Forked from mrocklin/streamz-walkthrough-to-dataframes.ipynb
Created
April 26, 2024 15:58
-
-
Save LinuxIsCool/15a5df910e9b231dbc36f509cb9ca7dd to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from datetime import datetime\n", | |
"import json\n", | |
"import random\n", | |
"\n", | |
"i = 0\n", | |
"record_names = ['Alice', 'Bob', 'Charlie']\n", | |
"\n", | |
"def create_record():\n", | |
" global i\n", | |
" i += 1\n", | |
" record = {'name': random.choice(record_names),\n", | |
" 'i': i,\n", | |
" 'x': random.random(),\n", | |
" 'y': random.randint(0, 10),\n", | |
" 'time': str(datetime.now())}\n", | |
" return json.dumps(record)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"create_record()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"type(create_record())" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Basic Streams and Map" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"from streamz import Stream\n", | |
"from tornado.ioloop import IOLoop\n", | |
"\n", | |
"source = Stream()\n", | |
"source" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"records = source.map(json.loads)\n", | |
"records" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"names = records.map(lambda r: r['name'])\n", | |
"names" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"records.map(lambda r: r['time'])" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"record = create_record()\n", | |
"record" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"source.visualize()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"record = create_record()\n", | |
"source.emit(record) # push data into front side of stream" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Continuous updates\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from tornado import gen\n", | |
"from tornado.ioloop import IOLoop\n", | |
"\n", | |
"async def f():\n", | |
" while True:\n", | |
" await gen.sleep(0.100)\n", | |
" record = create_record()\n", | |
" await source.emit(record, asynchronous=True)\n", | |
" \n", | |
"IOLoop.current().add_callback(f)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Accumulators" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"records" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def add(acc, new):\n", | |
" return acc + new\n", | |
"\n", | |
"records.map(lambda d: d['x']).accumulate(add, start=0)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def accumulator(acc, new):\n", | |
" acc = acc.copy()\n", | |
" if new in acc:\n", | |
" acc[new] += 1\n", | |
" else:\n", | |
" acc[new] = 1 \n", | |
" return acc\n", | |
" \n", | |
" \n", | |
"names.accumulate(accumulator, start={})" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Streams of Dataframes" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"batches = records.timed_window('200ms')\n", | |
"dfs = batches.map(list).map(pd.DataFrame)\n", | |
"dfs" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def query(df):\n", | |
" return df[df.name == 'Alice']\n", | |
"\n", | |
"def aggregate(acc, new):\n", | |
" if len(new) == 0:\n", | |
" return acc\n", | |
" else:\n", | |
" return acc + new.x.sum()\n", | |
"\n", | |
"dfs.map(query).accumulate(aggregate, start=0)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Streaming Dataframes" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"from streamz.dataframe import DataFrame\n", | |
"\n", | |
"example = pd.DataFrame([json.loads(create_record())])\n", | |
"\n", | |
"df = DataFrame(stream=dfs, example=example)\n", | |
"# df.tail(5)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df[df.name == 'Alice'].x.sum()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df['time'] = df['time'].astype('M8[ns]')\n", | |
"df = df.set_index('time')\n", | |
"df.tail(5)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df.window('5s').groupby('name')[['x', 'y']].mean()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import streamz.dataframe.holoviews" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df.window('5s').groupby('name')[['x', 'y']].mean().plot.bar()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"df.x.plot.hist()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"source.visualize()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.6.0" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 2 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment