgwffnll/riiy9UvXp13XHHHZLOfl6rV6/WF198oY8//livvPKKnnnmGW3atEnVq1cvdT83NzdrVQ0AAAAAXCpWouBPLzIyUh4eHlq7dq1D7YOCghQaGqq9e/cqIiLC7ij54v3FF18oLCxMzzzzjBo3bqzIyEj98MMPdv24urqqqKjogveKjo5WZmam3UanGzdutB6fuRIcieNyNGrUSL/88oucnZ1LzdNNN9100eujo6O1adMmu7KvvvrK7nzjxo1KTk5Whw4dFBMTIzc3N/3vf/+zaxMQEKBOnTopNTVVaWlpeuSRR+zqbTabYmNjNXr0aH377bdydXXV0qVLL3PUAAAAAFA+VqLgT8/d3V1Dhw7VkCFD5OrqqtjYWB06dEg7duwo9xGf0aNHKzk5Wb6+voqPj9epU6e0ZcsWHTlyRAMHDlRkZKQOHDighQsX6rbbbtOKFStKfTEPDw/Xvn37lJGRoZtvvlk+Pj6lVjl069ZNo0aNUmJiolJSUnTo0CH169dP3bt3t/ZD+b3Cw8P12Wef6cEHH5Sbm5tDCQ5HtG3bVs2aNVOnTp00ceJERUVF6eeff9aKFSvUuXNnu0ekytK/f3/16NFDjRs3VmxsrNLT07Vjxw67jWUjIyM1f/58NW7cWPn5+Ro8eHCZK4t69uypjh07qqioyNqzRpI2bdqktWvX6m9/+5sqV66sTZs26dChQ4qOjr4icwAAAAAA52IlCm4II0aM0KBBgzRy5EhFR0crISHhgnuK9OzZU7NmzVJqaqrq1q2rVq1aKS0tzVqJ8ve//10DBgxQ37591aBBA33xxRcaMWKEXR9dunRRfHy87rrrLgUGBmrBggWl7uPp6amPPvpIhw8f1m233ab7779fbdq00fTp06/Y2MeMGaP9+/erZs2aCgwMvGL92mw2rVy5Ui1bttQjjzyiqKgoPfjgg/rhhx8cSgAlJCRoxIgRGjJkiG699Vb98MMP6tOnj12b2bNn68iRI2rUqJG6d++u5ORkVa5cuVRfbdu2VUhIiOLi4hQaGmqVV6xYUZ999pk6dOigqKgoPfvss5o0aZLat2//+ycAAAAAAM5jM+W9CxQArhMFBQWqUqWKUlNT7d6y9Hvl5+fL19dXVZ96R05unlekz/0T7r4i/QAAAAD445R8N8jLy1PFihXLbcfjPACuW8XFxfrf//6nSZMmqVKlSvr73/9+rUMCAAAA8BfG4zzAdWzDhg12rxc+/7iWYmJiyo0rPT39itzjwIEDCgoK0ttvv605c+bI2Zm8LwAAAIBrh28kwHWscePGysjIuNZhlGnlypUqLCwss+5KbprLE4cAAAAArhckUYDrmIeHhyIiIq51GGUKCwu71iEAAAAAwB+KJAqAv7zvRsddcPMoAAAAAJDYEwUAAAAAAMAhJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHOB8rQMAgGvtllEfycnNU5K0f8Ld1zgaAAAAANcrVqIAAAAAAAA4gCQKAAAAAACAA0iiAAAAAAAAOIAkCgAAAAAAgANIogAAAAAAADiAJAoAAAAAAIADSKIAAAAAAAA4gCQKgD+99evXy2az6ejRo9c6FAAAAAA3MJIowF+UMUZnzpy51mEAAAAAwJ8GSRTgBnLq1CklJyercuXKcnd3V4sWLbR582ZJ/7da48MPP9Stt94qNzc3ff755zp27Ji6desmLy8vhYSEaMqUKbrzzjv11FNPOXzPoUOHqmrVqnJzc1NERIRmz55t1X/66ae6/fbb5ebmppCQEA0bNswueRMeHq6pU6fa9dmgQQOlpKRY5zabTbNmzVLnzp3l6empyMhIvf/++5Kk/fv366677pIk+fn5yWazqUePHpc+eQAAAABwESRRgBvIkCFDtHjxYs2dO1dbt25VRESE4uLidPjwYavNsGHDNGHCBGVnZ6tevXoaOHCgNm7cqPfff1+rV6/Whg0btHXrVofv+fDDD2vBggV6+eWXlZ2drTfeeEPe3t6SpP/85z/q0KGDbrvtNmVmZuq1117T7NmzNXbs2Ese2+jRo/XAAw9o27Zt6tChg7p166bDhw+ratWqWrx4sSRp165dys3N1bRp08rs49SpU8rPz7c7AAAAAMBRztc6AABXxvHjx/Xaa68pLS1N7du3lyTNnDlTq1ev1uzZs3XbbbdJksaMGaN27dpJko4dO6a5c+fq7bffVps2bSRJqampCg0Ndeieu3fv1jvvvKPVq1erbdu2kqQaNWpY9TNmzFDVqlU1ffp02Ww21a5dWz///LOGDh2qkSNHysnJ8Txujx499NBDD0mSnn/+eb388sv6+uuvFR8fL39/f0lS5cqVValSpXL7GD9+vEaPHu3wPQEAAADgXKxEAW4QOTk5KiwsVGxsrFXm4uKi22+/XdnZ2VZZ48aNrX/v3btXhYWFuv32260yX19f1apVy6F7ZmRkqEKFCmrVqlWZ9dnZ2WrWrJlsNptVFhsbq4KCAv30008Oj02S6tWrZ/3by8tLFStW1MGDBy+pj+HDhysvL886fvzxx0u6HgAAAMBfGytRgL8YLy+vK9aXh4fH7+7DyclJxhi7ssLCwlLtXFxc7M5tNpuKi4sv6V5ubm5yc3O79CABAAAAQKxEAW4YNWvWlKurqzZu3GiVFRYWavPmzapTp06Z19SoUUMuLi7W5rOSlJeXp927dzt0z7p166q4uFiffvppmfXR0dH68ssv7ZIkGzdulI+Pj26++WZJUmBgoHJzc636/Px87du3z6H7l3B1dZUkFRUVXdJ1AAAAAHApSKIANwgvLy/16dNHgwcP1qpVq5SVlaVevXrpxIkTSkpKKvMaHx8fJSYmavDgwVq3bp127NihpKQkOTk52T2CU57w8HAlJibq0Ucf1bJly7Rv3z6tX79e77zzjiTpiSee0I8//qh+/fpp586d+ve//61Ro0Zp4MCB1n4orVu31vz587VhwwZt375diYmJqlChwiWNPSwsTDabTcuXL9ehQ4dUUFBwSdcDAAAAgCNIogA3kAkTJqhLly7q3r27GjVqpD179uijjz6Sn59fuddMnjxZzZo1U8eOHdW2bVvFxsYqOjpa7u7uDt3ztdde0/33368nnnhCtWvXVq9evXT8+HFJUpUqVbRy5Up9/fXXql+/vh5//HElJSXp2Wefta4fPny4WrVqpY4dO+ruu+9Wp06dVLNmzUsad5UqVTR69GgNGzZMQUFB6tu37yVdDwAAAACOsJnzNyMA8Jd2/PhxValSRZMmTSp3BcuNIj8/X76+vqr61DtycvOUJO2fcPc1jgoAAADAH63ku0FeXp4qVqxYbjs2lgX+4r799lvt3LlTt99+u/Ly8jRmzBhJ0r333nuNIwMAAACA6wtJFAB66aWXtGvXLrm6uurWW2/Vhg0bdNNNN2nDhg1q3759udex9wgAAACAvxKSKMBfXMOGDfXNN9+UWde4cWNlZGT8sQEBAAAAwHWKJAqAcnl4eCgiIuJahwEAAAAA1wWSKAD+8r4bHXfBzaMAAAAAQOIVxwAAAAAAAA4hiQIAAAAAAOAAkigAAAAAAAAOIIkCAAAAAADgAJIoAAAAAAAADiCJAgAAAAAA4ACSKAAAAAAAAA4giQIAAAAAAOAAkigAAAAAAAAOIIkCAAAAAADgAJIoAAAAAAAADiCJAgAAAAAA4ACSKAAAAAAAAA4giQIAAAAAAOAAkigAAAAAAAAOIIkCAAAAAADgAJIoAAAAAAAADiCJAgAAAAAA4ACSKAAAAAAAAA4giQIAAAAAAOAAkigAAAAAAAAOIIkCAAAAAADgAJIoAAAAAAAADiCJAgAAAAAA4ACSKAAAAAAAAA4giQIAAAAAAOAAkigAAAAAAAAOIIkCAAAAAADgAJIoAAAAAAAADiCJAjs2m03Lli271mEAAAAAAHDdIYnyF5WSkqIGDRqUKs/NzVX79u3/+IBuMHv27NGjjz6qatWqyc3NTVWqVFGbNm2Unp6uM2fOSJL2798vm82mjIyMUtffeeedeuqpp6zz8PBw2Wy2UseECROsNkuXLlXTpk3l6+srHx8fxcTEWH3ceeedZV5fctx5550XHVN4eLimTp1aKqavvvrKrt1TTz1l9devXz9FR0eX2d+BAwdUoUIFvf/++5L+L4GXlpZ2wVhtNpv279+vlJSUMutq16590bEAAAAAwOVwvtYB4NIUFhbKxcXlqvUfHBx81fq+Hpw+fVqurq5X9R5ff/212rZtq5iYGL366qvWl/otW7bo1Vdf1S233KL69etfcr9jxoxRr1697Mp8fHwkSWvXrlVCQoLGjRunv//977LZbMrKytLq1aslSUuWLNHp06clST/++KNuv/12rVmzRjExMZJ02XPi7u6uoUOH6tNPPy2zPikpSdOnT9cXX3yh5s2b29WlpaWpcuXK6tChg115QkKC4uPjrfP77rtPt9xyi8aMGWOVBQYGSpJiYmK0Zs0au+udnfnfGgAAAICrg5Uo14Hi4mJNnDhRERERcnNzU7Vq1TRu3DhrpcKiRYvUqlUrubu7Kz09XZI0a9YsRUdHy93dXbVr19aMGTPs+hw6dKiioqLk6empGjVqaMSIESosLJR09svr6NGjlZmZaf31Pi0tTVLpx3m2b9+u1q1by8PDQwEBAerdu7cKCgqs+h49eqhTp0566aWXFBISooCAAD355JPWvS5mxowZioyMlLu7u4KCgnT//fdbdadOnVJycrIqV64sd3d3tWjRQps3b7bq09LSVKlSJbv+li1bJpvNZp2XrLiZNWuWqlevLnd3d0nS0aNH9dhjjykoKEju7u665ZZbtHz5cuu6zz//XHfccYc8PDxUtWpVJScn6/jx4xcdjzFGPXr0UFRUlDZu3Kh77rlHkZGRioyM1EMPPaTPP/9c9erVc2huzufj46Pg4GC7w8vLS5L0wQcfKDY2VoMHD1atWrUUFRWlTp066dVXX5Uk+fv7W9eUJCACAgKsMn9//8uKqXfv3vrqq6+0cuXKMusbNGigRo0aac6cOXblxhilpaUpMTGxVNLDw8PDboyurq7y9PS0K6tQoYKkswmT8+fkpptuuqyxAAAAAMDF8Cfb68Dw4cM1c+ZMTZkyRS1atFBubq527txp1Q8bNkyTJk1Sw4YNrUTKyJEjNX36dDVs2FDffvutevXqJS8vLyUmJko6+4U7LS1NoaGh2r59u3r16iUfHx8NGTJECQkJ+u6777Rq1Srrr/i+vr6l4jp+/Lji4uLUrFkzbd68WQcPHlTPnj3Vt29fK+kiSevWrVNISIjWrVunPXv2KCEhQQ0aNCi1auJ8W7ZsUXJysubPn6/mzZvr8OHD2rBhg1U/ZMgQLV68WHPnzlVYWJgmTpyouLg47dmz55K+9O/Zs0eLFy/WkiVLVKFCBRUXF6t9+/Y6duyY3nrrLdWsWVNZWVnWF/OcnBzFx8dr7NixmjNnjg4dOqS+ffuqb9++Sk1NveC9MjIylJ2drQULFsjJqewc5blJnislODhYb7/9tr777jvdcsstV7z/8lSvXl2PP/64hg8frvj4+DLHnJSUpGHDhmnatGlW0mf9+vXat2+fHn300T8sVulsYu7UqVPWeX5+/h96fwAAAAB/cgbXVH5+vnFzczMzZ84sVbdv3z4jyUydOtWuvGbNmubtt9+2K3vuuedMs2bNyr3Piy++aG699VbrfNSoUaZ+/fql2kkyS5cuNcYY8+abbxo/Pz9TUFBg1a9YscI4OTmZX375xRhjTGJiogkLCzNnzpyx2nTt2tUkJCSUP+j/b/HixaZixYomPz+/VF1BQYFxcXEx6enpVtnp06dNaGiomThxojHGmNTUVOPr62t33dKlS825P9ajRo0yLi4u5uDBg1bZRx99ZJycnMyuXbvKjCspKcn07t3brmzDhg3GycnJ/Pbbbxcc08KFC40ks3XrVqvsv//9r/Hy8rKOV1991Rjzf5/vt99+W6qfVq1amf79+1vnYWFhxtXV1a4fLy8v89lnnxljzs5Xhw4djCQTFhZmEhISzOzZs83JkydL9X2h+15IWFiYmTJlSqnzgwcPGh8fHzNv3jxjjDH9+/c3rVq1stodOXLEuLu7m9TUVKuse/fupkWLFnb9n/uzd6G5KDFq1Cjj5ORUak4ee+yxcscwatQoI6nUkZeX59AcAAAAALgx5eXlOfTdgJUo11h2drZOnTqlNm3alNumcePG1r+PHz+unJwcJSUl2a30OHPmjN1qkkWLFunll19WTk6OCgoKdObMGVWsWPGSY6tfv761ekCSYmNjVVxcrF27dikoKEjS2X0pSlZxSFJISIi2b99+0f7btWunsLAw1ahRQ/Hx8YqPj1fnzp3l6empnJwcFRYWKjY21mrv4uKi22+/XdnZ2Zc0jrCwMOsRFunsapGbb75ZUVFRZbbPzMzUtm3brEenpLOPnxQXF2vfvn3lbpRanoCAAGvz2DvvvNPam+RSDR48WD169LArq1KliiTJy8tLK1asUE5OjtatW6evvvpKgwYN0rRp0/Tll1/K09Pzsu7piMDAQD399NMaOXKkEhISStVXqlRJ9913n+bMmaMePXooPz9fixcvth41+j1q1aplbUxb4kI/58OHD9fAgQOt8/z8fFWtWvV3xwEAAADgr4EkyjXm4eFx0TbnJjFK9iOZOXOmmjRpYteuJJHx5Zdfqlu3bho9erTi4uLk6+urhQsXatKkSVcw8v9z/ka3NptNxcXFF73Ox8dHW7du1fr16/Xxxx9r5MiRSklJsdv35EKcnJxkjLErK2svlnPnT7r4nBcUFOixxx5TcnJyqbpq1apd8NrIyEhJ0q5du9SwYUNJZz+XiIgISfabnpZ82c/LyyvVz9GjR0s9YnXTTTdZ/ZSnZs2aqlmzpnr27KlnnnlGUVFRWrRokR555JELXvd7DRw4UDNmzCi1N0+JpKQktWnTRnv27NG6detUoUIFde3a9Xff19XV9aJzci43Nze5ubn97vsCAAAA+GtiY9lrLDIyUh4eHlq7dq1D7YOCghQaGqq9e/cqIiLC7qhevbok6YsvvlBYWJieeeYZNW7cWJGRkfrhhx/s+nF1dVVRUdEF7xUdHa3MzEy7DVU3btwoJycn1apV6xJHWjZnZ2e1bdtWEydO1LZt27R//3598sknqlmzplxdXbVx40arbWFhoTZv3qw6depIOrsC4tixY3bxlfW64PPVq1dPP/30k3bv3l1mfaNGjZSVlVVqfiMiIi76FpuGDRuqdu3aeumlly6aSPL399dNN92kb775xq48Pz9fe/bsKXeljKPCw8Pl6enp0Ia4v5e3t7dGjBihcePG6dixY6Xq77rrLlWvXl2pqalKTU3Vgw8+WCq5BQAAAADXO1aiXGMlr4gdMmSIXF1dFRsbq0OHDmnHjh3lPuIzevRoJScny9fXV/Hx8Tp16pS2bNmiI0eOaODAgYqMjNSBAwe0cOFC3XbbbVqxYoWWLl1q10d4eLj27dtnPdri4+NT6i/03bp106hRo5SYmKiUlBQdOnRI/fr1U/fu3a1HeX6P5cuXa+/evWrZsqX8/Py0cuVKFRcXq1atWvLy8lKfPn00ePBg+fv7q1q1apo4caJOnDihpKQkSVKTJk3k6empf/3rX0pOTtamTZvsNrwtT6tWrdSyZUt16dJFkydPVkREhHbu3Cmbzab4+HgNHTpUTZs2Vd++fdWzZ095eXlZrwuePn36Bfu22WxKTU1Vu3btFBsbq+HDhys6OlqFhYX67LPPdOjQIbtHnwYOHKjnn39eQUFBatq0qX799Vc999xzCgwM1H333WfX97Fjx/TLL7/YlXl6eqpixYpKSUnRiRMn1KFDB4WFheno0aN6+eWXVVhYqHbt2jn4ifw+vXv31pQpU/T222+XWiVls9n06KOPavLkyTpy5IimTJlyRe555syZUnNis9muyM8nAAAAAJyPlSjXgREjRmjQoEEaOXKkoqOjlZCQoIMHD5bbvmfPnpo1a5ZSU1NVt25dtWrVSmlpadZKlL///e8aMGCA+vbtqwYNGuiLL77QiBEj7Pro0qWL4uPjdddddykwMFALFiwodR9PT0999NFHOnz4sG677Tbdf//9atOmzUUTCY6qVKmSlixZotatWys6Olqvv/66FixYoJiYGEnShAkT1KVLF3Xv3l2NGjXSnj179NFHH8nPz0/S2ZUcb731llauXKm6detqwYIFSklJcejeixcv1m233aaHHnpIderU0ZAhQ6yVOfXq1dOnn36q3bt364477lDDhg01cuRIhYaGOtR306ZN9c0336hWrVp68sknVadOHTVv3lwLFizQlClT1KdPH6vtkCFDNGrUKL3wwguqV6+eunTpIi8vL61bt67UY0cjR45USEiI3TFkyBBJZxNDe/fu1cMPP6zatWurffv2+uWXX/Txxx9fsVVDF+Pi4qLnnntOJ0+eLLO+R48eysvLU0xMTKkky+XasWNHqTkJCwu7In0DAAAAwPls5vxNJQDgLyI/P1++vr7Ky8u75I2XAQAAANw4HP1uwEoUAAAAAAAAB5BEwVWzYcMGeXt7l3v8Gd2IY5Kk9PT0csdU8ngVAAAAAPzV8TgPrprffvtN//nPf8qtv5RX014vbsQxSWc3rf3vf/9bZp2Li8sNu88Ij/MAAAAAkBz/bsDbeXDVeHh4/GmTCuW5EcckST4+PvLx8bnWYQAAAADAdY3HeQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgU3DJvNpmXLll3rMAAAAAAANyiSKPjTSUlJUYMGDUqV5+bmqn379n98QDeQffv26R//+IdCQ0Pl7u6um2++Wffee6927txptSkrWbVu3Tp17NhRgYGBcnd3V82aNZWQkKDPPvvMarN+/XrZbDbFxMSoqKjI7vpKlSopLS3tgveQpB49eqhTp07W+Z133imbzSabzSZ3d3fVqVNHM2bM+F1zAAAAAADlIYmCP0xhYeFV7T84OFhubm5X9R7X0unTp69q/4WFhWrXrp3y8vK0ZMkS7dq1S4sWLVLdunV19OjRcq+bMWOG2rRpo4CAAC1atEi7du3S0qVL1bx5cw0YMKBU+71792revHlXLO5evXopNzdXWVlZeuCBB/Tkk09qwYIFV6x/AAAAAChBEgW/S3FxsSZOnKiIiAi5ubmpWrVqGjdunPbv3y+bzaZFixapVatWcnd3V3p6uiRp1qxZio6Olru7u2rXrl1q5cDQoUMVFRUlT09P1ahRQyNGjLASMGlpaRo9erQyMzOtFQglKxjOX72wfft2tW7dWh4eHgoICFDv3r1VUFBg1ZesanjppZcUEhKigIAAPfnkkw4ne2bMmKHIyEi5u7srKChI999/v1V36tQpJScnq3LlynJ3d1eLFi20efNmqz4tLU2VKlWy62/ZsmWy2WzWecmKm1mzZql69epyd3eXJB09elSPPfaYgoKC5O7urltuuUXLly+3rvv88891xx13yMPDQ1WrVlVycrKOHz9+0fHs2LFDOTk5mjFjhpo2baqwsDDFxsZq7Nixatq0aZnXHDhwQE899ZSeeuopzZ07V61bt1ZYWJjq1aun/v37a8uWLaWu6devn0aNGqVTp05dNCZHeHp6Kjg4WDVq1FBKSooiIyP1/vvvl9n21KlTys/PtzsAAAAAwFEkUfC7DB8+XBMmTNCIESOUlZWlt99+W0FBQVb9sGHD1L9/f2VnZysuLk7p6ekaOXKkxo0bp+zsbD3//PMaMWKE5s6da13j4+OjtLQ0ZWVladq0aZo5c6amTJkiSUpISNCgQYMUExOj3Nxc5ebmKiEhoVRcx48fV1xcnPz8/LR582a9++67WrNmjfr27WvXbt26dcrJydG6des0d+5cpaWl2T1WUp4tW7YoOTlZY8aM0a5du7Rq1Sq1bNnSqh8yZIgWL16suXPnauvWrYqIiFBcXJwOHz58SfO7Z88eLV68WEuWLFFGRoaKi4vVvn17bdy4UW+99ZaysrI0YcIEVahQQZKUk5Oj+Ph4denSRdu2bdOiRYv0+eeflxp3WQIDA+Xk5KT33nuv1OM25Vm8eLEKCws1ZMiQMuvPTQqVeOqpp3TmzBm98sorDt3jUnl4eJS7amf8+PHy9fW1jqpVq16VGAAAAADcoMxlmjdvnmnevLkJCQkx+/fvN8YYM2XKFLNs2bLL7RJ/Mvn5+cbNzc3MnDmzVN2+ffuMJDN16lS78po1a5q3337bruy5554zzZo1K/c+L774orn11lut81GjRpn69euXaifJLF261BhjzJtvvmn8/PxMQUGBVb9ixQrj5ORkfvnlF2OMMYmJiSYsLMycOXPGatO1a1eTkJBQ/qD/v8WLF5uKFSua/Pz8UnUFBQXGxcXFpKenW2WnT582oaGhZuLEicYYY1JTU42vr6/ddUuXLjXn/kqOGjXKuLi4mIMHD1plH330kXFycjK7du0qM66kpCTTu3dvu7INGzYYJycn89tvv110XNOnTzeenp7Gx8fH3HXXXWbMmDEmJyfHrs258/z444+bihUr2tW/9957xsvLyzq2bdtmjDFm3bp1RpI5cuSIef31142/v785evSoMcYYX19fk5qaWuY9zpWYmGjuvfde67xVq1amf//+xhhjzpw5Y+bPn28kmenTp5c5vpMnT5q8vDzr+PHHH40kk5eXd9G5AQAAAHDjysvLc+i7wWWtRHnttdc0cOBAdejQQUePHrX+al2pUiVNnTr1CqR28GeQnZ2tU6dOqU2bNuW2ady4sfXv48ePKycnR0lJSfL29raOsWPHKicnx2q3aNEixcbGKjg4WN7e3nr22Wd14MCBS46tfv368vLysspiY2NVXFysXbt2WWUxMTHWKg5JCgkJ0cGDBy/af7t27RQWFqYaNWqoe/fuSk9P14kTJySdXQ1SWFio2NhYq72Li4tuv/12ZWdnX9I4wsLCFBgYaJ1nZGTo5ptvVlRUVJntMzMzlZaWZje/cXFxKi4u1r59+y56vyeffFK//PKL0tPT1axZM7377ruKiYnR6tWry73m/NUmcXFxysjI0IoVK3T8+PEyV7UkJSUpICBAL7zwwkVjupgZM2bI29tbHh4e6tWrlwYMGKA+ffqU2dbNzU0VK1a0OwAAAADAUZeVRHnllVc0c+ZMPfPMM3ZfQBs3bqzt27dfseBwffPw8Lhom3OTGCX7kcycOVMZGRnW8d133+mrr76SJH355Zfq1q2bOnTooOXLl+vbb7/VM888c9U2VXVxcbE7t9lsKi4uvuh1Pj4+2rp1qxYsWKCQkBCNHDlS9evXv+AGrOdycnKSMcaurKy9WM6dP+nic15QUKDHHnvMbn4zMzP1/fffq2bNmg7F5uPjo3vuuUfjxo1TZmam7rjjDo0dO7bMtpGRkcrLy9Mvv/xilXl7eysiIkJhYWHl3sPZ2Vnjxo3TtGnT9PPPP5cZQ15eXqnyo0ePytfX166sW7duysjI0L59+3T8+HFNnjxZTk48qQgAAADgyrusbxr79u1Tw4YNS5W7ubk5tIElbgyRkZHy8PDQ2rVrHWofFBSk0NBQ7d27VxEREXZH9erVJUlffPGFwsLC9Mwzz6hx48aKjIzUDz/8YNePq6vrRffsiI6OVmZmpt3P48aNG+Xk5KRatWpd4kjL5uzsrLZt22rixInatm2b9u/fr08++UQ1a9aUq6urNm7caLUtLCzU5s2bVadOHUln9x85duyYXXwZGRkXvWe9evX0008/affu3WXWN2rUSFlZWaXmNyIiQq6urpc8RpvNptq1a5f7e33//ffLxcXlslaUdO3aVTExMRo9enSpulq1aumbb76xKysqKlJmZmapVTi+vr6KiIhQlSpVSJ4AAAAAuKqcL+ei6tWrKyMjo9RfmletWqXo6OgrEhiuf+7u7ho6dKiGDBkiV1dXxcbG6tChQ9qxY0e5j/iMHj1aycnJ8vX1VXx8vE6dOqUtW7boyJEjGjhwoCIjI3XgwAEtXLhQt912m1asWKGlS5fa9REeHq59+/ZZj7b4+PiUerVxt27dNGrUKCUmJiolJUWHDh1Sv3791L17d7uNby/X8uXLtXfvXrVs2VJ+fn5auXKliouLVatWLXl5ealPnz4aPHiw/P39Va1aNU2cOFEnTpxQUlKSJKlJkyby9PTUv/71LyUnJ2vTpk0ObWjbqlUrtWzZUl26dNHkyZMVERGhnTt3ymazKT4+XkOHDlXTpk3Vt29f9ezZU15eXsrKytLq1as1ffr0C/adkZGhUaNGqXv37qpTp45cXV316aefas6cORo6dGiZ11SrVk2TJk1S//79dfjwYfXo0UPVq1fX4cOH9dZbb0mS3Wq1802YMEFxcXGlygcOHKikpCTVrl1b7dq10/Hjx/XKK6/oyJEj6tmz50XnCQAAAACuisvZcGXmzJmmSpUqZuHChcbLy8ssWLDAjB071vo3/jqKiorM2LFjTVhYmHFxcTHVqlUzzz//vLWx7LffflvqmvT0dNOgQQPj6upq/Pz8TMuWLc2SJUus+sGDB5uAgADj7e1tEhISzJQpU+w2YT158qTp0qWLqVSpkpFkbUiq8zYj3bZtm7nrrruMu7u78ff3N7169TLHjh2z6s/fpNQYY/r3729atWp10XFv2LDBtGrVyvj5+RkPDw9Tr149s2jRIqv+t99+M/369TM33XSTcXNzM7Gxsebrr7+262Pp0qUmIiLCeHh4mI4dO5o333yz1MayZW2g++uvv5pHHnnEBAQEGHd3d3PLLbeY5cuXW/Vff/21adeunfH29jZeXl6mXr16Zty4cRcd06FDh0xycrK55ZZbjLe3t/Hx8TF169Y1L730kikqKrLanT/PxhizevVq0759e+Pv72+cnZ1NUFCQ6dSpk1m1apXV5tyNZc/1t7/9ze5zLJGenm5uvfVW4+PjY4KCgkyHDh1MZmamXZtzN5a9HI5uHgUAAADgxubodwObMedtzOCg9PR0paSkWBuChoaGavTo0dZf2gHgepefny9fX1/l5eWxySwAAADwF+bod4NLfpznzJkzevvttxUXF6du3brpxIkTKigoUOXKlX9XwAAAAAAAANezS96F0dnZWY8//rhOnjwpSfL09CSBghvOhg0b7F4TfP7xZ3QjjgkAAAAA/kiXtbHs7bffrm+//faCrzAF/swaN27s0Nty/kxuxDEBAAAAwB/pspIoTzzxhAYNGqSffvpJt956q7y8vOzq69Wrd0WCA64VDw8PRUREXOswrqgbcUwAAAAA8Ee6rI1lnZxKPwVks9lkjJHNZlNRUdEVCQ4AriY2lgUAAAAgXcWNZSVp3759lx0YAAAAAADAn9FlJVHYCwUAAAAAAPzVXFYSZd68eResf/jhhy8rGAAAAAAAgOvVZe2J4ufnZ3deWFioEydOyNXVVZ6enjp8+PAVCxAArhb2RAEAAAAgOf7doPQOsQ44cuSI3VFQUKBdu3apRYsWWrBgwWUHDQAAAAAAcL26rCRKWSIjIzVhwgT179//SnUJAAAAAABw3bhiSRRJcnZ21s8//3wluwQAAAAAALguXNbGsu+//77duTFGubm5mj59umJjY69IYAAAAAAAANeTy0qidOrUye7cZrMpMDBQrVu31qRJk65EXAAAAAAAANeVy0qiFBcXX+k4AAAAAAAArmuXtSfKmDFjdOLEiVLlv/32m8aMGfO7gwIAAAAAALje2Iwx5lIvqlChgnJzc1W5cmW78l9//VWVK1dWUVHRFQsQAK4WR98FDwAAAODG5uh3g8taiWKMkc1mK1WemZkpf3//y+kSAAAAAADgunZJe6L4+fnJZrPJZrMpKirKLpFSVFSkgoICPf7441c8SAAAAAAAgGvtkpIoU6dOlTFGjz76qEaPHi1fX1+rztXVVeHh4WrWrNkVDxIAAAAAAOBau6QkSmJioiSpevXqat68uVxcXK5KUAAAAAAAANeby3rFcatWrax/nzx5UqdPn7arZ4NGAAAAAABwo7msjWVPnDihvn37qnLlyvLy8pKfn5/dAQAAAAAAcKO5rCTK4MGD9cknn+i1116Tm5ubZs2apdGjRys0NFTz5s270jECAAAAAABcc5f1OM8HH3ygefPm6c4779QjjzyiO+64QxEREQoLC1N6erq6det2peMEAAAAAAC4pi5rJcrhw4dVo0YNSWf3Pzl8+LAkqUWLFvrss8+uXHQAAAAAAADXictKotSoUUP79u2TJNWuXVvvvPOOpLMrVCpVqnTFggMAAAAAALheXFYS5ZFHHlFmZqYkadiwYXr11Vfl7u6uAQMGaPDgwVc0QAAAAAAAgOuBzRhjfm8nP/zwg7755htFRESoXr16VyIuALjq8vPz5evrq7y8PF7NDgAAAPyFOfrd4LI2lj3XyZMnFRYWprCwsN/bFQAAAAAAwHXrsh7nKSoq0nPPPacqVarI29tbe/fulSSNGDFCs2fPvqIBAgAAAAAAXA8uK4kybtw4paWlaeLEiXJ1dbXKb7nlFs2aNeuKBQcAAAAAAHC9uKwkyrx58/Tmm2+qW7duqlChglVev3597dy584oFBwAAAAAAcL24rCTKf/7zH0VERJQqLy4uVmFh4e8OCgAAAAAA4HpzWUmUOnXqaMOGDaXK33vvPTVs2PB3B/VnY7PZtGzZsmsdBgAAAAAAuIouK4kycuRI9e3bVy+88IKKi4u1ZMkS9erVS+PGjdPIkSOvdIzXjZSUFDVo0KBUeW5urtq3b//HB3QDufPOO2Wz2WSz2eTu7q46depoxowZVn1aWppVf+7h7u5utenRo4dV7uLiourVq2vIkCE6efKk3b0+/fRTtW7dWv7+/vL09FRkZKQSExN1+vRpq01RUZGmTJmiunXryt3dXX5+fmrfvr02btxo11dJXPHx8XblR48elc1m0/r160uN9bHHHlOFChX07rvvlqor72fMEZcyh05OTgoJCVFCQoIOHDhQqq8dO3bogQceUGBgoNzc3BQVFaWRI0fqxIkTdu3Cw8M1depUu/OyPqcJEybYXbd48WLdeeed8vX1lbe3t+rVq6cxY8bo8OHDduMo67jzzjslSZmZmfr73/+uypUry93dXeHh4UpISNDBgwcva/4AAAAA4GIuKYmyd+9eGWN077336oMPPtCaNWvk5eWlkSNHKjs7Wx988IHatWt3tWK9bFf7EaPg4GC5ubld1XtcS+cmF66mXr16KTc3V1lZWXrggQf05JNPasGCBVZ9xYoVlZuba3f88MMPdn3Ex8crNzdXe/fu1ZQpU/TGG29o1KhRVn1WVpbi4+PVuHFjffbZZ9q+fbteeeUVubq6qqioSJJkjNGDDz6oMWPGqH///srOztb69etVtWpV3XnnnaVWHTk7O2vNmjVat27dRcd44sQJLVy4UEOGDNGcOXN+x2yVzdE5/M9//qPFixdr165d6tq1q10fX331lZo0aaLTp09rxYoV2r17t7WZdLt27S768zBmzJhSn1O/fv2s+meeeUYJCQm67bbb9OGHH+q7777TpEmTlJmZqfnz52vJkiXWdV9//bUkac2aNVbZkiVLdOjQIbVp00b+/v766KOPlJ2drdTUVIWGhur48eNXcEYBAAAA4BzmEjg5OZn//ve/1vkDDzxgfvnll0vp4oopKioyL7zwgqlZs6ZxdXU1VatWNWPHjjX79u0zkszChQtNy5YtjZubm0lNTTXGGDNz5kxTu3Zt4+bmZmrVqmVeffVVuz6HDBliIiMjjYeHh6levbp59tlnzenTp40xxqSmphpJdkdJv5LM0qVLrX62bdtm7rrrLuPu7m78/f1Nr169zLFjx6z6xMREc++995oXX3zRBAcHG39/f/PEE09Y97qYV1991URERBg3NzdTuXJl06VLF6vu5MmTpl+/fiYwMNC4ubmZ2NhY8/XXX1v1qampxtfX166/pUuXmnN/FEaNGmXq169vZs6cacLDw43NZjPGGHPkyBHTu3dvU7lyZePm5mZiYmLMBx98YF23YcMG06JFC+Pu7m5uvvlm069fP1NQUODQmFq1amX69+9vVxYZGWkefPDBcuM+X8m8nuu+++4zDRs2tM6nTJliwsPDL9jPwoULjSTz/vvvl6q77777TEBAgDWukrh69eplbr/9dqvdkSNHjCSzbt06u+vT0tJM06ZNzdGjR42np6c5cOCAXX3J3F+Oy5nDl19+2UgyeXl5xhhjiouLTZ06dUzjxo1NUVGRXduMjAxjs9nMhAkTrLKwsDAzZcqUcs/Pt2nTJiPJTJ06tcz6I0eO2J2X/D5/++23duVLly41zs7OprCwsNx7leXkyZMmLy/POn788Ue78QMAAAD4a8rLy3Pou8ElrUQxxtidf/jhh9fsr77Dhw/XhAkTNGLECGVlZentt99WUFCQVT9s2DBrFUFcXJzS09M1cuRIjRs3TtnZ2Xr++ec1YsQIzZ0717rGx8dHaWlpysrK0rRp0zRz5kxNmTJFkpSQkKBBgwYpJibG+ot4QkJCqbiOHz+uuLg4+fn5afPmzXr33Xe1Zs0a9e3b167dunXrlJOTo3Xr1mnu3LlKS0tTWlraRce9ZcsWJScna8yYMdq1a5dWrVqlli1bWvVDhgzR4sWLNXfuXG3dulURERGKi4vT4cOHL2l+9+zZo8WLF2vJkiXKyMhQcXGx9TjLW2+9paysLE2YMMF6O1NOTo7i4+PVpUsXbdu2TYsWLdLnn39eatyXwsPD43etgvnuu+/0xRdf2L2GOzg4WLm5ufrss8/Kve7tt99WVFSU7rnnnlJ1gwYN0q+//qrVq1fblaekpGj79u167733LhjT7Nmz9c9//lO+vr5q3769Q5/573GhOTx48KCWLl2qChUqWJ9jRkaGsrKyNHDgQDk52f/voX79+mrbtq3dypZLlZ6eLm9vbz3xxBNl1leqVMmhfoKDg3XmzBktXbq01P+XLmT8+PHy9fW1jqpVqzp8LQAAAABc0koUm81mtxLF29vb5OTkXE6S53fJz883bm5uZubMmaXqSv5yff5fumvWrGnefvttu7LnnnvONGvWrNz7vPjii+bWW2+1zstbJaBzVqK8+eabxs/Pz24FxooVK4yTk5O1aicxMdGEhYWZM2fOWG26du1qEhISyh/0/7d48WJTsWJFk5+fX6quoKDAuLi4mPT0dKvs9OnTJjQ01EycONEY4/hKFBcXF3Pw4EGr7KOPPjJOTk5m165dZcaVlJRkevfubVe2YcMG4+TkZH777beLjuvcVRRnzpwx8+fPN5LM9OnTrbglGS8vL7sjPj7e6iMxMdFUqFDBeHl5GTc3NyPJODk5mffee89qc+bMGdOjRw8jyQQHB5tOnTqZV155xS7bWLt27VIrWkocPnzYSDIvvPCCFVfJfA4bNsxERUWZwsLCMlei7N6927i4uJhDhw4ZY87Oe/Xq1U1xcbHV5kqtRLnYHHp6elorqpKTk60+SlbhnL/yo0RycrLx8PCwzstaieLq6lrqc/rss8+MMca0b9/e1KtXz+ExlbcSxRhj/vWvfxlnZ2fj7+9v4uPjzcSJEy+6Mo6VKAAAAADKclVWopRs7Hh+2R8tOztbp06dUps2bcpt07hxY+vfx48fV05OjpKSkuTt7W0dY8eOVU5OjtVu0aJFio2NVXBwsLy9vfXss8+WuenmxWKrX7++vLy8rLLY2FgVFxdr165dVllMTIz1139JCgkJcWhDzHbt2iksLEw1atRQ9+7dlZ6ebm32mZOTo8LCQsXGxlrtXVxcdPvttys7O/uSxhEWFqbAwEDrPCMjQzfffLOioqLKbJ+Zmam0tDS7+Y2Li1NxcbH27dvn0D1nzJghb29veXh4qFevXhowYID69Olj1fv4+CgjI8PumDVrll0fd911lzIyMrRp0yYlJibqkUceUZcuXaz6ChUqKDU1VT/99JMmTpyoKlWq6Pnnn7dWGJUwl7C6ocTQoUN16NChcvc6mTNnjuLi4nTTTTdJkjp06KC8vDx98sknl3yv8jg6h1u2bNGkSZPUqFEjjRs3rlQ/lzP+EoMHDy71OZX8Pv6efs83btw4/fLLL3r99dcVExOj119/XbVr19b27dvLvcbNzU0VK1a0OwAAAADAUc6X0tgYox49elibqJ48eVKPP/64XcJAkpYsWXLlIiyDh4fHRducG1NBQYEkaebMmWrSpIldu5JExpdffqlu3bpp9OjRiouLk6+vrxYuXKhJkyZdwcj/j4uLi925zWZTcXHxRa/z8fHR1q1btX79en388ccaOXKkUlJStHnzZofu6+TkVOqLbFkb757/mV5szgsKCvTYY48pOTm5VF21atUciq1bt2565pln5OHhoZCQkFKPkzg5OSkiIuKCfXh5eVlt5syZo/r162v27NlKSkqya1elShV1795d3bt313PPPaeoqCi9/vrrGj16tKKiospNOpWUl5VMqlSpkoYPH67Ro0erY8eOdnVFRUWaO3eufvnlFzk7O9uVz5kz54IJwUtxKXMYHR2tnJwc9enTR/Pnz7cbV3Z2dpmvK8/Ozi43kVbipptuKvdzioqK0ueff67CwsJSvwOXIyAgQF27dlXXrl31/PPPq2HDhnrppZfsHtMDAAAAgCvlklaiJCYmqnLlytZ+Av/85z8VGhpqt8eAr6/v1YrVEhkZKQ8PD61du9ah9kFBQQoNDdXevXsVERFhd1SvXl2S9MUXXygsLEzPPPOMGjdurMjIyFJvfjn3DS7liY6OVmZmpt1eMRs3bpSTk5Nq1ap1iSMtm7Ozs9q2bauJEydq27Zt2r9/vz755BPVrFlTrq6udq/hLSws1ObNm1WnTh1JUmBgoI4dO2YXX0ZGxkXvWa9ePf3000/avXt3mfWNGjVSVlZWqfmNiIiw25PkQnx9fRUREaEqVaqU+vJ/OZycnPSvf/1Lzz77rH777bdy2/n5+SkkJMSakwcffFDff/+9Pvjgg1JtJ02apICAgHLfQtWvXz85OTlp2rRpduUrV67UsWPH9O2339qt0FiwYIGWLFmio0ePXv5Az3Gpczhs2DAtWrRIW7dulSQ1aNBAtWvX1pQpU0ol9TIzM7VmzRo99NBDlx3fP/7xDxUUFNi9evlcv2ceXF1dVbNmTd7OAwAAAOCquaSVKKmpqVcrjkvi7u6uoUOHasiQIXJ1dVVsbKwOHTqkHTt2lPsX/dGjRys5OVm+vr6Kj4/XqVOntGXLFh05ckQDBw5UZGSkDhw4oIULF+q2227TihUrtHTpUrs+wsPDtW/fPuvRFh8fn1KvNu7WrZtGjRqlxMREpaSk6NChQ+rXr5+6d+9ut/Ht5Vq+fLn27t2rli1bys/PTytXrlRxcbFq1aolLy8v9enTR4MHD5a/v7+qVaumiRMn6sSJE9ZKjCZNmsjT01P/+te/lJycrE2bNjm0uWmrVq3UsmVLdenSRZMnT1ZERIR27twpm82m+Ph4DR06VE2bNlXfvn3Vs2dPeXl5KSsrS6tXr9b06dN/97ilsyuhfvnll1LllStXLjdh0LVrVw0ePFivvvqqnn76ab3xxhvKyMhQ586dVbNmTZ08eVLz5s3Tjh079Morr0g6m0R59913lZiYqBdffFFt2rRRfn6+Xn31Vb3//vt69913S63UKeHu7q7Ro0frySeftCufPXu27r77btWvX9+uvE6dOhowYIDS09Ota3777bdSiS0fHx/VrFnToXm6FFWrVlXnzp01cuRILV++XDabTbNnz1a7du3UpUsXDR8+XMHBwdq0aZMGDRqkZs2a6amnnrpgn8eOHSv1OXl6eqpixYpq0qSJhgwZokGDBuk///mPOnfurNDQUO3Zs0evv/66WrRoof79+1807uXLl2vhwoV68MEHFRUVJWOMPvjgA61cufK6+f8UAAAAgBvQ1d6c5WopKioyY8eONWFhYcbFxcVUq1bNPP/88xfciDI9Pd00aNDAuLq6Gj8/P9OyZUuzZMkSq37w4MEmICDAeHt7m4SEBDNlyhS7TVhPnjxpunTpYipVqnRFXnF8rv79+5tWrVpddNwbNmwwrVq1Mn5+fsbDw8PUq1fPLFq0yKr/7bffTL9+/cxNN91U5iuOjTm7oWlERITx8PAwHTt2NG+++WaZrzg+36+//moeeeQRExAQYNzd3c0tt9xili9fbtV//fXXpl27dsbb29t4eXmZevXqmXHjxl10TMaU/Xrec5X1iumSIzc31xhT9rwaY8z48eNNYGCgKSgoMFu3bjX//Oc/TfXq1Y2bm5sJCAgwLVu2LPU648LCQvPiiy+amJgY4+rqaipWrGji4uLM559/Xiqu8zfqPXPmjKlTp461sewvv/xinJ2dzTvvvFPm2Pr06WO9hnnUqFFljrFNmzYXmUHH5rCs10R/+eWXRpLZtGmTVbZt2zbTpUsX4+/vb1xcXEzNmjXNs88+a44fP253bdWqVc0rr7xinYeFhZUZ/2OPPWZ33aJFi0zLli2Nj4+P9bMyZswYh19xnJOTY3r16mWioqKMh4eHqVSpkrntttus30lHObp5FAAAAIAbm6PfDWzGXMGdHgH8ZRQVFalixYqaO3eu7r///msdzmXJz8+Xr6+v8vLy2GQWAAAA+Atz9LvBJT3OAwCS9NNPP2nevHkqKipSixYtrnU4AAAAAPCHIIlyndmwYYPat29fbn3Jm4b+TG7EMf3Rrrc5bNCggQICAjR//nwFBwf/ofcGAAAAgGuFJMp1pnHjxg69LefP5EYc0x/tepvD//3vf9c6BAAAAAD4w7EnCoC/LPZEAQAAACA5/t2g7PfCAgAAAAAAwA5JFAAAAAAAAAeQRAEAAAAAAHAASRQAAAAAAAAHkEQBAAAAAABwAEkUAAAAAAAAB5BEAQAAAAAAcABJFAAAAAAAAAeQRAEAAAAAAHAASRQAAAAAAAAHkEQBAAAAAABwAEkUAAAAAAAAB5BEAQAAAAAAcABJFAAAAAAAAAeQRAEAAAAAAHAASRQAAAAAAAAHkEQBAAAAAABwAEkUAAAAAAAAB5BEAQAAAAAAcABJFAAAAAAAAAeQRAEAAAAAAHAASRQAAAAAAAAHkEQBAAAAAABwAEkUAAAAAAAAB5BEAQAAAAAAcABJFAAAAAAAAAeQRAEAAAAAAHAASRQAAAAAAAAHkEQBAAAAAABwAEkUAAAAAAAAB5BE+f9sNpuWLVt2rcMAAAAAAADXqb9cEiUlJUUNGjQoVZ6bm6v27dv/8QHdQPbt26d//OMfCg0Nlbu7u26++Wbde++92rlzp9WmrGTVunXr1LFjRwUGBsrd3V01a9ZUQkKCPvvsM6vN+vXrZbPZFBMTo6KiIrvrK1WqpLS0tAveQ5J69OihTp06Wed33nmnbDabbDab3N3dVadOHc2YMcPh8Z4+fVovvviiGjVqJC8vL/n6+qp+/fp69tln9fPPP9u1/fHHH/Xoo48qNDRUrq6uCgsLU//+/fXrr7+W6nfHjh164IEHFBgYKDc3N0VFRWnkyJE6ceJEqbbffvutEhISFBISIjc3N4WFhaljx4764IMPZIyRJO3fv182m00ZGRlljiMtLc2ah3MPd3d3h+dCkr788ktVqFBBd999d6m6ks/v6NGjperCw8M1derUcuM499i/f3+5v8MXGycAAAAA/F5/miRKYWHhVe0/ODhYbm5uV/Ue19Lp06evav+FhYVq166d8vLytGTJEu3atUuLFi1S3bp1y/ziXGLGjBlq06aNAgICtGjRIu3atUtLly5V8+bNNWDAgFLt9+7dq3nz5l2xuHv16qXc3FxlZWXpgQce0JNPPqkFCxZc9LpTp06pXbt2ev7559WjRw999tln2r59u15++WX973//0yuvvGIXc+PGjfX9999rwYIF2rNnj15//XWtXbtWzZo10+HDh622X331lZo0aaLTp09rxYoV2r17t8aNG6e0tDS1a9fO7nP897//raZNm6qgoEBz585Vdna2Vq1apc6dO+vZZ59VXl6ew/NQsWJF5ebm2h0//PCDw9dL0uzZs9WvXz999tlnpZJIjkhISLC7f7NmzazPp+SoWrXqJfcLAAAAAFeMuYaKiorMCy+8YGrWrGlcXV1N1apVzdixY82+ffuMJLNw4ULTsmVL4+bmZlJTU40xxsycOdPUrl3buLm5mVq1aplXX33Vrs8hQ4aYyMhI4+HhYapXr26effZZc/r0aWOMMampqUaS3VHSrySzdOlSq59t27aZu+66y7i7uxt/f3/Tq1cvc+zYMas+MTHR3HvvvebFF180wcHBxt/f3zzxxBPWvS7m1VdfNREREcbNzc1UrlzZdOnSxao7efKk6devnwkMDDRubm4mNjbWfP3111Z9amqq8fX1tetv6dKl5tyPc9SoUaZ+/fpm5syZJjw83NhsNmOMMUeOHDG9e/c2lStXNm5ubiYmJsZ88MEH1nUbNmwwLVq0MO7u7ubmm282/fr1MwUFBRcdz7fffmskmf3791+w3bnz/MMPPxgXFxczYMCAMtsWFxdb/163bp2RZAYPHmyqVq1qTp48adX5+vpan+P59zhXyWdWolWrVqZ///52bSIjI82DDz54wTEYY8z48eONk5OT2bp160Vjj4+PNzfffLM5ceKEXZvc3Fzj6elpHn/8ceuaOnXqmMaNG5uioiK7thkZGcZms5kJEyYYY4wpKCgwAQEBpnPnzuXGWBJDye/Tt99+W2a7sn6eLtWxY8eMt7e32blzp0lISDDjxo2zqy/5/I4cOVLq2rCwMDNlypRS5WV9Psb838/2+S42zrLk5eUZSSYvL8/hawAAAADceBz9bnBNV6IMHz5cEyZM0IgRI5SVlaW3335bQUFBVv2wYcPUv39/ZWdnKy4uTunp6Ro5cqTGjRun7OxsPf/88xoxYoTmzp1rXePj46O0tDRlZWVp2rRpmjlzpqZMmSLp7F+6Bw0apJiYGOsv2wkJCaXiOn78uOLi4uTn56fNmzfr3Xff1Zo1a9S3b1+7duvWrVNOTo7WrVunuXPnKi0tze6xkvJs2bJFycnJGjNmjHbt2qVVq1apZcuWVv2QIUO0ePFizZ07V1u3blVERITi4uLsViw4Ys+ePVq8eLGWLFmijIwMFRcXq3379tq4caPeeustZWVlacKECapQoYIkKScnR/Hx8erSpYu2bdumRYsW6fPPPy817rIEBgbKyclJ7733XqnHbcqzePFiFRYWasiQIWXW22y2UmVPPfWUzpw5Y7fS40ry8PBwaNXOggUL1K5dOzVs2LDM+pLYDx8+rI8++khPPPGEPDw87NoEBwerW7duWrRokYwxysjIUFZWlgYOHCgnJ/tfzfr166tt27bWKpmPP/5Yv/76a7lzd24Mf4R33nlHtWvXVq1atfTPf/5Tc+bMsR4nup6cOnVK+fn5dgcAAAAAOOqaJVGOHTumadOmaeLEiUpMTFTNmjXVokUL9ezZ02rz1FNP6b777lP16tUVEhKiUaNGadKkSVbZfffdpwEDBuiNN96wrnn22WfVvHlzhYeH65577tHTTz+td955R9LZL8je3t5ydnZWcHCwgoODS32xlaS3335bJ0+e1Lx583TLLbeodevWmj59uubPn6///ve/Vjs/Pz9Nnz5dtWvXVseOHXX33Xdr7dq1Fx37gQMH5OXlpY4dOyosLEwNGzZUcnKypLMJnNdee00vvvii2rdvrzp16mjmzJny8PDQ7NmzL2mOT58+rXnz5qlhw4aqV6+e1qxZo6+//lpLlixRu3btVKNGDXXs2NHaC2b8+PHq1q2bnnrqKUVGRqp58+Z6+eWXNW/ePJ08efKC96pSpYpefvlljRw5Un5+fmrdurWee+457d27t9xrdu/erYoVKyo4ONgqW7x4sby9va1j+/btdtd4enpq1KhRGj9+/CU9rnIxRUVFeuutt7Rt2za1bt36ou13796tWrVq2ZV17tzZirt58+aSpO+//17GGEVHR5fZT3R0tI4cOaJDhw5p9+7dVll5bUvalPz33Bg2b95sN3fLly+/6DhK5OXl2V3r7e19SXsEzZ49W//85z8lSfHx8crLy9Onn37q8PWXavv27aXijYmJueh148ePl6+vr3XweBAAAACAS3HNkijZ2dk6deqU2rRpU26bxo0bW/8+fvy4cnJylJSUZPfFaezYscrJybHaLVq0SLGxsQoODpa3t7eeffZZHThw4JJjq1+/vry8vKyy2NhYFRcXa9euXVZZTEyMtYpDkkJCQnTw4MGL9t+uXTuFhYWpRo0a6t69u9LT061NQ3NyclRYWKjY2FirvYuLi26//XZlZ2df0jjCwsIUGBhonWdkZOjmm29WVFRUme0zMzOVlpZmN79xcXEqLi7Wvn37Lnq/J598Ur/88ovS09PVrFkzvfvuu4qJidHq1avLveb81RJxcXHKyMjQihUrdPz48TJXtSQlJSkgIEAvvPDCRWO6mBkzZsjb21seHh7q1auXBgwYoD59+lx2XxkZGXr00UdLbQJ7KasyLncFR7169ZSRkaGMjAwdP35cZ86ccfhaHx8f69qSY9asWQ5du2vXLn399dd66KGHJEnOzs5KSEi45KTfpahVq1apeFeuXHnR64YPH668vDzr+PHHH69ajAAAAABuPM7X6sZlrQA537lJjIKCAknSzJkz1aRJE7t2JYmML7/8Ut26ddPo0aMVFxcnX19fLVy4UJMmTbqCkf8fFxcXu3Obzabi4uKLXufj46OtW7dq/fr1+vjjjzVy5EilpKRo8+bNDt3Xycmp1BftsjbePXf+pIvPeUFBgR577DFrVcy5qlWr5lBsPj4+uueee3TPPfdo7NixiouL09ixY9WuXbtSbSMjI5WXl6dffvnFWo3i7e2tiIgIOTuX/6Pp7OyscePGqUePHmU+auTj41PmKpWjR4/K19fXrqxbt2565pln5OHhoZCQkFKP0ZQnMjLSLqEmnU2iSZK/v79VFhERIZvNpuzsbHXu3LlUP9nZ2fLz81NgYKCV3MrOzi7zMaHs7GyrTWRkpKSzCYymTZtKktzc3BQREeFQ/OdzcnK67Gtnz56tM2fOKDQ01CozxsjNzU3Tp0+Xr6+vKlasKOnsipdKlSrZXV/W53Ixrq6upeK90M9MCTc3txt6A2kAAAAAV9c1W4kSGRkpDw8Phx5/kaSgoCCFhoZq7969ioiIsDuqV68uSfriiy8UFhamZ555Ro0bN1ZkZGSpN4y4urpedM+O6OhoZWZm6vjx41bZxo0b5eTkVOoRjsvl7Oystm3bauLEidq2bZv279+vTz75RDVr1pSrq6s2btxotS0sLNTmzZtVp04dSWf3Hzl27JhdfI681rVevXr66aefrEdBzteoUSNlZWWVmt+IiAi5urpe8hhtNptq165tF+e57r//frm4uFzWipKuXbsqJiZGo0ePLlVXq1YtffPNN3ZlRUVFyszMLLUKx9fXVxEREapSpYrDCRRJeuihh7R69Wp9++23F2wXEBCgdu3aacaMGfrtt9/s6kpW7SQkJMhms6lBgwaqXbu2pkyZUioZl5mZqTVr1lirPf72t7/J39//iqzG+T3OnDmjefPmadKkSXarQjIzMxUaGmrt4RIZGSknJ6dSn8vevXuVl5dX7uooAAAAALieXLOVKO7u7ho6dKiGDBkiV1dXxcbG6tChQ9qxY0e5j/iMHj1aycnJ8vX1VXx8vE6dOqUtW7boyJEjGjhwoCIjI3XgwAEtXLhQt912m1asWKGlS5fa9REeHq59+/ZZj7b4+PiU+st0t27dNGrUKCUmJiolJUWHDh1Sv3791L17d7uNby/X8uXLtXfvXrVs2VJ+fn5auXKliouLVatWLXl5ealPnz4aPHiw/P39Va1aNU2cOFEnTpxQUlKSJKlJkyby9PTUv/71LyUnJ2vTpk0ObWjbqlUrtWzZUl26dNHkyZMVERGhnTt3ymazKT4+XkOHDlXTpk3Vt29f9ezZU15eXsrKytLq1as1ffr0C/adkZGhUaNGqXv37qpTp45cXV316aefas6cORo6dGiZ11SrVk2TJk1S//79dfjwYfXo0UPVq1fX4cOH9dZbb0mS3eNS55swYYLi4uJKlQ8cOFBJSUmqXbu22rVrp+PHj+uVV17RkSNH7Pbc+T0GDBigFStWqE2bNho1apTuuOMO+fn5affu3frwww/t4p4+fbqaN29urcqpXr26duzYocGDB6tKlSoaN26cpLNJp9mzZ6tdu3bq0qWLhg8fruDgYG3atEmDBg1Ss2bN9NRTT0k6u2Jn1qxZSkhI0N13363k5GRFRkaqoKBAq1atKnPuzl85I8naR8QYo19++aVUfeXKlS+YXFq+fLmOHDmipKSkUqtJunTpotmzZ+vxxx+Xj4+PevbsqUGDBsnZ2Vl169bVjz/+aP3MlewhAwAAAADXtav8lqALKioqMmPHjjVhYWHGxcXFVKtWzTz//PMXfFVpenq6adCggXF1dTV+fn6mZcuWZsmSJVb94MGDTUBAgPH29jYJCQlmypQpdq9vPXnypOnSpYupVKnSFXnF8bn69+9vWrVqddFxb9iwwbRq1cr4+fkZDw8PU69ePbNo0SKr/rfffjP9+vUzN910U5mvODbm7CuNIyIijIeHh+nYsaN58803y3zF8fl+/fVX88gjj5iAgADj7u5ubrnlFrN8+XKr/uuvvzbt2rUz3t7exsvLy9SrV6/U62rLcujQIZOcnGxuueUW4+3tbXx8fEzdunXNSy+9ZPe63vPn2RhjVq9ebdq3b2/8/f2Ns7OzCQoKMp06dTKrVq2y2pT3ity//e1vdp9jifT0dHPrrbcaHx8fExQUZDp06GAyMzPt2pT3Cl1HnTx50kyYMMHUr1/feHh4GDc3N1O7dm0zYMAAc+DAAbu2+/fvN4mJiSYoKMi4uLiYqlWrmn79+pn//e9/pfrdtm2b6dKli/H39zcuLi6mZs2a5tlnnzXHjx8v1Xbz5s3m/vvvN5UrVzbOzs4mICDAxMXFmYULF5Z6xXFZx48//ljmq79Ljtzc3AvOQceOHU2HDh3KrNu0aZORZM37b7/9ZkaNGmVq165tvYK8d+/e5tChQ2VezyuOAQAAAPxRHP1uYDPmOnwPKQD8AfLz8+Xr66u8vDxr3xYAAAAAfz2Ofje4ZnuiAAAAAAAA/JmQRLkKNmzYYPea4POPP6MbcUwXEhMTU+5Y09PTr3V4f5gDBw5c8HO/1NeHAwAAAMCf2TXbWPZG1rhxY4felvNnciOO6UJWrlxZ5mujJV2RzYX/LEJDQy/4uZ/7WmMAAAAAuNGxJwqAvyz2RAEAAAAgsScKAAAAAADAFUUSBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRcNnCw8M1derUC7ax2WxatmzZ77pPjx491KlTJ4faGmPUu3dv+fv7y2azKSMj43fd+3pxKXNwKa7E5/N7paSkqEGDBhdt58jPGwAAAABcTc7XOgDgSlq1apXS0tK0fv161ahRQzfddNO1Dum6kJKSomXLlpVKKuXm5srPz+/aBHWJNm/eLC8vr2sdBgAAAIC/MJIouKHk5OQoJCREzZs3v+w+jDEqKiqSs/O1//UoKiqSzWa7av0HBwdftb6vlNOnT8vV1VWBgYHXOhQAAAAAf3E8znODKi4u1vjx41W9enV5eHiofv36eu+99yRJ69evl81m09q1a9W4cWN5enqqefPm2rVrl3V9Tk6O7r33XgUFBcnb21u33Xab1qxZU+o+x44d00MPPSQvLy9VqVJFr7766gXj+vHHH/XAAw+oUqVK8vf317333qv9+/db9UVFRRo4cKAqVaqkgIAADRkyRMYYh8bco0cP9evXTwcOHJDNZlN4eLgk6dSpU0pOTlblypXl7u6uFi1aaPPmzdZ1JfPx4Ycf6tZbb5Wbm5s+//zzC96r5BGUOXPmqFq1avL29tYTTzyhoqIiTZw4UcHBwapcubLGjRtnd93kyZNVt25deXl5qWrVqnriiSdUUFBg1aelpalSpUp6//33VadOHbm5uenAgQOl7r9582YFBgbqhRdekCQdPXpUPXv2VGBgoCpWrKjWrVsrMzPT6nP06NHKzMyUzWaTzWZTWlqaJPvHefbv3y+bzaYlS5borrvukqenp+rXr68vv/zS7t4zZ85U1apV5enpqc6dO2vy5MmqVKnSRT+fEhMmTFBQUJB8fHyUlJSkkydP2tWXPLo0btw4hYaGqlatWpJKP85js9n02muvqX379vLw8FCNGjWsn3EAAAAAuBpIotygxo8fr3nz5un111/Xjh07NGDAAP3zn//Up59+arV55plnNGnSJG3ZskXOzs569NFHrbqCggJ16NBBa9eu1bfffqv4+Hjdc889pb7Qv/jii6pfv76+/fZbDRs2TP3799fq1avLjKmwsFBxcXHy8fHRhg0btHHjRnl7eys+Pl6nT5+WJE2aNElpaWmaM2eOPv/8cx0+fFhLly51aMzTpk3TmDFjdPPNNys3N9dKlAwZMkSLFy/W3LlztXXrVkVERCguLk6HDx+2u37YsGGaMGGCsrOzVa9evYveLycnRx9++KFWrVqlBQsWaPbs2br77rv1008/6dNPP9ULL7ygZ599Vps2bbKucXJy0ssvv6wdO3Zo7ty5+uSTTzRkyBC7fk+cOKEXXnhBs2bN0o4dO1S5cmW7+k8++UTt2rXTuHHjNHToUElS165ddfDgQX344Yf65ptv1KhRI7Vp00aHDx9WQkKCBg0apJiYGOXm5io3N1cJCQnljuuZZ57R008/rYyMDEVFRemhhx7SmTNnJEkbN27U448/rv79+ysjI8OKw1HvvPOOUlJS9Pzzz2vLli0KCQnRjBkzSrVbu3atdu3apdWrV2v58uXl9jdixAh16dJFmZmZ6tatmx588EFlZ2eX2/7UqVPKz8+3OwAAAADAYQY3nJMnTxpPT0/zxRdf2JUnJSWZhx56yKxbt85IMmvWrLHqVqxYYSSZ3377rdx+Y2JizCuvvGKdh4WFmfj4eLs2CQkJpn379ta5JLN06VJjjDHz5883tWrVMsXFxVb9qVOnjIeHh/noo4+MMcaEhISYiRMnWvWFhYXm5ptvNvfee69DY58yZYoJCwuzzgsKCoyLi4tJT0+3yk6fPm1CQ0Ot+5TMx7Jlyxy6hzHGjBo1ynh6epr8/HyrLC4uzoSHh5uioiKrrFatWmb8+PHl9vPuu++agIAA6zw1NdVIMhkZGXbtEhMTzb333muWLFlivL29zcKFC626DRs2mIoVK5qTJ0/aXVOzZk3zxhtvWPHWr1+/1P3P/Xz27dtnJJlZs2ZZ9Tt27DCSTHZ2tjHm7Od799132/XRrVs34+vrW+4Yz9WsWTPzxBNP2JU1adLELrbExEQTFBRkTp06ZdcuLCzMTJkyxS72xx9/vFRfffr0Kff+o0aNMpJKHXl5eQ7FDwAAAODGlJeX59B3A1ai3ID27NmjEydOqF27dvL29raOefPmKScnx2p37mqLkJAQSdLBgwclnV2J8vTTTys6OlqVKlWSt7e3srOzS61EadasWanz8lYCZGZmas+ePfLx8bFi8vf318mTJ5WTk6O8vDzl5uaqSZMm1jXOzs5q3LjxZc9FTk6OCgsLFRsba5W5uLjo9ttvLxXnpd4nPDxcPj4+1nlQUJDq1KkjJycnu7KSOZWkNWvWqE2bNqpSpYp8fHzUvXt3/frrrzpx4oTVxtXVtcyVMJs2bVLXrl01f/58u5UkmZmZKigoUEBAgN3nvW/fPrvP21EX+rnYtWuXbr/9drv2559fSHZ2tt3nK5X+GZKkunXrytXV9aL9XcrPnyQNHz5ceXl51vHjjz86GDkAAAAAsLHsDalkj40VK1aoSpUqdnVubm7WF2sXFxervGTz0uLiYknS008/rdWrV+ull15SRESEPDw8dP/991uP3VxuXLfeeqvS09NL1V0Pm4Ze6ptfzp0/6ewcllVWMqf79+9Xx44d1adPH40bN07+/v76/PPPlZSUpNOnT8vT01OS5OHhUeZmsjVr1lRAQIDmzJmju+++27pXQUGBQkJCtH79+lLXXMpeJWWN6/yfiz/K1XoLj5ubm9zc3K5K3wAAAABufKxEuQGduyFpRESE3VG1alWH+ti4caN69Oihzp07q27dugoODrbbALbEV199Veo8Ojq6zD4bNWqk77//XpUrVy4Vl6+vr3x9fRUSEmK3h8iZM2f0zTffOD7489SsWVOurq7auHGjVVZYWKjNmzerTp06l93v5fjmm29UXFysSZMmqWnTpoqKitLPP//s8PU33XSTPvnkE+3Zs0cPPPCACgsLJZ2d119++UXOzs6l5rXkFc+urq4qKir63WOoVauW3aa8kkqdX0h0dLTd5yuV/hm6FJfy8wcAAAAAvxdJlBuQj4+Pnn76aQ0YMEBz585VTk6Otm7dqldeeUVz5851qI/IyEgtWbJEGRkZyszM1D/+8Y8yVyNs3LhREydO1O7du/Xqq6/q3XffVf/+/cvss1u3brrpppt07733asOGDdq3b5/Wr1+v5ORk/fTTT5Kk/v37a8KECVq2bJl27typJ554QkePHr3sufDy8lKfPn00ePBgrVq1SllZWerVq5dOnDihpKSky+73ckRERKiwsFCvvPKK9u7dq/nz5+v111+/pD4qV66sTz75RDt37rQ2fG3btq2aNWumTp066eOPP9b+/fv1xRdf6JlnntGWLVsknX30aN++fcrIyND//vc/nTp16rLG0K9fP61cuVKTJ0/W999/rzfeeEMffvihw69h7t+/v+bMmaPU1FTt3r1bo0aN0o4dOy4rFkl69913NWfOHKuvr7/+Wn379r3s/gAAAADgQkii3KCee+45jRgxQuPHj1d0dLTi4+O1YsUKVa9e3aHrJ0+eLD8/PzVv3lz33HOP4uLi1KhRo1LtBg0apC1btqhhw4YaO3asJk+erLi4uDL79PT01GeffaZq1arpvvvuU3R0tPWK24oVK1r9de/eXYmJiWrWrJl8fHzUuXPny58InX2lbpcuXdS9e3c1atRIe/bs0UcffSQ/P7/f1e+lql+/viZPnqwXXnhBt9xyi9LT0zV+/PhL7ic4OFiffPKJtm/frm7duqm4uFgrV65Uy5Yt9cgjjygqKkoPPvigfvjhBwUFBUmSunTpovj4eN11110KDAzUggULLmsMsbGxev311zV58mTVr19fq1at0oABA+Tu7u7Q9QkJCRoxYoSGDBmiW2+9VT/88IP69OlzWbFI0ujRo7Vw4ULVq1dP8+bN04IFC/7wFUYAAAAA/jpsxhhzrYMA8OfVq1cv7dy5Uxs2bPhD72uz2bR06VJ16tTpsvvIz8+Xr6+v8vLyrEQeAAAAgL8eR78bsLEsgEvy0ksvqV27dvLy8tKHH36ouXPnasaMGdc6LAAAAAC46nicB38aBw4csHuF7/nH+a9f/j1iYmLKvU9Zbxf6K/n666/Vrl071a1bV6+//rpefvll9ezZUxLzBgAAAODGxuM8+NM4c+ZMmW8IKhEeHi5n5yuzuOqHH36w3n5zvqCgIPn4+FyR+9xo/mzzxuM8AAAAACQe58ENqOQVvn+EsLCwP+Q+NxrmDQAAAMCNjMd5AAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRAAAAAAAAHEASBQAAAAAAwAEkUQAAAAAAABxAEgUAAAAAAMABJFEAAAAAAAAcQBIFAAAAAADAASRRcEXZbDYtW7bsWocBAAAAAMAVRxIFlyUlJUUNGjQoVZ6bm6v27dv/8QHdYHbs2KEHHnhAgYGBcnNzU1RUlEaOHKkTJ07YtQsPD5fNZpPNZpOnp6fq1q2rWbNmlerPGKOZM2eqWbNmqlixory9vRUTE6P+/ftrz549DsV0/meekpIim82mxx9/3K5dRkaGbDab9u/fr2+++UY2m01fffVVmX22adNG9913nySpR48e6tSpkyRZYyrvSElJ0f79+8utL+9+AAAAAPB7kET5iyksLLyq/QcHB8vNze2q3uNaOn369FW/x1dffaUmTZro9OnTWrFihXbv3q1x48YpLS1N7dq1KxXDmDFjlJubq++++07//Oc/1atXL3344YdWvTFG//jHP5ScnKwOHTro448/VlZWlmbPni13d3eNHTv2smN1d3fX7Nmz9f3335dZf+utt6p+/fqaM2dOqbr9+/dr3bp1SkpKKlWXm5trHVOnTlXFihXtyp5++mmr7Zo1a+zqcnNzdeutt172mAAAAACgPCRRbgDFxcWaOHGiIiIi5ObmpmrVqmncuHHWX+oXLVqkVq1ayd3dXenp6ZKkWbNmKTo6Wu7u7qpdu7ZmzJhh1+fQoUMVFRUlT09P1ahRQyNGjLASMGlpaRo9erQyMzOtv/ynpaVJKv04z/bt29W6dWt5eHgoICBAvXv3VkFBgVVfsvrgpZdeUkhIiAICAvTkk086nOyZMWOGIiMj5e7urqCgIN1///1W3alTp5ScnKzKlSvL3d1dLVq00ObNm636tLQ0VapUya6/ZcuWyWazWeclqy9mzZql6tWry93dXZJ09OhRPfbYYwoKCpK7u7tuueUWLV++3Lru888/1x133CEPDw9VrVpVycnJOn78+EXHY4xRUlKSoqOjtWTJEt1+++0KCwtT165d9cEHH+jLL7/UlClT7K7x8fFRcHCwatSooaFDh8rf31+rV6+26hctWqSFCxdq0aJFGjFihJo2bapq1aqpadOmeuGFF5SamurQXJelVq1auuuuu/TMM8+U2yYpKUmLFi0qtYomLS1NISEhio+PL3VNcHCwdfj6+spms9mVeXt7W20DAgLs6oKDg+Xi4nLZYwIAAACA8pBEuQEMHz5cEyZM0IgRI5SVlaW3335bQUFBVv2wYcPUv39/ZWdnKy4uTunp6Ro5cqTGjRun7OxsPf/88xoxYoTmzp1rXePj46O0tDRlZWVp2rRpmjlzpvXlPSEhQYMGDVJMTIz1l/+EhIRScR0/flxxcXHy8/PT5s2b9e6772rNmjXq27evXbt169YpJydH69at09y5c5WWlmYlZS5ky5YtSk5O1pgxY7Rr1y6tWrVKLVu2tOqHDBmixYsXa+7cudq6dasiIiIUFxenw4cPX9L87tmzR4sXL9aSJUuUkZGh4uJitW/fXhs3btRbb72lrKwsTZgwQRUqVJAk5eTkKD4+Xl26dNG2bdu0aNEiff7556XGXZaMjAxlZWVp4MCBcnKy//WsX7++2rZtqwULFpR5bXFxsRYvXqwjR47o/7V351FV3Hcfxz8XZEeugoiisiiLSwF3gsS4xy1GG+vCsYpLtEndiEFba8S10aPRqM1aTYWeJ0pilKRposRqJMZ9I9FKXahLWnGJVRDySBTm+SMPU68guVH0urxf58w5zPxm+c7cH3ju1+/vN66urub21atXKzIyUk8//XSFx92YNLod8+fP19q1a7V3794K24cMGaLi4mJ98MEH5jbDMJSWlqbhw4ebz+1eKC4uVkFBgc0CAAAAAHYz8EArKCgw3NzcjOXLl5drO3HihCHJWLJkic32Ro0aGatWrbLZNmfOHCMuLu6W11m4cKHRqlUrc33GjBlGTExMuf0kGRkZGYZhGMYf//hHo2bNmkZhYaHZ/sknnxhOTk7G2bNnDcMwjMTERCM4ONi4fv26uc+AAQOMQYMG3fqm/9/atWsNHx8fo6CgoFxbYWGh4eLiYrz77rvmtu+//94IDAw0FixYYBiGYaxcudKwWq02x2VkZBg3/lrMmDHDcHFxMc6fP29uy8zMNJycnIwjR45UGNeoUaOMMWPG2GzbunWr4eTkZPzv//5vpfeUnp5uSDIOHDhQYfuECRMMDw8Pcz04ONhwdXU1vLy8jGrVqhmSDF9fX+PYsWPmPo0bNzaefvppm/NMnDjR8PLyMry8vIx69epVGlOZmz/zG9cHDx5sdO7c2TAMwzhw4IAhyThx4oS57+DBg40OHTqY65s2bTIk2cSZmJho9O3bt9x1K/qcDOO//dvDw8O8l7KlsnuQVG7Jz8+36xkAAAAAeDjl5+fb9d2ASpQHXE5OjoqLi9WlS5db7tO6dWvz56KiIuXm5mrUqFHy9vY2l7lz5yo3N9fc77333lN8fLw5dOKll17S6dOnf3JsMTEx8vLyMrfFx8ertLRUR44cMbc1a9bMphqhbt26On/+/I+ev1u3bgoODlbDhg01dOhQvfvuu+aQkdzcXF27dk3x8fHm/i4uLmrbtq1ycnJ+0n0EBwfL39/fXM/Ozlb9+vUVERFR4f5fffWVUlNTbZ5v9+7dVVpaqhMnTth1TcMw7I5v8uTJys7O1ubNmxUbG6tXX31VYWFhlR4zbdo0ZWdnKyUlxWZ41e2aO3eutm7dqs8++6zC9pEjR+qLL74w+9if/vQndejQ4UfjtMd7772n7Oxsm+VWpk6dqvz8fHP55ptv7vj6AAAAAB4d1RwdAO6Mh4fHj+5zYxKj7Avz8uXLFRsba7NfWSJjx44dGjJkiGbNmqXu3bvLarUqPT1dixYtqsLI/+vm+SssFotKS0t/9Ljq1atr//792rJliz777DOlpKRo5syZNvOeVMbJyalcsqKiuVhufH7Sjz/zwsJC/epXv9KECRPKtQUFBVV6bFliJicnRy1atCjXnpOTUy55U6tWLYWFhSksLExr1qxRVFSUWrduraZNm0qSwsPDbZJWkuTv7y9/f3/Vrl270njs1ahRI40ePVq//e1v9c4775Rr79Kli4KCgpSamqrJkydr3bp1evvtt6vk2g0aNLA7GePm5vZQT3wMAAAA4O6iEuUBFx4eLg8PD23atMmu/QMCAhQYGKh//vOf5hfvsiU0NFSStH37dgUHB2vatGlq3bq1wsPDderUKZvzuLq6qqSkpNJrNWnSRF999ZXNhKrbtm2Tk5OTIiMjf+KdVqxatWrq2rWrFixYoK+//lonT57U5s2b1ahRI7m6umrbtm3mvteuXdOePXvM5IK/v7+uXLliE19lVQxloqOj9a9//UtHjx6tsL1ly5Y6fPhwuecbFhZmM1dJRZo3b67GjRvr1VdfLZdI+uqrr/S3v/1NCQkJtzy+QYMGGjRokKZOnWpuS0hI0JEjR/TRRx/96L3diZSUFB09elTp6enl2pycnDRixAilpaVp1apVcnV1tZkEGAAAAAAeBCRRHnDu7u76zW9+oylTpujPf/6zcnNztXPnzgqrAcrMmjVL8+bN07Jly3T06FEdPHhQK1eu1OLFiyX9kJg5ffq00tPTlZubq2XLlikjI8PmHCEhITpx4oSys7P17bffqri4uNx1hgwZInd3dyUmJurQoUP6/PPPNX78eA0dOtRm4tvb9de//lXLli1Tdna2Tp06pT//+c8qLS1VZGSkvLy89Pzzz2vy5MnasGGDDh8+rNGjR+u7774zX6kbGxsrT09P/e53v1Nubq5WrVpl14S2HTp00BNPPKH+/ftr48aNOnHihNavX68NGzZI+uHNRtu3b9e4ceOUnZ2tY8eO6aOPPrJrYlmLxaJ33nlHhw8fVv/+/bV7926dPn1aa9asUZ8+fRQXF6ekpKRKzzFx4kR9/PHH5kSvgwcP1i9+8QsNHjxYs2fP1q5du3Ty5EllZWXpvffeq7KJXQMCAjRp0iQtW7aswvYRI0bo3//+t373u98pISHBrioqe1y8eFFnz561Wa5evVol5wYAAACAG5FEeQhMnz5dL774olJSUtSkSRMNGjSo0jlFnn32Wa1YsUIrV65UVFSUOnTooNTUVLMS5emnn9YLL7ygcePGqXnz5tq+fbumT59uc47+/furR48e6tSpk/z9/St8Y4ynp6cyMzP1n//8R23atNEvfvELdenSRa+99lqV3HeNGjW0bt06de7cWU2aNNFbb72l1atXq1mzZpJ+eGtM//79NXToULVs2VLHjx9XZmamatasKUny9fXV//zP/+jTTz9VVFSUVq9erZkzZ9p17bVr16pNmzZKSEhQ06ZNNWXKFLMyJzo6WllZWTp69Kjat2+vFi1aKCUlRYGBgXadu127dtq5c6ecnZ3Vs2dPhYWFaerUqUpMTNTGjRt/dDhK06ZN9eSTTyolJUWSzNdcL1myRJ9++qm6dOmiyMhIjRw5Ug0aNNCXX35pV1z2SE5Otnn98I2CgoLUtWtXXbp0SSNHjqyya3bt2lV169a1WW58zTYAAAAAVBWL8VNmsASAh0hBQYGsVqvy8/Pl4+Pj6HAAAAAAOIi93w2oRAEAAAAAALADSRTct7Zu3WrzmuCblwfR/XxPlcW1detWh8YGAAAAAPcDXnGM+1br1q3telvOg+R+vqfK4qpXr969CwQAAAAA7lPMiQLgkcWcKAAAAAAk5kQBAAAAAACoUiRRAAAAAAAA7EASBQAAAAAAwA4kUQAAAAAAAOxAEgUAAAAAAMAOJFEAAAAAAADsQBIFAAAAAADADiRRAAAAAAAA7EASBQAAAAAAwA4kUQAAAAAAAOxAEgUAAAAAAMAOJFEAAAAAAADsQBIFAAAAAADADiRRAAAAAAAA7EASBQAAAAAAwA4kUQAAAAAAAOxAEgUAAAAAAMAOJFEAAAAAAADsQBIFAAAAAADADiRRAAAAAAAA7EASBQAAAAAAwA4kUQAAAAAAAOxAEgUAAAAAAMAOJFEAAAAAAADsQBIFAAAAAADADtUcHQAA3O9KSkp07do1R4eBe8zV1VVOTvxfAwAAAP6LJAoA3IJhGDp79qwuX77s6FDgAE5OTgoNDZWrq6ujQwEAAMB9giQKANxCWQKldu3a8vT0lMVicXRIuEdKS0t15swZ5eXlKSgoiM8eAAAAkkiiAECFSkpKzASKn5+fo8OBA/j7++vMmTO6fv26XFxcHB0OAAAA7gMM9gaACpTNgeLp6engSOAoZcN4SkpKHBwJAAAA7hckUQCgEgzjeHTx2QMAAOBmJFHw0ElNTVWNGjXs2nfmzJlq3rz5XY3nftWxY0clJSWZ6yEhIVqyZIm5brFY9OGHH96zeG7+LIYPH65+/frds+sDAAAAwI8hiYL7wk9JfFSl5ORkbdq0qcrOd3Mi4n62bt06zZkz55bteXl56tmz5z2MyNbSpUuVmppq174kXAAAAADcC0wsi0eat7e3vL29HR2GQ/j6+lbaXqdOnXsUScWsVqtDr38rIb/95J5e7+T83vf0egAAAABujUoUVIni4mJNmDBBtWvXlru7ux5//HHt2bNHkrRlyxZZLBZ98sknio6Olru7ux577DEdOnTIbB8xYoTy8/NlsVhksVg0c+ZM87zJycmqV6+evLy8FBsbqy1btthcOzU1VUFBQfL09NTPf/5zXbx40e64bzWE5JVXXlHdunXl5+ensWPHmpOMVqZjx446deqUXnjhBfM+yqxdu1bNmjWTm5ubQkJCtGjRIrtjDAkJ0dy5czVs2DB5e3srODhYf/nLX3ThwgX17dtX3t7eio6O1t69e81jLl68qISEBNWrV0+enp6KiorS6tWry8V743Cem904nOfkyZOyWCxat26dOnXqJE9PT8XExGjHjh02xyxfvlwNGjQwP4vFixffdoXRzdUlH3zwgaKiouTh4SE/Pz917dpVRUVFmjlzptLS0vTRRx+Zz/3mPlKmuLhYBQUFNsvD6H6uzCnrS9nZ2Y4OBQAAAPjJSKKgSkyZMkVr165VWlqa9u/fr7CwMHXv3l3/+c9/zH0mT56sRYsWac+ePfL391efPn107do1tWvXTkuWLJGPj4/y8vKUl5en5ORkSdK4ceO0Y8cOpaen6+uvv9aAAQPUo0cPHTt2TJK0a9cujRo1SuPGjVN2drY6deqkuXPn3tG9fP7558rNzdXnn3+utLQ0paam2jWsZN26dapfv75mz55t3ock7du3TwMHDtTgwYN18OBBzZw5U9OnT7d7qIokvfrqq4qPj9eBAwfUu3dvDR06VMOGDdMvf/lL7d+/X40aNdKwYcNkGIYk6erVq2rVqpU++eQTHTp0SGPGjNHQoUO1e/fu23kkpmnTpik5OVnZ2dmKiIhQQkKCrl+/Lknatm2bnnvuOU2cOFHZ2dnq1q2bfv/739/R9crk5eUpISFBI0eOVE5OjrZs2aJnnnlGhmEoOTlZAwcOVI8ePczn3q5duwrPM2/ePFmtVnNp0KBBlcQH+3z//feODgEAAAC4IyRRcMeKior05ptvauHCherZs6eaNm2q5cuXy8PDQ++8846534wZM9StWzdFRUUpLS1N586dU0ZGhlxdXWW1WmWxWFSnTh3VqVNH3t7eOn36tFauXKk1a9aoffv2atSokZKTk/X4449r5cqVkn6YN6NHjx6aMmWKIiIiNGHCBHXv3v2O7qdmzZp67bXX1LhxYz311FPq3bu3XfOm+Pr6ytnZWdWrVzfvQ5IWL16sLl26aPr06YqIiNDw4cM1btw4LVy40O6YevXqpV/96lcKDw9XSkqKCgoK1KZNGw0YMEARERH6zW9+o5ycHJ07d06SVK9ePSUnJ6t58+Zq2LChxo8frx49euj999+/vYfy/5KTk9W7d29FRERo1qxZOnXqlI4fPy5J+sMf/qCePXsqOTlZERER+vWvf11lc6rk5eXp+vXreuaZZxQSEqKoqCj9+te/NodjeXh4yM3NzXzuZa+mvdnUqVOVn59vLt98802VxHc/69ixo8aPH6+kpCTVrFlTAQEBWr58uYqKijRixAhVr15dYWFhWr9+vXnMj1WPlfmxCquQkBDNmTNHw4YNk4+Pj8aMGaPQ0FBJUosWLWSxWNSxY0dJ0p49e9StWzfVqlVLVqtVHTp00P79+23OZ7FYtGLFCv385z+Xp6enwsPD9Ze//MVmn7///e966qmn5OPjo+rVq6t9+/bKzc0121esWKEmTZrI3d1djRs31htvvHHHzxgAAACPDpIouGO5ubm6du2a4uPjzW0uLi5q27atcnJyzG1xcXHmz76+voqMjLRpv9nBgwdVUlKiiIgI88uyt7e3srKyzC9FOTk5io2NtTnuxuvcjmbNmsnZ2dlcr1u3rs6fP3/b58vJybF5NpIUHx+vY8eOqaSkxK5zREdHmz8HBARIkqKiosptK4uzpKREc+bMUVRUlHx9feXt7a3MzEydPn36tu/j5jjq1q1rc80jR46obdu2NvvfvH67YmJi1KVLF0VFRWnAgAFavny5Ll269JPP4+bmJh8fH5vlUZCWlqZatWpp9+7dGj9+vJ5//nkNGDBA7dq10/79+/Xkk09q6NCh+u6772yOu1X1mGR/hdUrr7yimJgYHThwQNOnTzerof72t78pLy9P69atkyRduXJFiYmJ+vLLL7Vz506Fh4erV69eunLlis35Zs2apYEDB+rrr79Wr169NGTIELPi7d///reeeOIJubm5afPmzdq3b59GjhxpVku9++67SklJ0e9//3vl5OTo5Zdf1vTp05WWllblzxwAAAAPJyaWxX2rsLBQzs7O2rdvn01SQ9JdnQzWxcXFZt1isai0tPSuXc8eN8ZUNtdKRdvK4ly4cKGWLl2qJUuWKCoqSl5eXkpKSrrj4RSVXfNucnZ21saNG7V9+3Z99tln+sMf/qBp06Zp165dZmUDbi0mJkYvvfSSpB+qcebPn69atWpp9OjRkqSUlBS9+eab+vrrr/XYY4+Zx5VVj0k/JGLq16+vjIwMDRw40KbCSpIiIiJ0+PBhLVy4UMOHDzfP0blzZ7344ovmetnvsp+fn83kxZ07d7aJ+Y9//KNq1KihrKwsPfXUU+b24cOHKyEhQZL08ssva9myZdq9e7d69Oih119/XVarVenp6WZfjYiIsLmfRYsW6ZlnnpEkhYaG6vDhw3r77beVmJh4O48WAAAAjxgqUXDHGjVqJFdXV23bts3cdu3aNe3Zs0dNmzY1t+3cudP8+dKlSzp69KiaNGkiSXJ1dS1XldGiRQuVlJTo/PnzCgsLs1nKvnw1adJEu3btsjnuxuvcaxXdR5MmTWyejfTD/CERERHlkkNVZdu2berbt69++ctfKiYmRg0bNtTRo0fvyrXKREZGmpMJl7l5/U5YLBbFx8dr1qxZOnDggFxdXZWRkSGp4ueO/7qxgsjZ2Vl+fn6VVjKVqax6zN4Kq9atW9sV47lz5zR69GiFh4fLarXKx8dHhYWF5aqnbrwXLy8v+fj4mHFnZ2erffv25RKh0g/DDnNzczVq1Cibyra5c+faDPcBAAAAKkMlCu6Yl5eXnn/+eU2ePFm+vr4KCgrSggUL9N1332nUqFH66quvJEmzZ8+Wn5+fAgICNG3aNNWqVct8g0hISIgKCwu1adMmxcTEyNPTUxERERoyZIiGDRumRYsWqUWLFrpw4YI2bdqk6Oho9e7dWxMmTFB8fLxeeeUV9e3bV5mZmdqwYYPDnkVISIi++OILDR48WG5ubqpVq5ZefPFFtWnTRnPmzNGgQYO0Y8cOvfbaa3d1Lobw8HB98MEH2r59u2rWrKnFixfr3LlzNkmtqjZ+/Hg98cQTWrx4sfr06aPNmzdr/fr1Nm8pul27du3Spk2b9OSTT6p27dratWuXLly4YCbhQkJClJmZqSNHjsjPz09Wq7XCL9KPqoqqq+5VVZGXl5dd+yUmJurixYtaunSpgoOD5ebmpri4uHLVU5VVinl4eNzy/IWFhZJ+eIPUzUMA71YyEwAAAA8fKlFQJebPn6/+/ftr6NChatmypY4fP67MzEzVrFnTZp+JEyeqVatWOnv2rD7++GNzAtB27drpueee06BBg+Tv768FCxZIklauXKlhw4bpxRdfVGRkpPr166c9e/YoKChIkvTYY49p+fLlWrp0qWJiYvTZZ5+ZwxYcYfbs2Tp58qQaNWokf39/SVLLli31/vvvKz09XT/72c+UkpKi2bNn2wx5qGovvfSSWrZsqe7du6tjx46qU6fOXX/lbXx8vN566y0tXrxYMTEx2rBhg1544QW5u7vf8bl9fHz0xRdfqFevXoqIiNBLL72kRYsWmRPXjh49WpGRkWrdurX8/f3LVf7g9lRWPXa7FVZlv/M3Vw5t27ZNEyZMUK9evczJar/99tufFG90dLS2bt1a4SvJAwICFBgYqH/+85/lKtsYEgYAAAB7WYyyd6ICd8mWLVvUqVMnXbp0STVq1HB0OLiHRo8erX/84x/aunWro0OpUEFBgaxWq/Lz88tNMnv16lWdOHFCoaGhNomgkN9+ck9jPDm/908+Zvjw4bp8+bI+/PBDdezYUc2bN9eSJUvM9pCQECUlJSkpKcncZrFYlJGRoX79+pm/s82aNdPSpUvN6rHs7GwdO3ZMrq6u2r9/v9q0aaOZM2eaFVbPP/+83njjDTNBWNF1rl+/Lh8fH02bNk3PPvus3N3dZbVa1bJlS9WqVUtLly5VQUGBJk+erL179+rll182j78xxjI1atTQkiVLNHz4cF28eFGRkZHq0KGDpk6dKqvVqp07d6pt27aKjIzUihUrNGHCBM2fP189evRQcXGx9u7dq0uXLmnSpEnlnuOt+gAAAAAePpV9N7gRw3kAVJlXXnlF3bp1k5eXl9avX6+0tLSH7hWyt5PUeFCVVY8dO3ZMzZs3t6keK6uwSklJ0Zw5c1S3bl27KqyqVaumZcuWafbs2UpJSVH79u21ZcsWvfPOOxozZoxatmypBg0a6OWXX1ZycvJPitfPz0+bN2/W5MmT1aFDBzk7O6t58+bm3C3PPvusPD09tXDhQk2ePFleXl6KioqySfIAAAAAlaESBXedIytRmjVrplOnTlXY9vbbb2vIkCF2n2vr1q3m8JGKlM258FPcjXM60sCBA7VlyxZduXJFDRs21Pjx4/Xcc89JqtrPoqrcTiXKo4DqsR88yn0AAADgUUMlCu4bHTt2lKNydZ9++mmF8yNI/30jib1at26t7OzsKojq7p7Tkd5///1btlXlZwEAAAAAjkASBQ+14ODgKjuXh4eHwsLCqux8d+uc96uq/CwAAAAAwBFIogAAbDiyegwAAAC4n/GKYwAAAAAAADuQRAGASpSWljo6BDgI1TgAAAC4GcN5AKACrq6ucnJy0pkzZ+Tv7y9XV1dZLBZHh4V7xDAMXbhwQRaLRS4uLo4OBwAAAPcJkigAUAEnJyeFhoYqLy9PZ86ccXQ4cACLxaL69evL2dnZ0aEAAADgPkESBQBuwdXVVUFBQbp+/bpKSkocHQ7uMRcXFxIoAAAAsEESBQAqUTacgyEdAAAAAJhYFgAAAAAAwA4kUQAAAAAAAOxAEgUAAAAAAMAOzIkC4JFlGIYkqaCgwMGRAAAAAHCksu8EZd8RboUkCoBH1sWLFyVJDRo0cHAkAAAAAO4HV65ckdVqvWU7SRQAjyxfX19J0unTpyv9QwncroKCAjVo0EDffPONfHx8HB0OHkL0Mdxt9DHcC/Qz3G329DHDMHTlyhUFBgZWei6SKAAeWU5OP0wLZbVa+Qcbd5WPjw99DHcVfQx3G30M9wL9DHfbj/Uxe/5jlYllAQAAAAAA7EASBQAAAAAAwA4kUQA8stzc3DRjxgy5ubk5OhQ8pOhjuNvoY7jb6GO4F+hnuNuqso9ZjB97fw8AAAAAAACoRAEAAAAAALAHSRQAAAAAAAA7kEQBAAAAAACwA0kUAAAAAAAAO5BEAQAAAAAAsANJFACPpNdff10hISFyd3dXbGysdu/e7eiQ8AD74osv1KdPHwUGBspisejDDz+0aTcMQykpKapbt648PDzUtWtXHTt2zDHB4oEzb948tWnTRtWrV1ft2rXVr18/HTlyxGafq1evauzYsfLz85O3t7f69++vc+fOOShiPIjefPNNRUdHy8fHRz4+PoqLi9P69evNdvoYqtr8+fNlsViUlJRkbqOf4U7MnDlTFovFZmncuLHZXlX9iyQKgEfOe++9p0mTJmnGjBnav3+/YmJi1L17d50/f97RoeEBVVRUpJiYGL3++usVti9YsEDLli3TW2+9pV27dsnLy0vdu3fX1atX73GkeBBlZWVp7Nix2rlzpzZu3Khr167pySefVFFRkbnPCy+8oI8//lhr1qxRVlaWzpw5o2eeecaBUeNBU79+fc2fP1/79u3T3r171blzZ/Xt21d///vfJdHHULX27Nmjt99+W9HR0Tbb6We4U82aNVNeXp65fPnll2ZblfUvAwAeMW3btjXGjh1rrpeUlBiBgYHGvHnzHBgVHhaSjIyMDHO9tLTUqFOnjrFw4UJz2+XLlw03Nzdj9erVDogQD7rz588bkoysrCzDMH7oTy4uLsaaNWvMfXJycgxJxo4dOxwVJh4CNWvWNFasWEEfQ5W6cuWKER4ebmzcuNHo0KGDMXHiRMMw+FuGOzdjxgwjJiamwraq7F9UogB4pHz//ffat2+funbtam5zcnJS165dtWPHDgdGhofViRMndPbsWZs+Z7VaFRsbS5/DbcnPz5ck+fr6SpL27duna9eu2fSxxo0bKygoiD6G21JSUqL09HQVFRUpLi6OPoYqNXbsWPXu3dumP0n8LUPVOHbsmAIDA9WwYUMNGTJEp0+fllS1/atalUYMAPe5b7/9ViUlJQoICLDZHhAQoH/84x8OigoPs7Nnz0pShX2urA2wV2lpqZKSkhQfH6+f/exnkn7oY66urqpRo4bNvvQx/FQHDx5UXFycrl69Km9vb2VkZKhp06bKzs6mj6FKpKena//+/dqzZ0+5Nv6W4U7FxsYqNTVVkZGRysvL06xZs9S+fXsdOnSoSvsXSRQAAIAHxNixY3Xo0CGbMd5AVYmMjFR2drby8/P1wQcfKDExUVlZWY4OCw+Jb775RhMnTtTGjRvl7u7u6HDwEOrZs6f5c3R0tGJjYxUcHKz3339fHh4eVXYdhvMAeKTUqlVLzs7O5WbiPnfunOrUqeOgqPAwK+tX9DncqXHjxumvf/2rPv/8c9WvX9/cXqdOHX3//fe6fPmyzf70MfxUrq6uCgsLU6tWrTRv3jzFxMRo6dKl9DFUiX379un8+fNq2bKlqlWrpmrVqikrK0vLli1TtWrVFBAQQD9DlapRo4YiIiJ0/PjxKv07RhIFwCPF1dVVrVq10qZNm8xtpaWl2rRpk+Li4hwYGR5WoaGhqlOnjk2fKygo0K5du+hzsIthGBo3bpwyMjK0efNmhYaG2rS3atVKLi4uNn3syJEjOn36NH0Md6S0tFTFxcX0MVSJLl266ODBg8rOzjaX1q1ba8iQIebP9DNUpcLCQuXm5qpu3bpV+neM4TwAHjmTJk1SYmKiWrdurbZt22rJkiUqKirSiBEjHB0aHlCFhYU6fvy4uX7ixAllZ2fL19dXQUFBSkpK0ty5cxUeHq7Q0FBNnz5dgYGB6tevn+OCxgNj7NixWrVqlT766CNVr17dHLtttVrl4eEhq9WqUaNGadKkSfL19ZWPj4/Gjx+vuLg4PfbYYw6OHg+KqVOnqmfPngoKCtKVK1e0atUqbdmyRZmZmfQxVInq1aubczmV8fLykp+fn7mdfoY7kZycrD59+ig4OFhnzpzRjBkz5OzsrISEhCr9O0YSBcAjZ9CgQbpw4YJSUlJ09uxZNW/eXBs2bCg38Sdgr71796pTp07m+qRJkyRJiYmJSk1N1ZQpU1RUVKQxY8bo8uXLevzxx7VhwwbGhMMub775piSpY8eONttXrlyp4cOHS5JeffVVOTk5qX///iouLlb37t31xhtv3ONI8SA7f/68hg0bpry8PFmtVkVHRyszM1PdunWTRB/DvUE/w53417/+pYSEBF28eFH+/v56/PHHtXPnTvn7+0uquv5lMQzDqOrgAQAAAAAAHjbMiQIAAAAAAGAHkigAAAAAAAB2IIkCAAAAAABgB5IoAAAAAAAAdiCJAgAAAAAAYAeSKAAAAAAAAHYgiQIAAAAAAGAHkigAAAAAAAB2IIkCAAAAAABgB5IoAAAAAAAAdiCJAgAAAAAAYIf/A+w3TVcZ4NRVAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"cell_type": "code",
"source": [
"feature_importance_logreg.set_index('Feature', inplace=True)\n",
"importance_df = pd.DataFrame({'feature_importance_logreg': feature_importance_logreg.Importance, 'feature_corr': is_adopted_corr_sr.abs()})\n",
"importance_df = importance_df.sort_values('feature_importance_logreg', ascending=False)\n",
"importance_df"
],
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 363
},
"id": "-ov8_dtWIrAY",
"outputId": "14e7d5a5-03c9-41aa-8987-501b89d4b9f7"
},
"execution_count": 185,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
" feature_importance_logreg feature_corr\n",
"last_session_creation_time 48.176202 0.242183\n",
"creation_time_days 1.309577 0.089938\n",
"org_count 0.245844 0.081211\n",
"creation_source_GUEST_INVITE 0.089509 0.044354\n",
"creation_source_SIGNUP 0.075115 0.010840\n",
"creation_source_PERSONAL_PROJECTS 0.058168 0.075955\n",
"creation_source_SIGNUP_GOOGLE_AUTH 0.051316 0.033025\n",
"enabled_for_marketing_drip 0.025973 0.002636\n",
"creation_source_ORG_INVITE 0.024211 0.005834\n",
"opted_in_to_mailing_list 0.010362 0.008044"
],
"text/html": [
"\n",
" <div id=\"df-c0744e2c-c6b6-4f5d-80a9-ffdff8fca4a6\" class=\"colab-df-container\">\n",
" <div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>feature_importance_logreg</th>\n",
" <th>feature_corr</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>last_session_creation_time</th>\n",
" <td>48.176202</td>\n",
" <td>0.242183</td>\n",
" </tr>\n",
" <tr>\n",
" <th>creation_time_days</th>\n",
" <td>1.309577</td>\n",
" <td>0.089938</td>\n",
" </tr>\n",
" <tr>\n",
" <th>org_count</th>\n",
" <td>0.245844</td>\n",
" <td>0.081211</td>\n",
" </tr>\n",
" <tr>\n",
" <th>creation_source_GUEST_INVITE</th>\n",
" <td>0.089509</td>\n",
" <td>0.044354</td>\n",
" </tr>\n",
" <tr>\n",
" <th>creation_source_SIGNUP</th>\n",
" <td>0.075115</td>\n",
" <td>0.010840</td>\n",
" </tr>\n",
" <tr>\n",
" <th>creation_source_PERSONAL_PROJECTS</th>\n",
" <td>0.058168</td>\n",
" <td>0.075955</td>\n",
" </tr>\n",
" <tr>\n",
" <th>creation_source_SIGNUP_GOOGLE_AUTH</th>\n",
" <td>0.051316</td>\n",
" <td>0.033025</td>\n",
" </tr>\n",
" <tr>\n",
" <th>enabled_for_marketing_drip</th>\n",
" <td>0.025973</td>\n",
" <td>0.002636</td>\n",
" </tr>\n",
" <tr>\n",
" <th>creation_source_ORG_INVITE</th>\n",
" <td>0.024211</td>\n",
" <td>0.005834</td>\n",
" </tr>\n",
" <tr>\n",
" <th>opted_in_to_mailing_list</th>\n",
" <td>0.010362</td>\n",
" <td>0.008044</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>\n",
" <div class=\"colab-df-buttons\">\n",
"\n",
" <div class=\"colab-df-container\">\n",
" <button class=\"colab-df-convert\" onclick=\"convertToInteractive('df-c0744e2c-c6b6-4f5d-80a9-ffdff8fca4a6')\"\n",
" title=\"Convert this dataframe to an interactive table.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\" viewBox=\"0 -960 960 960\">\n",
" <path d=\"M120-120v-720h720v720H120Zm60-500h600v-160H180v160Zm220 220h160v-160H400v160Zm0 220h160v-160H400v160ZM180-400h160v-160H180v160Zm440 0h160v-160H620v160ZM180-180h160v-160H180v160Zm440 0h160v-160H620v160Z\"/>\n",
" </svg>\n",
" </button>\n",
"\n",
" <style>\n",
" .colab-df-container {\n",
" display:flex;\n",
" gap: 12px;\n",
" }\n",
"\n",
" .colab-df-convert {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-convert:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" .colab-df-buttons div {\n",
" margin-bottom: 4px;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-convert:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
"\n",
" <script>\n",
" const buttonEl =\n",
" document.querySelector('#df-c0744e2c-c6b6-4f5d-80a9-ffdff8fca4a6 button.colab-df-convert');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" async function convertToInteractive(key) {\n",
" const element = document.querySelector('#df-c0744e2c-c6b6-4f5d-80a9-ffdff8fca4a6');\n",
" const dataTable =\n",
" await google.colab.kernel.invokeFunction('convertToInteractive',\n",
" [key], {});\n",
" if (!dataTable) return;\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
"\n",
"\n",
"<div id=\"df-6457cbbb-e3a5-4001-b036-c8a8e7720f46\">\n",
" <button class=\"colab-df-quickchart\" onclick=\"quickchart('df-6457cbbb-e3a5-4001-b036-c8a8e7720f46')\"\n",
" title=\"Suggest charts\"\n",
" style=\"display:none;\">\n",
"\n",
"<svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <g>\n",
