Code:
library(anytime)
library(flipTime)
library(data.table)
set.seed(1)
system.time({
some_dates <- as.Date("2020-12-31") - sample(40000, 1e7, TRUE)
| set.seed(1) | |
| N <- 500000 | |
| p <- 100 | |
| pp <- 25 | |
| X <- matrix(runif(N * p), ncol = p) | |
| betas <- 2 * runif(pp) - 1 | |
| sel <- sort(sample(p, pp)) | |
| m <- X[, sel] %*% betas - 1 + rnorm(N) | |
| y <- rbinom(N, 1, plogis(m)) |
| library(xgboost) | |
| set.seed(1) | |
| N <- 1000000 | |
| p <- 100 | |
| pp <- 25 | |
| X <- matrix(runif(N * p), ncol = p) | |
| betas <- 2 * runif(pp) - 1 | |
| sel <- sort(sample(p, pp)) | |
| m <- X[, sel] %*% betas - 1 + rnorm(N) |
| library(xgboost) | |
| library(lightgbm) | |
| library(data.table) | |
| setwd("/home/laurae/Documents/R/GBM-perf") | |
| n_threads <- 16 | |
| data <- fread("HIGGS.csv") | |
| labels <- data$V1 |
| Walk on thin ice in R for gcc-7/g++-7 + CUDA 10.0.130 | |
| Note: OpenCL can run on Single Precision (gpu_use_dp = FALSE) or Double Precision (gpu_use_dp = TRUE) whereas CUDA is strictly Double Precision in LightGBM. | |
| -- | |
| STEP 1: HACK IN SOME FILES | |
| Hack in the following: | |
| ``` |
Code:
library(anytime)
library(flipTime)
library(data.table)
set.seed(1)
system.time({
some_dates <- as.Date("2020-12-31") - sample(40000, 1e7, TRUE)