Since this is a lot less data to work with, we'll take prizes from 1970 onwards.
Country | Nobels in Physics | 2016 population (millions) | Nobels per million |
---|---|---|---|
Denmark | 2 | 5.7 | 0.350877193 |
This should work generally, but I use this to track the number of words changed in a (LaTeX) paper with a version history in git (and which Overleaf uses by default).
This is a tricky thing to deal with for many reasons.
Show the added words, deleted words, words on duplicate lines on every commit in the last day (bash):
import numpy | |
from cffi import FFI | |
ffi = FFI() | |
ffi.cdef(""" | |
void single_test(double *x, int n); | |
void multi_test(double **x, int n, int m); | |
""") | |
C = ffi.dlopen("./simple.so") |
def plotdf(df, x, y, c=None, sample=10000, alpha=0.5, color=None, | |
cmap='viridis', clabel=None, xlabel=None, ylabel=None, | |
noise_df=None, percentile=0.98, use_noise_df_for_framing=False, | |
noise_alpha=0.1): | |
cols_to_get = [x, y] | |
if c is not None: | |
cols_to_get.append(c) | |
df = df[cols_to_get] |
def plotdf(df, x, y, sample=10000): | |
df = df[[x, y]].sample(sample).copy() | |
for col in [x, y]: | |
df = df[(df[col] > df[col].quantile(0.01)) & (df[col] < df[col].quantile(0.99))] | |
df.plot( | |
x, y, | |
linestyle='', marker='.', | |
markersize=0.1) |
" Delete up to begin{document}, and from end{document} to before the bibliography. | |
:%s/\\cite{[a-zA-Z0-9_]\+}/REF/g | |
:%s/\\citealt{[a-zA-Z0-9_]\+}/REF/g | |
:%s/\\cref{[a-zA-Z0-9_:]\+}/REF/g | |
:%s/\\caption{//g | |
:%s/\$\$.\{-}\$\$/REF/g | |
:%s/\$.\{-}\$/REF/g | |
:%s/\\[a-zA-Z_]\+{.*}/ /g | |
:%s/\\[a-zA-Z_]\+/ /g |
#!/bin/bash | |
#This builds vim with python + python3 support in a conda environment. No sudo required! Replace the directories to your own. | |
vi_cv_path_python=/mnt/home/mcranmer/miniconda3/envs/py27/bin/python \ | |
vi_cv_path_python3=/mnt/home/mcranmer/miniconda3/envs/main/bin/python \ | |
./configure \ | |
--with-features=huge \ | |
--enable-multibyte \ | |
--enable-rubyinterp=yes \ |
########################################## | |
#emcee example: | |
########################################## | |
import numpy as np | |
import emcee | |
# Number of samples for each chain. | |
N_samp = 1000 | |
def log_prob(x): |
Title: Composite Quasar Spectra From the Sloan Digital Sky Survey | |
Authors: Vanden Berk D.E., Richards G.T., Bauer A., Strauss M.A., | |
Schneider D.P., Heckman T.M., York D.G., Hall P.B., Fan X., Knapp G.R., | |
Anderson S.F., Annis J., Bahcall N.A., Bernardi M., Briggs J.W., | |
Brinkmann J., Brunner R., Burles S., Carey L., Castander F.J., | |
Connolly A.J., Crocker J.H., Csabai I., Doi M., Finkbeiner D., | |
Friedman S., Frieman J.A., Fukugita M., Gunn J.E., Hennessy G.S., | |
Ivezic Z., Kent S., Kunszt P.Z., Lamb D.Q., Leger R.F., Long D.C., | |
Loveday J., Lupton R.H., Meiksin A., Merelli A., Munn J.A., | |
Newberg H.J., Newcomb M., Nichol R.C., Owen R., Pier J.R., Pope A., |