Skip to content

Instantly share code, notes, and snippets.

@Kautenja
Last active June 4, 2024 11:39
Show Gist options
  • Save Kautenja/29f13b543ecd210202417dfc9e328249 to your computer and use it in GitHub Desktop.
Save Kautenja/29f13b543ecd210202417dfc9e328249 to your computer and use it in GitHub Desktop.
Uniform Cost Search (UCS) in Python with path backtrace.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class Node(object):\n",
" \"\"\"This class represents a node in a graph.\"\"\"\n",
" \n",
" def __init__(self, label: str=None):\n",
" \"\"\"\n",
" Initialize a new node.\n",
" \n",
" Args:\n",
" label: the string identifier for the node\n",
" \"\"\"\n",
" self.label = label\n",
" self.children = []\n",
" \n",
" def __lt__(self,other):\n",
" \"\"\"\n",
" Perform the less than operation (self < other).\n",
" \n",
" Args:\n",
" other: the other Node to compare to\n",
" \"\"\"\n",
" return (self.label < other.label)\n",
" \n",
" def __gt__(self,other):\n",
" \"\"\"\n",
" Perform the greater than operation (self > other).\n",
" \n",
" Args:\n",
" other: the other Node to compare to\n",
" \"\"\"\n",
" return (self.label > other.label)\n",
" \n",
" def __repr__(self):\n",
" \"\"\"Return a string form of this node.\"\"\"\n",
" return '{} -> {}'.format(self.label, self.children)\n",
" \n",
" def add_child(self, node, cost=1):\n",
" \"\"\"\n",
" Add a child node to this node.\n",
" \n",
" Args:\n",
" node: the node to add to the children\n",
" cost: the cost of the edge (default 1)\n",
" \"\"\"\n",
" edge = Edge(self, node, cost)\n",
" self.children.append(edge)\n",
" \n",
" \n",
"class Edge(object):\n",
" \"\"\"This class represents an edge in a graph.\"\"\"\n",
" \n",
" def __init__(self, source: Node, destination: Node, cost: int=1):\n",
" \"\"\"\n",
" Initialize a new edge.\n",
" \n",
" Args:\n",
" source: the source of the edge\n",
" destination: the destination of the edge\n",
" cost: the cost of the edge (default 1)\n",
" \"\"\"\n",
" self.source = source\n",
" self.destination = destination\n",
" self.cost = cost\n",
" \n",
" def __repr__(self):\n",
" \"\"\"Return a string form of this edge.\"\"\"\n",
" return '{}: {}'.format(self.cost, self.destination.label)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"![UCS Graph](./ucs-graph.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"create all the nodes"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"S = Node('S')\n",
"A = Node('A')\n",
"B = Node('B')\n",
"C = Node('C')\n",
"D = Node('D')\n",
"G = Node('G')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"create all the edges"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"S.add_child(A, 1)\n",
"S.add_child(G, 12)\n",
"\n",
"A.add_child(B, 3)\n",
"A.add_child(C, 1)\n",
"\n",
"B.add_child(D, 3)\n",
"\n",
"C.add_child(D, 1)\n",
"C.add_child(G, 2)\n",
"\n",
"D.add_child(G, 3)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"take a look"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"S -> [1: A, 3: G]\n",
"A -> [3: B, 1: C]\n",
"B -> [3: D]\n",
"C -> [1: D, 2: G]\n",
"D -> [3: G]\n",
"G -> []\n"
]
}
],
"source": [
"_ = [print(node) for node in [S, A, B, C, D, G]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"```\n",
"UCS(root):\n",
" Insert the root into the queue\n",
" While the queue is not empty\n",
" Dequeue the maximum priority element from the queue\n",
" (If priorities are same, alphabetically smaller path is chosen)\n",
" If the path is ending in the goal state, print the path and exit\n",
" Else\n",
" Insert all the children of the dequeued element, with the cumulative costs as priority\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from queue import PriorityQueue\n",
"\n",
"\n",
"def ucs(root, goal):\n",
" \"\"\"\n",
" Return the uniform cost search path from root to gaol.\n",
" \n",
" Args:\n",
" root: the starting node for the search\n",
" goal: the goal node for the search\n",
" \n",
" Returns: a list with the path from root to goal\n",
" \n",
" Raises: ValueError if goal isn't in the graph\n",
" \"\"\"\n",
" # create a priority queue of paths\n",
" queue = PriorityQueue()\n",
" queue.put((0, [root]))\n",
" # iterate over the items in the queue\n",
" while not queue.empty():\n",
" # get the highest priority item\n",
" pair = queue.get()\n",
" current = pair[1][-1]\n",
" # if it's the goal, return\n",
" if current.label == goal:\n",
" return pair[1]\n",
" # add all the edges to the priority queue\n",
" for edge in current.children:\n",
" # create a new path with the node from the edge\n",
" new_path = list(pair[1])\n",
" new_path.append(edge.destination)\n",
" # append the new path to the queue with the edges priority\n",
" queue.put((pair[0] + edge.cost, new_path))"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"[S -> [1: A, 12: G], A -> [3: B, 1: C], C -> [1: D, 2: G], G -> []]"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ucs(S, 'G')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Reference\n",
"\n",
"visualization and algorithm courtesy of: [algorithmthoughts](https://algorithmicthoughts.wordpress.com/2012/12/15/artificial-intelligence-uniform-cost-searchucs/)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment