Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save MervinPraison/d36f42e352012c8aef2cee2e1c64d74a to your computer and use it in GitHub Desktop.
Save MervinPraison/d36f42e352012c8aef2cee2e1c64d74a to your computer and use it in GitHub Desktop.
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Copyright 2017 Google Inc.\n",
"#\n",
"# Licensed under the Apache License, Version 2.0 (the \"License\");\n",
"# you may not use this file except in compliance with the License.\n",
"# You may obtain a copy of the License at\n",
"#\n",
"# http://www.apache.org/licenses/LICENSE-2.0\n",
"#\n",
"# Unless required by applicable law or agreed to in writing, software\n",
"# distributed under the License is distributed on an \"AS IS\" BASIS,\n",
"# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.\n",
"# See the License for the specific language governing permissions and\n",
"# limitations under the License."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"1.3.0\n",
"INFO:tensorflow:Using default config.\n",
"INFO:tensorflow:Using config: {'_save_checkpoints_secs': 600, '_session_config': None, '_keep_checkpoint_max': 5, '_tf_random_seed': 1, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_save_checkpoints_steps': None, '_model_dir': '/tmp/iris_model', '_save_summary_steps': 100}\n",
"INFO:tensorflow:Create CheckpointSaverHook.\n",
"INFO:tensorflow:Saving checkpoints for 1 into /tmp/iris_model/model.ckpt.\n",
"INFO:tensorflow:loss = 174.354, step = 1\n",
"INFO:tensorflow:global_step/sec: 551.517\n",
"INFO:tensorflow:loss = 11.9108, step = 101 (0.185 sec)\n",
"INFO:tensorflow:global_step/sec: 566.986\n",
"INFO:tensorflow:loss = 11.0975, step = 201 (0.176 sec)\n",
"INFO:tensorflow:global_step/sec: 831.443\n",
"INFO:tensorflow:loss = 7.06128, step = 301 (0.117 sec)\n",
"INFO:tensorflow:global_step/sec: 786.033\n",
"INFO:tensorflow:loss = 6.75643, step = 401 (0.127 sec)\n",
"INFO:tensorflow:global_step/sec: 878.983\n",
"INFO:tensorflow:loss = 4.96682, step = 501 (0.114 sec)\n",
"INFO:tensorflow:global_step/sec: 900.933\n",
"INFO:tensorflow:loss = 4.99079, step = 601 (0.111 sec)\n",
"INFO:tensorflow:global_step/sec: 899.166\n",
"INFO:tensorflow:loss = 4.42463, step = 701 (0.112 sec)\n",
"INFO:tensorflow:global_step/sec: 888.867\n",
"INFO:tensorflow:loss = 6.84585, step = 801 (0.112 sec)\n",
"INFO:tensorflow:global_step/sec: 897.738\n",
"INFO:tensorflow:loss = 4.07034, step = 901 (0.113 sec)\n",
"INFO:tensorflow:Saving checkpoints for 1000 into /tmp/iris_model/model.ckpt.\n",
"INFO:tensorflow:Loss for final step: 3.99844.\n",
"fit done\n",
"INFO:tensorflow:Starting evaluation at 2017-09-28-17:45:46\n",
"INFO:tensorflow:Restoring parameters from /tmp/iris_model/model.ckpt-1000\n",
"INFO:tensorflow:Evaluation [1/100]\n",
"INFO:tensorflow:Evaluation [2/100]\n",
"INFO:tensorflow:Evaluation [3/100]\n",
"INFO:tensorflow:Evaluation [4/100]\n",
"INFO:tensorflow:Evaluation [5/100]\n",
"INFO:tensorflow:Evaluation [6/100]\n",
"INFO:tensorflow:Evaluation [7/100]\n",
"INFO:tensorflow:Evaluation [8/100]\n",
"INFO:tensorflow:Evaluation [9/100]\n",
"INFO:tensorflow:Evaluation [10/100]\n",
"INFO:tensorflow:Evaluation [11/100]\n",
"INFO:tensorflow:Evaluation [12/100]\n",
"INFO:tensorflow:Evaluation [13/100]\n",
"INFO:tensorflow:Evaluation [14/100]\n",
"INFO:tensorflow:Evaluation [15/100]\n",
"INFO:tensorflow:Evaluation [16/100]\n",
"INFO:tensorflow:Evaluation [17/100]\n",
"INFO:tensorflow:Evaluation [18/100]\n",
"INFO:tensorflow:Evaluation [19/100]\n",
"INFO:tensorflow:Evaluation [20/100]\n",
"INFO:tensorflow:Evaluation [21/100]\n",
"INFO:tensorflow:Evaluation [22/100]\n",
"INFO:tensorflow:Evaluation [23/100]\n",
"INFO:tensorflow:Evaluation [24/100]\n",
"INFO:tensorflow:Evaluation [25/100]\n",
"INFO:tensorflow:Evaluation [26/100]\n",
"INFO:tensorflow:Evaluation [27/100]\n",
"INFO:tensorflow:Evaluation [28/100]\n",
"INFO:tensorflow:Evaluation [29/100]\n",
"INFO:tensorflow:Evaluation [30/100]\n",
"INFO:tensorflow:Evaluation [31/100]\n",
"INFO:tensorflow:Evaluation [32/100]\n",
"INFO:tensorflow:Evaluation [33/100]\n",
"INFO:tensorflow:Evaluation [34/100]\n",
"INFO:tensorflow:Evaluation [35/100]\n",
"INFO:tensorflow:Evaluation [36/100]\n",
"INFO:tensorflow:Evaluation [37/100]\n",
"INFO:tensorflow:Evaluation [38/100]\n",
"INFO:tensorflow:Evaluation [39/100]\n",
"INFO:tensorflow:Evaluation [40/100]\n",
"INFO:tensorflow:Evaluation [41/100]\n",
"INFO:tensorflow:Evaluation [42/100]\n",
"INFO:tensorflow:Evaluation [43/100]\n",
"INFO:tensorflow:Evaluation [44/100]\n",
"INFO:tensorflow:Evaluation [45/100]\n",
"INFO:tensorflow:Evaluation [46/100]\n",
"INFO:tensorflow:Evaluation [47/100]\n",
"INFO:tensorflow:Evaluation [48/100]\n",
"INFO:tensorflow:Evaluation [49/100]\n",
"INFO:tensorflow:Evaluation [50/100]\n",
"INFO:tensorflow:Evaluation [51/100]\n",
"INFO:tensorflow:Evaluation [52/100]\n",
"INFO:tensorflow:Evaluation [53/100]\n",
"INFO:tensorflow:Evaluation [54/100]\n",
"INFO:tensorflow:Evaluation [55/100]\n",
"INFO:tensorflow:Evaluation [56/100]\n",
"INFO:tensorflow:Evaluation [57/100]\n",
"INFO:tensorflow:Evaluation [58/100]\n",
"INFO:tensorflow:Evaluation [59/100]\n",
"INFO:tensorflow:Evaluation [60/100]\n",
"INFO:tensorflow:Evaluation [61/100]\n",
"INFO:tensorflow:Evaluation [62/100]\n",
"INFO:tensorflow:Evaluation [63/100]\n",
"INFO:tensorflow:Evaluation [64/100]\n",
"INFO:tensorflow:Evaluation [65/100]\n",
"INFO:tensorflow:Evaluation [66/100]\n",
"INFO:tensorflow:Evaluation [67/100]\n",
"INFO:tensorflow:Evaluation [68/100]\n",
"INFO:tensorflow:Evaluation [69/100]\n",
"INFO:tensorflow:Evaluation [70/100]\n",
"INFO:tensorflow:Evaluation [71/100]\n",
"INFO:tensorflow:Evaluation [72/100]\n",
"INFO:tensorflow:Evaluation [73/100]\n",
"INFO:tensorflow:Evaluation [74/100]\n",
"INFO:tensorflow:Evaluation [75/100]\n",
"INFO:tensorflow:Evaluation [76/100]\n",
"INFO:tensorflow:Evaluation [77/100]\n",
"INFO:tensorflow:Evaluation [78/100]\n",
"INFO:tensorflow:Evaluation [79/100]\n",
"INFO:tensorflow:Evaluation [80/100]\n",
"INFO:tensorflow:Evaluation [81/100]\n",
"INFO:tensorflow:Evaluation [82/100]\n",
"INFO:tensorflow:Evaluation [83/100]\n",
"INFO:tensorflow:Evaluation [84/100]\n",
"INFO:tensorflow:Evaluation [85/100]\n",
"INFO:tensorflow:Evaluation [86/100]\n",
"INFO:tensorflow:Evaluation [87/100]\n",
"INFO:tensorflow:Evaluation [88/100]\n",
"INFO:tensorflow:Evaluation [89/100]\n",
"INFO:tensorflow:Evaluation [90/100]\n",
"INFO:tensorflow:Evaluation [91/100]\n",
"INFO:tensorflow:Evaluation [92/100]\n",
"INFO:tensorflow:Evaluation [93/100]\n",
"INFO:tensorflow:Evaluation [94/100]\n",
"INFO:tensorflow:Evaluation [95/100]\n",
"INFO:tensorflow:Evaluation [96/100]\n",
"INFO:tensorflow:Evaluation [97/100]\n",
"INFO:tensorflow:Evaluation [98/100]\n",
"INFO:tensorflow:Evaluation [99/100]\n",
"INFO:tensorflow:Evaluation [100/100]\n",
"INFO:tensorflow:Finished evaluation at 2017-09-28-17:45:46\n",
"INFO:tensorflow:Saving dict for global step 1000: accuracy = 0.966667, average_loss = 0.0652359, global_step = 1000, loss = 1.95708\n",
"\n",
"Accuracy: 0.966667\n",
"INFO:tensorflow:Restoring parameters from /tmp/iris_model/model.ckpt-1000\n",
"INFO:tensorflow:Assets added to graph.\n",
"INFO:tensorflow:No assets to write.\n",
"INFO:tensorflow:SavedModel written to: /tmp/iris_model/export/1506620748/saved_model.pb\n"
]
},
{
"data": {
"text/plain": [
"'/tmp/iris_model/export/1506620748'"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import tensorflow as tf\n",
"import numpy as np\n",
"\n",
"print(tf.__version__)\n",
"\n",
"from tensorflow.contrib.learn.python.learn.datasets import base\n",
"\n",
"# Data files\n",
"IRIS_TRAINING = \"iris_training.csv\"\n",
"IRIS_TEST = \"iris_test.csv\"\n",
"\n",
"# Load datasets.\n",
"training_set = base.load_csv_with_header(filename=IRIS_TRAINING,\n",
" features_dtype=np.float32,\n",
" target_dtype=np.int)\n",
"test_set = base.load_csv_with_header(filename=IRIS_TEST,\n",
" features_dtype=np.float32,\n",
" target_dtype=np.int)\n",
"\n",
"# Specify that all features have real-value data\n",
"feature_name = \"flower_features\"\n",
"feature_columns = [tf.feature_column.numeric_column(feature_name, \n",
" shape=[4])]\n",
"classifier = tf.estimator.DNNClassifier(\n",
" feature_columns=feature_columns,\n",
" n_classes=3,\n",
" model_dir=\"/tmp/iris_model\",\n",
" hidden_units=[100, 70, 50, 25])\n",
"\n",
"def input_fn(dataset):\n",
" def _fn():\n",
" features = {feature_name: tf.constant(dataset.data)}\n",
" label = tf.constant(dataset.target)\n",
" return features, label\n",
" return _fn\n",
"\n",
"# Fit model.\n",
"classifier.train(input_fn=input_fn(training_set),\n",
" steps=1000)\n",
"print('fit done')\n",
"\n",
"# Evaluate accuracy.\n",
"accuracy_score = classifier.evaluate(input_fn=input_fn(test_set), \n",
" steps=100)[\"accuracy\"]\n",
"print('\\nAccuracy: {0:f}'.format(accuracy_score))\n",
"\n",
"# Export the model for serving\n",
"feature_spec = {'flower_features': tf.FixedLenFeature(shape=[4], dtype=np.float32)}\n",
"\n",
"serving_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)\n",
"\n",
"classifier.export_savedmodel(export_dir_base='/tmp/iris_model' + '/export', \n",
" serving_input_receiver_fn=serving_fn)\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.13"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment