Skip to content

Instantly share code, notes, and snippets.

@MarcoGorelli
MarcoGorelli / just-make-it-anew.sh
Last active September 23, 2023 13:49
just-make-it-anew.sh
deactivate
cp bytecode-parsing-tests.sh ../../temporary-polars-files/
cp just-make-it-anew.sh ../../temporary-polars-files/
cp pre-commit.sh ../../temporary-polars-files/
cp repl.sh ../../temporary-polars-files/
cp ../.vscode/settings.json ../../temporary-polars-files/
git clean -fxfd ../.
cargo clean
rustup self uninstall
curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
ipython -i -c 'import pandas as pd; \
from pandas.core.arrays import *; \
import polars as pl; \
from datetime import datetime, timezone, timedelta; \
from pandas._libs.tslibs.parsing import guess_datetime_format; \
from dateutil.parser import parse as du_parse; \
import datetime as dt; \
import numpy as np; \
from pandas import *; \
import pandas; \
// ==UserScript==
// @name myshipit
// @author marcogorelli
// @match https://github.com/*
// adapted from https://github.com/chriskuehl/shipit/blob/master/shipit.user.js,
// but I removed a handful of gifs (like the pikachu one) which I didn't like
// ==/UserScript==
(function () {
var urls = [
# usage:
# python -m cProfile -o out.prof perf.py
# snakeviz out.prof --server
import pandas as pd
dates = pd.date_range("1900", "2000").tz_localize("+01:00").strftime("%Y-%d-%m %H:%M:%S%z").tolist()
dates.append("2020-01-01 00:00:00+02:00")
def main():
import sys
import subprocess
import re
import shlex
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('command')
parser.add_argument('action', choices=['pull', 'push'])
args = parser.parse_args()
import bornly as bns
import numpy as np
import pandas as pd
from pmdarima import auto_arima
from statsmodels.tsa.statespace.sarimax import SARIMAX
flights = bns.load_dataset("flights")
flights["t"] = np.arange(len(flights))
PERIOD = 12
n_steps = 12
import numpy as np
import pandas as pd
from lightgbm import LGBMRegressor, log_evaluation
from sklearn.datasets import load_breast_cancer
from sklearn.metrics import mean_absolute_error
from sklearn.model_selection import KFold
data = load_breast_cancer()
X = pd.DataFrame(data.data, columns=data.feature_names)
y = pd.Series(data.target)
@MarcoGorelli
MarcoGorelli / density_change.py
Created November 7, 2021 09:54
density changes
fig, axes = plt.subplots(nrows=1, ncols=2, sharex=False, sharey=False)
axes = axes.flatten()
data = pd.DataFrame(samples, columns=["x_0", "x_1"])
sns.kdeplot(data=data, x="x_0", y="x_1", ax=axes[0])
data = pd.DataFrame(pushforward_samples, columns=["x_tilde_0", "x_tilde_1"])
sns.kdeplot(data=data, x="x_tilde_0", y="x_tilde_1", ax=axes[1])
xyA = [2.5, -0.6]
@MarcoGorelli
MarcoGorelli / analytically.py
Last active November 7, 2021 09:07
analytical solution
def inv_g(x_tilde):
"""Inverse of `g`."""
return jnp.asarray([jax.scipy.special.logit(x_tilde[0]), jnp.log(x_tilde[1])])
x_tilde = jnp.column_stack(
[jnp.linspace(0.001, 0.999, 1000), jnp.linspace(0.001, 3, 1000)]
)
pre_x_tilde = jax.vmap(inv_g)(x_tilde)
@MarcoGorelli
MarcoGorelli / computationally.py
Last active November 7, 2021 09:07
computationally
samples = distribution.sample(rng_key, sample_shape=(1000,))
pushforward_samples = jax.vmap(g)(samples)