Skip to content

Instantly share code, notes, and snippets.

@LuxXx
Created October 8, 2019 09:39
Show Gist options
  • Save LuxXx/4fb5eb1f1cd32c3b1012da2dc20d9120 to your computer and use it in GitHub Desktop.
Save LuxXx/4fb5eb1f1cd32c3b1012da2dc20d9120 to your computer and use it in GitHub Desktop.
Geometrische brownsche Bewegung
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [],
"source": [
"a = 1\n",
"s = 0.040648\n",
"mu = 0.000358"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAD8CAYAAACMwORRAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJztvXeYW2eZ9/951KXp3eNux92xEydOIwkkJJCQQELJAlmWtoFQd2GXF0InsIX24/fu8lJD2UCABEgIBN4UIIE00py423GJ63hsT68a9ef945yjOdJoZjQzZ0Yazf25Ll+WdI6ke450vrrP/dxFaa0RBEEQSgtXoQ0QBEEQnEfEXRAEoQQRcRcEQShBRNwFQRBKEBF3QRCEEkTEXRAEoQQRcRcEQShBRNwFQRBKEBF3QRCEEsRTqDeur6/XS5cuLdTbC4IgzEqef/75Dq11w3j7FUzcly5dypYtWwr19oIgCLMSpdTRfPaTsIwgCEIJIuIuCIJQgoi4C4IglCDjirtS6sdKqTal1K5RtlcppX6vlNqulNqtlHq382YKgiAIEyEfz/124Ooxtn8I2KO1Pgu4DPiGUso3ddMEQRCEyTKuuGutHwO6xtoFqFBKKaDc3DfhjHmCIAjCZHAiFfJbwH1AK1ABvEVrnXLgdQVBEIRJ4sSC6lXANmA+cDbwLaVUZa4dlVI3K6W2KKW2tLe3O/DWxcf9O0/S1h8ptBmCIMxxnBD3dwO/0QYHgcPAmlw7aq1v01pv1lpvbmgYt8Bq1tHaM8QHf/4CH//1jkKbIgjCHMcJcT8GXAGglGoCVgOHHHjdWcee1j4AhuLJAlsiCMJcZ9yYu1LqTowsmHqlVAvwBcALoLX+HvBvwO1KqZ2AAm7RWndMm8VFyr/9YQ8/euIwAEvrQgW2RhCEuc644q61vnGc7a3Aqx2zaJZiCbsgCEIxIBWqDtFY4U/fDsckLCMIQmERcXeI/kiCvzt3ISsayxkScRcEocCIuDtAOJZgKJ5keUM5NSGveO6CIBQcEXcH6OiPAVBX7iPo8xCOSYGuIAiFRcTdAToGowA0lPsJed3iuQuCUHBE3B2go98Q9/pyPyGfiLsgCIVHxN0BOgeHwzIhv1uKmARBKDgi7g5gee515T5CEnMXBKEIEHF3gGePdLGwJojf4ybodROJp0imdKHNEgRhDiPiPkna+iMMxZIc7hjk8QMdvGXzIgBCPjcg/WUEQSgsTvRzn3PsaOnhum89yZVrG7lkRT0Abzx3ITAs7uFYgnK/HF5BEAqDqM8k+M/79wLw571tJFKaMp+b+VUBAEI+45BKlaogCIVEwjITJJFMsf14L6/d2IxS8Nd97SytL8OYMmj33EXcBUEoHCLuE2Tf6X6G4kleta6J1U0VACytK0tvD5ri/otnjqG1LKoKglAYRNwnyLbjPQBsWlTDWQurAVhs699uhWXuePoox7rCM2+gIAgCIu4T5sWT/VQEPCyqDdJcHRixfb7tsf6I5LsLglAYRNwnyOm+CM1VAZRSvOOipVyxppF3XLQkvX1hTYgfvmMzABFJhxQEoUBItswEaeuP0lRpeOe1ZT5+9K7zRuxTFfICkusuCELhEM99grT1RWisGBmOsRP0SsaMIAiFRTz3PEkkU/zi2WO09kZorPSPua+VMSNhGUEQCoV47nnyhx0n+fzvdgPQVDG2uEuuuyAIhUbEPU/6I/H07cbK/MIyUqUqCEKhEHHPg58/c5TfbWtN328aJywT8ErzMEEQCovE3PPgM/fuyrjfUD625+73uHAp8dwFQSgcIu4T4NwlNXzgFWdkVKTmQilF0CsTmQRBKBzjhmWUUj9WSrUppXaNsc9lSqltSqndSqlHnTWxsNiHbmituXJdU17PC/o8GQuqkXiSP+xolX4zgiDMCPnE3G8Hrh5to1KqGvgOcJ3Wej3wd86YVhzYve9VZqOwfAj6XBmpkF++fy8f/sVWthztdtQ+QRCEXIwr7lrrx4CuMXb5e+A3Wutj5v5tDtlWFFhx8+vPns/nX7cu7+cFve6MmPv+0wOA5L4LgjAzOJEtswqoUUr9VSn1vFLqHQ68ZtFgCfSlKxvSHR/zIejzELYJuXUFkEhKWEYQhOnHiQVVD3AucAUQBJ5SSj2ttd6fvaNS6mbgZoDFixc78NbTTzhudHa0ctfzJeh1EbF57taPRJ8tX14QBGG6cMJzbwEe1FoPaq07gMeAs3LtqLW+TWu9WWu9uaGhwYG3nn6sRVGr6jRfQj5P+ocBhj33PmkDLAjCDOCEuP8OuFQp5VFKhYALgL0OvG5RYHnfwQmKe3bM3RL3fvHcBUGYAfJJhbwTeApYrZRqUUrdpJR6v1Lq/QBa673Ag8AO4Fngh1rrUdMmZxuW5z7RsEzA6+al9kF+t+0EWmv6hgxRlwEegiDMBOPG3LXWN+axz9eBrztiUZFhLYpONCxjzsvmI3dt47JVjUQTKUA8d0EQZgbpLTMOkw3LnOgeSt8+1DGQvm333I93hXn/Hc8Tjok3LwiCs4i4j4MlvBMNy9x63XrOX1oLwKP729OP28X9f/16Ow/uPsXWYz0OWCoIgjCMiPs4DIdlJpY1unpeBf/5xjMB+MuLRl3XqqbydOwd4HDHIABet3wMgiA4i6jKOFhhmYB34odqcW0Zbpdie0svIZ+bpXVlGZ57W38UgEEJywiC4DAi7uMQjiUJet0oa4V0Avg8LlY0lAOwuDZEZdCbXlAdylHgJAiC4BQi7uMQjicnnClj54q1jQBUBrxUBDxpz/14d3j4PUTcBUFwGBH3cRiKJSecKWPnqvXzAKONQUXAS380QSqlGYzaqlclLCMIgsPIsI5xGIpNzXPfuLCKD1x2BtduaObJgx0ARBLJjFCMeO6CIDiNiPs4hOPJCadB2lFKccvVawDYeszo5f7Ru7bRa8uaEXEXBMFpRNzHoW8oTkXA68hrWemUf9p7GvtAJhnHJwiC00jMPQfhWIIfPn6ISDxJe3+Uhgq/I69rhXeyJ+1JhaogCE4jnnsObrlnJ7/f3kptmY/2AQfF3T/ycJf7PRKWEQTBccRzz6J7MMbvt7cC8Nj+dmKJFA3lzoh7WY6F2bpyn+S5C4LgOCLuWRxoG27y9ac9pwEc89yzUypdCqqDXvHcBUFwHBH3LA61G+L+1vMWMWiKbr1jnntmWCbk8xD0ucVzFwTBcUTcs3ipfQCfx8XrNy1IP+b0gqpF0OceMY5PEATBCUTcszjUPsjy+jI2La7G5zEOz3QtqIZ8boI+t4RlBEFwHBH3LA51DLK8oQy/x83Zi6rxuBTVQWfy3LOLoYJeNyGvhGUEQXAeSYW0obWmtWeIV61rAuDG8xexsCaIyzXxjpC5cLsUAa+LSNwYuRfyuQmJ5y4IwjQg4m5jMJYkmkhRV+YD4A2bFvKGTQsdfY8yn4dIPAZYC6oewrEEsUQqHQaaKG19EZRSjoWPBEGY/UhYxkbXgCG6dQ5lx+TCng4Z9LlprgoQT2re9T/PTvo1z//PhznvP/7shHmCIJQI4rnb6Bg0JiPVlfum7T3s6ZAhn5u3X7iEZ4908cyhrml7T0EQ5h7iudvotDz3sukTd7vnHvK5cbkUi2tD9IRj6OymM4IgCJNExN1G54DluU9fWKbM78ZnDsQOeg0vvibkJZHSDEQl310QBGcQcbfROTj9nnvI56Gpym/eNrz46qDxfj3h+KjPG41USrx9QRBGIjF3G50DMcp8bgJTGM4xHjddsoyuwRidA1EuXlEPQHXIyKPvCcdZVDv287cf78HncbG2uRKAAWkXLAhCDsYVd6XUj4HXAm1a6zPH2O884GngLVrru50zceboHIxOa0gG4MLldSMeqzGvFLrDsXGff/23nwTgyFeuBWAgIuIuTI0fPHaIc5fWcM7imkKbIjhIPmGZ24Grx9pBKeUGvgo85IBNBaNzIEbtNIZkRqPG9Nzt4v7rLcf5/O92ZexnD8FYAz76beIuIZrSZSCaYE9r37S89n/cv5c3fudv0/LaQuEYV9y11o8B4+Xp/RNwD9DmhFGFQGvNvtP9LKsvm/H3rg6NjLl//O4d/PSpoxmzVtv6o+nb2473ADAQHd4eSUila6ly/bee4JpvPk7S4R/wqHxnSpYpL6gqpRYAbwC+l8e+NyultiiltrS3t0/1rR3lVF+E9v4oZy2smvH3rgoOe+4t3eEMD/zpQ53p20c6B9O3XzhqDNvus3nu0qOmNAnHErzUbnz2VkaXUwxGh78zTv9wCIXFiWyZ/wJu0VqPqyxa69u01pu11psbGhoceGvn2H68F4CNi6pn/L29bhcVfg+/3tLCJV/9Cw/tPsXyBuMK4smDHen9jtrEvd304u0x90giNUMWCzPJY/uHHaFTfRFHX3vQln57vCvs6GsLhcUJcd8M3KWUOgLcAHxHKfV6B153Rtl5ogePS7HOzEKZaarLvJzoGQJg78m+tBe+9+RwnPVIZxiPy+ghYzUb6xfPveQ53TfsrZ/qdVbc7d+f/af7HX1tobBMORVSa73Muq2Uuh34g9b6t1N93ZmmpXuI5urAtKZBjsXrNs5HA3/Y0cqhjsF0rP2YzZs63RuhqTKA3+NiKG4IeUbMPS7iXorY12JOO+2521JpTzr8wyEUlnxSIe8ELgPqlVItwBcAL4DWetw4+2yhazBGbVnhuip+4uo1gOGp7z/dTziWxOtWnO6LEoknCXjdDEQTVAQ8uF0qLeQZnruIe0nSMxQj5HMTTaQcD8vYq6Lti/fC7Gdccdda35jvi2mt3zUlawpIdzhGY0Wg0GawrL6Mv+4zYqxnLqhi67EeWrrDrGisIBxLUub3oEDCMnOI3qE4NSEfKa051evsgqp9zUbEvbSQ9gMm3YPGCVRoljeUp29vXGBk7lihmYFoIj2abyieJJpIZsRgJSxTmvSG41SHvDRVBjjVN+TY68aTqYzsm8m0vxDGRmvNL545VpC+USLuGB5L52CU2jJnxulNhRU2cT/TFPfjXcYJHY4lKPN5CHrdbD3Ww+rPPsiDu0+xZl4FIGGZUqVnyBD3pXUh9p3qp60vwqd+s3PK8fd/vP05bv39HgAWVAfFc58Gdrf28el7d/KxX22b8fee8+L+t4MdnPXFPxKJp9JtAArJ+gXD2TrLG8rxeVy0mlk0g1EjLGNvGwxw7hKjbFw899KhtWconfraE45RHfTxyrVNdAzEeMN3/sadzx7LqIGYDI8fGE6zXVAdpE/E3XEsh+vhvTNf3znnxX3nid707ensBpkvlYHhq4eakJdyvyed0TAYS1Dmd48YtG2Ju8TcS4eXfeURXvH1vwLQO5SgMujlstUNeN0qnTJrL0CaKjVlXvHcpwHrBzOR0sRmuA5lzot7yOYFF0PM3U5V0GsM0DZP4sFoIqfnbjV8GopLEVOp0T0YMzz3kJfKgJcvvG49X79hI5CZBjtVqoJeeobGb1wnTIy+yPBndKBtZusI5ry4272VQjQNy8Vnr10L2MQ9liSWSBFPasp8mZ77L95zAYtrQwDc80KLeF8lQCI5/CO96d/+RCKlqTZbVPzDhUt40zkLUcrZjqBVQfHcp4O+oUTO2zPBnBf3bluGQDHE3AHec+lyjnzlWjxuFyGfEZaxysTL/J60uId8bl62oh6XSwFwsG2AXz13vGB2C86Qq5iowhauc7kU5T4PA1MIy2SPdKwKeonEU9JIzGHs6xgznTEj4m5rs1s/zb3cJ0OZ3/Dcrbh7mW84LON1D398kjFTOhztHNnjxetWGffLA54phWWyhabKDEmK9+4s/bbj3B+Z2WM758W9NxxnbXMlz3z6inR3xmIi6PUY4m56afaYu8c1fMI/8JFLCXrdcnKWAMeyGnh94urVvH7TgozHyvyeKXmCVk57U6Wfz712Xfq73yu57o7SNxRPn6fiuc8w3eEYdWU+mioLX52aC8NzT6Q995AtW8Zj8+aUUlQFvaOmsz246xQf+9X26TdYmDLHuzPF/W3nL8m4SgMo93syqpMninXF+u+v38BNlywbFndxDhylLxJnfnUQYEqf12SY8+LeE45TFSo+j93CWlC1MmasIiYAjyvz4xtrUezDv3iBe15o4XDHYM7tQvFwOivmXhkc2SWkIuDJaNc7USzP3ZoCZhf3413hdLplNJFkd2tv7hcRxqVvKEFDhR+f2yXiPtP0DMXTX/BiJOTzEI4m0pd0ZX63LeaeGYetDHpyintrzxDrzWrXh/eenmaLhalyuj/CqqbhSmWl1Ih9ynxTC8tYnnt1DnG/7ltPcPFXHmEgmuAz9+7i2m8+QVu/dIycDH2ROJUBDxUBj8TcZ5JUStMTjhVdfrudkM9NOJ4czpaxe+7u3J779uM9/HqLkTWzp7WPl33lEVrMOO5f9s3aSYhzhra+6LjjHssDnimlQlqeuzXisTo9DSyeziD74eOHeOawUQXrVIGc1pqW7rkzFKRvKE5l0GsugIvnPmP0RxKkNEW5kGoR8nnQ2mhJDKMvqAJUBr30RxJc/+0n+fjdO9BapxfnOs3n7zslAxmKndN9kXHXgMr9noxMjImSFnfzu19p/r/f9v14+lAnyaSRMplwaATfr7Yc55Kv/oUP/Ox5R16v2OmLJKgMeE3PXcR9xrCqxyqLWtwNIbdynysCw/HX7EW2quDwNCcwvLDerKrDjgGj4lEoTiLxJH2RBI0Vfn77oYt5/BOX59zPirln56vnS3c4RoXfk776c7sUFX4Pzx8zZvOubCxnZ0svMbOgyom+RVprfvD4YQAe2HWq5Hshaa1Nz91DuX/4SutlX36Ybz58YNrff06Lu5UTHvIVZvpSPli2HWjrp7bMR8DrTj+2qqkiY197XxowYu32Nq4NFUYe/8G2gek0WZgCbeZIvcbKAGcvqmaRWX2cTZnfQ0pPvq6hJxyjOqsLamXQm/5uvOnchQzGknQMGI6AE0K873Q/B9sGONucU2xdjZYqQ/EkiZQ2PXcvfZE4A9EErb2REY7ZdDCnxd0aeFHc4m546vtP97OwxkipWtFYwf+86zz+/fVnZuybHV5q6R7KqMDdZJ5UIu7Fi7Vw2VgxdkFdud/4Xkw27t4dHjm/wFpcrQx4uGJNY8a2iAN9i7rMHwqrF1Kpi7vVbqAy6KXCrEs4aV5Zz6+e/tTrOS7uZu64b8qjZKeNkN/44TndF02LO8DlaxpHNBCzxN3y0Ft7hjLCMmvmVeD3uETci5i2fsNzHy/mboXn+iYp7j1D8RHOgHV/RWM5C2syrxic8NytMOiyeuO1OwacnSpVbKTDvmbM3fLaAZqrgmM91RHmtrhHi99zL7P98GSfcNmEzRPw5SsbCHhdI8IylUEv9eX+DG9eKC6sARzjee5Wlku+6yd/3dfG7U8eTt/PlSVmF/dgVoM6Jzx3y5NdVm+keZa+526t6XkoNxdULc+9uUo892klPIti7kCG556Lq9fP47LVDdxy9WrmVwdp7R3K6J1TGfAS8LqISHOooqWtP4rHpcZNz7VmD3TmKZDv+h9j6lLSzHrpHoyNqO+wiztkdkl10nNfanruJS/uNs+9JuQjmdLsPdmHUjBPxH16GTLDMsFiDstMQNwbKvzc/u7zaawMsKQ2xMG2gQzPvSJgpFFGZKhHUfDiqT4+8LPnM4Y4nO6L0FjhT3f6HA1LeC2B7IvEeeePnx23AvlI5yDJlKYvkkh7/xaWuJ9hjnqsK7eJuwMOQV8kgVJGSMLrVnn/MM1W7DF3qy33M4e7aCj3y4LqdJNeUPUWr+e+pK6Mt12wmI0Lq9i4sDrv5529qIYDbQO0dA+nRpYHjAIo6RxZHHzgZy/wwK5T7D89nFve3h+lIY8+R9nifv+Okzy6v53/kyPFLm7rD7+ntS9dxVyd7bmHRvfcnShi6huKU+734HYpast8GcO5S5Fhz93D4jpD3F881U9z9fTH2wGK12WdAdLi7i9ecXe7FP/xhg0Tft6mxdVondmJriLgJeB1T6knieAcbWZ83R6eON0XYWnd2NWpQDol1npuu7kQa++TFI4leO9Pt7CzZbg3zO7WPtbNN+b0Zod+XrdxPlqT9jLtqbVRB0bEGaX4xmvWlvlLPyxj/oha553Fsrqx186cYo577gncLoVvBi6RZpqzFw97+VZop9zvIeB1yzi+ImHQdC6sRVQwYu6NlfnNFagt86UFcp/p/dtj43ta+3jyYGdGRs3WY9221gOZnvui2hAfunxFupeN3zN8XjgSczdnwYKxZlDyYZlIgqDXjc/josw/7EdfuLxuRt6/9FRtAoRjSUJed87GTLOdyoCXt563iOaqANdsaMbrVtSX+wh63SVfGTgbaLMJuiXukXiSnnCcpor8FtvsArn3ZJ/5WoYH/6nf7OQz9+7K2P/G8xex5Wg3v9/eCoyfbulzWtzNJlpg/LD0lHjWllWdms3LzqifkfcfNyyjlPox8FqgTWt9Zo7tbwNuMe8OAB/QWhdl4/A7nz3Gj544zB03nU9zVZChWHJErngp8ZU3GYOUE8kUH7zsDKpDPiNbRsS94BxsH641OGWKuxVayddzrynz0TEQJZ5MpRdSH3mxjbO/9Me0cLpdigc+cimP7mvn/GW13PnscW7/2xGuO2t+enrXaGSKuxOpkPF0xe1YswdKBXsYCoxQ6dZjPSyqLZ6Y++3At4CfjrL9MPAKrXW3Uuo1wG3ABc6Y5xwt3WE+9ZudADx/tJvXbgwSjiUzLpdKFY/bxXIzAyLodXOyN8JZX/wjd7//IlY2jX2CC9NDp1mt6VKGt73teA/HzSZvjXkOjqkt87H/VD+neiOkNCgFWpPhEdeEvKxqqmBVUwWplObKtY00VQb49DVrx71iddpz7zebaIGRQdIXiaO1LskrZ8gMQwH8/D0XEI2nZuzvHVfZtNaPKaWWjrH9b7a7TwMLp26W87xwrCd9+3C74eWEY8mMQo25QMC8UukdivPzZ45x63XrC2zR3MSqzlw/v4rTfRFu/umWdBbTeAVMFlZYptUsjDlrYTXbjvdw5domrjt7Pv9859aMeLvLpfjhO8/L28b3vfwMjnaEefZIlyMZVvYwRWXASzypGYoni7pCfCr0ReLpegQwKuFnsru40zH3m4AHRtuolLpZKbVFKbWlvb3d4bcem+3He/B7XDRU+DnUYYl7oqgLmKaDgGf475VJ94WjcyCGS8HqeRUc7QzT1h9Nt4TNd+TjisZyookUTxzsAIZbEmxYUMUlK4y47lQG0dSW+fje28+lscI/5bBMKqUZiA177lZOvZULXopYvdwLhWPirpS6HEPcbxltH631bVrrzVrrzQ0NDU699bj89Kkj/OiJw6yeV8GqpnKbuJd2zD0X9r83KlkzBaNjIEptmZ/FtaGM6Vkel6I2T/fOWpj7zQsnALj55csBeP2m+dSW+bj1deu446apR0gDXveUHYH+aAKth3+ALA++b4anE80kfbYwVCFw5HpIKbUR+CHwGq11pxOv6SRfe3AfABevqGcgkuB3206gtWYolqQpz8WrUsEehnIid1mYHB0DMerLfSMmLjXkUZ1qsag2xILqICd6hqgIeLh0ZQNHvnJtevu7Ll7miK2jLcJ/5YEXSaZSfObadeO+xnCfFavzZGkP5Lb3ci8UU/bclVKLgd8Ab9da75+6Sc7jdSuuXNvIR65YyRkNZfRFErT1RwnHExmNueYCAe/wRz6VST7C1OgcjFJf7md5Q6a45xtvt7h8jXEF7JrGRbqA1z0iLJNMab736Ev84PHDeQ0MsfdZAXtYpjTF3d7LvVCMK+5KqTuBp4DVSqkWpdRNSqn3K6Xeb+7yeaAO+I5SaptSass02jthEskU3eE46+dXEfC6OdMcFL2zpbfkUyFzYa+U6+gv7fLvYqZjIEpdDs8930wZi/e9/AxguH31dBDwZNZGPH+0mzO/8FD6/rJP3c99Zu78aAz3WbHCMqa4l2hYxt5XplDkky1z4zjb3wO8xzGLHMZqb1tvNkFaN78SpWDniV4Gook5kQppxx6WaS/x3h7FSk84xvGuIV69bt6ITJGJeu6LakP891vPntb+4PZOopF4kj/uPjUie+ajd23lo3dtZctnX5XRk8Yi23O3iplKdUE1++8tBCVfodo5aAhYXblx0oR8Hs5oKGfr8R4i8VR6os1cwe65dw3G0i1ghZkhEk/yym88Cgx3XXTbYuyNeVan2rn+7AWcv6zWGQNzEPS56RmMc6wzzJrPPcj3HzsEwNsuWJzeJ6WNf08fyr3kZoVfqrIGcpdqzN3ey71QlLy4W6O97N7E+vmVvHDUGAQ818TdHoZKpnRGv3dhemjri/CJu7fTE45x3/ZWugZjXLi8ltefvQCA5z97Jc9/9kq+eN16bthcfGUirz97AdFEipvvGI64rp9fyX+8YQMfv2p1xr4vnurPfjowPDHK8mS9bhchn7tkY+7F4LmXvLJ1mL036m29qRvK/eluiXNO3LOKtvqG4tSXz62MoZnm3bc/x+7WPi5eUc+9L5xgRWM5d773wnSlotVX/Z0vW1pAK0fnguV1vHJNIw/uPpV+zJok9KHLV/DM4S4e22/UrWw73pPzNSwRLw8Mn2+V5tDoUqQYYu4l77lbPaNry4YFzH7A7V+2uYA9WwYyWwILztMTjrG71Wjq1dI9xJ6TfZy3tHbWldxnTw6y37c7TluPdWcMH7HojyTSvdwtFteG2HmibxqsLTz2Xu6FouTFvWvQqASstgm6/YDPtQXVQJbnPjDJActCftgXDJ893EXvUHzchl3FSHYzM/vagDWQvbbMR38kwV/2tRFPpvjt1hNc/60neMePn6V3KD5C6K46cx57T/aNOz1qNmLv5V4oSl7cOwZi1Jb5MgpDMjz3OSbu2fnQkus+vYTjw8f3UTN0sXoWint2G2L7QnyDGdb7u3MXUl/u57t/fYlLv/oXPvrLbWxv6eWx/e0c6hgYEaK4ZsM8AP5oC/eUCn2RBAGvK6P52kxT8uLe3h8dEVO2L3JUzLGwzLzKAG/evJDvvO0cAJnKNM1Y074abCmOq2dhJ87sfjcXLB/OzrHOr/nVQf71VavYdryHaCLJ999+LnfcdD4AW4/1jFhcbK4KsqBo0zfgAAAgAElEQVQ6yJ6TpRea6RuKF3QxFebAgmpbf2TEF9M+imyuhWVcLsXXbjgr3ZUwV8z9E3dvp6V7iF+898KZNq/ksGaPrplXQXt/lBWN5dTkyAMvdqw2HevnV/LL912UccVr/XA1Vfq5+sxmmqsCLKwJsrKpIv09g9xpgauaytk3SobNbKY/kii441jyyna6LzIixmn/RZ1rYRkL6+/uzxFz/9WWlpk2p2SxrozecdFSzlpYzT9e4ky/l5nGqpytL/ePOGfOXVLDhy9fwaUrjVYIl69pTG+zXzXnqr5dPa+SJw92Ek+m8JbQuMuBaKLg2lLSypZMaToGYiMKQ+weRKE/gELh97jwutWY2TLJlM7IbhAmjlXJuay+jFetayqwNZOnMuAh6HXnTJsNeN38r6x8dzvL68s41DHIhy5fMWLb6nnlxJIpjnQMltTgmHCs8NXvJa1snYNRkik9ovOj5bkHve45K15KKcr9njFj7h0D0bx7iwu5sWLus31ugFKKL12/njXzKif83J/edD6ReJIF1SNbJKxrNno9/XlvW0mJ+0A0yYLqwobfSuc6KAdt5rDghizPPeRz43GpOZfjnk2Z3zNmKuTJ3sio24T8KBVxB/i7zYvYsLBqws9bWBNiRWNu4V7VVM6Vaxv55sMH6B4snWrpcCxBub+wn3lpi3u/IU7ZnrtSisqgl4o5GpKxKPd7RqRC2rv/nTTHtwmTZ8js1jjXuo/mi1KKt12whKF4ksOdpZPvPhhNECqwvpS0uJ82PfdcoYXKgKfgMbFCUxEY6bnbe32I5z51wrEkbpfCV0KLhU5jNVCz+kCVAoPRZMHX80r6G2e1HqgrHxn7qgr5CtqxrRgo93tGLKj22MT9VJ+I+1QJx5KEvO5Z125gJrE6tlodXO10D8Y4McuuIJMpa/B3Ya/WSlrd+qMJfB4Xfs/Ig/z5167D657bJ1x5wMvRznDGYz3hYXE/0T27TqpiZC4OhJkodWbef0cOz/0/79/LjpZeHvqXl8+0WZPGGpxSaM+9tMU9khi1cc+5S2pm2Jrio9zvHhFzt/pr15f7OFJCMdBCES4CD67YCXjdlPncdOVYUG3pHuJ4dzjHs4qXwai1iC5hmWljIFL4QoJiZmFNiPb+KA/Zenv0mP3dz15Uw+GOwbzmYwqjMxRLFPwknw3Ulfu5f+dJfp81rq9zMEo4lpzWMYJOM2jaWibZMtPHQDQx59Mdx+KmS5axZl4F3/jjvvRjlue+aXE14ViSNpmzOiUGo+K550NtmY+TvRFuuWdHRsZWpxmq6eifPYutVu1ImXju04d47mMT8Lp5zZnNHGgbSC+s9g7FcSnYYA4SP9SeGZrpDcf5wu928VL7wIzbOxsJxyXmng9WH5ZwLMkTBzoAY2Gyy7ySnE3zftNhGfHcp4++SLyg/ZRnAxsXVaE17GzpBYyq1NoyH2c0lgNk9Nr+5D07OOtLf+QnTx3lXf/zbIaHJeTGCMuIuI9Hqy0jxgoT9oRjWFHBjlkl7sWxoFrS4j4QTcz5QqXxOGthNQA3/uBpHt57mvb+KA0VAZorA7gUnOw1TrpUSnPXc8eN5yyq5njXkHjveRCOJSXmngfW4OxLV9bz572nSSRTdNoWWGeVuJsx90J/7iUv7hJzH5vaMh8bzZLyv+5rN8Xdj8ulqC3zp9PTrJz3L163nlvMJlG5OkoKw6RSmr6huHjuefDtt53Dd992Djeev5jucJwtR7szBH12xdyNK1rx3KcJrXV6bqMwNr/5wMtY11zJ8e4wbf1RGs3+3PXlvnQhmBV7X9lUng51ibiPzXNHuuiLJNi8VNJux6O5KshrNjTzilUNeFyKJw50pBdTYXZ57lZmj8Tcp4lIPEUypSXmngcet4tl9WUc7hikYyCaHr5QV+7jhWPd/POdW9lxwphqf0ZDeXrxayBampPrneK321oJ+dxctX5eoU2ZNZT5PSyqDXG4c9A23N5H+yzK2uobiqPULMiWUUr9WCnVppTaNcp2pZT6plLqoFJqh1LqHOfNnDj9pvBIWCY/ltaHONoZJp7U6ZmYdWZY5r7trXztwX2U+dw0VvjTx1Q897HZ3drL5qW1BY+9zjaW1IU42jlI+0AUt0uxtC6UTtGdDRzpDLOgOljwduL5eO63A1ePsf01wErz383Ad6du1uQ41Rth/2ljZJfVEEsWVPNjSV1Z+rY16T67J8/GhdUopdKeu4j72HQOxNI/lEL+LKkNcbQjzMmeCE0VfmpCvlkl7oc6BjijobzQZowv7lrrx4CuMXa5HvipNngaqFZKNTtlYDYne4f47dYThGMJ7t3akp4oD/ClP+zm7T96Jh1vh8IvaswWzmgYFndLkOxTd6qCXr78xg0A+D1ufG6XiPsYaK3pGIjmbFonjM2SujL6own2nOxjXlWAqqB31oh7KqV5qW2Q5bbzqVA4EXNfABy33W8xHxuBUupmpdQWpdSW9vb2XLuMy9ZjPXz0l9s40hHmy/e/yH//eT8P7z1NOJZgR0svp/uiHOsKp4tyCj2kdrZw9qKadN/75ipjYk6t2dDp/KW1PP/ZK1laP/yFrQh46I/MjhOuEIRjSaKJVLoplpA/S+tDALx4qp/mqiCVQW9GK+pi5lRfhKF4sig8dyeUL1dgKWdDEq31bcBtAJs3b55U05LmKqM3+4G2ftr6o7T1R7npJ1tYVl9Gi9nFcMuRbrwe43erOiQnVz64XYqHP3YZzxzqZHGdcXJZP4zlAQ+erH7k5QGPeO5jYGV61Iq4T5jl9cPC2FwVoMwcKlPsM30j8SQ337EFoCjE3QnPvQVYZLu/EGgdZd8pM9+cw2iVKFvYKym3HO3meJfRSW5R7ci5jUJuyv0erlg7PMTZmka/xBR7OxWBkb3ghWE6zN7kuQZKC2OzpC6UbsdthWWAovfetx/vYdeJPpY3lHHWoomPI3QaJ8T9PuAdZtbMhUCv1vqkA6+bk/pyv5EHe7Aj5/b18yt5/mgXRzsHaajwS6bCFLhybROff+06Pp5jsn2F3ythmTHoEs990iilWFRrOBTNVcG0uBd73N1yMH/y7vOLQnfGtUApdSdwGVCvlGoBvgB4AbTW3wPuB64BDgJh4N3TZSwY4YOmygAneoZwuxTJlOYdFy3hpkuW8cTBDroGYnzjT/txu1wsrh3pcQr543Yp/vGSZTm3lQc86asjYSTWVCFZUJ0cmxbVcKh9kIqAB78ZYp0N4u7zuNLRhUIzrrhrrW8cZ7sGPuSYRXnQXGWI+9K6EL//p0vwe9y4XYoldWX87SXDo997so83bsq5ris4QEXAw77T/ew71c/qebkn289lrLYNdWUSlpkMt163jpVN5Vy8op4XjnUDxS/uL7UPsrQuVDTrArOyQtWKBV995jxCPk/GwTx7UXX69oKa4vgFLUW8Lhdaw1X/9VihTSlKugZjhHxuafc7SSoCXt7/ijNwu9QsCssMsKy+8CmQFrNS3C0xf8OmhSO2hXwevvC6dYARfxemB1eReCeFIppIkkqNnvB1rCtcNJfns53KQOHEXWvN1x58kX2n+sfcL5nSHOsKs6y+8FkyFrNS3L/ypg3811vOZkVj7gP57ouX8dxnrpSeHtPIx169io0Lq/C41Jwbxae1ZvVnH+TT9+4cdZ+DbQOsHOX7KUyMQnru3eE43/nrS7z9R8+MuV97f5R4UrOwiKIFs1LcF9aEeP048fSGCj9KzW3vcjqpL/dzzYZmEilNODa3hnb0hA2RsfrbZxOJJznaOSji7hABr4uA10V3jgHaAIlkKj13wGmswRujpf2e7B3ij7tP0Wq+v1WHUwzMSnEXioPZEgt1muPdRpbQaL7Dkc5BUhpWNMlCsxMopZhfFUwLKMBbvv8U7/2pUTD0hft2c9GXH5mWugurUC8xSgjuzd9/ipvveJ4jZhqkVd1dDBQ+GVOYtVTbxH2uxJe7BmPpGovR+hYdOG1MqBLP3TkW1AQ50T0s7s8cHm539YtnjwFG48DRQrWTxarlSCRTObcf7zJseu6IkdEzv7p4PHcRd2HSWJ67FaaYC9x429PsMzuPVo4yK2DfqX7cLlVUmROznQXVQfae7APIWOOJxJPpOaun+6ZD3A3PPZfjbrfjuSNdBL3u9DlRDEhYRpg0lXMwLGMJO0Aildub23OyjxUN5QS8kgbpFPOrg3QMxIjEk/QNDYdf3vL9p9K3T/VGHH/f/jEG0rTbpkMdbBuguTpQVOt84rkLk2a29PxwghM9Q/zrL7dlPDbaFcue1j4uOqNuJsyaMywww36tPUOkbB7z9pbe9G1rzq+TjNUcLzs9cn4RxdtBPHdhClSFDHH/xD07+MUzxwpszfTywM6T6TjvhgVVNFX6iSZSROKZmUKdA1FO9UVY1yw1Fk5iFSSe6BmirS9z5J7VZqTNYXH/1ZbjfOuRg+n72Z91S3dmho41aL5YEHEXJo19ytUDu6atV1xRYPfgbnvHuXzkilXASO99v7mYuqZZMmWcZKk5KWzfqf50OOS2t5/Lni9dxWOfuJyVjeWOeu5aaz5x9w7abLNb7Z9112CM01nv966XLXXs/Z1AwjLCpLHHF7cc6SaeTKVbQ5Qalpf2tRs20lwVpNq8aukZijHPltvc1m+c8MWU71wKzKsKsLQuxFMvdXLhciPkdeEZdenui/OqApzqc26I9kvtgyMe6xo0PutIPMkrvv4XBqMJKgIefvTO82jvj9JYWVyfeWmeicKMMxRPsqOlZ8bft3coPmYbAKdo6Q6zeUkNb95sjC6oHiVTqGvQavUrDcOc5mUr6nnmcBetvUP4Pa6MK8fGioCjYZnHD4ycFNcdNj7blu4w/ZEEKW0U852/rJZrN07bZNFJI+IuTImf/OP5fP/t5wLGQuJMMhRLcslXHuHerSfyfs7J3iH+tOf0hN+rpXsoo7TcWm/IFvfOgRguNSz+gnO8fGU9A9EEv9/eyoKaYMaVY3XI2TmrVnjNjnVVdqRjuNV1MY9RlLCMMCVesaoBrTUhn5tDHSMvZaeTk71D9EcTHGwfeSKOxg3ffYoTPUNs/dyrqMnzxEwkU5zqi7CwZng+QI05vrErqyS+czBGbZlvzjdWmw6uWNvEotogx7uG+MBlKzK2VQW9hGNJYokUPs/Ufda2vgiVAQ99trWWB3edoq0vmtGFtpgnbYnnLkwZpRRL68oyRh3OBO3mYlfnQH6x1sFoghM9VkVh1zh7D3OyN0IyldkUqqHCj0sxoqdJ12BUpi9NE163i89eu47zl9Xy9+cvzthmrYE45b2f7o9wlq19eH25n4d2n+bLD7zIbtsVam0RD2MRcRccYVlDWbq/xkxhZU1YgzG01mPG3x95sS19+1lb+Xr3YIynXuoc9XnWD4Ldc/e6XcwzJ4LZ6RyIyYCOaeSq9fP41fsuGtEnf6p9jp451MmTttGdp/ui6dz6azc0Z/yw28N63iK+QhNxFxxheX0Zx7uHiCVyV21OB5bnfrhjkNufPMxl/99f+eDPXxh1/6cOdVLu97B5SU2G5/7dR1/ibT98elRhsDJlstu5zq8O0tqT7bnHitqbK1WmUi2tteaWe3Zwyz07eOFYN71DcToGjOyXw1++hm+/7ZyMnjH2BmWxUXrOFAMi7oIjLG8oI5nS3PXczBUz2cX91t/v4WhnmAd3nxp1/2cPd7F5aQ0XnVHHrta+9Em69Vg3KQ07bdWOdlq6wygFzVlNoQxxz8zQ6ByMFfUiW6kylWrpg20DHOkM09I9xBu/8zc+cfd2tIamyuG24cmsK8IbzjUGBRVz/yARd8ERrlo/jwuX1/LF3+8hHHO+9Wou7AUmXrfidWfNHyGsf9pzmvfdsYWfPX2Ug20DXLCsjvOX1ZJMaV442k0imWLXCSOGun2UVM6W7iGaKgL4PZmhgPnVQU72DqVDQfFkit6huIRlCsBkwzJaa36eVV29w/yRb6oY/jG3FtAtbr1uPXfdfCE3XbJ8MubOCJItIzhCyOfhLect4ulDXZzqjbC8YfzufJ0DRuZBdWhynm67TdzXNleysCZI71Ccn/ztCK9c04jbpfjvh/ez60QfD+024qSXrW5gca0xxPjB3adoqPAzZJaVbz/eM+L1tx/vYWdLb855vAuqA8STOn0Jf7zLSJFrqBBxn2nyFfdfbznOliPdfPWGjQD8350nuf1vR7jh3IXc/XwLYCygAzTZipI+dc1a1s2vpK7MT+dglHK/J11MVayIuAuOMa/SEMB8xf3cf/8zAEe+cu2k3s8u7rVlPqqCXhIpzRfu280X7tud3rZmXgUvnurnvKU1rDV7vly1volfPHOMF44afbjPW1rDkwc76BiIptPbPn3vzvTi2aUr60e8v9XD/kTPEI2VAe7degKl4PI1DZP6e4TJk6+4f/zuHQBpcf/t1lbmVwX42ps28q6XLeXT9+5Me+72OHtV0Ms7Llo6DZZPHxKWERzDKrk/OcHWqxOdwZpMae7d2sKBtn4CXuMrXFfmH7WX9r++ahVv2byIj1+1Jv3Yt248hw0LqnjxVD/zKgN8+Y0biSRSfP/RlwCjSdQTBzpYbU5TunjFSHG3PPSOgRhPHuzgp08d5eUrG4pqGs9cwet2EfK5xxR3+/csmkgSjiV4/EA7r14/D5dLceaCKjaZ6Y/NVQHqijiHPR/Ecxccw+qxkk8DJ/uJ1tobSaed5cP3Hn2Jrz+0j7MWVvG/33I2//LLbfzTK1ew52TuCtlzl9Tw6qxh6S6X4oq1jew80cvFK+pZ0VjOpSvreXR/O5+51siDH4onueU1q7lweR3BHL3ZLQ+/YyDKDx8/RHXIy+deuy7vv0Nwlqrg2FWq9i6O/ZEET73USTSR4tXrmtKPW1djVqOy2Yx47oJjBLxuakLeEemBubCfhGO1LUimNPGsdLOnD3WyZl4F93zgZSxvKOd3H76EpfVlIzx3n8fFJ1+zZlQP7FXmSW2FUc5ZXMOBtgH6InH+9lInHpfiouX1hHyenEMYrGKll9oGeKl9kDdvXuT4JCAhf8YT910nhrOheofi3PNCC81VAS6wxc6t71AppLPmJe5KqauVUvuUUgeVUp/MsX2xUuovSqmtSqkdSqlrnDdVmA3MqwrmNRHHHi/f3Zo7BXHfqX423PoQ1/z34xmP7z/dz7r5lXiyOlBmi/u1G5p5/yvOGNWG9fOreORjr+DaDUbTp02Lq9EadhzvZdeJXlY1VYwolrET8LqpCHjSxVFn2yoahZmnucpY1I4lUvzs6aMj5p7a22O0dA/x2P52Xr9pQUY7ASu18Yo1jTNj9DQyblhGKeUGvg28CmgBnlNK3ae13mPb7bPAr7TW31VKrQPuB5ZOg71CkdNcFaB1guJ+KEd7VTAyGcKxJAfaBojEkwS8bnrDcU73RVnVNLJfera4Zxcd5cK+8GuVm//Dj54B4M2bF477/IZyP4c6BlGq+IY1zDU2LKji0f3tfP/Rl/jGn/YD8A8XLklvt19RPn2ok5SGC5bVZrzGBcvrePTjl7FkjoRlzgcOaq0Paa1jwF3A9Vn7aMAaPVMFtDpnojCbqC/30TU4fq8XK0d9QXWQo525xf1IlqcFsL/NGG22Ope4hyYu7nYqA16+9feb0vfPXDC+WNeZl+8rG8upGGVgtjAzbFhYTUrD04eNVhLZLYBP9UbwmVd7zxwy9sk1MasUhB3yE/cFwHHb/RbzMTu3Av+glGrB8Nr/KdcLKaVuVkptUUptaW8f2S9ZmP1Uh3yjzha1Y3num5fWcKQznHOfI52DhMywyDXffJzv/PVgOj6/at5IcS/3DV+IblpcPak85NdunJ+eqLN+/vij8qxF1U2Laib8XoKzbDB/jK3vSCSR4v6dJ3nIrFpu7Y2wap5xpfbCsR5qy3wlXZOQj7jn6oyTnbt2I3C71nohcA1wh1JqxGtrrW/TWm/WWm9uaJBc4FKkKujNOVs0m/aBKH6Piw0LqugditMTzmydq7XmcMcgl5gpiLFEiq89uI8fP3mY+VUB5ueYdGRvs3vvBy+etAf22WvX8rObLuCcxeMLtiXuZy+WeHuhaar0U1vmo9t0Ljr6o3zw5y/wvjueB4wOnqubhn+w1zZX5FwoLxXyEfcWYJHt/kJGhl1uAn4FoLV+CggAIxODhZIn39arxlgyfzrl7O7nW3jvT7ekF8G6BmP0RxKcnxUTPdoZ5sIz6kY9Kdc1V3LTJcum9Dd43C4uWVmf14mfFndZTC04Sqn0sGzITH0ciiXpCcdZ3lCG9bGW+hDzfPLcnwNWKqWWASeAtwJ/n7XPMeAK4Hal1FoMcZe4yxykOmjEoHvC8Yzy7Wza+iM0lPtZWm+cjP/+f/cCRgHUotpQOlSzvGHY+377hUu44+mj6UKTXNz/kUun/DdMhKvObKI7HMu5wCvMPItrQ2wz20jYewVZrZmbqwJYJRb5XJnNZsYVd611Qin1YeAhwA38WGu9Wyn1JWCL1vo+4GPAD5RS/4IRsnmXnmjZoVASpAdHZ4VZsmnvj7Ksvozl9eUsqA6mT76OgSiLakO0myPN5lUGuXhFHX1DCT75mjU0VPh54znjZ7HMFGvmVXLrdesLbYZgYvfco7b205bgz7cVy22a6+IOoLW+H2Oh1P7Y52239wAXO2uaMBux0hF78gjLnL+sFpdL8bnXruX9P3sh/TgMD+CoL/fx8/dcmH7eP1+xcjrMFkqERbW5M6Qe2HkSt0ulF11huKK6VJEKVcFR0jH3MTJmYokU3eE4jWZL1avPbObP//oKwD5dyfg/3zmnggCk+/psyEpjffjFNtbPr6TM7+FrN2zkP9+woRDmzSjSW0ZwlOzufB0DUbYc6eLqM5vT+1jCbU9DW1IXQinDc3/6UCcvnuynOuTF6xb/Q8gfKyzzsjPqqAp6ecI2Om/zEmNx/s2bF+V8bqkh4i44Srnfg9ul6BkywirX/Z8naO2NsPVzr0p74VbopcHW88XrdlEb8vFffz4AHACQPi3ChFlaX8YDH7k0/d0ZiCTY9G9/AuDqM+eN9dSSQ9wiwVGUUlQHvfSE47T3R9OtCI7YqlCt6tTGyswCktqsEIyMqxMmw9rmSrxuF163K+1Q1Jf7RqTVljriuQuOUxXy0jUY45EXh6fEH+0Mp7MT0p57VnWglZdcE/LSHY6nS/sFYSo8/onL5+R3STx3wXHWz6/i6UOdPHO4K90H3e657z9tDNloyGrFaxWYvudSYy5lPCnZtMLUWVQbIuSbe37s3PuLhWnn+rPm8/vtrfzmhRNctrqBA6cHOGrrH/PckS42LaoZ0bL3rpsvYv/p/rRH3z04dq68IAijI+IuOM7LVzVQW+ajazDGpkU1xBKptOfeH4mz92QfH37lyHz1DQur2LCwijazgGmuLYAJgpOIuAuO4/O4+N2HLuabDx/gTecuoDsc467njhGJJ3n2cBcpbQykHo3GigC7vngVZWMMyhAEYWwk5i5MC4tqQ3z9785iYU2IV6xqIBJPseVIN3/YcZLKgGfczIVyf+7RdoIg5IeIuzDtXLC8Fp/HxUO7T/HQ7lNcu7EZv0e8ckGYTkTchWkn5POwrrmSP+05TTiWnNQQDUEQJoaIuzAj1JX5OGWOPasJzb2cY0GYaUTchRnBPt+0OiSzRgVhuhFxF2YEa4hH9m1BEKYHEXdhRrB761XiuQvCtCPiLswIlri7FFT4pbxCEKYbEXdhRrD6vFcFvbhckr8uCNONiLswI1SbGTLVkikjCDOCiLswI9SEhj13QRCmHxF3YUawMmQkDVIQZgYRd2FGsDJkqsVzF4QZQcRdmBEq/B5cSsIygjBTSE6aMCO4XIrPXrtuzs2xFIRCIeIuzBj/eMmyQpsgCHOGvMIySqmrlVL7lFIHlVKfHGWfNyul9iildiulfuGsmYIgCMJEGNdzV0q5gW8DrwJagOeUUvdprffY9lkJfAq4WGvdrZRqnC6DBUEQhPHJx3M/HziotT6ktY4BdwHXZ+3zXuDbWutuAK11m7NmCoIgCBMhH3FfABy33W8xH7OzClillHpSKfW0UupqpwwUBEEQJk4+C6q5GoHoHK+zErgMWAg8rpQ6U2vdk/FCSt0M3AywePHiCRsrCIIg5Ec+nnsLsMh2fyHQmmOf32mt41rrw8A+DLHPQGt9m9Z6s9Z6c0NDw2RtFgRBEMYhH3F/DliplFqmlPIBbwXuy9rnt8DlAEqpeowwzSEnDRUEQRDyZ1xx11ongA8DDwF7gV9prXcrpb6klLrO3O0hoFMptQf4C/BxrXXndBktCIIgjI3SOjt8PkNvrFQ7cHSST68HOhw0Z7oQO51F7HSO2WAjiJ25WKK1HjeuXTBxnwpKqS1a682FtmM8xE5nETudYzbYCGLnVJDGYYIgCCWIiLsgCEIJMlvF/bZCG5AnYqeziJ3OMRtsBLFz0szKmLsgCIIwNrPVcxcEQRDGYNaJez7thwuFUuqIUmqnUmqbUmqL+VitUupPSqkD5v81BbDrx0qpNqXULttjOe1SBt80j+8OpdQ5BbTxVqXUCfN4blNKXWPb9inTxn1KqatmwkbzfRcppf6ilNprtrf+iPl4sR3P0ewsqmOqlAoopZ5VSm037fyi+fgypdQz5vH8pVlAiVLKb94/aG5fWkAbb1dKHbYdy7PNxwvymY9Aaz1r/gFu4CVgOeADtgPrCm2Xzb4jQH3WY18DPmne/iTw1QLY9XLgHGDXeHYB1wAPYPQUuhB4poA23gr8rxz7rjM/ez+wzPxOuGfIzmbgHPN2BbDftKfYjudodhbVMTWPS7l52ws8Yx6nXwFvNR//HvAB8/YHge+Zt98K/LKANt4O3JBj/4J85tn/Zpvnnk/74WLjeuAn5u2fAK+faQO01o8BXVkPj2bX9cBPtcHTQLVSqrlANo7G9cBdWuuoNnoZHcT4bkw7WuuTWusXzNv9GFXbCyi+4zmancwLrhwAAALMSURBVKNRkGNqHpcB867X/KeBVwJ3m49nH0/rON8NXKGUytXccCZsHI2CfObZzDZxz6f9cCHRwB+VUs8rowMmQJPW+iQYJxxQLINMRrOr2I7xh81L2x/bQlpFYaMZEtiE4ckV7fHMshOK7JgqpdxKqW1AG/AnjKuGHm20Psm2JW2nub0XqJtpG7XW1rH8D/NY/m+llD/bxhz2zxizTdzzaT9cSC7WWp8DvAb4kFLq5YU2aBIU0zH+LnAGcDZwEviG+XjBbVRKlQP3AB/VWveNtWuOx2bM1hx2Ft0x1VontdZnY3ScPR9YO4YtBbEz20al1JkY0+fWAOcBtcAthbQxm9km7vm0Hy4YWutW8/824F6ML+pp65LM/L9YplSNZlfRHGOt9WnzpEoBP2A4TFBQG5VSXgzB/LnW+jfmw0V3PHPZWazH1LStB/grRpy6WillzZuw25K209xeRf7hPCdtvNoMfWmtdRT4H4roWMLsE/d82g8XBKVUmVKqwroNvBrYhWHfO83d3gn8rjAWjmA0u+4D3mGu+F8I9FrhhpkmK075BozjCYaNbzUzJ5ZhzA54doZsUsCPgL1a6//ftqmojudodhbbMVVKNSilqs3bQeBKjPWBvwA3mLtlH0/rON8APKLNVcwZtvFF24+5wlgTsB/Lwp9DhVjFnco/jJXo/Rhxuc8U2h6bXcsxsg22A7st2zDigQ8DB8z/awtg250Yl+BxDK/iptHswrik/LZ5fHcCmwto4x2mDTswTphm2/6fMW3cB7xmBo/lJRiX2DuAbea/a4rweI5mZ1EdU2AjsNW0ZxfwefPx5Rg/LgeBXwN+8/GAef+guX15AW18xDyWu4CfMZxRU5DPPPufVKgKgiCUILMtLCMIgiDkgYi7IAhCCSLiLgiCUIKIuAuCIJQgIu6CIAgliIi7IAhCCSLiLgiCUIKIuAuCIJQg/w8fDZHAWp5njQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"w_t = 0\n",
"w = []\n",
"b = []\n",
"for t in range(365):\n",
" w.append(w_t)\n",
" b_t = a * np.exp((mu - s*s / 2) * t + s * w_t)\n",
" b.append(b_t)\n",
" w_t += np.random.normal(0, 1)\n",
"plt.plot(b);"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment