Skip to content

Instantly share code, notes, and snippets.

View MJacobs1985's full-sized avatar

Marc Jacobs MJacobs1985

View GitHub Profile
arc_month%>%
filter(!is.na(sampledate))%>%
plot_acf_diagnostics(sampledate, rochef,
.lags=24,
.facet_ncol = 2,
.facet_scales = "free")
arc_month%>%
filter(!is.na(sampledate))%>%
plot_seasonal_diagnostics(sampledate, rochef, .interactive = FALSE)
arc_month %>%
arc_month%>%
filter(!is.na(sampledate))%>%
plot_anomaly_diagnostics(sampledate,
rochef,
.facet_ncol = 2,
.facet_scales = "free")
arc_month<-arc%>%
summarise_by_time(sampledate,
.by="month",
Weight=median(wt.s,na.rm=TRUE),
rochef=median(rochefant, na.rm=TRUE),
nirala=sum(`nir-ala`, na.rm=TRUE),
nirdha=median(`nir-dha`, na.rm=TRUE),
nirdpa=sum(`nir-dpa`, na.rm=TRUE),
nirepa=median(`nir-epa`,na.rm=TRUE),
nireta=sum(`nir-eta`,na.rm=TRUE),
ggplot(arc, aes(x=rochefant, y=length, colour=(as.factor(generation1)))) +
geom_point(alpha=0.4) +
facet_wrap(~`generation(a/s)`) +
theme_bw()
ggplot(arc, aes(x=rochefant, y=length, colour=(as.factor(generation1)))) +
geom_point(alpha=0.4) +
facet_wrap(~weightclass) +
theme_bw()
ggplot(arc, aes(x=rochefant, y=length, colour=weightclasshalv)) +
geom_point(alpha=0.4) +
DataExplorer::plot_missing(arc)
DataExplorer::plot_correlation(arc_month,
cor_args = list("use" = "pairwise.complete.obs"))
DataExplorer::plot_correlation(arc_company,
cor_args = list("use" = "pairwise.complete.obs"))
ggplot(arc, aes(x=rochefant, colour=description)) +
geom_density(aes(fill=description), alpha=0.2) +
theme_bw() + facet_wrap(~description)
ggplot(arc, aes(x=rochefant, colour=strain)) +
arc<-as.data.frame(arc)
arcraw<-as.data.frame(arcraw)
varPlot(form=rochefant~(region), Data=arc)
varPlot(form=rochefant~(customer), Data=arc) # some customers for sure provided more data then others
varPlot(form=rochefant~(locality), Data=arc)
varPlot(form=rochefant~(slaughteryear), Data=arc)
varPlot(rochefant~(slaughteryear+slaughtermonth), arc, keep.order = FALSE,
MeanLine=list(var=c("int", "slaughteryear"),
col=c("magenta", "blue"), lwd=c(2,2)))
varPlot(form=rochefant~(strain), Data=arc)
interceptonlymodel <- lmer(formula = rochefant ~ 1 + (1|customer),
data = arc);summary(interceptonlymodel)
interceptonlymodel <- lmer(formula = rochefant ~ 1 + (1|locality),
data = arc);summary(interceptonlymodel)
interceptonlymodel <- lmer(formula = rochefant ~ 1 + (1|region),
data = arc);summary(interceptonlymodel)
interceptonlymodel <- lmer(formula = rochefant ~ 1 + (1|slaughteryear),
data = arc);summary(interceptonlymodel)
interceptonlymodel <- lmer(formula = rochefant ~ 1 + (1|description),
data = arc);summary(interceptonlymodel)
## Create summary time-series datasets for quick relationship building
length(levels(arc$customer))
length(levels(arc$locality))
length(levels(arc$region))
length(levels(arc$strain))
length(levels(arc$generation1))
length(levels(arc$`generation(a/s)`))
arc_month<-arc%>%
summarise_by_time(sampledate,
.by="month",
### Recode all character to factor data ##
arc[sapply(arc, is.character)]<-lapply(arc[sapply(arc, is.character)],as.factor)
str(arc)
## Recode Generation (A/S)
levels(arc$`generation(a/s)`)[levels(arc$`generation(a/s)`)=="05SB"]<-NA
### LOOK AT RAW DATA
dim(arc)
str(arc)
skim(arc)
## tabulate the data ###
rm(list = ls())
library(readxl)
library(caret)
library(dplyr)
library(readr)
library(DataExplorer)
library(skimr)
library(forecast)
library(lubridate)
library(xts)