" <path d=\"M19 3H5c-1.1 0-2 .9-2 2v14c0 1.1.9 2 2 2h14c1.1 0 2-.9 2-2V5c0-1.1-.9-2-2-2zM9 17H7v-7h2v7zm4 0h-2V7h2v10zm4 0h-2v-4h2v4z\"/>\n",
" </g>\n",
"</svg>\n",
" </button>\n",
"\n",
"<style>\n",
" .colab-df-quickchart {\n",
" --bg-color: #E8F0FE;\n",
" --fill-color: #1967D2;\n",
" --hover-bg-color: #E2EBFA;\n",
" --hover-fill-color: #174EA6;\n",
" --disabled-fill-color: #AAA;\n",
" --disabled-bg-color: #DDD;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-quickchart {\n",
" --bg-color: #3B4455;\n",
" --fill-color: #D2E3FC;\n",
" --hover-bg-color: #434B5C;\n",
" --hover-fill-color: #FFFFFF;\n",
" --disabled-bg-color: #3B4455;\n",
" --disabled-fill-color: #666;\n",
" }\n",
"\n",
" .colab-df-quickchart {\n",
" background-color: var(--bg-color);\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: var(--fill-color);\n",
" height: 32px;\n",
" padding: 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-quickchart:hover {\n",
" background-color: var(--hover-bg-color);\n",
" box-shadow: 0 1px 2px rgba(60, 64, 67, 0.3), 0 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: var(--button-hover-fill-color);\n",
" }\n",
"\n",
" .colab-df-quickchart-complete:disabled,\n",
" .colab-df-quickchart-complete:disabled:hover {\n",
" background-color: var(--disabled-bg-color);\n",
" fill: var(--disabled-fill-color);\n",
" box-shadow: none;\n",
" }\n",
"\n",
" .colab-df-spinner {\n",
" border: 2px solid var(--fill-color);\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" animation:\n",
" spin 1s steps(1) infinite;\n",
" }\n",
"\n",
" @keyframes spin {\n",
" 0% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" border-left-color: var(--fill-color);\n",
" }\n",
" 20% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 30% {\n",
" border-color: transparent;\n",
" border-left-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 40% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-top-color: var(--fill-color);\n",
" }\n",
" 60% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" }\n",
" 80% {\n",
" border-color: transparent;\n",
" border-right-color: var(--fill-color);\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" 90% {\n",
" border-color: transparent;\n",
" border-bottom-color: var(--fill-color);\n",
" }\n",
" }\n",
"</style>\n",
"\n",
" <script>\n",
" async function quickchart(key) {\n",
" const quickchartButtonEl =\n",
" document.querySelector('#' + key + ' button');\n",
" quickchartButtonEl.disabled = true; // To prevent multiple clicks.\n",
" quickchartButtonEl.classList.add('colab-df-spinner');\n",
" try {\n",
" const charts = await google.colab.kernel.invokeFunction(\n",
" 'suggestCharts', [key], {});\n",
" } catch (error) {\n",
" console.error('Error during call to suggestCharts:', error);\n",
" }\n",
" quickchartButtonEl.classList.remove('colab-df-spinner');\n",
" quickchartButtonEl.classList.add('colab-df-quickchart-complete');\n",
" }\n",
" (() => {\n",
" let quickchartButtonEl =\n",
" document.querySelector('#df-6457cbbb-e3a5-4001-b036-c8a8e7720f46 button');\n",
" quickchartButtonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
" })();\n",
" </script>\n",
"</div>\n",
"\n",
" <div id=\"id_755836dc-9c30-4d7f-a50d-e8689de4c57e\">\n",
" <style>\n",
" .colab-df-generate {\n",
" background-color: #E8F0FE;\n",
" border: none;\n",
" border-radius: 50%;\n",
" cursor: pointer;\n",
" display: none;\n",
" fill: #1967D2;\n",
" height: 32px;\n",
" padding: 0 0 0 0;\n",
" width: 32px;\n",
" }\n",
"\n",
" .colab-df-generate:hover {\n",
" background-color: #E2EBFA;\n",
" box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 3px 1px rgba(60, 64, 67, 0.15);\n",
" fill: #174EA6;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-generate {\n",
" background-color: #3B4455;\n",
" fill: #D2E3FC;\n",
" }\n",
"\n",
" [theme=dark] .colab-df-generate:hover {\n",
" background-color: #434B5C;\n",
" box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
" filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
" fill: #FFFFFF;\n",
" }\n",
" </style>\n",
" <button class=\"colab-df-generate\" onclick=\"generateWithVariable('importance_df')\"\n",
" title=\"Generate code using this dataframe.\"\n",
" style=\"display:none;\">\n",
"\n",
" <svg xmlns=\"http://www.w3.org/2000/svg\" height=\"24px\"viewBox=\"0 0 24 24\"\n",
" width=\"24px\">\n",
" <path d=\"M7,19H8.4L18.45,9,17,7.55,7,17.6ZM5,21V16.75L18.45,3.32a2,2,0,0,1,2.83,0l1.4,1.43a1.91,1.91,0,0,1,.58,1.4,1.91,1.91,0,0,1-.58,1.4L9.25,21ZM18.45,9,17,7.55Zm-12,3A5.31,5.31,0,0,0,4.9,8.1,5.31,5.31,0,0,0,1,6.5,5.31,5.31,0,0,0,4.9,4.9,5.31,5.31,0,0,0,6.5,1,5.31,5.31,0,0,0,8.1,4.9,5.31,5.31,0,0,0,12,6.5,5.46,5.46,0,0,0,6.5,12Z\"/>\n",
" </svg>\n",
" </button>\n",
" <script>\n",
" (() => {\n",
" const buttonEl =\n",
" document.querySelector('#id_755836dc-9c30-4d7f-a50d-e8689de4c57e button.colab-df-generate');\n",
" buttonEl.style.display =\n",
" google.colab.kernel.accessAllowed ? 'block' : 'none';\n",
"\n",
" buttonEl.onclick = () => {\n",
" google.colab.notebook.generateWithVariable('importance_df');\n",
" }\n",
" })();\n",
" </script>\n",
" </div>\n",
"\n",
" </div>\n",
" </div>\n"
],
"application/vnd.google.colaboratory.intrinsic+json": {
"type": "dataframe",
"variable_name": "importance_df",
"summary": "{\n \"name\": \"importance_df\",\n \"rows\": 10,\n \"fields\": [\n {\n \"column\": \"feature_importance_logreg\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 15.173367551928736,\n \"min\": 0.010361971747437084,\n \"max\": 48.1762024066915,\n \"num_unique_values\": 10,\n \"samples\": [\n 0.024210601036923615,\n 1.309576578838126,\n 0.0581684853645829\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n },\n {\n \"column\": \"feature_corr\",\n \"properties\": {\n \"dtype\": \"number\",\n \"std\": 0.07234266292953191,\n \"min\": 0.0026362073740396137,\n \"max\": 0.2421834455377041,\n \"num_unique_values\": 10,\n \"samples\": [\n 0.005834186929141455,\n 0.08993837292257953,\n 0.07595482239542438\n ],\n \"semantic_type\": \"\",\n \"description\": \"\"\n }\n }\n ]\n}"
}
},
"metadata": {},
"execution_count": 185
}
]
},
{
"cell_type": "markdown",
"source": [
"#### Analyze Feature Importance\n",
"Based on the correlation values and feature importance from the log reg model coefficients, we have a reasonable ranking of the relative importance of the features. Both metrics agree on the importance order of most of the features. The LogReg model finds last_session_creation_time to be the most useful feature by far, and given that we're able to accomplish >0.84 metrics across the board for that model, we feel relatively confident in that feature in fact being quite important. Further work could explore the relevance of each feature to more complex and possibly more performant models.\n",
"\n",
"#### Further Work\n",
"We could futher investigate the importance of the features using methods such as:\n",
"1. Permutation Evaluation\n",
"2. PCA or component coefficients\n",
"3. model coefficients from other trained ML models such as RandomForest"
],
"metadata": {
"id": "cQnYp_biJseU"
}
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment