Skip to content

Instantly share code, notes, and snippets.

@LuxXx
Created May 11, 2020 16:24
Show Gist options
  • Save LuxXx/f0eed00feb9ebdf28e6e8d393c38c1e4 to your computer and use it in GitHub Desktop.
Save LuxXx/f0eed00feb9ebdf28e6e8d393c38c1e4 to your computer and use it in GitHub Desktop.
Beschränkte Variation und Länge einer Kurve
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"a = 0\n",
"b = 2*np.pi\n",
"f = np.sin"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"t_i = np.random.uniform(a, b, 1000)\n",
"t_i.sort()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAgAElEQVR4nO3deVzU9fbH8deZGXDXSHEXXKJCs1BMWrxaN620exNtQy27Zbmk/a7t1u1269pC3VtZWpllixWa5ZpialaaLSgopoalUSBahkruyizn9wejlwxTZBmGOc/HYx7MfOf7ZQ4tvPks389HVBVjjDGhyxHoAowxxgSWBYExxoQ4CwJjjAlxFgTGGBPiLAiMMSbEuQJdwMlo1KiRtm7dOtBlGGNMUMnIyNiuqpFHHw/KIGjdujXp6emBLsMYY4KKiOSUdNy6howxJsRZEBhjTIizIDDGmBBnQWCMMSHOgsAYY0JcuQSBiLwmIr+IyLpjvC8i8ryIbBKRr0Wkc7H3LheRb/3vjSmPeowxxpy48po++gYwAZhyjPd7AzH+RwLwEpAgIk7gBaAXkAesFJG5qvpNOdVlSmn0tNXM+3orHt//jjmAxvVrULeGi7aRdRnWox3x0REBq9EYU77KJQhUdZmItP6DU/oCU7RozeuvROQUEWkGtAY2qWo2gIhM859rQVBJUtJyefLDLHYd8ABQhwPESQ5nOjejCLu1Nruow649RY/0/Dos/uYnwpxO6tYM49r4lozpExvgn8IYUxaVdUNZC2Bzsdd5/mMlHU8o6RuIyFBgKEBUVFTFVBkiEicsZ03eLgQfXR0buFayOSvsR86SH2gjP+OQP96j4meN4EPvuXx4oCuTlh3k5WXZNKgdxr2XncnABPt3Y0ywqawgkBKO6R8c//1B1UnAJIAuXbrYbjonYfDkNJZt3E5NDjHIuYwhzlTaOLYBsEUbst7XmtneC1mnbcjyReHFQQPZR33200D20YB9RMgeujo2cJ3zU/7mWsR2rc8ibxcWHOzKQ7MO8PSiDUwafK51HRkTRCorCPKAVsVetwS2AuHHOG7K0ehpq5mduZWG7OIO12JucC7iVNlLpq8ttxeO4nPfWeykfonX5msEDqBOuJM9h7wAvO7tTS0OcpFjDX2caVzp/IKBro/ZqqeSfGAAV71USP2aYQzsGmXdRsYEASmvrSr9YwTzVPWsEt67AhgF9KGo6+d5Ve0qIi7gO+ASYAuwEhioquv/6LO6dOmittbQiUmcsJyf87L5P9csrnJ+Rg1xs9gbzyTPFazUMyjeKHMADWq7OLd1wxIHhFPScnlm8bf8ut9NuFM45PXh9UENCunhWMMo12zOdvzASt/pPOIezDpti8sh/OXsZoxL6lS5P7gx5ndEJENVu/zueHkEgYhMBS4CGgHbgH8BYQCqOlFEhKJZRZcD+4GbVDXdf20fYBzgBF5T1ceO93kWBMeXkpbLY/O/4SLP5zwe9io1cTPD+yde9fYhW5sfOc/pEC5s15ApQ0ocmjmuw91NAIKPq53LuNc1jYbsYbq3B//1XMd2GlDL5SDr0d7l8rMZY05OhQZBZbMg+GODJ6exemMuD4e9wVXO5azyncZo90hytQkAToGxiR3LdWB38OQ0Pt+0Ha9CPfYzyjWLm5wfcohwxnn685q3Nw5xlPvnGmNOnAVBiOiWvISmuzIZF/4iTdnJeE8/JngT8eIEoOUpNVk+5pIK+/zi01HbyE/80/UWf3ZmstDbhTvct7GfmnSPaXTSLRBjzMmzIKjmklOzeH3Zd9zumsEI51w2a2PudI9glZ4OQL0aTu7v077S/ho/PEANyt+cC/mn6y2+05bc6r6bPI0krmUDZo/qVim1GGOKWBBUY4Mnp7FqYy6Tw/9LgmMD0zwXMdZzA/uoBRCwv8BT0nJ5cNZafEA3x1peCHsOD05GFI5mhcZay8CYSnasILBF54JccmoWazdmkxL+GJ1lI38vvI0xnqHsoxb1a7qYMeKCgP2yHZgQRXbyFSTGNWe5ryOJhWP5VevydvjjXOf8hGUbt5OcmhWQ2owx/2MtgiA2eHIaGzZu5O3wx4mSXxjhHs0nvqJpmhU9FlBaGTkFjHw7g/17djI+bDw9nF/zuucyHvVcT3zrRtzXO9ZuQjOmglmLoJrplryE7E3f8F74IzSXHfzNfd+REEiMa16lQgAgPjqCr/7Rk7iYaG5238Ornt7c5FrIk2GvsPLHHVw98QtS0nIDXaYxISkoN68Pdb2e/pSauzbxdvgT1KSQQYUPsEZPQwQeq+LTM6cMSSA5NYtHl93ALq3DXWHvs1dr8rDnRv45Zx1nNK1nLQNjKpkFQZAZPW014dvXMSU8GS9Ori18iO+0Fa0b1ubpa+OC4pfo4WUnxi/rR105wDDXfPZRk/94kpi49HteGfy7lqsxpgJZEASR0dNW8/WadGaGP85eajGo8AFytCn1ajj59J6LA11eqRwOgyeWDaQeBxjpmss+rcWL3/QlccJym1pqTCWyIAgSo6etZmnmBmaF/wcPTpIKHyRPGwPwxs3BOQVzTJ9YenVoyu1vh1H74EHuDXuXPdTirbxL6Za8pMqNcxhTXdlgcRDIyClgQeaPTAp/hqayk1sL7yJPGxNZN5wZIy4Iiu6gY4mPjmBUz1judg9nsTeesWFvcJVjGXm/HqTX058GujxjQoIFQRC4c9pqngqbxLmO77jTPYLVGgPAxBu6BHUIHDYwIYrI+nUY5b6d5d4OPBX2Mj0dGWzM38fgyWmBLs+Yas+CoIqLe2Qh/fdMoa/zC550J5HqOw8oulu4OoTAYRMGxXOIcG5138VabcOzYS/SVrbaTWfGVAILgiqs19Ofcsmhj/m7axbTPBfxkvevAMS1bFDtlmaIj47g8X4dOUBNRhTewSHCeDnsWepwgJeXZZORUxDoEo2ptiwIqqiUtFwa7ljJE2Gv8Lm3Aw96bgaE7jGNqu2MmoEJUQzv3pafaMjt7ttpK1t5KuxlFOXOdzMDXZ4x1ZYFQRWUnJrFi7M/ZmLYs+RoU0a4R+PBRQ2nVLuWwNHG9IklMa45X/o6kOwZwBXOFQx1ziNn5366JS8JdHnGVEvlEgQicrmIfCsim0RkTAnv3yMimf7HOhHxisip/vd+FJG1/vdCfgGhjJwCXl32Hc+HjceBjyHuu9lNHQBShp4f4Ooqx7ikTjzeryOveq9gnjeB+1zTON+xnrxfD9rgsTEVoMxBICJO4AWgN9AeGCAi7Yufo6r/UdU4VY0D7geWqurOYqdc7H8/5G8pHTplJaNdM+js2MQ/3EOO7Co2vHvbajU4fDwDE6L4U0wk97qH8b02Z0LY8zRnO8s2brc1iYwpZ+XRIugKbFLVbFUtBKYBff/g/AHA1HL43GonOTWL0w9kcptzLu96LuID3wVAUQgcvhM3lEwZkoCrZl2Gu+8gHA8vho+jBoW8tjw70KUZU62URxC0ADYXe53nP/Y7IlKbog3sZxQ7rMAiEckQkaHH+hARGSoi6SKSnp+fXw5lVy0pablMX5bJuLAXyNZmPOwZDEBMZJ2QDIHDXr+pKz9oc+5yDyfOkc1DrrfYlL/PWgXGlKPyCAIp4dixNjn4K/D5Ud1CF6pqZ4q6lkaKSPeSLlTVSaraRVW7REZGlq3iKuiFj7/jP2Evcwr7uN19OweoSU2Xg8V3XRTo0gIqPjqC90dcQHqtC5no+QuDXEu4yLGah+eus/sLjCkn5REEeUCrYq9bAluPcW4SR3ULqepW/9dfgFkUdTWFlNHTVnPp3tlc4lzNY56BZGk0AA/9tUOAK6sa4qMjuPvSM3jGcw0bfK14MuwVann3MHFZtoWBMeWgPIJgJRAjIm1EJJyiX/Zzjz5JRBoAPYA5xY7VEZF6h58DlwLryqGmoJGSlsvGNV8wxjWVxd54pngvxSnweL+qva9AZRuYEMVF7Vtyl3sEp7KHf4e9AcCUL38MYFXGVA9lDgJV9QCjgIVAFjBdVdeLyHARGV7s1H7AIlXdV+xYE2C5iKwBVgDzVfXDstYULDJyCnhidjrPh41nJ/W5xz0UEDpHR1gIlGBYj3as19Y85+lPX+cX9HF8xX63z+46NqaMbM/iAIofu4hRh17lRuciBhQ+SJrG4hB4b3hwryhakUZPW80HmZuZEf4vouQXLjv0FK1bt+G94RcEujRjqjzbs7iKSZywnOj967nRuYg3vZeSprGc1riuhcBxjEvqRMN6tbjLPYLaHOKJsFdY+eNOu9HMmDKwIAiQDVu282TYK2ylIf/xXAfAk1edbSFwAkb3PIPvtQVPeZLo6VzNNc6lLNu4ndHTVge6NGOCkgVBAKSk5TLCOYcYxxb+4R7CfmoSE1nHQuAEHV6c7nXvZXzpbc9DrrdoQT7zvj7WZDVjzB+xIAiAT5Z9ygjnHGZ6u7HUdw51wp0hf79AaY3pE0uD2jW4xzMMQXkqbBIen1qrwJiTYEFQyW545XNu2/Mce6jNWPf1APzjivbHucqU5N7LziRPI3nMM4gLnevp51jO7Mytdm+BMaVkQVCJej39KTE/TqWTYxOPuG+kgPr0at/EpoqepIEJUSTGNWea92JW+U7jH2HvUJ+9vPyZbWRjTGlYEFSS5NQsDmz/gbtd01ni7cRcX9GS0sN7tAtwZcFtXFInYps14EH3zUSwh3td76IKM1blBbo0Y4KGBUElmZ6+mcddk/Eh/NN9EyBEn1rbBojLwdjEjmygNW94L2eg82POkU1MTcu1hemMOUEWBJUgI6eAiw4uobtzLU96kthKIwCeuS4uwJVVD/HREQzoGsWznqv4hVN4NOw1BB8PzFprXUTGnAALgkrw2pJM7g+bymrfabzt7QkUrSVkrYHy079zS/ZRm7HuG+jo+JEbnIsBSF5gA8fGHI8FQQVLScvlnOxXaMhu/uW+ERGHLShXAeKjIxjWvS3zfQks83bkLtd0Iilg5Y8F1iow5jgsCCrY7MUfc5PzQ6Z7e/C1tqNtozoWAhWkaOP7Fjzk+Rs1cPNg2DsA3PrmygBXZkzVZkFQgZLnf8PIQ5M5QPiRZSTaRNYNcFXV27ikTuyrE81E75X0dX7BhY617NzvJnHC8kCXZkyVZUFQQTJyCtj4+fv0cH7NOM/V7KABYNNFK0OnqAhe9FzJj74m/Nv1BuG4yczbZV1ExhyDBUEFeXhGOg+53mKjrwVTvL2Aok3obYC44g3r0Y5DhPOw50baOX5isHMRABOXfh/gyoypmiwIKkiPgveIdvzCI57BeHAR7pSQ3oS+MsVHRxDXsgGf+uL41HsO/+eaRQS7WfzNNmsVGFOCcgkCEblcRL4VkU0iMqaE9y8SkV0ikul/PHSi1wajT9PXMMIxm4XeLiz3dQSgT8dmAa4qtMwe1Y1m9WvwqGcQtTnI310zAZtOakxJyhwEIuIEXgB6A+2BASJS0ipqn6lqnP/x71JeGzQycgr4dc79uPDxqGcQdWs4SYxrzrikToEuLeRMGBTPJm3JVO+fud75Ee1kC19v/jXQZRlT5ZRHi6ArsElVs1W1EJgG9K2Ea6ukJQvnkOj8nEneK9isTegb18JCIEDioyOKQthzFfupwQOuFA55lV5Pfxro0oypUsojCFoAm4u9zvMfO9r5IrJGRBaISIdSXouIDBWRdBFJz8/PL4eyy1/GD9vps+U5ftJTedFzJQDBtyN09TIuqRN7XRG84EnkEudqujnWsjF/ny1VbUwx5REEUsKxo3//rQKiVfUcYDwwuxTXFh1UnaSqXVS1S2Rk5EkXW1Eycgp449VnOUuy+Y/7Wg5Sk3CncFXnloEuLeT1Pqspb3gvY7Mvkn+43saBj9mZWwJdljFVRnkEQR7QqtjrlsBv9gxU1d2qutf/PBUIE5FGJ3JtsLhv2grucb5Lli+K2b5uRNYLZ+rQ8226aBUwLqkTdevU4QnPAGIdm7nGuZQaLmegyzKmyiiPIFgJxIhIGxEJB5KAucVPEJGmIiL+5139n7vjRK4NBqOnreZPuz8gypHPE54B+HCwv9BrIVCFTBp8Lgt8CaT7Tudu13S279xh3UPG+JU5CFTVA4wCFgJZwHRVXS8iw0VkuP+0q4F1IrIGeB5I0iIlXlvWmipTcmoWSzI3cbtrFsu9HVjmOxuAnrFNAlyZKS4+OoKzW57Co+7riZRdDHd9wMRltpOZMQCu8vgm/u6e1KOOTSz2fAIw4USvDSYpK3IZ7prLqbKXJzwDAaF7TCObKVQFXXduFA/k7WK29wJudc5nqufPPDhrLQtGdw90acYElN1ZXAYpabnUOvgLNzs/ZLb3AtZrG6JPrc2UIQmBLs2UYGBCFPVrunjKnYQAd7jeJ+vnPdZFZEKeBUEZvLsylztc7+PAx3891wJwYUyjAFdl/sjArlFspRFTvL3o7/yM0ySPicuybVtLE9IsCMqg7q7vuMa5lLe8vcjTxgjYdNEqbkyfWNo3q8eLnivZT03udr0HwGvLswNcmTGBY0FwklLScrnp4BT2UYsJnkQAerZvYjOFgsDYxI4UUJ9XPFdwuXMl58gmDnh8gS7LmICxIDhJSxbMoKdzNS96ruRX6iHYXgPBIj46guHd2zLZ25vtWp97XO/yy66DNoPIhCwLgpNw7thF3O57i616Kq97LwdgmO01EFTG9InlwvatecHTl27O9ZzH13yVvSPQZRkTEBYEpTR4chpxB74kzvE9z3qu5hDhttdAkBrWox3vOy4lTxtxt+tdtuzcb60CE5IsCEopLTufO13vke1rykzvnwBoZ/sQB6X46AjeuOVPzIsYzDmObAoyZjDo1a8sDEzIsSAopf7hK4l1bGac52q8FK1X82i/jgGuypys+OgIvB2vY6OvBXe5puNxu5mxKi/QZRlTqSwISuGJeV9zq/ddNvha8YHvPAAe79fRxgaC3HmnNeEZ77Wc5thKP+dnvLtys91XYEKKBcEJSk7NYseXb9PW8RPPeK7m3NYNmTHiAgYmRAW6NFNG8dERnNq5P5m+dox2zcDlO8Q/Z6+1LiITMiwITtD0Fdn83TmTr31tWOTrwqb8fdYSqEb6d2nFfz3X0UJ2cL3zI7yKdRGZkGFBcAIycgro415MK0c+T3uuBYRaYfaPrjqJj46gMOpPfO7twHDXXGpxkNXWIjAhwn6bnYCn569mlGs2K32ns9S/zPTIi2MCXJUpbzFN6vGM52oiZTfXOz8i6+c9NlZgQoIFwXGkpOUSu2UGTaWA/7qvA4RzW0fY2EA11L9zS1ZxBsu8HRnu+oDaHOSFTzYGuixjKly5BIGIXC4i34rIJhEZU8L7g0Tka//jCxE5p9h7P4rIWhHJFJH08qinPL3z2XpGuObymfcs0rToprExve3mseooPjqCYX9qy7Oeq2koe7jRuYgtvx60ZapNtVfmIBARJ/AC0BtoDwwQkfZHnfYD0ENVzwbGApOOev9iVY1T1S5lrac8ZeQUcMmuWTSS3TzjuQaAFqfUtEHiamxMn1g21YjlY28cQ13zqMt+3knLCXRZxlSo8mgRdAU2qWq2qhYC04C+xU9Q1S9U9fDI21cUbVJfpWXkFHDLyx8xxPEBH3k7sVqLxgRsbKD6i21aj2c9VxMhe7nRuYg9h7wMnpwW6LKMqTDlEQQtgM3FXuf5jx3LEGBBsdcKLBKRDBEZeqyLRGSoiKSLSHp+fn6ZCj4RM1flcYN8SAPZz7P+1kCv9k1sbCAE3Nc7lrXalsXeeIa65lGP/SzbuN26iEy1VR5BICUc0xJPFLmYoiC4r9jhC1W1M0VdSyNFpMQNZFV1kqp2UdUukZGRZa35uH7dmc8QVyoLvV1Yr61xOsSWmQ4R8dER1HA5GOe5igayn5udRX+3WBeRqa7KIwjygFbFXrcEth59koicDbwK9FXVI+v9qupW/9dfgFkUdTUFVEZOAe2y36GB7Od5T38cAmP7nmVjAyGk91lNWa+t+dB7LkNcqdRnL94S/7wxJviVRxCsBGJEpI2IhANJwNziJ4hIFDATuEFVvyt2vI6I1Dv8HLgUWFcONZXJYzO++E1roEu0TRcNNeOSOhETWYdxnquoLwe4xZXKAbfX7isw1VKZg0BVPcAoYCGQBUxX1fUiMlxEhvtPewhoCLx41DTRJsByEVkDrADmq+qHZa2pLFLScum2Y+aR1gDAIdvGMCQtvusi6kefwzxvAjc5F9JA9/CPWbYGkal+yuU+AlVNVdXTVbWdqj7mPzZRVSf6n9+iqhH+KaJHpon6Zxqd4390OHxtIM35cv1vWgMA151rrYFQdV/vWJ7zXEUdDjLUNR8FkhfYoLGpXuzO4mIycgpIyH//N62BxLjm1i0UwuKjI9hRuy3zfOcx2LmIU9jD97/sDXRZxpQrC4Jixs1b8ZvWQNfWEYxL6hToskyAXRvfkvGeftTmELe4Utl10GPdQ6ZasSDwS0nLpdPW6b9pDZzWpF6AqzJVwZg+sUREdyTV15UbnYuo69tj3UOmWrEg8Htl0arfjQ1c1bnK3wBtKsl9vWN5wduPenKAm10LWPljgd1gZqoNCwJg9LTV/PXgB79pDZzbOsLuGzBHxEdHkBfWhlRvV25yfkh99jHlyx8DXZYx5SLkgyAjp4CPMzf+rjVgK4yaozWoFcZ4Tz/qywFucn7IfrfP7isw1ULIB8HMVXnc6Fz4m9ZA7TCHtQbM79x2cQxZGs1Cbxdudi2gHvttvwJTLYR0EGTkFJCa/i1DXAtY7I0/0hoYfH7rgNZlqqaBCVE0rhfO855+NJD93OhcyJZfD1qrwAS9kA6Cr7J3kMRiTpF9PO/pR90aToZ3b8uYPtYtZEo2uucZrNc2LPZ25hZXKnXZz4Oz7W5jE9xCOgj27i7gFtd8PvGew1pty/UJ0RYC5g8NTIii5Sk1ed7Tn1NkH4Odi/Fp0R8VxgSrkA6CGmvepKHsYbynHwDrf9od4IpMMLjt4hjWals+9sZxi2s+tTnIxm17Al2WMSctZIMgeU4Gg7xzWObtyCo9HYDeZzULcFUmGAxMiOLS9k143tOfU2Uvg52LmJ251cYKTNAKySDIyCmgcMXrRMruI62B0yLr2JpC5oQN69GOTD2Npd6zudU1n1oc5MkP7QYzE5xCMggenpnOMNcHfOltz0o9E4Cbu7UNcFUmmMRHR1C/povnPP1pKHsY5FzCrgMeaxWYoBRyQZCRU0Dc9nk0kV953lvUGqhXw2mtAVNqA7tGsUpPZ7m3A8Nc86hBIc8s/jbQZRlTaiEXBPdNW8kI11xW+M7gS197AAYlRAe4KhOMxvSJpXXD2oz39CdSdjHA+THb9xbaGkQm6JRLEIjI5SLyrYhsEpExJbwvIvK8//2vRaTziV5bngZPTqPr7g9pLjv9YwNCbNN6NmXUnLSnr40jTWNJ853JcNcH1KDQ1iAyQafMQSAiTuAFoDfQHhggIu2POq03EON/DAVeKsW15SIjp4AvN/7Mba45rPadxme+jgA82q9jRXycCRHx0RFH7jZuKgVc41xqaxCZoFMeLYKuwCb/tpOFwDSg71Hn9AWmaJGvgFNEpNkJXlsuZq7Ko5/zM1rKdp7ztwYa1HLZmkKmzEb3PIPPfWeR4YthuOsDwvDw2vLsQJdlqpl3Pl7F109czIJF5b+te3kEQQtgc7HXef5jJ3LOiVwLgIgMFZF0EUnPz88vdZEKRLKLdN/pfOqLA+C+y61LyJTdwIQoEuNa8LynPy1lO/2dn7Epf5+1Cky5SUnLZcfHz3H2oVU880lOuf+3VR5BICUc0xM850SuLTqoOklVu6hql8jIyFKWWLTJzCv049rChxCE4d3b2kwhU27GJXViU/0E1vjaMtI5G5e1Ckw5mrRoFX9zLmS+tysbtSUvlvOqt65y+B55QKtir1sCW0/wnPATuLZcxEdHMHXo+XyVvYPz2ja0LiFT7jo0b8DzG/oxOfxp+jq+YNb27mTkFNh/a6ZMUtJyufLgB9QPO8AE/w2w+wu95foZ5dEiWAnEiEgbEQkHkoC5R50zFxjsnz10HrBLVX86wWvLTXx0BCMvPs3+xzQVYliPdnyinVnvi2akazaoj4lLvw90WSaIZeQUkDw77cjGWVlaNNX92i6tjnNl6ZQ5CFTVA4wCFgJZwHRVXS8iw0VkuP+0VCAb2AS8Atz2R9eWtSZjAiE+OoJHE89mvKcfbR0/8xfHlyz+ZpuNFZiTNnNVHtc7Fvk3zipqDVTElPfy6BpCVVMp+mVf/NjEYs8VGHmi1xoTrAYmRPHix93YcGAGt7tm80Hh+Tyz+FsbjzInxVG4l1tdqSzxdmK9tsEhFTPlPeTuLDamotWsEc4ETyIxji30caxg+95CaxWYk9Lt17lEyF7Ge/rhFHg0sWOFdG1bEBhTzm6+sA2pvgQ2+Zpzu2sWgs/WIDKldudby4nf+jafcw69Lr2C6cMvqLCWpQWBMeVsYEIUZzZrwPOefpzp2MxljnRbg8iUyuDJaURsmEoj2c3Th/qxcdueCp3kYkFgTAUYm9iReb7z+d7XjL+7ZiL4mJ6++fgXmpCXkVNA2satDHPNY7m3A6v0dD7K2lahn2lBYEwFiI+O4MxmDZjgSSTWkUsvRwYF+922yb05rqFTVpLk/ITG8ivjPf0BaBVRu0I/04LAmAoyNrEjc30X8IOvCf/nmoWijHw7I9BlmSpu7759jHDNJc13JmlaNE20ohfHtCAwpoLER0dwSfvmvOBN5CzHj1ziWMXPew4xeHJaoEszVVRGTtEKtk2lgOf8rYF6NZwVfhOsBYExFWhYj3bM9l5Ijq8xf3fNBJTPN20PdFmmCsrIKWDAS0u5zTWHdN/pfOHrAMAbNydU+GdbEBhTgeKjI2hQuxYvePtytuMHLnJk4lXsvgLzOzNX5XGt81Oay06e9VwFCOFOqZQlcSwIjKlgl3dsxkzvn9jsi2S0v1Xw5Ic2ldT8Vtp3W7nNNYeVvtP53HcWAOe1bVgpn21BYEwF69+5JR5cvODtS5zje7o7vmbXAY+1CswRGTkFnLd7Ac1lJ+P8rYEwB0wZUvHdQmBBYEyFi4+OoH2zeszwdidPGx0ZK3h3pQWBKfKf+WsY4ZpLerHWwJBubSvt8y0IjKNriyUAABsOSURBVKkEYxM74sHFS54riXdspJtjHd/8tNvuKzCkpOXSbsscWsiOI62Bilhh9I9YEBhTCeKjI3h/xAWsiujDFm3IHa73cXttvwIDT8zLPDJTaLm/NVDR9w0czYLAmEoSHx3Bo9d04UVPIvGOjXR3fG37FYS4wZPTuNL3yW9aAy1OqVnpm2dZEBhTieKjI1hSsyd52og7Xe8DygvlvP+sCR4rv//5d62BkRfHVHodZQoCETlVRBaLyEb/19/FmIi0EpFPRCRLRNaLyN+LvfewiGwRkUz/o09Z6jEmGOzzOhnv6Uec43sudmSy+6An0CWZAMjIKaC/fPqb1kBNlyMgmxiVtUUwBliiqjHAEv/ro3mAu1Q1FjgPGCki7Yu9/6yqxvkftlOZqfZim9ZjhvdP5PoiudP1HoJa91AI+s/8Nb9rDTz01w4BqaWsQdAXeNP//E0g8egTVPUnVV3lf76Hor2JW5Txc40JWvf1jkUdYTzv7U9Hx48kFKbxwKy1FgYhJCOngNN/+u1MoXo1nAHb0rSsQdBEVX+Col/4QOM/OllEWgOdgOKrbo0Ska9F5LWSupaKXTtURNJFJD0/P7+MZRsTOPHREUwfdj5Lwy/mB18T7nDNsF3MQkhGTgHXv7yU4Y7Zv2kNDEqIDlhNxw0CEflIRNaV8Ohbmg8SkbrADGC0qu72H34JaAfEAT8BTx/relWdpKpdVLVLZGRkaT7amConPjqCBvVq87ynP+0dOVzq38XMWgXV3z9nryVJPqK57ORpzzXUcDkZ3r1tpd43cLTjBoGq9lTVs0p4zAG2iUgzAP/XX0r6HiISRlEIvKOqM4t9722q6lVVH/AK0LU8fihjgsHNF7Zhru8Cvvc1s1ZBiMjIKeCHn/K5zTWHz70d+NLXgTrhzoCGAJS9a2gucKP/+Y3AnKNPEBEBJgNZqvrMUe81K/ayH7CujPUYEzQGJkTRsF4tnvNcxZmOzfRxrLBWQTX38tLv+ZtzEZGym6c91wDQrnHdAFdV9iBIBnqJyEagl/81ItJcRA7PALoQuAH4cwnTRJ8SkbUi8jVwMXBHGesxJqiM7nkG83zn8Z2vBaNdM3BYq6Ba+2HLVoa5PmCJtxOr9HQAxvQObGsAyhgEqrpDVS9R1Rj/153+41tVtY//+XJVFVU9++hpoqp6g6p29L935eGBZ2NCxcCEKM5s1oBxnquIcWzhL44v2b63kORUW6a6usnIKeCKfbM4RfbxjOdqAM5tHVHpdxGXxO4sNibAxiZ2ZIGvK1m+Vtzheh8XHqanbw50WaacfbXuO4Y4F5Dq7cp6bYODqtEaAAsCYwIuPjqC2GYN+K/nWto4tnGNcyk797ttrKAaycgpICLzJepwkGc9V+NyCI/261glWgNgQWBMlTA2sSNLfJ1J953O310zqUEhD85ea8tUVwMZOQXc9nIq/QrnM9t3IdnSin/3PStgN4+VxILAmCogPjqC0xrX4yn3dTSVAm50LsSnMGNVXqBLM2U0c1Uewx1zCMPDc57++HxKwf7CQJf1GxYExlQRN1/YhhUayyfec7jNNZf67GNqWq61CoJc1oZvGOhcwnRvD3K0KSKVtxfxibIgMKaKGJgQxal1wvmv5zpOkX3c6pqPgm1eE8QGT07jmn1TAZjg6QfAJbFNqszYwGEWBMZUIdfGt2S9tmau93yGOBcQya8sydpmrYIglJKWy5ZNa7jGuZQU7yVspREAw3u0C3Blv2dBYEwVMqZPLIlxzXnGczXhuBnpmo1PrVUQjMZ99C33ut7lADUY728NJMY1r3KtAbAgMKbKGZfUidNj43jXezEDnUtoKb+w+BtrFQSTlLRcWu1dy2XOdCZ6/spO6lMn3Mm4pE6BLq1EFgTGVEHDerQrmmGCgztc7wPwt9fSjnOVqSrGLd7AA2EpbNNTeM17OQAXnNYowFUdmwWBMVVQfHQEOx2n8ob3cvo5PucMyWXPIa8tPREkOu//gnjHRp71XM0BagJVc2zgMAsCY6qoC9o15CXPX9lLLe52TQdg8vLsAFdljid53lrucU1jo68F73l7ABB9au0qOTZwmAWBMVXUlCEJ7HXU4yXPlfRyruJ8x3rcPqxVUIVl5BSw58vXaOf4iSc9SXhxAvDMdXEBruyPWRAYU4Xd2q0Nr3kvJ08b8aDrbRz4eCctJ9BlmWO46+3PGO2awQrfGXzk6wzA8O5tq3RrACwIjKnSxvSJ5dT69XjSnUQHRw5XOZex55DXFqSrggZPTqPv/tlEyi6ecA8EhHNbRwR897ETUaYgEJFTRWSxiGz0fy0x9kTkR/8GNJkikl7a640JZRMGxfOB73xW+U7jbtd0anPQNq+pgr79/nuGuuaR6u3Kao0Bqs4y08dT1hbBGGCJqsYAS/yvj+Vi/6Y0XU7yemNCUnx0BF1bn8qj7utpIr8yzDWP7XsLSZywPNClGb+UtFxGOWZQAzf/8VwHQFzLBlW+S+iwsgZBX+BN//M3gcRKvt6YkHBf71hW6el84D2Poc55NGUHmXm7bOC4inj/w48Y4PyYqd4/84M2o064k9mjugW6rBNW1iBocnh7Sf/Xxsc4T4FFIpIhIkNP4npEZKiIpItIen5+fhnLNia4xEdH0LheOE96BuBAuSesaDrp65//EODKzOipqxjteY391ORZ/xaUVfnmsZIcNwhE5CMRWVfCo28pPudCVe0M9AZGikj30haqqpNUtYuqdomMjCzt5cYEvdE9zyBPI3nNezlXOT+jo2RzyKu29EQAZeQUsG/tB3R3ruUZz9XspD5QtW8eK8lxg0BVe6rqWSU85gDbRKQZgP/rL8f4Hlv9X38BZgFd/W+d0PXGmKJlquvVcPKCpy/btT4Phr0NKMkLrHsoUJ5OXcM/XW/xra8lb3t7AhDbtF7QjA0cVtauobnAjf7nNwJzjj5BROqISL3Dz4FLgXUner0x5n/u79OevdTmGc81JDg2cJkjnXVbdlmrIAASJyynU947RDnyecQzGA8uHAKP9usY6NJKraxBkAz0EpGNQC//a0SkuYik+s9pAiwXkTXACmC+qn74R9cbY0o2MCGK7jGNeNd7Ed/6WnK/KwWv+xDXTPzCwqASJadm8XNeNiNdc1jgPZcvfGcR7nLw3vALgq41AGUMAlXdoaqXqGqM/+tO//GtqtrH/zxbVc/xPzqo6mPHu94Yc2xThiQQ37oRYz030NqxjWHOD/Ap1kVUiVJW5HJ/2FQc+HjMcz0AkXXDgzIEwO4sNiYo3dc7luW+jszznsco1xyiZBvrt+wKdFkhISUtlzMOraOv8wte9v6VPC2avDLy4pgAV3byLAiMCULx0REkxjVnrPt63Dh5xPUG+922THVleOnjDTwS9iZbtGh1WChaT2hgQlSAKzt5FgTGBKlxSZ04ULMxz3iu4WLnGi53rGRa+mYbK6hAyalZ/Gnvh7R35PC4exAHqcHw7m2DYj2hP2JBYEwQG9g1ije9l/KNL5p/hU3BvX8317xkA8cVZeYX67jb9S5f+WKZ70sg3ClBHwJgQWBMUBvTJ5Zbu8fwkOcmmslO/u6aiQ+4893MQJdW7WTkFHA3b1Gf/TzsvhGQQJdUbiwIjAlyY/rEsiEslhTPxdzsXMCZkkvOzv3WKihn82encK1rKZO8f2GDFo0H9OnYLMBVlQ8LAmOqgZ6xTXjKk8Qu6vBo2GsIPka+nRHosqqNp+Zm8Lcdz5Lta8pznv4AdI9pxLikTgGurHxYEBhTDYxL6gS1TyXZM4Auju+42rmMn/ccYvDktECXFvRS0nI5ZcXTRDnyGeO+lUOEc07LBkwZkhDo0sqNBYEx1cS9l53J+97urPCdwf2uFCLYzbKN262LqAwycgp4d/ZshjhTecdzCSu0aGD4unODd6poSSwIjKkmBiZE0bR+LR5030xdDjA27A3A7jgui3/NWk1y2CvkcwrJngEAnNs6IqjvGSiJBYEx1ciEQfF8p60Y57mKvzi/4q+OL1j5Y4HtcXwSklOz6JE/lVhHLg+6b2YPtYHg2X6yNCwIjKlG4qMjeLxfR172/pVVvtMYG/Y6jSngyQ+tVVAaGTkFLP7sM/7PNZN53vP4yBcPFN1BHKzrCf0RCwJjqpmBCVHEt27EXe4R1MBNctgr7DrgtoHjUvjnrDU8EfYqB6jhv2egaJ+B6nDzWEksCIyphu7rHcsP2oxkzwD+7MzkOuenNnB8gkZPW03X/Bl0dXzLo57r2U4DhODcZ+BEWRAYUw3FR0fQumFtpnh78YW3Pf90vUVL+YUHZ60NdGlVWkpaLt+u+ZL7XVP52BvH+96iXXUf69exWnYJHWZBYEw19fS1cSgO7nEPQxH+G/YyG37exehpqwNdWpWUkVPAo7NWMiHseX6lDne7hwNCbNN61W6W0NHKFAQicqqILBaRjf6vv4tMETlDRDKLPXaLyGj/ew+LyJZi7/UpSz3GmP+Jj46ge0wjthDJvz03cJ4ji5ucC5mduZVeT38a6PKqnCcXZPGQawpt5GdGu0ce2Yi+OncJHVbWFsEYYImqxgBL/K9/Q1W/VdU4VY0D4oH9FG1gf9izh99X1dSjrzfGnLwpQxJIjGvOe94eLPZ25l7XNNrJFjbm77OWQTEZOQU0zk0lyfUpL3qv5EtfBwAer+ZdQoeVNQj6Am/6n78JJB7n/EuA71U1p4yfa4w5QeOSOlEn3MUD7lvYR01eChtHbQ4yO3OrDR77jXtvEY+Hvcoq32mM81wFBP9mM6VR1iBooqo/Afi/Nj7O+UnA1KOOjRKRr0XktZK6lg4TkaEiki4i6fn5+WWr2pgQc8N50eRzCqPc/0c72cpTYZMAZeLS7wNdWsC988Um7tz9FCD8n/t2PLhocUrNajtVtCTHDQIR+UhE1pXw6FuaDxKRcOBK4L1ih18C2gFxwE/A08e6XlUnqWoXVe0SGRlZmo82JuSN6RNLYlxzvvR14ClPEn9xfsUtzlQ++mZbSN91nJKWy74Fj9DJsYkx7luqxf7DJ8N1vBNUteex3hORbSLSTFV/EpFmwC9/8K16A6tUdVux733kuYi8Asw7sbKNMaU1LqkTXds05IFZyjmO7xnjmsp6bc0D/hG7UOkGOWz0tNVs/3ohb4fPJcVzMam+8wBIjGsecv8syto1NBe40f/8RmDOH5w7gKO6hfzhcVg/YF0Z6zHG/IGBCVFc2r4p97iH8YM2Y3zYeJqxgwdmrQ2p8YKUtFwy12QwPmw8G30t+LdnMAC92jepNnsMlEZZgyAZ6CUiG4Fe/teISHMROTIDSERq+9+fedT1T4nIWhH5GrgYuKOM9RhjjmNYj3bsoxbD3aOpgZuXwscRjptb31wZ6NIqzWuL0nk97CkUGOK+m4PUAGB4j3aBLSxAyhQEqrpDVS9R1Rj/153+41tVtU+x8/arakNV3XXU9TeoakdVPVtVrzw88GyMqTjx0REkxjXne23B3e7hxDm+52HXm+zcHxrrEU37YiOPuZ+kuezg1sK7yNUmQFGXUChMFS2J3VlsTAgal9SJmMg6LPSdywueKxno+pgk58cs27id5NTqu1Jpylc51FgwmgTHBu5xDydDzwAgrmWDkOwSOsyCwJgQtfiui4iJrMPTnmtZ6j2bx1yTudyxgonLsqvlzWYZOQVsm/cI/ZzL+a/7Gub6LgCKWgKzR3ULcHWBZUFgTAhbfNdFdItpzAj3aDL1NJ4PG093xxpmZ26tVt1EGTkFfJjyHHe4ZvC+tzsTvImIFN05HMotgcMsCIwJcVOGJDC4e3tuKryXjdqSl8Oe5VzZwLKN26tFy2D0tNUkT3yNuw+O50tve+533wIIPWObhNw00WOxIDDGMKZPLC2bNWVw4Ri2aCNeC/8PHSWb2Zlbg3rMIHHCcnLWLOXV8P+Sp5EMd4/GjYtwp4TsDKGSWBAYYwAYm9iRHTTg+sL7+VXr8mZ4MjGSx8Rl2UF5j8HgyWnU3vo5b4c/zk6tx+DCMeyiLuFOYerQ80N2hlBJLAiMMcD/9jv+mYYMcj+AGxfvhD9OtPxM0qQvg6plkJyaRfj3C3k97D9s1sZcW/gvtlC0fESfjs0sBI5iQWCMOWJgQhTDu7clV5swqPABXHiYGv4op/t+YOKy7KAIg8GT09i6/C0mhj1LlrbiusJ/ks8pgE0TPRYLAmPMb4zpE8vw7m3ZpC0ZVPgPFOG98Efo7Ujj1eU/VOlF6hInLKdl9ruMC3uRdD2DQYX/YBd1EYpmCIX6NNFjsSAwxvzO4dVKszSaxENjydIoXgp/jpHyPv+YtabKzSbKyCngvEcXk/DT2zweNplPfHHcWHgf+6gFwLAQ2lvgZBx39VFjTGg63IUyOxMGFD7I42GTuSNsBqc7NnN35nBi12/jsg6BX6QtI6eAIS8t5LGwyVwRtoJ53vO4w30bbv+vt+4xjUJqb4GTYUFgjDmmw0tXPzhrLXe7h7HB14r7XSlEh//C0MI7mZ3pJf3HnSwfc0lA6ktOzSLr8zl8WGMip7KbJ9wDeMV7BT4c1Kvh5P4+7a0lcAJEVQNdQ6l16dJF09PTA12GMSEjI6eAB2etJevnPVzkyOT5sPEUEsYT7oHM9HXD5XAypFubSv3L+89PLGDQvjcZ4lrARl8LRrtHsl5bA0WDwjYe8HsikqGqXX533ILAGHOiUtJyeXD2Wtqwhf+GvUwnxyYyfe142H0jmXoaDeuEMWnwuRU2PTMjp4DkBVnszV3DM64XiHVs5g3PpSR7BhxZStpC4NgsCIwx5SI5NYuJy7IRfCQ6PmdM2FSayK/M8HbjSfcAfiGC4d3blmvrICUtl2cWf0vtfZsZ4kwlyfkJu6nDPe5hfOqLO3JeYlzzgI9ZVGUWBMaYcpOcmsUrn2XjVajNQUa6ZnOLMxUPTl7wJPKO9xL2O+sR07guYxM7nnQLITk1i9c//4H2vu+41TWfyx0r8eBglvdPPOlJYif1AajhcvCvv3aw8YDjqJAgEJFrgIeBWKCrqpb421lELgeeA5zAq6p6eCezU4F3gdbAj8C1qnrce9ktCIypGgZPTmPZxu0AtJJtPOh6h8uc6bjVyZe+9izwdWWRtws7aYAIdDutEVOGJPzh90xOzWLKlz9yyO3mz47V3OqaT1fHt+zS2rzt7ckbnsvI53/BYl1BJ66igiAW8AEvA3eXFAQi4gS+o2iryjxgJTBAVb8RkaeAnaqaLCJjgAhVve94n2tBYEzVkZKWy8Nz11HoLfpd0kF+4ApnGr0dabRxbMOrwko9kwXermzwRbGLOuyT2uxz1GO3LxyPTwjHTVyNrcTyA6d5s+no+IEzJZea4mazL5LJ3t5M917EfmoCUNPl4OyWDbivd6wtF1EKFdo1JCKfcuwgOB94WFUv87++H0BVnxCRb4GLVPUn/0b2n6r6twz6AxYExlQ9o6etJnXtT0cCAZQzZTO9nSvo7UjjdMeW313jVie7qU099hMuXgB2ay3W+9qwTluT7juDj3yd8eI8ck1MZB0W33VRJfxE1c+xgqAy7iNoAWwu9joPONw2bHJ4n2J/GDQ+1jcRkaHAUICoKOsHNKaqGZfUiXFJncjIKeDOdzPJ2bmfDRrFBk8Uz3I10fIzzWUH9dlHA9lHg2Jf91KLtb42rNM2bNZItIRFD8KcwhUdm9lgcAU4bhCIyEdA0xLe+oeqzjmBz5ASjpW6GaKqk4BJUNQiKO31xpjKER8dwdJ7LyYjp4AZq/L4fON2cnbuJ0ebkqMl/SopmUOgQS0X57ZuyLAe7awLqAIdNwhUtWcZPyMPaFXsdUtgq//5NhFpVqxr6JcyfpYxpoqIj474zS/vw4PABz0+HAJOhwOvz4fHV/R+/RpOGtevSdvIuvaLv5JVRtfQSiBGRNoAW4AkYKD/vbnAjUCy/+uJtDCMMUFoTJ9YW/OniirT6qMi0k9E8oDzgfkistB/vLmIpAKoqgcYBSwEsoDpqrre/y2SgV4ispGiWUXJZanHGGNM6dkNZcYYEyKONWvI9iMwxpgQZ0FgjDEhzoLAGGNCnAWBMcaEuKAcLBaRfCDnJC9vBGwvx3ICIdh/Bqs/8IL9Zwj2+iEwP0O0qkYefTAog6AsRCS9pFHzYBLsP4PVH3jB/jMEe/1QtX4G6xoyxpgQZ0FgjDEhLhSDYFKgCygHwf4zWP2BF+w/Q7DXD1XoZwi5MQJjjDG/FYotAmOMMcVYEBhjTIgLqSAQkctF5FsR2eTfIzmoiMhrIvKLiKwLdC0nQ0RaicgnIpIlIutF5O+Brqk0RKSmiKwQkTX++h8JdE0nQ0ScIrJaROYFupaTISI/ishaEckUkaBbfVJEThGR90Vkg///hfMDXlOojBGIiBP4jqLlrvMo2idhgKp+E9DCSkFEugN7gSmqelag6ykt/+ZDzVR1lYjUAzKAxGD5dyAiAtRR1b0iEgYsB/6uql8FuLRSEZE7gS5AfVX9S6DrKS0R+RHooqpBeUOZiLwJfKaqr4pIOFBbVX8NZE2h1CLoCmxS1WxVLQSmAX0DXFOpqOoyYGeg6zhZqvqTqq7yP99D0f4ULQJb1YnTInv9L8P8j6D6S0pEWgJXAK8GupZQJCL1ge7AZABVLQx0CEBoBUELYHOx13kE0S+h6kZEWgOdgLTAVlI6/m6VTIq2VV2sqkFVPzAOuBfwBbqQMlBgkYhkiMjQQBdTSm2BfOB1f/fcqyJSJ9BFhVIQSAnHguqvuepCROoCM4DRqro70PWUhqp6VTWOor23u4pI0HTRichfgF9UNSPQtZTRharaGegNjPR3mQYLF9AZeElVOwH7gICPV4ZSEOQBrYq9bglsDVAtIcvftz4DeEdVZwa6npPlb85/Clwe4FJK40LgSn8f+zTgzyLydmBLKj1V3er/+gswi6Ju32CRB+QVa0m+T1EwBFQoBcFKIEZE2vgHaJKAuQGuKaT4B1snA1mq+kyg6yktEYkUkVP8z2sBPYENga3qxKnq/araUlVbU/Tf/8eqen2AyyoVEanjn2iAv0vlUiBoZtGp6s/AZhE5w3/oEiDgkyVcgS6gsqiqR0RGAQsBJ/Caqq4PcFmlIiJTgYuARiKSB/xLVScHtqpSuRC4AVjr72cHeEBVUwNYU2k0A970z0BzANNVNSinYAaxJsCsor8pcAEpqvphYEsqtduBd/x/kGYDNwW4ntCZPmqMMaZkodQ1ZIwxpgQWBMYYE+IsCIwxJsRZEBhjTIizIDDGmBBnQWCMMSHOgsAYY0Lc/wP3Zj5spz1LrgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot()\n",
"plt.plot(t_i, f(t_i), marker='.')\n",
"plt.plot(np.linspace(a, b), f(np.linspace(a, b)));"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"3.9923677014412515"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"s = 0\n",
"for k in range(len(t_i) - 1):\n",
" s += np.abs(f(t_i[k+1]) - f(t_i[k]))\n",
"s"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/latex": [
"\\[\n",
" \\int_0^{2\\pi}\\lvert \\sin'(x)\\rvert\\textrm{ d} x=4\n",
"\\]\n"
],
"text/plain": [
"<IPython.core.display.Latex object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%%latex\n",
"\\[\n",
" \\int_0^{2\\pi}\\lvert \\sin'(x)\\rvert\\textrm{ d} x=4\n",
"\\]"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment