Last active
February 19, 2024 16:34
-
-
Save Mistobaan/605e212f951c5ae82ea420765fce381b to your computer and use it in GitHub Desktop.
large_world_model.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"gpuType": "A100", | |
"authorship_tag": "ABX9TyOo3X8bWuh1p7E5Yi7330MO", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
}, | |
"accelerator": "GPU" | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/Mistobaan/605e212f951c5ae82ea420765fce381b/large_world_model.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!python --version" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "Hh9nvJXb8BVe", | |
"outputId": "1460bbd0-0d1f-4c40-cad0-f2236a8bffbf" | |
}, | |
"execution_count": 1, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Python 3.10.12\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!git clone https://github.com/LargeWorldModel/LWM --depth 1" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "MYidtumR8E84", | |
"outputId": "4c71e5dd-e22a-421d-b677-2ba6c665f455" | |
}, | |
"execution_count": 2, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Cloning into 'LWM'...\n", | |
"remote: Enumerating objects: 33, done.\u001b[K\n", | |
"remote: Counting objects: 100% (33/33), done.\u001b[K\n", | |
"remote: Compressing objects: 100% (26/26), done.\u001b[K\n", | |
"remote: Total 33 (delta 6), reused 29 (delta 6), pack-reused 0\u001b[K\n", | |
"Receiving objects: 100% (33/33), 4.10 MiB | 15.95 MiB/s, done.\n", | |
"Resolving deltas: 100% (6/6), done.\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "TZVTlLr37_Hn", | |
"outputId": "f5a77204-3bfd-4615-8897-4b913f0ae757" | |
}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"/content/LWM\n", | |
"Collecting tux@ git+https://github.com/lhao499/tux.git (from -r requirements.txt (line 14))\n", | |
" Cloning https://github.com/lhao499/tux.git to /tmp/pip-install-noq52n2d/tux_4bb7d360d32c4a51bd5f9f8c2faa81ec\n", | |
" Running command git clone --filter=blob:none --quiet https://github.com/lhao499/tux.git /tmp/pip-install-noq52n2d/tux_4bb7d360d32c4a51bd5f9f8c2faa81ec\n", | |
" Resolved https://github.com/lhao499/tux.git to commit 9de966c5f7bb2bb102f83901183fec41706ecd17\n", | |
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"Collecting flax==0.7.0 (from -r requirements.txt (line 1))\n", | |
" Downloading flax-0.7.0-py3-none-any.whl (225 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m225.9/225.9 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting optax==0.1.7 (from -r requirements.txt (line 2))\n", | |
" Downloading optax-0.1.7-py3-none-any.whl (154 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m154.1/154.1 kB\u001b[0m \u001b[31m24.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting chex==0.1.82 (from -r requirements.txt (line 3))\n", | |
" Downloading chex-0.1.82-py3-none-any.whl (94 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m94.8/94.8 kB\u001b[0m \u001b[31m16.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting einops (from -r requirements.txt (line 4))\n", | |
" Downloading einops-0.7.0-py3-none-any.whl (44 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m44.6/44.6 kB\u001b[0m \u001b[31m6.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting transformers==4.29.2 (from -r requirements.txt (line 5))\n", | |
" Downloading transformers-4.29.2-py3-none-any.whl (7.1 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.1/7.1 MB\u001b[0m \u001b[31m68.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting datasets==2.13.0 (from -r requirements.txt (line 6))\n", | |
" Downloading datasets-2.13.0-py3-none-any.whl (485 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m485.6/485.6 kB\u001b[0m \u001b[31m52.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: tqdm in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 7)) (4.66.2)\n", | |
"Collecting ml_collections (from -r requirements.txt (line 8))\n", | |
" Downloading ml_collections-0.1.1.tar.gz (77 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m77.9/77.9 kB\u001b[0m \u001b[31m13.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
"Collecting wandb (from -r requirements.txt (line 9))\n", | |
" Downloading wandb-0.16.3-py3-none-any.whl (2.2 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.2/2.2 MB\u001b[0m \u001b[31m87.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: gcsfs in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 10)) (2023.6.0)\n", | |
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 11)) (2.31.0)\n", | |
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 12)) (4.9.0)\n", | |
"Requirement already satisfied: sentencepiece in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 13)) (0.1.99)\n", | |
"Requirement already satisfied: Pillow in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 15)) (9.4.0)\n", | |
"Collecting ipdb (from -r requirements.txt (line 16))\n", | |
" Downloading ipdb-0.13.13-py3-none-any.whl (12 kB)\n", | |
"Requirement already satisfied: imageio[ffmpeg] in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 17)) (2.31.6)\n", | |
"Collecting decord (from -r requirements.txt (line 18))\n", | |
" Downloading decord-0.6.0-py3-none-manylinux2010_x86_64.whl (13.6 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m13.6/13.6 MB\u001b[0m \u001b[31m95.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting tiktoken (from -r requirements.txt (line 19))\n", | |
" Downloading tiktoken-0.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.8 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.8/1.8 MB\u001b[0m \u001b[31m94.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: numpy>=1.12 in /usr/local/lib/python3.10/dist-packages (from flax==0.7.0->-r requirements.txt (line 1)) (1.25.2)\n", | |
"Requirement already satisfied: jax>=0.4.2 in /usr/local/lib/python3.10/dist-packages (from flax==0.7.0->-r requirements.txt (line 1)) (0.4.23)\n", | |
"Requirement already satisfied: msgpack in /usr/local/lib/python3.10/dist-packages (from flax==0.7.0->-r requirements.txt (line 1)) (1.0.7)\n", | |
"Requirement already satisfied: orbax-checkpoint in /usr/local/lib/python3.10/dist-packages (from flax==0.7.0->-r requirements.txt (line 1)) (0.4.4)\n", | |
"Requirement already satisfied: tensorstore in /usr/local/lib/python3.10/dist-packages (from flax==0.7.0->-r requirements.txt (line 1)) (0.1.45)\n", | |
"Requirement already satisfied: rich>=11.1 in /usr/local/lib/python3.10/dist-packages (from flax==0.7.0->-r requirements.txt (line 1)) (13.7.0)\n", | |
"Requirement already satisfied: PyYAML>=5.4.1 in /usr/local/lib/python3.10/dist-packages (from flax==0.7.0->-r requirements.txt (line 1)) (6.0.1)\n", | |
"Requirement already satisfied: absl-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from optax==0.1.7->-r requirements.txt (line 2)) (1.4.0)\n", | |
"Requirement already satisfied: jaxlib>=0.1.37 in /usr/local/lib/python3.10/dist-packages (from optax==0.1.7->-r requirements.txt (line 2)) (0.4.23+cuda12.cudnn89)\n", | |
"Requirement already satisfied: toolz>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from chex==0.1.82->-r requirements.txt (line 3)) (0.12.1)\n", | |
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from transformers==4.29.2->-r requirements.txt (line 5)) (3.13.1)\n", | |
"Requirement already satisfied: huggingface-hub<1.0,>=0.14.1 in /usr/local/lib/python3.10/dist-packages (from transformers==4.29.2->-r requirements.txt (line 5)) (0.20.3)\n", | |
"Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from transformers==4.29.2->-r requirements.txt (line 5)) (23.2)\n", | |
"Requirement already satisfied: regex!=2019.12.17 in /usr/local/lib/python3.10/dist-packages (from transformers==4.29.2->-r requirements.txt (line 5)) (2023.12.25)\n", | |
"Collecting tokenizers!=0.11.3,<0.14,>=0.11.1 (from transformers==4.29.2->-r requirements.txt (line 5))\n", | |
" Downloading tokenizers-0.13.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.8 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m7.8/7.8 MB\u001b[0m \u001b[31m107.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: pyarrow>=8.0.0 in /usr/local/lib/python3.10/dist-packages (from datasets==2.13.0->-r requirements.txt (line 6)) (10.0.1)\n", | |
"Collecting dill<0.3.7,>=0.3.0 (from datasets==2.13.0->-r requirements.txt (line 6))\n", | |
" Downloading dill-0.3.6-py3-none-any.whl (110 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m110.5/110.5 kB\u001b[0m \u001b[31m18.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from datasets==2.13.0->-r requirements.txt (line 6)) (1.5.3)\n", | |
"Requirement already satisfied: xxhash in /usr/local/lib/python3.10/dist-packages (from datasets==2.13.0->-r requirements.txt (line 6)) (3.4.1)\n", | |
"Collecting multiprocess (from datasets==2.13.0->-r requirements.txt (line 6))\n", | |
" Downloading multiprocess-0.70.16-py310-none-any.whl (134 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m19.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: fsspec[http]>=2021.11.1 in /usr/local/lib/python3.10/dist-packages (from datasets==2.13.0->-r requirements.txt (line 6)) (2023.6.0)\n", | |
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from datasets==2.13.0->-r requirements.txt (line 6)) (3.9.3)\n", | |
"Requirement already satisfied: six in /usr/local/lib/python3.10/dist-packages (from ml_collections->-r requirements.txt (line 8)) (1.16.0)\n", | |
"Requirement already satisfied: contextlib2 in /usr/local/lib/python3.10/dist-packages (from ml_collections->-r requirements.txt (line 8)) (21.6.0)\n", | |
"Requirement already satisfied: Click!=8.0.0,>=7.1 in /usr/local/lib/python3.10/dist-packages (from wandb->-r requirements.txt (line 9)) (8.1.7)\n", | |
"Collecting GitPython!=3.1.29,>=1.0.0 (from wandb->-r requirements.txt (line 9))\n", | |
" Downloading GitPython-3.1.42-py3-none-any.whl (195 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m195.4/195.4 kB\u001b[0m \u001b[31m30.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.10/dist-packages (from wandb->-r requirements.txt (line 9)) (5.9.5)\n", | |
"Collecting sentry-sdk>=1.0.0 (from wandb->-r requirements.txt (line 9))\n", | |
" Downloading sentry_sdk-1.40.4-py2.py3-none-any.whl (257 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m257.9/257.9 kB\u001b[0m \u001b[31m35.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hCollecting docker-pycreds>=0.4.0 (from wandb->-r requirements.txt (line 9))\n", | |
" Downloading docker_pycreds-0.4.0-py2.py3-none-any.whl (9.0 kB)\n", | |
"Collecting setproctitle (from wandb->-r requirements.txt (line 9))\n", | |
" Downloading setproctitle-1.3.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (30 kB)\n", | |
"Requirement already satisfied: setuptools in /usr/local/lib/python3.10/dist-packages (from wandb->-r requirements.txt (line 9)) (67.7.2)\n", | |
"Requirement already satisfied: appdirs>=1.4.3 in /usr/local/lib/python3.10/dist-packages (from wandb->-r requirements.txt (line 9)) (1.4.4)\n", | |
"Requirement already satisfied: protobuf!=4.21.0,<5,>=3.19.0 in /usr/local/lib/python3.10/dist-packages (from wandb->-r requirements.txt (line 9)) (3.20.3)\n", | |
"Requirement already satisfied: decorator>4.1.2 in /usr/local/lib/python3.10/dist-packages (from gcsfs->-r requirements.txt (line 10)) (4.4.2)\n", | |
"Requirement already satisfied: google-auth>=1.2 in /usr/local/lib/python3.10/dist-packages (from gcsfs->-r requirements.txt (line 10)) (2.27.0)\n", | |
"Requirement already satisfied: google-auth-oauthlib in /usr/local/lib/python3.10/dist-packages (from gcsfs->-r requirements.txt (line 10)) (1.2.0)\n", | |
"Requirement already satisfied: google-cloud-storage in /usr/local/lib/python3.10/dist-packages (from gcsfs->-r requirements.txt (line 10)) (2.8.0)\n", | |
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->-r requirements.txt (line 11)) (3.3.2)\n", | |
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->-r requirements.txt (line 11)) (3.6)\n", | |
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->-r requirements.txt (line 11)) (2.0.7)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->-r requirements.txt (line 11)) (2024.2.2)\n", | |
"Requirement already satisfied: cloudpickle in /usr/local/lib/python3.10/dist-packages (from tux@ git+https://github.com/lhao499/tux.git->-r requirements.txt (line 14)) (2.2.1)\n", | |
"Requirement already satisfied: ipython>=7.31.1 in /usr/local/lib/python3.10/dist-packages (from ipdb->-r requirements.txt (line 16)) (7.34.0)\n", | |
"Requirement already satisfied: tomli in /usr/local/lib/python3.10/dist-packages (from ipdb->-r requirements.txt (line 16)) (2.0.1)\n", | |
"Requirement already satisfied: imageio-ffmpeg in /usr/local/lib/python3.10/dist-packages (from imageio[ffmpeg]->-r requirements.txt (line 17)) (0.4.9)\n", | |
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.13.0->-r requirements.txt (line 6)) (1.3.1)\n", | |
"Requirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.13.0->-r requirements.txt (line 6)) (23.2.0)\n", | |
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.13.0->-r requirements.txt (line 6)) (1.4.1)\n", | |
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.13.0->-r requirements.txt (line 6)) (6.0.5)\n", | |
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.13.0->-r requirements.txt (line 6)) (1.9.4)\n", | |
"Requirement already satisfied: async-timeout<5.0,>=4.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->datasets==2.13.0->-r requirements.txt (line 6)) (4.0.3)\n", | |
"Collecting gitdb<5,>=4.0.1 (from GitPython!=3.1.29,>=1.0.0->wandb->-r requirements.txt (line 9))\n", | |
" Downloading gitdb-4.0.11-py3-none-any.whl (62 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m62.7/62.7 kB\u001b[0m \u001b[31m10.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.2->gcsfs->-r requirements.txt (line 10)) (5.3.2)\n", | |
"Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.2->gcsfs->-r requirements.txt (line 10)) (0.3.0)\n", | |
"Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth>=1.2->gcsfs->-r requirements.txt (line 10)) (4.9)\n", | |
"Collecting jedi>=0.16 (from ipython>=7.31.1->ipdb->-r requirements.txt (line 16))\n", | |
" Downloading jedi-0.19.1-py2.py3-none-any.whl (1.6 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m88.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=7.31.1->ipdb->-r requirements.txt (line 16)) (0.7.5)\n", | |
"Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.31.1->ipdb->-r requirements.txt (line 16)) (5.7.1)\n", | |
"Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.31.1->ipdb->-r requirements.txt (line 16)) (3.0.43)\n", | |
"Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython>=7.31.1->ipdb->-r requirements.txt (line 16)) (2.16.1)\n", | |
"Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=7.31.1->ipdb->-r requirements.txt (line 16)) (0.2.0)\n", | |
"Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython>=7.31.1->ipdb->-r requirements.txt (line 16)) (0.1.6)\n", | |
"Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=7.31.1->ipdb->-r requirements.txt (line 16)) (4.9.0)\n", | |
"Requirement already satisfied: ml-dtypes>=0.2.0 in /usr/local/lib/python3.10/dist-packages (from jax>=0.4.2->flax==0.7.0->-r requirements.txt (line 1)) (0.2.0)\n", | |
"Requirement already satisfied: opt-einsum in /usr/local/lib/python3.10/dist-packages (from jax>=0.4.2->flax==0.7.0->-r requirements.txt (line 1)) (3.3.0)\n", | |
"Requirement already satisfied: scipy>=1.9 in /usr/local/lib/python3.10/dist-packages (from jax>=0.4.2->flax==0.7.0->-r requirements.txt (line 1)) (1.11.4)\n", | |
"Requirement already satisfied: markdown-it-py>=2.2.0 in /usr/local/lib/python3.10/dist-packages (from rich>=11.1->flax==0.7.0->-r requirements.txt (line 1)) (3.0.0)\n", | |
"Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from google-auth-oauthlib->gcsfs->-r requirements.txt (line 10)) (1.3.1)\n", | |
"Requirement already satisfied: google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5 in /usr/local/lib/python3.10/dist-packages (from google-cloud-storage->gcsfs->-r requirements.txt (line 10)) (2.11.1)\n", | |
"Requirement already satisfied: google-cloud-core<3.0dev,>=2.3.0 in /usr/local/lib/python3.10/dist-packages (from google-cloud-storage->gcsfs->-r requirements.txt (line 10)) (2.3.3)\n", | |
"Requirement already satisfied: google-resumable-media>=2.3.2 in /usr/local/lib/python3.10/dist-packages (from google-cloud-storage->gcsfs->-r requirements.txt (line 10)) (2.7.0)\n", | |
"INFO: pip is looking at multiple versions of multiprocess to determine which version is compatible with other requirements. This could take a while.\n", | |
"Collecting multiprocess (from datasets==2.13.0->-r requirements.txt (line 6))\n", | |
" Downloading multiprocess-0.70.15-py310-none-any.whl (134 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.8/134.8 kB\u001b[0m \u001b[31m20.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25h Downloading multiprocess-0.70.14-py310-none-any.whl (134 kB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m134.3/134.3 kB\u001b[0m \u001b[31m19.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: etils[epath,epy] in /usr/local/lib/python3.10/dist-packages (from orbax-checkpoint->flax==0.7.0->-r requirements.txt (line 1)) (1.6.0)\n", | |
"Requirement already satisfied: nest_asyncio in /usr/local/lib/python3.10/dist-packages (from orbax-checkpoint->flax==0.7.0->-r requirements.txt (line 1)) (1.6.0)\n", | |
"Requirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets==2.13.0->-r requirements.txt (line 6)) (2.8.2)\n", | |
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->datasets==2.13.0->-r requirements.txt (line 6)) (2023.4)\n", | |
"Collecting smmap<6,>=3.0.1 (from gitdb<5,>=4.0.1->GitPython!=3.1.29,>=1.0.0->wandb->-r requirements.txt (line 9))\n", | |
" Downloading smmap-5.0.1-py3-none-any.whl (24 kB)\n", | |
"Requirement already satisfied: googleapis-common-protos<2.0.dev0,>=1.56.2 in /usr/local/lib/python3.10/dist-packages (from google-api-core!=2.0.*,!=2.1.*,!=2.2.*,!=2.3.0,<3.0.0dev,>=1.31.5->google-cloud-storage->gcsfs->-r requirements.txt (line 10)) (1.62.0)\n", | |
"Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /usr/local/lib/python3.10/dist-packages (from google-resumable-media>=2.3.2->google-cloud-storage->gcsfs->-r requirements.txt (line 10)) (1.5.0)\n", | |
"Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=7.31.1->ipdb->-r requirements.txt (line 16)) (0.8.3)\n", | |
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py>=2.2.0->rich>=11.1->flax==0.7.0->-r requirements.txt (line 1)) (0.1.2)\n", | |
"Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython>=7.31.1->ipdb->-r requirements.txt (line 16)) (0.7.0)\n", | |
"Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython>=7.31.1->ipdb->-r requirements.txt (line 16)) (0.2.13)\n", | |
"Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth>=1.2->gcsfs->-r requirements.txt (line 10)) (0.5.1)\n", | |
"Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib->gcsfs->-r requirements.txt (line 10)) (3.2.2)\n", | |
"Requirement already satisfied: importlib_resources in /usr/local/lib/python3.10/dist-packages (from etils[epath,epy]->orbax-checkpoint->flax==0.7.0->-r requirements.txt (line 1)) (6.1.1)\n", | |
"Requirement already satisfied: zipp in /usr/local/lib/python3.10/dist-packages (from etils[epath,epy]->orbax-checkpoint->flax==0.7.0->-r requirements.txt (line 1)) (3.17.0)\n", | |
"Building wheels for collected packages: ml_collections, tux\n", | |
" Building wheel for ml_collections (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for ml_collections: filename=ml_collections-0.1.1-py3-none-any.whl size=94505 sha256=b3000730145b68c7f1ae83a00fbb37e7a03872dbf519eab743280f29edce02da\n", | |
" Stored in directory: /root/.cache/pip/wheels/7b/89/c9/a9b87790789e94aadcfc393c283e3ecd5ab916aed0a31be8fe\n", | |
" Building wheel for tux (setup.py) ... \u001b[?25l\u001b[?25hdone\n", | |
" Created wheel for tux: filename=tux-0.0.2-py3-none-any.whl size=14762 sha256=9710c5f3f85ebe56e53fec93a7c95b1d3036035653e4694014405f2e4b4f5c10\n", | |
" Stored in directory: /tmp/pip-ephem-wheel-cache-vllwlufu/wheels/cf/8d/ab/f68aceef29b7f9ff3544970f04c3e0b3073d48f767f7a18710\n", | |
"Successfully built ml_collections tux\n", | |
"Installing collected packages: tokenizers, smmap, setproctitle, sentry-sdk, ml_collections, jedi, einops, docker-pycreds, dill, decord, tiktoken, multiprocess, gitdb, transformers, ipdb, GitPython, chex, wandb, optax, datasets, flax, tux\n", | |
" Attempting uninstall: tokenizers\n", | |
" Found existing installation: tokenizers 0.15.2\n", | |
" Uninstalling tokenizers-0.15.2:\n", | |
" Successfully uninstalled tokenizers-0.15.2\n", | |
" Attempting uninstall: transformers\n", | |
" Found existing installation: transformers 4.35.2\n", | |
" Uninstalling transformers-4.35.2:\n", | |
" Successfully uninstalled transformers-4.35.2\n", | |
" Attempting uninstall: chex\n", | |
" Found existing installation: chex 0.1.85\n", | |
" Uninstalling chex-0.1.85:\n", | |
" Successfully uninstalled chex-0.1.85\n", | |
" Attempting uninstall: optax\n", | |
" Found existing installation: optax 0.1.9\n", | |
" Uninstalling optax-0.1.9:\n", | |
" Successfully uninstalled optax-0.1.9\n", | |
" Attempting uninstall: flax\n", | |
" Found existing installation: flax 0.8.1\n", | |
" Uninstalling flax-0.8.1:\n", | |
" Successfully uninstalled flax-0.8.1\n", | |
"\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", | |
"llmx 0.0.15a0 requires cohere, which is not installed.\n", | |
"llmx 0.0.15a0 requires openai, which is not installed.\u001b[0m\u001b[31m\n", | |
"\u001b[0mSuccessfully installed GitPython-3.1.42 chex-0.1.82 datasets-2.13.0 decord-0.6.0 dill-0.3.6 docker-pycreds-0.4.0 einops-0.7.0 flax-0.7.0 gitdb-4.0.11 ipdb-0.13.13 jedi-0.19.1 ml_collections-0.1.1 multiprocess-0.70.14 optax-0.1.7 sentry-sdk-1.40.4 setproctitle-1.3.3 smmap-5.0.1 tiktoken-0.6.0 tokenizers-0.13.3 transformers-4.29.2 tux-0.0.2 wandb-0.16.3\n" | |
] | |
} | |
], | |
"source": [ | |
"%cd LWM\n", | |
"#%pip install -U \"jax[cuda12_pip]==0.4.23\" -f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html\n", | |
"%pip install -r requirements.txt" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"%pip install huggingface-hub hf_transfer" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "Cvi6MWK29yO_", | |
"outputId": "9fdf1bf8-cba9-4a5b-cbd5-ba02230453a9" | |
}, | |
"execution_count": 4, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Requirement already satisfied: huggingface-hub in /usr/local/lib/python3.10/dist-packages (0.20.3)\n", | |
"Collecting hf_transfer\n", | |
" Downloading hf_transfer-0.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.5 MB)\n", | |
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m4.5/4.5 MB\u001b[0m \u001b[31m48.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hRequirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (3.13.1)\n", | |
"Requirement already satisfied: fsspec>=2023.5.0 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (2023.6.0)\n", | |
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (2.31.0)\n", | |
"Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (4.66.2)\n", | |
"Requirement already satisfied: pyyaml>=5.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (6.0.1)\n", | |
"Requirement already satisfied: typing-extensions>=3.7.4.3 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (4.9.0)\n", | |
"Requirement already satisfied: packaging>=20.9 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub) (23.2)\n", | |
"Requirement already satisfied: charset-normalizer<4,>=2 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (3.3.2)\n", | |
"Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (3.6)\n", | |
"Requirement already satisfied: urllib3<3,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (2.0.7)\n", | |
"Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests->huggingface-hub) (2024.2.2)\n", | |
"Installing collected packages: hf_transfer\n", | |
"Successfully installed hf_transfer-0.1.5\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"%env HF_HUB_ENABLE_HF_TRANSFER=1\n", | |
"!mkdir -p /content/hf-models\n", | |
"!huggingface-cli download LargeWorldModel/LWM-Chat-32K-Jax \\\n", | |
" params \\\n", | |
" tokenizer.model \\\n", | |
" vqgan \\\n", | |
" --local-dir /content/hf-models/ --local-dir-use-symlinks False" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "a0a8k7VI-Tx0", | |
"outputId": "a041144e-0783-4b73-8bdf-18ab956161ab" | |
}, | |
"execution_count": 5, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"env: HF_HUB_ENABLE_HF_TRANSFER=1\n", | |
"downloading https://huggingface.co/LargeWorldModel/LWM-Chat-32K-Jax/resolve/ca6ab533c0c54f56b301e3b8d4fd6fcb69d3cb98/params to /root/.cache/huggingface/hub/tmp26cdus4k\n", | |
"params: 100% 13.6G/13.6G [00:51<00:00, 263MB/s]\n", | |
"downloading https://huggingface.co/LargeWorldModel/LWM-Chat-32K-Jax/resolve/ca6ab533c0c54f56b301e3b8d4fd6fcb69d3cb98/tokenizer.model to /root/.cache/huggingface/hub/tmp4od5f1i0\n", | |
"tokenizer.model: 100% 500k/500k [00:00<00:00, 64.2MB/s]\n", | |
"downloading https://huggingface.co/LargeWorldModel/LWM-Chat-32K-Jax/resolve/ca6ab533c0c54f56b301e3b8d4fd6fcb69d3cb98/vqgan to /root/.cache/huggingface/hub/tmphhhlopfj\n", | |
"vqgan: 100% 585M/585M [00:04<00:00, 144MB/s]\n", | |
"/content/hf-models\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"prompt = \"Sora the new OpenAI model\" #@param\n", | |
"output_filename = \"output.png\" #@param" | |
], | |
"metadata": { | |
"id": "0R09gSlh_8kB" | |
}, | |
"execution_count": 14, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"%env PYTHONPHAT=/content/LWM/\n", | |
"%env NUMEXPR_MAX_THREADS=12\n", | |
"\n", | |
"llama_tokenizer_path=\"/content/hf-models/tokenizer.model\"\n", | |
"vqgan_checkpoint=\"/content/hf-models/vqgan\"\n", | |
"lwm_checkpoint=\"/content/hf-models/params\"\n", | |
"\n", | |
"!python3 -u -m lwm.vision_generation \\\n", | |
" --prompt={prompt} \\\n", | |
" --output_file={output_filename} \\\n", | |
" --temperature_image=1.0 \\\n", | |
" --top_k_image=8192 \\\n", | |
" --cfg_scale_image=5.0 \\\n", | |
" --vqgan_checkpoint=\"{vqgan_checkpoint}\" \\\n", | |
" --n_frames=1 \\\n", | |
" --dtype='bf16' \\\n", | |
" --load_llama_config='7b' \\\n", | |
" --update_llama_config=\"dict(sample_mode='vision',theta=50000000,max_sequence_length=32768,use_flash_attention=True,scan_attention=False,scan_query_chunk_size=128,scan_key_chunk_size=128,scan_mlp=False,scan_mlp_chunk_size=8192,scan_layers=True)\" \\\n", | |
" --load_checkpoint=\"params::{lwm_checkpoint}\" \\\n", | |
" --tokenizer.vocab_file=\"{llama_tokenizer_path}\"" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "PdhzvE5W9LCO", | |
"outputId": "d3e667be-33ff-4638-ccbf-86eef9081fdc" | |
}, | |
"execution_count": 15, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"env: PYTHONPHAT=/content/LWM/\n", | |
"env: NUMEXPR_MAX_THREADS=12\n", | |
"I0215 23:07:34.614364 139360778850944 xla_bridge.py:660] Unable to initialize backend 'rocm': NOT_FOUND: Could not find registered platform with name: \"rocm\". Available platform names are: CUDA\n", | |
"I0215 23:07:34.615350 139360778850944 xla_bridge.py:660] Unable to initialize backend 'tpu': INTERNAL: Failed to open libtpu.so: libtpu.so: cannot open shared object file: No such file or directory\n", | |
" 0% 0/1 [00:00<?, ?it/s]2024-02-15 23:08:35.141875: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered\n", | |
"2024-02-15 23:08:35.141945: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered\n", | |
"2024-02-15 23:08:35.143684: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n", | |
"2024-02-15 23:08:36.155586: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n", | |
"100% 1/1 [00:29<00:00, 29.63s/it]\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"from IPython.display import Image\n", | |
"\n", | |
"Image(output_filename)" | |
], | |
"metadata": { | |
"id": "ZIpwhrk6BX8v", | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 273 | |
}, | |
"outputId": "412e4fef-9e9e-47fe-e9ab-3d673037976a" | |
}, | |
"execution_count": 16, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAQAAAAEACAIAAADTED8xAAEAAElEQVR4nEz96a9uWXofhj3DWmsP73TGO9fYXT2wySbZbIqkRNGURVuBJAewjRgwDARBkE/5lv/Df0QSIB9iR1EQ05Kj2LIUyNbAJtnNoVk9VFfVvbfqDmd+h733WusZ8mGfYnJxcXCAe849+33PGp7nNz34v/8//5fSe60aKBCRm7mbA7ijO6gDgJuZuxAoICIAAxIAgAMiEBqgIjgSmroqgIEZIjEFQAAABicCIgQkIkQmIqi1VpNsWlzVoZju8zQcDvv9YdxfT4ddtQwISMwYnBg4EpIbOLiZixq4uwM5B6QQIiK5WIwBEQHcAy+OV6u+W6265arrEjF5QEA0cBUTc1UzATdAcEQIAAGZ0QzM1UuVWkutWUu1km06lHIoeT+VoYhKzVJUEAAIEZABUgxN3zR9x12Kq5ZicEI0QgUUt+JRIhcrg1x8efdquPv20/OTzaPonWZ+/Oj988dfa+j8iz/744346x9/efnTn1R+C1gGcsRwe3z8nfd/9cn65Gi5evz0tEttROxTXHZNF2NQX21iv0wEyG5d6+t1UwCYRQDqVL742c3lL26Xp8sHj49PVqlB/uO/+vG4v9ssu3wYzHLf8vbNtl93YAZmbmiI3VE/an19V/741Rf/w198/ry5azfcH0UNIkkxYAVVFazqoqomUsHN1QSAYwgpEiAF5shhEYHQs2o1V3AFNTdzcwMzBwNEYAQmSESJUUz3Ge9Gvc5uFhJjE52ImIFJAcwdENHdENTFySI4MYbAHJkicUPURGw5tByWnaeEuZqYSp1qtiItkw4ecnRTJQRyR1MAQHAAB0BDIkQzdHcAAjB0QAAEBHBAQnB3d3AAAnd3NHdQRXREcnAmZiBGRDQkAAIiRkYH50BFoKiKObihVpLstWiealERBwAkQmBDImJCAgwcwMBRzYlcDRxJwR21VAZEA9XqzE3XhiY1IQQOMbSRIgNGNCZHQENgMFAzQHJHAAACIKcATuwBvapjVa3qYmAKWgyqeVEvZkVdjcwZ2QEQkBEDcgBi4+QhYYD5WQOSEbqpKTiQAyqQ2ulxe7yJgaKUCcxaaqDs6/4wbt8O16+kWDyqZ7/6mPlhk2JqYowpLBbcLrrYLtp2GIdxt2+JfbWQWvYU+sSjMd5i06S2CW2NN4fibKo1RihjnSosjldNSJpleXKW+MnJydtrAnPpFkFKNs3LTfQ6ADoiQQQmrsMW+7R+tvitr/3Kw196+k9+8Ec/vX7bx6gdZwSJ6OJQXcShAKixo4ITUUsEwIwIDBQQCQARwYGICMwcHcAB3dEc3AERzB0MzUENi4GC5WpZAhAkphiAGJmRCJiYCJD8foUAuGFwQidCIoCAFJECBgqYOC1SSAtxU3fUQk4O5AxkaDEEIQAAZgpOCK7oADA/iYMKACA5uSMQEDsQIAISAgIiuCEAuCO4A6D7/BAOiI4ExBiQmJkJCJ0QGcAZKlpVVHEnM1BXq1q1VrNqngEUScCNgZHAGZGBEJGREAkQIgQDMANxR7XioOLiARgieoDUp7ZvmyakLsaGKSAycMCECGAGIRAUBFRFZ3dwJAdSBHIkx6AoBmQIhi4Gai7q6qTOiiSgFRgQGRWJyAMSU2hibEPshaNSBUI3soAO7BSQANTRDbTtGm5bxqjVGAN7aGPbgtPuMt8Mi9Cdro6fPniw6IKDOXhqODINVffjJGKm4iqoqqp5ZAamFEVp3BVwJNYmBuaCLlmryrS/ftu23fnjR90mAflk9sXl1aG8nEKDy6M8bGvVGNPl6y9Pjx7E1FUZ1RQJQgAm3ukke+vcfuXR6bt/7+/+q49/8lcvnpel7vqy18wJyACqO1pkFnUCBgcGBCZigoTcEDA5mbs7AZCDIziiOamjkgOAOwAYoqMjExi4GlRHIEQjIzRGIETiwBAQQgQmREYkAkdQB5mXJhMRI0YMkdsmchtCYkAuptXUDUQkuXMgthCX6wDo5uYA7MTujgquroQGiiZgiAFw3sHIjjy/PAByBEAD9/kzdwUDcnJK7gAMgAweEIiAGBgQaX6JDoBO6GRubu5qqqrmpqbm5qjICIqODuhODgx+f5AAAoIBI4AjAri6iFk2EDNE5MCJUxNCE0IKMQUMcP/Q5ITggORmCGToiHi/e80BzauCGWDxWkSqmoqauonbV5+7OrrjfHgBALsTGjlEq41T8BYtgrsBFAcAF3XhRhsWqrmKMCq4GxAHDSB0sjppMXTSrGP35OHDzTur02ZDBoiVYzCSyayWkYE2y+Tm4M7mpJWc+67drI9jDFUs5zyO5eZmPx1MRJh8eZSO1t3Zw/cNrDoGovUiJScwVS9ktGpj057cXN/IULayP6F3m67veOUqUovWGqptQpzutsPHzzePTx8/OPvf/Orf+NH6+J9/+pMvVOOiDQkzo4XRpboRCjAioYMbghMpJOYIjqhWtYILgLhX8AKoBOIgAA5uDuhG7gTARsyuINXQnADB2QEMnBgxEETCQBSI7o9DwHlPuaEjuDkCEhIDMhtpceUKrI4Azh6IgDmE2DRtiiGgz0U1VFVHzCBFq1dEA0OCgO7IQARGiI5gOBdBaO4OAOAGcxUEgAroBMZIQEQwV/7ICI73pZWgGXiFuSYgczBzVVMzMRWt+tUucAQkcAZIBImcwe6XL7gCKLibF4VJLDuKo8L8aBSYQgghhBg5MBEiAqL7vKcAHBwMAwQHIlCH+RoDAxBXcSYncRTD+4+GIiDiolZMbX63GYAcCJzBImPDGqCQjYmwJQcOFqlyi8356nzji5s3u91+K2YYQiDMk26347sn56fx+HR53NPyqNuQMgnkMoJM4rmYHPIw1lJrhhAIiRgajg2GSMwxQYPm9ubi+nDYEVEMzeZoeXTUmSlSiZFWfZdicHdgbQKhO7MHgmXgakpqR11ap6Of//T6xdvPGj5ZffjNwJHMUmgKi+z3kOt57PyUtj+/KMPeru++dXS0/vav/uLm6keHl29kd5mCIFcxrk6RwIHQKbI3IS4RWgSAqkLojqjupuYCXgGqYQWvgKbzsUYBjQERCdEceD5e0Q2UAkIkj2gRMRIFwsAw96PoxICEbsSATAgRMSETOaOQARATLim2HXYBYiRhyOhIoaoHNZlPwCJSyEbIBk5IgAToYMjo6I4EDuAIRjiXXeA+f7R5I4AB+PwGKCEgGAIzIqMxEs+1tpuZI6ibudNc1Ji5m7kaqKrNKx+cAAApUBOhjRjZ72suBCN0d3UHUHf3eas4kRtaZEBEJoohRE6BAs+dNzqAO5iaGSggOOHc6KAhudt8kJibihma4f3t5KamaqYm6qagju5kQMCMTogxUAzEzEAIJADGKWITPGza1QcP3n+2epJvSr36MsYUUjKGqjjotDnGrz1+f9k0z84fRkvT3XTz9sqLtEBIVmxUADFFiol6QiJCcJBBapl0mqqmwwNtb6dSipk5AJGGmJlzCKkJKFO9vdwD1L5bLJetNliDhRhSDJR6jsakl9OYyPujLtPrF5cvvv7B1yj2WguHrmWr6vv9DTOl5XL1yN/84P/ZfPSbusPN8ZNfXh6frJs/u3vxr28/3WyaQynmBRHciQhDx9hxWKIHMECvLllYYf4NqhqoQYX7G8CAHIHR0RmJnNwAHZkDsAEJADkiMiEhEhExEQMgMnEAYkQGIEeCEAkYPSAwqZMjKQI7IRmABuI2Ejccm9gyg4dJcnCPDsXUCUjUxMkR1BwBEAEByREQzBGAmcgRvzrv517ZyAHdzGx+TiIyR0cgQkSad5A5ECigK5iZq5mDo1NAJgecyyAxN2dAQwyOwCE0kdokkYwJ5k7KEO+3G0J1q24CbkaEis4BjRwAAlEMnCJG9kgYgAgNAczMbF7qYO4+77P7TgzB3A20GBqogxvYjFdUsyou7mbzt83HFDBRDBCZIhMzA6IjKrhgQ+0mrN89fvIkPSlXoHt87/RdOuY8SAbh0KzfXXQpevEyDF4CIt1d3h6ut4lgdIqJ++NNTMEAENjc53c2V9vpcDfuJMeTh5v1gydM2JgjAQGKmpubQsn59uKq7LdM0PZwp9b3q/Vm6QGFAJmahtfr9cnq+Khpp8MdY/vo+PdffPGDj3/+6Pvf/21uU801Ei7WzaD1MAwRHPvm5Pv/IYwVK+jNuDjqzh886mv68mL/9m7fdv0doFuNgZA4LBha5saNEBwCmjpX9cpu6Ghu1aAgVAcDnGEIBAQCQDcEQCIWJ0QCZpgrnBlvo/v3mJk4MZETAwagSLEhjgQEhmiIYKjq4E5O7BQ4JiaOQOQIDgjI4BGDu7kLAGZQMVFw+6pYR0CGuW1Euv8VA6IDgoOjO8z1PBiYEwLQXACSIcBX/wEiEbG7+tzamBq4ud+Xs0wh8Ji11qpizBBTCOzQJwoIiS0RMCiiO6LNJ7mZqZubiJnOO8kJkBAI3TFQiMQpcBNjihwjEQOim9//5BlycHMHBAAndHdHV1VVF1PX+eR3Nzd1FTM1U7d6j3kBAhERM4bgfL8bEJmd0YKMtuo333r44dfPPziJJ81JgAxooWtbVb8ZDuOYI0atWlG4Wy76Bbm1Xcw9YlF0TH3TdS2SubiquJkhlmp3u3G7r5i6h0+Pj46OnHGXs6iqlFryNJY6mQoG0ibK5rjtA9VyUJU+QDmMg3olBk4I5fratsd22icapyj20YNfXtTV2z8/bD+4OXt4Rm1wcWxCZydVvJSBE/aLjU4qh5EddBpwF7/+4PTfD7/0Lz//5K1fycILUoyBCEMfICBFdwIwZ3EjYjQA1+pC6gJYHAXvq2O8ryIAYV6dDoCExugR3JHDDFCAgQFITJE7cBJgDIFCpNhTSAQMjqCA6qB1RnPv20Z1rQQSYiAgmg8+YIAAjmDs6Aqm8xaca3wnBmIkn2FIDkBzu44ODoiIiD6X5U6IxFTJHUDndh4cAQAJkRmQEc3NTOZCwnFGTgHNGqIJnF0bxi4uEDEQIKISZJWJlF2VQG0+qk3dAZEjxr5Br9WkmiEiEjphiLFrm5Ri28S+SRyByed3eUbeAMF8PscZYEYQrIK7u5mJWK3Vxd1ARLVqLSJZahYpoqJmhg6ASIQcInJw5Pl6JmW2GCutmuWRHcdhWa5D7SlxtL3uLsc3ZXf6cHl2timpXry9K4eDihmEQfOy7x4/eRQjTIfSpXh6tik177c7Kghq4qWKVYV12z45O2/6XhSGYRwtKwARLVLENtIRppACWhvg9CguO8j7kg9TnnTYjVeXd7VQca6sGJCS1WyyaI8SVnXk5v1vfvtrH+mbL66U0zvP3h3K4Byjr+JYDVVlKA4QUmmcEJfLxbCdQoi/9fTdsot/dPUT5DfDGUOP4B4aQCaOCAigXisZKjuBu6nrqIIKgPeF9bwYZ24J5jNpPmIQA1dXRMSIxMHMib1dp6ZNRobsMXAbOUZoejR2n1sNQDAwcQNkRAVXRGMq5lEBEdU8OIDpWGoABwJSU0U3RPQZ3SdCYiR0YMYQCMhn+GP+M4O3QMDIjOCqru5o6iYA5qhAhAGREEjNHNWsqo4zuDKvYcSAAAFhkVLyDtwDEwV2BUeYiCrpYPkgNWst6jrvAqKQsAspAExNPoTJBgdHc48xpDbFFFLkJoYYiaPjfak231owH/0z9OyA5qbg6ibValUVk/pVK161FtWiUqVm0WIm6l9tNuTAIXAMQJEoRgxkHIx7j0ewPu9O3334ztPNk+N2cbzpujaMY7653t68vi3j4f0Pnv3yr797dT28/PTy9no/7m0rue9ic3zWnKXj43Xfw+WXr2A/mFTFkLrl6Wb54MHx6dGKAHe3OzNYH22IUY0MEzONMqmOrhnqaNOwu72+eL53gyZ1MaX1WRc6fvPqut5VroIhubNEK6I303D52cXR49Xxad/3Xf/0yd1hfzSN3XJZK3KkEPaaOrYpqap5jW2/WbVNatJ02E+pCb/3wTPd3v3Yxxd08CUJGKDEyDEQIqDDVETICdwcTKN0mlu1ClAcHRF9fktnegnuD1dAIGNO3JgrBcRgTR+bs5YaBFQCJ6YQPQVoG0/BK5sgqRMYIgIFonm/AVRzYVDkSe7hekcZK+wnCQjASG7O90ubaO7IncggMDMyASrYvJTudygighMBzoUbYTGvJqXWLGbMnJqAqIBzL48q1XIuh1qKmwEgYWRqYkwNt13feL9ukaqIoKmIg8cQkGETbDDZ53E/jlPOBQUpJE7LpkWDRA1hIJzyVME0pJhSbJuUAgfCgB4QEdHmo8Xmpe8zbe0O7q5g6q7m4i6qIqqiNp/9WUrWOuYyiGQxMTADAEQgIiYm5KPV+uH5w9QdddQdH5101t29vONRHm1OztcnfbMo1T9/cblYpPMH7dd+5VQ/Wn3608uff/KT/qJ/9OzRN7737nZXLl5cXX55dVPqpJwM4r6Y8cmDJw+Pz8vu4MCxbdynYdy9fPnZ5cXbo83R8eb4+euXt7e3pRQwcKCmS03AaTqAVhcXyXMF7EicuG37k+Pjd7/5JFAah7K7nbK5MhQZpzzhMl6+mnaHstgszs9WR6vj/W6gkAKuQHJirMhMbeuTUqwpiuvote/iKsVxN5wcr77/0Xv1y+nWnktjRloc+hbaEIgJDRrGjD66iboEiB0365hVZuzcwQlh3gqIOMOaAACIgcgDOjtF7FZNWicPAGmGWTGQN2w910VAYHVwgTgD9oBISJFR3UBdVEd1NzZIYEAE1WwUm0YPZMAAPqOM93UCBQzsEImIkO7bzrkuc5+3AMzrxw1d6Z4RrSpTrWOt1al16gIYkQIQmHmdtGTNajLfOYAa0RNxiokRmagL5KbFRKSoQ2IyQmEPoDFyIB44FJGg1KamSa2ZJxKCiM4Gg9UaY2iaJsXIhARzA4SMIPPDmpHfvxQDdzQ1r6qiXqvWqqVIyapFrYiUOg05Z61j1cmsqqvP9+Fc/jAwQ0BJR4uz09Mni9DbFHttnj151gFN+7K7zJVv0TEw3Vxcv3qezx9uPvjw+GvfeXRzcfLF529/8fEvYtstN5ujoybx+VhgnKRmsaleXU7Pp0OACpKnQ3G39ZIDSGT4zrc+UvHPX35xdXHh4A4ZAWutdG3rzSnUaqZNs2jahZq7k5g6QRa9vLn98tUXi+Vm0S8QsXGbTJGTpiPogdsi4lOxN5d7jKu2W+bdFJKzlcDsnJRCSA0ZHrMZg7gZxkWiHpf5MJwvu9//2jemy/rJzaty0geWZcN9amKIATSHODBvPVeRcXIKFBfRhKqbVwR1BZgBfXSCuYYBJyYKhI3Tkrin5XFLkasaMYIBAUaAhm2ZhIMOZgLkQE7oQAgEOPey4OAGLmqH0XOxTBCY3PMkaIaBEQg4AKA5IAIiOpNjcIj4Vb0zL/evPkOcSwkHRAAwv98eZl7NsqqBC4ACVnB0cxCzMknJIq7K855CCsSJIxMzUgiICBwIjBM1WU1xXsVGbsl5EWLo0MwaC4kDEFf34AzmplqqFvCYUooxRubAM/h//4oM3e6LN7D7S0zNxXyud6pILjUXkWpa1KaSxzIdxlLNqpnOPYuDO8y14dxxG+ehfv7pl7dvyhGeP2gerWJou+RFoIRJFdoSQnSjfrlpI47b8unPD6sj7Rbxg2+8c9hOd7d7KcXJXStW6yg2KWUNAKk6HIbapPXTh/2DR0ex7m4vb/Owe/nlzasvX+S8DRgJHdAQKTCDw3jYdu3azMY8RO9iaGZiVK0qRNTg2teaijVtbKrsSYRMDMBAF+tlzVkr1mxvLnareHKyFDgckNEwUU+TDTvVPiWSqQXEmCCkyNwxUy7DIZ/0q99Yf1ju8msdrNO4CO0iBYgRvEnapcDuWfQwaEFlDqGLKiKDOczIBpLDzC05ADFSRG6QF5g2mNYhNcHQY2KYCVnDBNCyY5oKTYYEHgFhBkPmawDc3FxVXVwN0CBjHcARiFzdWQ0CYER0dmBncAWn4MxIjJgQFN3QBBzB7f5mmmlso6/uq/nnCFp1FZWpTIaBNAcraA2SiZdqZahZVCMYODBz4JBiwpnhA1fzik4OCgDAIXADWF11PqzBE3HEwIQRCBFt7mQjRIuNprY2gBZTiE2KKTIzzWsU8Cvsx+71faBzF2Dmoi4qRbyIFNGiWtVMREXGKrmoKYD5rMLwGU0AQGIAcidQqpOL67MHT4/pwZPNg1Xodm92qnV9dIzcgjMYcuRaRWplgnw3itXDIRLj0dHqwZOT4VAZndb97c1h2Iuaxx66oh3Ho7ZHp2j4i7/8xZef/6Ts7tQKIpYyBgbnmY8OCOZOKaZJDDMAt6o170uKkGICdDXjEGPTYejHwQraatX2RxvKV5BHdKFp4DY0XawBrLhO9fbm4nFa9on2JRszOsf2aHe3r2Bd6MY6JRs5qKU+hH7Z87QfD/vxKLbfXT/b50/C403smThEDhGACDos0WyssttjTSgVY8OmYGpq6rMKAhzATQ0DUwDqKPYcV9xsQuyJeKZGkRCCE6lHoCY6B6popB4QHAsCGBoYo7kUlWqiKFlcXEXB1d2ZmMxQ0CkEn6ERIgAjd3SIhhGZCCMCoQq4ot53jwBIBO7kzgRkBgiEYDNmolZKHabJgQzJuYEuOLBbHacs1RgYgIljim1qWgeqAMFBHRDA5iaI2b7qVHEu2M0BmIlnXCE6zrW7mSp4RE9ITQyWQmpiSmEu2+6PAL8Hf+wryhwQZhrN1FxcxWQufoqWorVUEdNapYqbgUNARiZEnsEzRDA1NASkGFJDi7/13d/6/V/72188v62DLleLRdsehlGrI2lkBrDDuF0v281m0bTJDQ+7HTqj49tXN02bFot+ypIiPnvv1CqMU93e7sthSqMO22E4yMXVzXZ7fbTeLB89CRFrrYf9br+9mQ5DkdHBkAwgUGhiIjVCIIxRwXZTwSIcmEJYti20fa1bgTBmPdThfB3PlwvHMo0ZpoPsLK27gE1Fc52mUV5e7p6cHUFkEQUHhxT6491+x8SJQq4TaEHxwr5eNG3b7W+2OOqTdvMMzt7cFj8NSEIEASgECoaQ6mbZ7g5jrSJCiOxGVtWqWjUnAgMFJ0IKAA1gB3HJzTqmdsbbzN0QgBGjM0dsCXo0BVBnAjZ3BJlpe61aK5YsIp6r1WJa1UTBjADZnUHJudYSCOfe2wCd8Cuck9zIDFHZxVRdFVTMDBwFGTAQktM93ASuXsc65ZKnknOeKCSSPE4HJBIP5mWnuXdHxBC5iSmG6ADFjcHIGMFsFhchOgDN0jR3NzBENyRHIg7EcUaOnBIYaK5aSxUwZfOIFGe9ACLxzP7iLGIFJ/C/VrLizMRVqbVoqZqrlTwrVczFrGrN5tUYiIgIQ+BIHJwJmRAJERPwKq2h4KPF09/55V/Nu8kPw8Xzm/2Xd6tlb+iMAVxLGBdd//57j5YdlkHkUCmkk5OjcV8RuI1p2A276xviNAyDfPxm0aduuVge992qrwdZrHXcTycPNy1/OI15tz+IaGp9vTmup2e73XbMewdtm5SaRWiSGDizOhkFjwycqkg1YfAUo4sUGdTaWpNI/vzi5Vj58VHsm453aSxTyMipcVCBKhauD9OgV++ePyZklzLX2Ck2+91w3DXEVD17lWnYHsawaLqWY7nbEYavLx81snt1tbcHjYswYnREpK7pj5WGlYpMqm7uokodYyUzBXR3D8GxQ15AXFO3Sf26SR2nDmPiQOam6B6ICAIDR/TgFSUm81muZWYk1YrWjLlCrlZNS0VRMAU3YMV7zZ2igKtrwFlKhITgBAaIjl7RiQDBlczA1LS61PkHAIEjBdKZLUBX10lyrjnXUmquUgOxqtZachnNokOBqgzYpdTGGDgAsDkAOqAL+T00BWgz+gVMhO5WvRatYkpI5ECOgTASz7rTwEwOpiq1zoK1GbGaybVZQo2zBghwFu7MMiJxqGrVrKjkqjJ/t7ipm4KJu7pXD0AptU3TxdRiCBCjExKRA8iuvvzi1m523/ndbx2uD4fXd60v3j97Ooz1qF+fPjpr+q5viYNh9bdvrj/9+NV4PZkgeQpL7JcrUVws27miBbCmXaZo42H7+suXNZeQcLlcpLbpFq2TvHh9+frN5bjLuU5mpe+bJ+cP3/3wncePujwJhViU92OmFJrFYqJwqDjmUowRCRa916lOk9zsHG+LOjAyhm6xXpz24ZibPCxPzqdhMgfGJiDVukttZAh3t3ef7ct7j95Z9v1e5FBrbNqplqv90C2I2cEEwUpVEO+beLQ5vtvfnXBqw2m9obd5jycsSTv2FKkSNxqWiziK5VqqQKkA7NQQmWs2IPCGsQdecrtOi02zXDVNG1JDKXJiMDV3IEA3nvF606DuKm3RaaxTFpm0ZuFStBQWJXN0JyJ3n+U9zu4uhu6O6EThfh0izCvbZxkOqiEqzNJQNzcDrVpMhJFDYANWJ5jZXTAzraqqInWmUXWWEEutCBDRlsjLEFZNQgyM4IQKgMgCDmo0g5PgQPdSUzE9aBnKlNXcjRAAOcTGMSIBgvusMCUDUzDVKgBOdE8tByJGmv0S9xKmGYQGyGpFtZjlKlOVUrUWEDEzV3C7Z2ACB0oh9Yu+axcpdRbYOBgBIA77utoc/8o7j795/u63Hn3QSqI03dz5y7cXu7vD6dHh5GZoO0aqiTliCB6a5aOw8DwMLkVMbnYHJpymA7gaGCgSAlLolv3R2VGVcnt3+7PXzw+3hxDgwdHDQOwhdkfUUitaPdvtfrr5+Pn//K+vZRSREpqm7VoOFELilGLfcRMVGJmAEpL2m5P1+SPLef/5lyaHiOAO9aBDhaFWMyYMoHp98bZMdwkVUjeUYT/ebsc63mxPHp8uT87atHIKx/1q2F+U6XqToGuSHLKIaKn7HFaL7mi9uh333MZ35ejyi+2by4uj9xd7kGXTp+CC2jZh3dXScZ20JMjViCA26ISASC3zkpt1atft+qhfrpoUKTA0KSQmU3MFJARjN6xignHIsKvTYcw55yqHquBIUkklOSVgmhW/hODqDmZf6cfmUifc87b3tC2hu829MLF/hcuCedWaa3aRJiZwNAMDRyJAn+XU7q5mqgpmIAoiVCszMViXeNM0yxAZqAIQuji6z9IbV6sEbogKQOQo7gBVy7bmXIoamgq5JeKwmB0VszDaA1BgZgQ3MzUkQECehTmEczEEAOrzPUDqKmpqIAZVrIqVolpncJ8c7zl5QgzoHKhLXZ8WfVpSajSyYShubnC0XL1/+vhrR8+6Ev/yzz97/fM3KzjtlqftYvFLf+Ojdb8Y9oPWKcUFIZasHELOWk0cPTV01K/X61Xbxtk8lEu1KgjAnAwRCGKzOX//wQdqeTtefPnm6vXV0fHZw0ebcdhvDzsCb/oWPV1fvZ3G0ADnWm92+9iUFBiQ3txc5Vpi4iqwG8exQGrwaLl89/2n3/qV73/9/ffGu5thP6y7uFk0iVCpsMVidH315eXV28dnx+8+POsiffHyVd4OVvWzm5vPLj5br46Wm1W32qzbcLTpqpTnP/ss2NRyIgSmBrEvBzg6O0ox5J095v436wf/48XNdbnZvL+48W3bcAwYEvdNWHY2Tn6oEATq5IYQE1Pktk/dkhfr7vi4Ozpa9H0KjITQBA6AGAEc3U0FTVzMR/M7wbtRhkPWIq4AhmBkFihGZDanmbdxN59xRTRI5A6m6AKBiBxsFiIRICEpgaIrOCHMlqlqOuTxUHIECESCxDbXSPeGwBlrxfv2AVAUS2GiJkAf8JTCiiHSLNtBV1B1Q62uYgbmRCAIlRDd1LWaVylDqSqixaSUAOBNY03nZjNNDQCETBCIAgK62oz5BuZAISCHwMyzC8PNEcDdwRxUXarVrGUSmZWvAE4Idq/ucDCEAOCODBxDbDg2IabY9CEEpnTcr5ayePmTVz/6N/9W3tbf/uXf/vb33j9eb5bLfhKqeTxaRq+w3U5VlVPajduG+dHx4uHDB6ePeoRwdz3stkMeCiI0MWGb8lS2d7eHw/5wGKtKSu1qvV6t10+ePe6Wi5/8/JP2unlwfH5+ssp5LEMetmPe5QYDoy36hXjc7fd3rjc3u6rb5aJtYr/p2kebfrFc9ctVv1oytba7UwQodrI+Pt70COJ1AKRh2h32V5d3V8vN5oNvfs33N7/4/Ge1lKbrcR2WfNS2tN29/eSnfznlYdPlb7z/G2fn58cnx9NwpVrAOaA1DNN0uHo7rU4eshJc1Xc361/hD//tz35+qben3zrVkAIoo3LCpgvNBKloK+49FFGKHJrY9jE1uFjERZdSpBiI4R7V55lxJQIHYqxgpZa96VbK4FowIi/BGjcDIydCjuZo92sUYfaQORkqMYE5VgCAQAgGjuxss6/Ldf5osyICismQxyFPxQSQomrBGjigI9lfE9eEMFMYAKIUEXMBpBh0lcIS2BgmQDMYDc1BVLNKVUVEJGACJ6xAjmqi1STnUot6tWkqWmWRGAOQAdzrNt0RiWaXJRChg6F6AEgIkTAxJWJEEjDT+YZwmzeAWM06jTUPWqs7z8AQzpA6Gd8r5BCAmELEFIGiFoAp53EIQlWuf/yLt29+8qJd6D/8W//p73z/txftgtFLLQ03Tn59dZUwHR1vmia4Qb98eLyJAert9fTjP341HPJhmO4ut9NUh3xgDrGNq/XR8fH6/MHjd9o45jrsh+3t9ubyllI4Pj/55je+/tlPX/75Dz9Jm7heL5oYDdRJBLygI0C76iq7DNNH33z/8aOjZd/2bVy0fWoSEB729ubidnexffHjlw2HZ89O01k/3u6s3BFM6spQzh6s+xbBY7HiXhebdZ2KOzqHwE1M/N67y3ceHNs0stWbq8+mns9OjvrmHMWhygyatf1iv5tur+/Wm8dcou7sa/xwed79D5//q117efT1x9IGpwwRuA1pgZ1aMWQQMcJA3ITQcmpwuY6pRWI1EDAERJlVLIDoqu6l+lTKTS53+8Mw5WrmzISNI/ss5UUym+WYs65t9k+igyPzrJwBAzQLuU4cScCRQEHdvZqp3ZdKipbruK95RqsAje/NYZgQZxUlAgSzNGuYVaAUlBoR0UYCb7lys661PUDI7lOV2WNoxgQ8sxqOoMgG4HMfkYuUguaQS5nyzL4RKDsE8+COBghOMyfHYWbbECECRISWsEVCIL9Ht2ZBv6pKLTVPZRqnaZxyLqbobgDsENwBnQjAEIDB56YjpUW7YAhvv7y4+dkXh+e3vS/WTbPw/j/47t/57ve/+9EH75WM43bMU821mFnTNGerUwxhPAy760NKIe/4+cfb29u7WjxEcghm6hQ4eIcrCqFpkhtdXNw+f/EaiTbrjaOXUstY8u3h7au3j548+fYvf+ujb+gvPn1R6xhbjBxUkooaoBRx9fOTxQcfPDp9cMKAKmJFrq62Ux5zFgMmDquzeProZJFijIR0Z+6rFbehybncXG09s5VSNL95NVCVAITQGrhanMZ68/auS7LqddNziNAsTnfbWyKITVdFyWpiMBCiPi6W22HC/fR0/aTg7dX27enD9JF/9NOXP5OTyo9YiRQbDtD0uqgooomLuiCjp0CJFl1YLoCgoLIUB0d2chd3rwamlk2mXMdc9qWMRUpVA4CAouhA5veGJzd0IHfy2TWJMBtQAMDV547R2cNWppaYjQuSo7m5urup2VyNyCi5SBFTcxWHahA9uJOBISG4mYKbkhrqDKGX6uLRiUGxCDZrbq1CBS5iRc0AwTA4Jbu/l4BAzaubi9esMhmqS9Vpn4cph8AF0RucAxwACADNXWy+D7RKRfDAlJgaosTcEDtg9blkRAcws1JkGsow5MN+ylMRcXAExZlcQQdwQiQMrmYQMKS0Xq4eP3gwbQ+82vz67zz9xn9wnmpA6BpsTzZnFJZXb2/udurVwD2m0DRNmeSzyxelCqguWsJgwzC6OIbEHNBR3FRMilSpgBgDhRhiigCx7Voznw7jlDNzTE3HIQ4T/NVffvqTn3726OH5suvTJvQpWuFNd+5VUxNTk9rUEPHucLi6vp5GVZMA0IS4XrcPHz5IXUyB2hb6FpMqmQ65jkV3r764eP7l/m57dXnjAHe73U4MiVOghMoYEAgSL7ujBjgfig67G7kJLXdt4z442Onpw6Pl0bC9Ba1OXECQU+j7/TRdj+PqpNFaptf5w+PTSPbzVy/w0dlgIBAMAQI2DW8UamrMRdCdre24S9DoNOU6YhQM7oge1EAVilqtOkmtUkutxW2GIpHR3e999oam7magwYycAzABgJMjkSG4OzCiOaBR5DD6BBJwNlwh3rsT3M3VtIpJ0ZprnSXxQFCdqnvAmbyDWVyfXUcveylZbarqpojETOA9cSoGgGomVUjdDZA9NkbRmCAkA9Fa0QxBq2kxraJjHg953B4czEIQJHcr5tUxzES06VTnBwN3iDH1KbYhhIBE4Dy/DyqmKlVFaqnTWIZhPGyH8TBpVTdCp3tSg4mIAAIQWkAGM3PmsE6LB2EpTfjg68++c3z++mq8vcq3tyUsFl++2Zbx1ioUI5Gqqq4Wmrbv0qLv3n18enK0AtD9MB2GSapPuZQy7Q+Hw2F/OEyu1vZd23emdb+vRGzmMWLbtsen6xC5qsYQQ9NVKx98A+uQA4ejo1XsPIKze9dwLXZ5dTPsp9u7rUw5xvDs0QmHQAEIgKI3Ea6vrl78/PXtxcXd9VuVrDnvbq7cnZjYNWBtUt/EsFr2Zws+5g64S0zmFhRcyzYf5PAqpDZQsMAYNhj8kHOeprdvP37z5bOvf/Ctrz14UIq+nUaKjp4jrTI2zy+fn2ufsLl+cdWDfPvJw12d3r6lw3GSWsnQnBi5S9hyFNeCwkF6Uq1yd8iHqTiyOgMyAhsEVahqIlpFRMXMjQECIt97FZ3QDAzRCA3c1UHRqiMjNQRkjuhx1lrPbnMA9+AOU52zeWadGDNANHAw0TpqHqXkWg3cwBDIAQRnFAkAQR0UbFQ5TNOYy0ypIkIV4JjYG4IkSoKg95jPXDTNT8yEAckZDNxd3KpJ1nGfp/1+3A42Skww/6MSCKMSKDmCiauYq4GImkIIMbaJUqTIRl7B3K26VZ2lPppzHQ7Dbns4bMc6CrixkQNRmN8LxJnnAmZGJxcxZFIQcI0Mbw+Hy7tpuMs8ENTQJM9FY0iBWGplB1JAoobpfLN+9vgsMtxuby+vb29ut9M4TdNUqxlI3y4ePDw7/fZpv2w5BnNUnUXmRswAdrc9XF3datZ+0U1VhrvtWKblasHGhuXVqzunGkNkx+3t3X57GMbDZn2yWaQQ8frm8sXnn9ZSxK3kcdpdm5RhnPY3N3Xcpiakpvv0F59tlvD0wZO+6fJhSC0tWhMdypgxUAEEDCOGyCkhNCmsVguRg9vWqDPFhAwOi3758PS4jCc3Vxcf/+TPLq+efPuDj05Xy7txC0pKCNzejrd3b64ePVotNu3w+nC8PPvN43f/6c9+pu+4ti5qYBwdA81qUGM0c5nKdDeVm5ttKQ5IiJE4BkqIYg51RqtVHW1WuszumVk+OttU7uufWb6vbg4uim4Y71WcM9UKAqhgqgFNpUzVpKgoADk2QAshBM+eD1YOkkUdmYEciR0CACiAMAC7mytIsTKVnHMpRdQcGYwZmoTN0rBxZ3UwBzE3v79mDNx4xi/d0FEAa5Up53E8jOM0ZBkKFmOOSg5EwBFDQGZAmiNRVE1F85jdjEOIIcUYgYPMm8mhqBY1USmljuM0HKZhN+T9ZNXRAZQIGSN/ZW6+p8sQCYkDWvHp1e5tAl/gAjI3EnHAI15tlie1EjBvb7dtihUMXBbr5WrZffDes4bp9euL26u7XBSAmqbrl8u+a7umSW3TL1pzuLvbvnl9cXe7zbkCurnf7XYy2eZ8vT45Onv4IKYw5SkPdbFKZ/0JMTXrxbDblnGvaqjEnM7Pz4e7MVAMyTZH8N/9P/7fV6+/jMxVSjVB1+lwwyYPHz52P5gPZq2JP364aRrKOspQyrg3bHOpeRpi03bLXt1rFcVQERrmlmy1OFqsVuA8lrELSCYOoBCRu2cPHr775NnNbnf55vUPP/6j9959/9n5wzrg68xO2i9O7q6G7c1+dbbskx2ubk/Pzh7V5atPXtYjLJE4sRORE6Mm1NHqoU7TMN7eTdvbQQq6Ewdn9hi/8oU6GhrOcSPswO6GaHhv776PakNzdZ2t6m7m4CRZQYGUKM5fZajgxdQkFMnTYTfWPEkFpABYjVQJwA42DiCTmwPF1AADMc85DnN8HM5uXjWRuSgrKgbgxMwpxrbh2DjNeVBzpMisUEVAdAb14migQAqkWnMZhnHYHsb9WPaTjTVwVHUM4BgwRCcWwOrm6lI1Fx2m6TBmUeUQ5zAIQ6zmpmbuxbSKTVMZDuN+e9jd7g/bUcYCxd2AMcYQERzJCR3R0b66HBEcYBrHN7vD/mK/Wpyer84eLjqoltXHWn3ShhcEAKV2y+Z4c/Lg9HS56GuZPntxsexXH7z/PoRQVWqtRChSp2l88+b25vp2dxjuE7nE8pSr1KK+WG4ePn005OFnP//FH/3xn13s98Ogq8DvvPPu2dmGSAH90dMnv/br3xaZfvCv/vSwG5vEry7f/vhPf9Q09uBs9fKLX0z77apvu75J4KyWBCLxSQO31ZquTanZLFe1NDkP3WLVd73JURdjrjLGzlzatDg+fsBuhymPpre11Gl/++bLu4vm5Pxp3y7K8JpwCinlCYa72+ur7dHZw2996+Fv/cY7f/LDFxcXF0PJHz79xiq0+WCG2ZqYDcMwrRe9+DRcDL92/Cuv3pZPPv9MTvnQemih5ZiIiLSYDJNcXw3jbZYJVBCYwdDJpRQ3RCRiAgaaqS1yMAIDtxnDA/N7f70Dqetse0UDNwMEVVUByoSgAAoKbF7HQ9iV8XDY11oVDByqzip5V7NiOYMJEVBEBHT2wOZzko+rO6rNLl+vplW1uqsxceAQQ+IQkXhmEsxg9qrhvUrbDWoFLy5cyVRLqXk6jIf9YTfVoWgRRxJyIkNEbgNFBmIxgywqknM5TNNuGMapIFgMPkv0DRDMDaCKFNOx1MN+2G0Pd7f7/d1QxiJDAXEkBmZAhaBhprkVgJGB0cTBpRSqqlOtTbjYv92WcRB5yCcb5qpio9VpWK8WTx+fnzw469vWshy2+9vd4fj4rGb56aef39xe15KJQxNZFUstMbV93zRNV0Xu3RTu5p7a7vjB0fXVrY662ZwsFsfnTjmXaXtYLo5B8e3rNzfXV19++vzFX/3l27dvNUvbLtu2RaRH7z4rwz51m2fvURluyjTMh4ybRopNpJIW3bptY3LwQMElpL7bbI6OVkswY3JzP4zD/rAfD4cvbp8vl92y7/uQNusN1FMdDre7u89/8np9ju+eLB4vViPYiLlWu77b7UZ5+ebyww+efPD+40cPHj5/e/MXn744f/TBer2qHF5fvLrZDQ/aFq3tI++vrh6dHP3Wg2/f/uXbV3JJD5qD1YmxbZoGidQxGwwAY/AKBMzMCNEVqorPXNasbWSk+cpmA2aQr5yUCl7dK4D6vbLawF3REcwJXIsaqGklc1SwKsUl5GkqMgdCmamyOGQVETMAF0Sg4B7IRRxBzebjtZpmFQJ0sVqriKh6rXLfXTFzCCEE4jlqBACAiXQ2r89NtnlWASlTNS2yH6bDOE67SUeFqgGDN46MHjEsE8UgDlUqM6hKLpJz3Y95HKQWJ8LZk67uuSoHcIcqNVc5HKb9btxvx3Ff66Sa1WQOcASb044ADQyBTRQdOcznv2qZUAyLlHrg1WrMh1c3b0PLZ93i/dNHu3LXdu277z7tutbVdnc7d9wdplLkr3720+3dYblcPXvn2Xq9YPbhUIch5ylPue72e9EKM/dI2KZ22Swg0MvPXr69vGIOHhM4VMeb3dgyM+K0H8vgD84f9imwG1VY9pt+dcTMFAJRuL2+dMPl8lQDazcWtTkMIQI0DbeJg1skQFNwDzxZKSYiVZiJQmw5tKlZLpZjHof9OA7D1fYK87jenHXLDS/6p6en5+/63fZmD/biVpmrkS1S0gB5KmV/+NPtzSefb7725NHX3/3W5a68ePOqX4+Lo9MPP3r03/zLvyjTYfH1SIFhLNsvXz09P/u1+BEM+XI3aeAM41gdU9M7R8UmxBpIxMAQDNEAHAMFd5xrGoQ5MoqA0MSJHYGsGhDOG0BHdXFXQHVXA51j0MDNyM3VsCpWB1EobgTBJCMTAZiZ0ywyNi82e9KQAX3mjQ3ANIpKrYQgjuikaGIqUkSqiJu5znA6cQg429FntP6vky8Q3MHcTM1zVSlUBIocDuNwqLqvKMjEwEQJMRJ1IS2TEuRaA1cAc/FaZMx1nEop1dQDRndUxakYuzCiFculTKUMh/GwH6fDVMasVeasB3QH8tleDIFgzlUCcr1PvTITKQIqhOAmWKYQk9sIQd+8vTnG/sm7j54eP1hwNx2kiNQst/vh5u5u2O9DjL/0vV8+PVlOh/Lm7eXV5d2wHUSdCJCwSdzGjiMt+8Wib0X54uLyxS9eQIXlyYqapORFrGR7fH6+7DoXzYaPnz06OVq8+OwTQX/27F1T67q+ZIkxLs4e9U28u7wgs65dQ9M6WDFwCl3bpyayG7kwGJqiFu3yeNiWqez2WyRcLBeWuhRC18SUuq7TSXSf87C/vjsMl9c3zm23OTt6cPboa989Wmzq69fbq0/y/vb67rBZLLKMjD5MenExTrtPXzx/dfzo6frBuzoM+zevKPLv/NLpn/+TTy6DfO3Xvq3MFy8v/O3lB8fHfPSNf371p/3JCgNOKBkruDnbsqOaseSqjl7NXJAImYC+Sq8xZ0QXJ0YGtDqDnzjXJJYdqstY3YjcQeZwm/voGzdHl/kr70EfxgCIqU0KhkoABVDcxcK9690i2RzPhu6uUqXGep9R6EiIaKBFqsxcoH/FO88Ot1l2ZHjvzwG6T4hTF/UiNhap1avqkIftqNVsqiE0TASBuAnUcuyb0AQxnSRjdtFkYiWXnLVMUut8IwbmWKuPU2V3Uqi1TtNUpjLshsPtmPdT2U+u4rWC+Byv4UTASIEg3JdpDHNuIQSl1rmquCsFdywRadU2jePJcvH08fnXnj2zzDc3h7yvorrbba+v76rK+fnDD95798vri89++EUZ8jBmNEgpxoaJ6a8jtCOn/TC9vboF8zevLxTHDz76NoUw5lpQ97t96prVegFq6LBYtm3TmYmJHR2vj1fr27s7Jm8bVqtt2yy6h30MN6/eRCzuFENYxtaQQopIMTUNeiWvDJ7ItZbVai25mIjKlGsV2TNhDNw0LQdeppj6/smzR8PtcHP1Zn99c/Xlxc3d/qli/8H6wa/97uL6tO7L1Zef312+iV2zu7tMy76oDUZB5eb5T9q7tw+PznuKIPHx8YP999/+5R8/X793/uSDZ+Jy++olob7z3smH/Xt/+fbL9sOuWs6lkll0SMyLDnejWp5dIYaB0GkWeIHPMYoOiCae2oCMZrM5Cuci3IqpmJZZ0Ayzbs1hznRSMCFTcAQwN0DkQA0HYkUkKcjoBBBBx2x1DjxxD+gEDo4IalpKVfUoqkEAPCFbrpKrFZ3NmG4Aep8DNMceoRPOZh4DUEM1L6qT1Kya85RL2Ze8n+4tnEwYKS2auEjcxaZvKZIRCEJWFclWa55Eskl1cCSiECOFoAa1uroZasml5JKHcbgdp9uhDtnHai5uDgrAPrtPjdEZMbIjzd5ORCI1Mo9AhqGAAgFWDU1j4/T42fFvffDdJS51wN3d4bA77O4O2/1uPxyWm/XX3/9aE+PHv/jp3e0ueIixPTvdINOsMwI0JpKS0QnApjwSU9X64NGD5XphgO7AxIyOCIHQrQYiblimCuCxbTanx3RvykEETCFUQHeLKb7/3rsBfLq7toKWS7tITdMqYFFAwBQa8uAqyB4p9KslqLmqWhGp0zBImYoUL2OKEZG6kGQ0is3xg2fHx6d5O1xf3Hz580/evnn19OuXR+98hx/48Tvvd1/+XN++0RCu7y6Wm0V1v1FfdKcl13HajeKcUoP66Nnjz//qsxevnq8frdN6tZJH+7vrzTZ//+SdT19c3n6heJLIDFRUYxJOaBS5goKgA5ABJQc0CkiMdu/1BgUFwRAYCL1orWbqksWKq5iJWa1zpPJ8lM+4oWtFMdQ5qZMIIcQmxSaKOlRAAkOfD0nHe1EowH0M772XSuRe9lmZERzYc61T0SJgDupgBvN9NJdoiMBI5OBA5iYKVSEXzXkc8zgMJYscsotRjJyIEqVFapYNNyF0iRIjU2AiIhcrtcpQZJrdbfdlFSL7HKytYO6qXrKOhzLcjePtoewmyArFCcnMiNAC0H3goxsDRiSiORx0dt8ECmwcodkWUsC+Xe+vpxTDhw8en8RF2eGbiytRvbi42V3epWX79W9+Y7luX7549eaL1+C8Xm3UYbJSijCFtk2InFJEd24aU8+5pNhIlaOTpaqYG3NQc0aAWqlYiEBgBEAe3GaTVBQFHafT5Wq9XI7TkNrYYFS3qY7LRXrvnUfPQW1qD7Idx7roFomCQ2UTN5pdsiLGBOJMAOrqwMs2thQY17nIbrgDdRG1MpkbYEQCJlusm5Pm0avrt6+vbz75wZ8cXV0cvf+Ns9Pj/uzrxejJ0Tm9+fTm+pLblTkezDepOWy3qemqFSuH1Dbf+u3v/PiHP/4h/PDX/8bvLo7fH0e5++Lm8eKbf/PRr/y3X/xAyCR5MQMUNK/VTC0kkqpuYIZewWdPExDRHLvsCGRqNd+nAKFiHXKd1LLb3EKoSy1zghmAgc1no4HMcKQDRVQPqe2IXd2JCZQNyUPAlFyrfxUEN0uKAAjA3VHU5riJAC6OniUPk5QCDloVAVzBxLQKEDE56n02rop7FajVppzHcRjGcSg6iRfhEJExtDG1TdO3HAIlwogYAMgMAMxFTWqpOUMBMDYD5HuTsplJnTeEq5bpMO5u7g63O9kXH5UKkLMjEBsQIYGYgSqqBFdFx4CMjHNMX0AzJEUgDJFBQY1+/OnL/8N/8l98871vlDe6vd7vp/HVxaVTevLee/0yvbp8e/njWwZq07Jp+tvh4MzHx+vlomUM4I5EIgrmormU6gChaZuemHja7UIIDgRgalqyEjBzNCCkRIBAEUM0SpAarz6KhRD71SpPpWnbxFy9XA/j6XrTn5zV/cEch9tdEWxbJqg86w19lny4uY/FEaFUZZ+tiJEZQ9sHZq+ZVYIW0KpeQNQAslkb4/nJsu/59uZm+/lf7PcXcv74wTe/v3j43qvnf/7gow83hwcXr3ai4CBZC1DjoiSF3LWUddf90kfv/vT5q49//tNvvvPrx+vNPm+vvvji699598O3Zz/fXx1CzQwA1Q1qNWO3ltTUstN99L4DGhM4AM8RgGjI5GhWTYrWolbUq7v9/9UgAF6dTGeVi896IDAIQEiAaGpBssQIYOACLjYrTn3OoZ5jEOakijnOfM5QVrsPTnMHdSuSp2JV5nVPgdxB1aQokDrinJYLZl7Vq3mVaarDbiqHrGNxdw7MEVPfdItlbBJzoMAhBgqBmA0M3EVszurRKuh0H8WrCOimJtVoPtQc8zRub/d3V3dlP2F2NjIjYgQmCujk6IpgNidSgwED8n0qB1lgx1l55xxi09mhmuh//r/4+9948tG0s1pBE7798jKmlNqjSeT5zz9X1/XRkaqXXG5uLpbrzfmDB00T0OfUWtda3Hx3t2tSAsKQ4mxxrjljCBSDiyFQKYJIISaKCSJwE7wKNhTbpIEqk6GLWRFp2tiu2jGXZeoDhOy+LSX0fXVNLY/sB6aYEpLnXAI6E5kbEQGimIkCYLxPqnRA90DQHp8dLr9k5GoGKAzOYOLuqIMUdt904ax/8GY4vHnzymz85ObNe7/8K4snT/7y048fNYtHD59cX14b6tGzj26f/+V0e1Omfarj+vjYqVltNg9P893b25fhJ08fna9OH94Me7su3+++9eruT/ZLH2Q0NBP3+3QT45bAHTLQbFUEQMDAjugcMDEigznaLCfze7+3ETrfp51pVXSAAvf59/NtwYQAX4XSYajjpMXVUXSWWIiZAzFGc3AQdEVyRqN797CDq6u45OJqIK6liPj8m0EkZ3IHFcOqTsIOKIZwn8GAYl5KKVPeZcuVqmL00EROIS1St2qYY+DAIVIkIAQimIe1lFrHIkP1XNEIIMyhjQg2h21xZSWQYof9dnd9k29HK0rAFAOwe2Qg8lnLSkRus5PfJLsn4iZwYAvJQ6gG7srsMaXQNoR7Ht87+3DdnW2v9h//4Oe5HGLTPTpbPX549Pmr18whUHN5u8ulEMGDh+cnJ8eRSUVVRUUAnInHPFaXNnTL5XIsIxKrqIKHGOa8ViI3Ag5NDBiahhNQiurAQNy0yE0lqsgFsG263ZRXKUHLB7NEyVCqg1atEDx24YRqyTmm2LUexylPwZTxK8OrI3GrPhnOUd8MDlnQxlFnWSCzO7qagRMDGkTEfNhPKIQcu2bzeHl7c9lg/vJP/tWTX/rVD9//1suXv9gd3jw8Wl5vD4tH35RKn735lwghV+VhJKfU9P3Zo+c/eMH+ipBO27O2b4eb/dOTk+PrNGIZEYo6uKMZEc3qCOrI3EA1AjFgJIjssaG2DSESzcHK6qJe1au6VNVqOiM9YjqPwqouVSWrFZ+nM83jLOY8rjDl7C6G4Aaqc5PoCECB7vleBQAAnaVygABaHap5FhdxMa+KBloqqCETGoC5iWtVRzIBQFCtXtVFwMxrzbnoUK0qcQhNoBS6o8X67KhLLWJkZgIEwvv+20yl5imP+8lGgaKBIs0DdxgQUKuAupG6aJ7q7mY73Q42qQNCnIVuCOHeUHGfezoH8rmjiZsiQIixoRTUMTg7BWqLgo3W1cXvvPe9b5x94+r59R/913/4wS9/7+HZg5PNydnJ8Z/97Gc3t3cU0ziV6pCa5ujk6OjhURmHu5sRjFSta9tpnPa7fdd3q8WKI4lWYkQ3czPTlJIBuAI4EDswNim2i2QgoMpMTIEIS8kihsxN06bIzEHFHLlJQabR0TkxR85jBimBmJsOQgLCbhk1JB9HUTFVlEJuxB5j0Cpu4KbEVE1LMaxupgkDQeM+zvQqzYcQRfU6lds6KsZ+2cXD7d2hlBf//Zunv/bdD7/3W7q9u3l93Z88/OLlj7/zd/93b17+4vbVTzZ9pwaH6TA5YurW78TrYUt3KVizwF4GDkfNB4uTt3l7/v7xzc12vz/QPE8H0Yg4sbEiYMPUBuSGY0tNG1ITmIkDIwZCBiQkUsCpilSRalVNzEWkzrkAojpKHS0fihzEq4PNKVcYSs1u1YHvs/5BEcHnOTYMoG6sIA4eZqWAg7tUU3cxV3dF0Ps00Pu8WwdQcDGrCGBOZqKixUWgirupqAzVFUIXAXl5skrrtjtap64JHJkj34NJWGa9M7i4HnIuWXx0VgdQYmB0U59zqGGOx6gy7sd6mLyqi2EIiMiBkAgC3ctd57jKOd/NwUwcKgePLfWBF4gNdOihhOX2auj75e+995unePxX/+bP/uJ/+ne/9wd/5+n5kyqGAv/mRz+6uLxkivvptuv7o/PTbtWdPzzZXl3vtwc3l1I5NOMwHXb7wOHBg01gzrnE1OhU1AyBiGNIqRSRUpyRKFbx5VHTLpq729GdFouFm5eSx7EQkwTNWiK3c9bXWEoMPYcoU5Yxr9cri5zHCV2UAsE8UECbELRpS65ZB3YnyVgnFooxmiuBa/WKrKrr0A3bCwNoAwZOqmUGskWNYqI6BIqEzTSVxF27WiyypDj8mx/+hYh989d+u//a+i9evgyZH7/8i1/6+//rH/3j/9JkoKZVdc8FxcB1KLI7DJt4CMkZ2Md87v1SqCw60Vw0WyFCBoIYkImoj01L5BbRYyCOGBrmyCEwxxBiCByQAjG5Y1tcxFRdVKtBrjLmkrNwEWUlVuZUoNSheFEAd8Sgeg+T3kepzYk8AIT3OaAgqkW0lgru4ORo5qDu1dAB1GEeH/BVcP89aacGgghfTZaoxYq4qIObqlcnxtDS4vSoX7XNql9sVhhCG4IjBSdwKwYG5jZvMNQKLnOy88yl2YwLgLsqOKqry5RlKJ4rVCNARGJiCgHw3hR3r0MiJgJgp4jcpW7VcgRGb4I9aftzOio1fpnx8dNnH27eba/TP//D/5eM13//P/mPHz0++dknn+9308Wb15eXb1NoAcL69OH52QMMuFz0r754fXV1bWaJOabginfbXeDw6MEjABX31KZhGGNI07RnDk3XZZmjocDdxSy17WLdTqUWhUDIHDDQ7uYuiJ017Wfbu+u6607Tom8JodzeaMmBE5nVMvVhjV2DWqqgmAUT5gjIoBURgVDUQAq6mrtOVXOOYY6NhxhD37WWD6vVZn9zAWpNDIkblVJNBYgdU1gc6iFyBzFWUYKwTB3H+J10+Gd/9OeH3fY3/qP/+He/+1s/+fhH//pP/tnv/P5/9uiXfu3Nn/2AMRCDm6tKk5hcy1ByX8YJk8cYqctpw/3WoGubxaKrUAHAA1MkjsxMKdGsAA9MSEBMATFSCDz/jUSBYjBHckvs6mBVSwX0Wg1VaJ4qQWBkyEBOZADuBgZhDomaZ7Wo6T1F6upA96iBmhf1ai5mbrP5g5AIyfSr3Kn7dMS/jqY2UAVB1apSzawOI2QnIXN3htDEuGzikrGNvOz6zbrteg7UExMgKarPc6GsupEzO6FhAEZCVAS1+xwtdHBQFTPUKjoVnYpPAkUBEYLD/y/ODRFxnhYzj+MMDcVFpHUC5qrCtUiKOXg4xnKdNoUf2mK55Rc//PQbH33w4Yf//vX18D/+i399d7PnQNfXXzRpgcSxWayOVtkKV37z6vXbt28cMEU2IsBut9sz8OPHZ8hYVLuUxNQBRIqiExMRT8MQiBDBRFKI3bIT1VJq3zRYazkM66P1xIQQ8ySNcGBOHBEjAazbRZ5yJOcmjXln+dABaGyIOYiCGbs7EFBA0R6J2+RerZi6G1ipVUphChSi1dGVGZCYTk4ebG/ejodcI4GrIRgGEAvUBTyZxoFDQNZshdyA+KRZ/sMPusvPP/v4//p/+p2/+w//3ne++8/+5N/+yf/n//J3fv8/G79463XLQUrJCoaEISC4ZBm4ihqB1RaxMew5Kqkv2wqsapUJQ8Aw6yo5zjFa6LNiDQRhxkLlPpvHEwiYVlXzaljFapVSRIv4pDaqHFQGlcF0VC3mYqBu4mFmaIHcwJzuQ0QQaF7G9zYZA6zu1VXUxcwdGIzcxIj4XontX007m+dgkAGIA9RaTM2q4ghg4BHCIsZVDIuG+7A4Wa6P123fpSZFgg4hALuYOIhQAFAEcLwPYwNkxnk6mNbZ/obgYHPHVkSmYlm8ClR1ROfZ1aYYiBSRZ0TXkZFSDG0ITaQmQgqApEi7LNfJz3HRTc3q0B+V9u72ZrVq33v69POXbz7+2U+322Gz2ry9euOoBpJrPXu4OQx3bhhDfPHyZZOaJnW5lCaF27srIHp89ogjOSkiTjIu2n6XDzEgREx9KpJFKxhKrSFSSBS7UKQEdoIkRWzMI2xXXToMVa0sEyy7mOukVhAtEgFolgwgZvV2f5hnoMUusAWdpJYJQhTVqE6iCchTy6lXM9Gp1qFMLmJ52k5WosKqaZG5a5rV5sHh7mbK+6Zt0MRqIeBcBaGJDFUnYOYIVdRV2SlBeHb64PXN5Q/+5T/93T/4X/6D3/7t//oP//Anf/RPv/fv/YMf/ot/lALVPEgtatJ3UdVrybho1BUkLKxNe6saNosmhlojTlkmoDmqjeYoYiY2I7Naq5hUh8oBsc7oHhI7sYBLURGtglVFyhx4rJJVJpVRdVIZRbNYVRQBc3MNRgTk93O/bJ5XCeb3AxrnSR1Ac9poRScQRQFFAXZwcr4X+NyX6+Au6ogK1Y3cwURqqegQGLnleMK44LBIqW+7Tb+aV3+KbQyRPcFXw7vEmIDUaM6qMp0BrjnEzsysiiP7/KxqLmZZNBcXQ5mvBASuRg4EoQngOqskHQkDYQPQInQMiYDA3KvUPFUorjeffze+/0H3dG1HP9m/PD05/vHPP/3ks88Ow7BaHl9eXUzTvm2x5uHDDz8khJvtnpEuDwdkrlWbqEx0e3djCg8fPUxNY/O8ENO+67bjtM/TUXscAlcHAz/ksWt6DZzdjroFx9brFOaZb4SIOtzdLh6fAo5tElxg3xGAKBgDGGJsweoYiFIMuRQHqiX3YbnoFwLFsw1lFDfTHAGGaStTbkLTdKkl5tA1qcnj6O5l9P10m/MhxWY3xDa1fUhmSbiJ7abTYdhdR6gmFjk4puIVETmBzBMl1dy1Xy8udzf/7o//+d/s/87f/pt/47/71z989uiTb3/vb3z+J/8TuLsVAEscMnjsUtM0w+1OSu2oiwXDVtqjGFNbQm1C4GpVTGbVYhVQV/U8lnGYRFXdycltHhgHACDmUk1F5+nnoq5q5qDznKtqVlCLajGvCiozgOloAZCI53g4R5rrF0eD+yipuVVghGDggO4m5lnBVBEwxPtglLk91vvRW2qOGox0DjslJHcNq7TaLOIm4CKFLoau7Vd907VNbFIIDVGDTiBzjqchOTqBkpmpVC0zDwdmLgpVPVcFAyKr5lWsqhdxEVQHUZo1bYjOroUdDCHO89cAAQJSw9SwN/PUHnPnuTmQatyksQiumy9f3YaGP37+8xdvL3e7/cnm9GZ7tdtedl1jUj/84BvVptdvv2ybdnsYs9Sm6Y+Wx3d3l7vDtmma05PzruvNvUh2k67rq9jF9W2T2u3+QISrxarkMlXlhjySmRWFBTApNQGL1FKnLlAfewLsUnp4ctyEVEoZawnM61UfCVIgq0pqfYs/+fRNE5rbw05NRTREqhpQjc1TH4NZJCuH8fUXrzzePHryjfVqUUEKy3K5Sc2qyOLm5s0w1shatO7AHRyzLBdx1a+PHvR3b59DpFGFOJBh1ewEQMgNSTYxB7N1Ew9Xl3/2b//oe3/wv/qD3/+9//lf/YtvP3vQtkf7u1tzILNA7DG1y1NmLDIVyIagJmU3tHhMIbVOapXdxlpGATVVq9lFp2KDDLupVtdKJuYCoOjVtUopRYqa2pw2hcizJM0J3cnuUxXBZpmCVXZAJ6s1MPE9TXjPJczTjBTUZzGWOyEixPthRy6mZF7c1ZwdUsAQ5mvjXvymCqLGymGe6A2cAFPqVm2zbnjVQhM4ceqb0KQQIsf7ud8I4IbF3MwruICKq7rP6cEggPM0STWtIrm4OBCDoZXqpZI7qqE6CgAQgWkRjGRBAF3QkaIzAzAQQiAP5IRmhsQzBByMgnNUWi5Xh+3hx3/1GXfpbtiJ6aNHDy8vXl/fvVl2C3c9OX2k4p+/fJnabn8YDodD2y8enB3fbbdXu+txf/jWN78pKodxXC83u/1hsVz2TfvZy+f7oTw6f1JqRkAmOux3tRYHEDOTehh2R8fLXIWcc8l34yixbSPrvuy3+2nU87Pj/eEw5izVttutVFn0zXq9vLu+3d7eHMZx0a+nmg+HvasfbVZt0xymnKd8tlmltt0sm9PTI/3QDrubLz779DAOZ0dHm2V3u90FVsbEp0/ubm+GYc9QuWmLeq3j1e6ua9unp4+PTt65uX2p4kkxxYjMuUwI7m6JUAFyLpw4IGxvrv/0f/qnv/lf/G9/4yj84A//2+UwrCLUQsFiIOW+Ozl5tES9efvFWHftapnzNGxtQycU2U2MKZIVcC1QchUtWtUmLbfj/naS4lbYxUBcq+lUtVSROi/Ae3wTwM0QeE6rAmJuW6BZhm8AALNSGiSgodOcD02udj8vlGhmdt3A7Kt5SYAEiRS0Vp0cxcxMEeaJWe6OswdH50Gn4HO2ciRuQlw1y3UfF40mgsixi7GJIXKIxDTT1FAACGiOMVV3m7NbXFXFTAFtnnKnIrUULRWKmQgakQMZgMiMwH4108AQCdTmEZQmYEIWwA3BGJxcySthJBAEQCs1Udto7DBu4urVlxe720sZo8f4ztP3PvvFz19fPl8sWicJIYWGL7e3jjAM+ymXGNvj4+PXb968unjBIT1++njMEyEvFu0wHUIgQnjxxauXL79YrTZFs5qgw0TsiGK1SkbiWrNKEdf9MBTmaRovLy/LYg2AzPzyk8+nu7ujh0e1TKI2TKPIZCJNjB98/WuR4eM//3MDePz0fQxM6Gh2ef1mszlp++V2f/f24kswcbWnD08+ePf9k+XDdtk//9knF5evT05OVot2t9+ZCyEeHW0C2+6wrfu9I4GXhLLf7f7qbvfsdPP47MH+9u1h2EOFmNpIbZEyZ88TuXo9jFNviyba7vXrf/Nf/R9//T/9z3/r9/7Wf/V/+2+Slq8tFoEyBmj6plv0lodu0bl75HbM5bAt7JwiFBBXY3MA1VqH7TDtpzp4vpN8M+X9iNXRAxi6moq6Gdh8ev+12dxNDQHmWXCOTJF9rMD3WmUDm4esA83CYHP0uRH4KlLcHBD13vClZgZM1ISua/vFMnSNJ3Q3UsSiLmairmbqaMDIZOzVwZ0jhiY266456nnde5dCl9ouxsjzcNGIQOaoBvMUya/mI9jsbQYw92qCX7XYAG6qVsVqtVJwUtsNdhggF1Twan9ts5pf0Pxa7rPr3M3F3MxMxb26i7vOpR031EUNUdPXH31II71+/sZayzA9efLO3c3u1auXqYkGOknul0tkuL67GqZDLjnFdrlYbHe3r95+cfX27aLrQgpjGY/PTpq+LbW0XZMlv3j5WS0ToJvWUsZhGkSrIxyGvZsBwVSmcTxItWE47Pf7cZp2t9vdfjfkQ9YMDEXLMO1HmbbDbp5ln0XeXF09f/lyezgo09XVzW6/E6tTye5QSv3ii+fb3Z24tYvl0fHDrPKH//0//0f/5B9//up5XDbf/73fOHp8fru7rVVW/YJwnnpgy+Vq0bVQs487nIpNpXFLkF9fvHn19iJuTnHRjiq7w2EqFTwCBAH0SJxiFt0ehpvdbZ2G7csv/vT//o/W1P3B3/67Ozv/YitptYypj9i2oWHyGJMpNiFZ9ekwkWHDcdXx6bI5W6aj1hmK1anspuFyOFyM46tSr6TclnJ7qIfJsoIgGZETzXWKk6mr+P2aMnckZDaA++BXJozMTcQm8DrRKpCouYIroTI5MzABgs6VOJg4GKi6OVjg2ISjRX+0XoVlhJ7hrwMpwNGBARjAxNAtBgpN4IbTqgl9Cl2DKYQUUhM5UAghxsjzfFIwJ7CvZmDPHnlDV3QlN1JAR/DACG7gRm5YlapgrjDlIIpZdJxkmr6qkNTv7Qw+W9JmlsO/wqm0aB1EJtNRLYNP4BPKwfJt5kpF8MXba4xYQVIXs9RPX3wMOCXmWqXvlv2if/X29TDtia1INq/u+ubty5ev/uL07GS1bE1Lt2jX68U0HrpFig1fXb358vUvKLCa1lpKKaWWKpZrrSpVKxGNJd/tdtubm5ynYRqrqKjUWuaTrVu3/XEH0UNDIWLTxLZvlpuFgQpUQ1ttlmOZDvmgJgaay7ToulLHKQ9Oeru7K17e/fDDv/m3fufVxZt/9If/+Ac/+uHrm+s/+I9+99e//73DNOyGIYY216mUDKrrvj9er1F1ji6e8gAlc80vX33x/Pmn0CwgplHz9rA7jIeai6vnrA4hUBxz3h12+8Peci63F5/9+Q/Pjh7+g3/v99t2uR9g3Z01lkgPnCzex7dGzW6ZwNnMIkOM1iVcL7vN0aLpU1jEsA5pQ+kkcM/A5AEU1dCc5vBvB5zREJ31o4pgTJ4itg20CbuIXcAuWERP5G3gVRuOOz5ZBi/m0WwW3SKgAyM7uqujkYu64j0jFcGb2FB/BnQYD9eHTHMIhSpTmJ3KDsiBnBBaoj7FVRuXHUaOKYYUKCIQcgghRSBUAEJUvPc534etI5qDmhuhEfg8GRwZ2CBEzT5DtC4I1V3Mq9Psspw130SzGWcGdwGYkP1+ygyZgFUDVDVzURqJUggxGCev2Em3Xhztb6bLi9c+FQxN2yw//vEP7rZXfZtyrbHtFsvVdrvf7nfIUFUAITbhMGzvdtej1tgkczPjk82xKrrjYtXfbreXN1f7fX7yLIqoiNXsQEHkfkC31Ioc1H0/He62ezUHm+medk7rdjMK3B1t8uFA5O7ETKqU2sghiqgZtl0fOO73h81m08RQyuQhtF2/3d2cP3gnhLrbb5s2HZ0+/Nt/5+/9xY/+5I//7Ec3Nxeff/bp3/z17/3m7/zqxz/+bNoNyM3lmy8D8/Fm2XWL41O7unrrWlpCn02yWq+ub4ri5vTMVfZ5D9M2oRHMYgQgDuKw3ZfIuVva2dHq0enZJ3/1755+9z/87vd/55M//fO9wPsfPLCFkCo3bl6AtNRSVCYwVAvuwG6J0rrtjFdVsE/toGW0fJvHyzRejrKvoEAGXzFRaOaq7gROiEjIgVOgFCkECAwBISAgYZy1nRAicxcwYbCxgIJFtDmvxAEQUAAUScHUXMDNxIwZpAns0FG/Cv027o0rzACK2f1ksrli/f/y9Gcxm2XZeSa2hr33Gb7hn2Oecs6sITPJKlaRVRxFihI1S62WZbkhoy0IbrndFuA7NeQLD/CFDRiwDQ9tu1ugZLVkii1SFFukSJESWSSLQ02syqqsyjnmiD/+4RvPOXtYa/ni/MmbAAKICEQgvu+cvdd63+epmKbe7TSu9RjYNd7Xjj0Bo/Oew2jWuFge25j8MEJgu7DwGTIiCBAaGntEAmBwgay/qGqCKWgByWP+4sJbhmCGgGww4lEvNr88FqovsqsCACCQYiJG8j4RGdeVb64fXL4xv/Low0e536Bgn+V8tV4szqqAClmsNGFGjk/PzopkZuq77e7ukVh+enp8cnZcuTDfnW1jmk7r+Xy+3W52ZjtGeHx2fn6+ZWvECIDMMA55MpulbCPSLImMc78eSp/7UjICGkFonYAgapGEDM6TeJYS2SETmGPnfN0ElQJgyFxN6pKHod829S4QCJS6rVeb9bZb7u7trBbnXbdmxradvvrJT92/91HXx6Ef/vDr39CUSxxa31Rtc+u5FxZnZ1llPp2RYwA6Oz+2UtBhn3omUylni5OhDHtHV6zAsD5PJVkxz0EYDTB4v+g2p8vFzZvXX7xxyxTK+bPjt/7d4e3Xr9+5+eT++9eD3z+Ybk4e+7pSgYx9n7skmpLYUBALg2a0rMKB53utnzZ9l7te6lmod0M9q/qTmDdJkzo1zTpmOI0YicgRV57qyjceKibP6ggcABOSAwY1NFMm5Nrh1LkSBdVIQUY0CJjhx4jzXEDEMmgpRaxse41pOseZNMG5qqqiV0tqYqhKTIwEzGESaBpg6rAOyETBhTo475DQefKe8cJDcGGbJDACIvQEzKjInEiklCKl2IXbDgltxDaPbczxAa8IQGagoGBkoziM4SIlxw69Q3ZEDpmQEQEBEUQtKlIBMxETZGV2tUx325t7l4bzzfLh6cG8Po99MtECjowItkM3me5cObz25NnxZlhXzq8229lknww2m+3T8+Nus7zz/MtMPlpppnMFKgJ123R9enayXK1xtnsZxLm6GoaUswI0uUSHCORLFnZBTCKWVJKpMlAp6kJtJSKiSPE+EAK3uFpl77zBmITFKtRaynjPqaqmlLTZbvd295jYTIhdVdWb7Xo225lOdjbbZahrp6GdzA6Orj786K3TRXv50tWz45PT1frs+Hs3rt26c/3m3tFht1l3fZzWMzcPivzs5ERL39bTflgDIpmtVitTPTi8JnlYnq5adqBl3B6hofM05PzRgwfrX//1SdOyr/oErv3g6rXbq5OHp4+PP/Hyq+tHTyhjFaq+pH4b0x6dd5FtGLQwgSAaWDZj731A8IGDZh88155arvthldIq6VBQlLJgYjIm77kJvvXcVFQ5DA49qSNwCEQAZKgqIEVQDZmQvUM1S6LFhAFACcf8DVgyiGDJNI+KXCugnfWPlOZVSSICQMEBGzmiQGg8SnopsNXBWhylRVUbQuWRwDsOnse5JRERKZE5RkfgGBnJIX+scVclVEK92IohkxMqMjLhR8iWio0dH0BEMhpdic4cgwvkHTiHgdAzOYeO0DGSjhu7ERKNIyAbzdfMg93ZPdzh8P6D+0iySUPUREQ5dwB5iH3TzC5furrp8tnizDk2AGbPoU45n5896VYPDnePjnYOVutu/8rl6c68i70L7L07XZytNl3d1KNEsCVbrs8dT1SxmCAjIhdT17SE0JciJZtkYm8gxAY6ChvG0RZ65xz5rkQfvKKqYQih26RSxAd2nohc7LtUpKrqNHSOLISqG5br7fLy/pV+2HT9ZjbdLVIm0+lscrReb9+/e/fapUs3J82Qhnc+ePf09PT7Xn/9zp3nFmfL1A+ucTPmQvXp0/uI0tTtZtgiGAOeLhfddnW4f7g33+9W58QAwKpoRoRsKE9Png3DMKnD/sF+2OXzxXmo969dv/29r/3RV/xXERa2XNOuW5yfbZ9FvT492w6WYpPFs2HwghelFiFUB9YwUnBAhZjJPKMF1m2WpJqNUuKqCk2D3vk6UGDyjryDgIKmQDbOqmT0vZAVg2IldQ6SAKmYAtkoVR0r7CQfn/BB1VSKmUnOpYhuw0AqpgbjR987riscL7aTiau8OjRvxlhXrmpGxRZWLjhGQ2BkRMfMgUMg551zxDyWN83IxImgGBQAMRRAJSqEglb0AnSYRbOYGlGgcf9GDp2nEJAdOAfeoWNwDMxGhMgA49vDwEBNSAEKYlFzyogTrA7n87jqjj96snPloNcMQCil5HWSrRhf2r/uKDx8+pjRAdg2pr3dg1J0sT17dvbudHp4eHg9F02uTPZ2jSkn2alb0LBY9VlwNm+fnZ5cb48QMMbOzWbZSpJCysSAgQoXYCMCo6wWgVgRCIHcOLMz71i1OHSh8uttcejZkUKpKt/3GGNsmjkH75S7WDab1e616yl2ZsbI7LgbulhkOttZLE5TSMTonJvu7R8/2JYMx2eLqnIvvfoa8+SDt7+NZK8+//Lzt+5s+rxedc5VDeE8H65OnhJR5X1MAwC2znVxePj08Y29/XYy23Sb4MgsISACOCYR3XQ9ouFydePwaNstnp7dmzfXNDQf3Hv/6uEMFPqzs67CqKCVe7ZdOqdDVl+RdCowStqIHAGyookjaSkrQfFkwJ6xYhuEgE0q3zaOAygBkjln43g8Q1FRLVZMsmoR0dGSIihaTJz1+WOCsiCgXcSEkUYwy4hiS2qio1XJUhEkM3PI3AZidFVA711dh9CEpobAI9KUHFY1sTP2ECpqPSOOfz1Edp7ZE3lEuuhbmoFklVxKTrlkK9k0mQ2qsUjKGnPpc+ly7ksZisQy6jANANiPbjD1hI7BOaCPP/cj4vjivGSANv5TTdFEANSYipSqCvvV9OTuIm03KU2HEhmR0crQq9p8enC9/cRX7v8Wom/bveX6ifPs62rx6KPz1ZPa15P5jCaTQdCxV0BwNCGcTap1t16sVm3bCiRXSR14e/ZU+i3tXI2STQGKopV22gxlMMhTNrJsoAQGyGaFHAKj2oXym5B8cAZWVKq6jik2VVU5jqlH2qnqYKm4gF3cGoGrHAOIineYytAN5zs7e1XTdpv1aPKbzWaLerLarPb3by83G1/p9Tu3tv3ie+9+Y312tlic3LrzQjWblMFVFU4AS5Hl+WMCInIkxVQC+z4Px+cnB9P5rJ32fU8KoHJBwSFU0247aIL16ZL3+ez8bEgc9neXp0+mi9VeHc67hTa+myQ3YRJIUlTEOs1iBYyI2REFct4RO0MsWcXEApI6hyRM4FUNvTn2DgytmKlaLmiEQKpWStaimkcpaBnT+WQGomrJ6VAMFdQEx4ckEQHjhZBDVawYFoORhGjI4DzzGA5y3rmqIs/omOvAIUDF5Bwyk0N2iC6jN/bkPBAjIPiPDdYMpmiFLgoEpmqgRaRPaYi5j5ZzKUOyoaSuLzGVLuZuKP0gMemQYGR5oQkgAaJ3ft5wUxuyKCmgAikQAo9Vf/IeCQQNpKiBKQOZgRkxCdfNzKk/fnzsJk4lp27duMZI4pDI8cHu5Y/Ov5dyDlWIJQG52Wy+WjxdrU/AdDY94NDUs93j47Pnrh+F0ATnAxg5d3L6VEC9axarJ7Omohy71YJcJYZShpJzQDHN+5cPh7xG0BYRUvTEYAClIAI4REIUIEQjQEfBXzBgJpMwyOADVyH0aTAw7zwCdURFJOasivNpvdpsau+HrtNSVKWdTFYxyVC44mI235s/vv8gZ/ShXW22Rwd7N+48t1k8PTt9+sHdMnTbW8+93Ez3ilTt7gFKTsNiu9yCiQdVzVHQYV1KfnZ+fnV3Z2c2e/zsGRAyYjaAC+ecSYynT57MMJSJbcrpbHLJlc1mu9ypQqhmHZhNK5oGdtTHnItZsbEQb1BGJTwxe8dEDARsnpHIea1AwEUoVEAENCno2NMaa8FkBpaLlqJFTVSLmYhIUclmAMWAzMmmQ4daRA3HxhQxCgKjYyJAxbE/rkYOyLFzHGoP42TSOxxPWkwWMAc1b94TOiKHhipUmGG8gCIqjYQjHItsYKoKCCYAKFByklxK36c4SBo0x5S7iKnELpb1kBZDWg7SJemypYylACEwkwuubdxsym3rfEDkLJBFZaS5kwMfqKpd1QIW1SwxagGzAorAzhjB/Gxnvl4Pzx4tDo92VSXHPhgQQxy62zfvEOnp5gmTqfZRuulsB3U4eXafSOuqcVRJzseP7813L09nrZUeBet6Uixv+w4BJK8kb2f713LfSRq4qlU6cw2xqBYVnU3r9ekZotSOrETmBsHABIgRAelC3MCOfRNiP/jgNusOER1R8FgF3sZsqsjkkIm4gGZJiKBm89l8tVoCUMqDYnF11UzafrXeaWaah7qqmG2xOdvdu7Jab3Mu7WR6+4WXPuxWz44fBELNw/OvfMJP9sx4srNzeOly2iw32w4JVESRxTIa5FIenp+8cP2WC2GIvXchZRkZsmJGKOv1IrOfX7mSNZemuXT1pfW9bwx9rHenz/pzczS9tBNtjKNByaKqI/d23GCyBwD1PI5akJGJABnNKSPJRrCoxVL6JF3RvpgUKwQGYywOFFQFBExMQcyUnENwlnoHSdFQhmIGCGSqAigEikUcs0NEJCUEQyZfB1e7qmmUAPwIpGIjMjBiM2fmDbwBm7CaFv74FgvISjzSQYku3DWmCmOvXixJTkliTMNQUl8kgsZsfZRc8rofltt43pfNYLFoXyAXADTyPgSuGjeZhMnMTVrnvAFaVokJQBNy8K1vZqFtyHnTRBINnCEomllCNlezRa6bybYfL1MIYn2/DsxiCk4Pr1x+8HQR8+BdyClzcG3jTp+cM42UC8/OSxJW3Z3teHaV84EdkuacY4rsSDR5sInHoV8NsQ+zHbNBtRSjpAVAueqx9ARGBFTK2LJTA4cMF+xeFM3s2NdeGZpp+/DkGSEET0AQQoXIBkps4xkp5mEcCitC2zTrbhvqqu/7pg7bITVtk7ZdzNl5rymHKmzjZhdVlIfBZrNqtntwePP2+9+9txiWOQ/uXbr1qTcrN4lEk939vctXtve2YhqN1BRUsiAYbWI6WW52Z7t31+uWvXc+52ymikaERE6GNWwqiyFXFU2ODi9fWXzwzrXLk8Vi5ad+sh+G7YYJUypiYgRGphcgREBRQURSNHCOwek4jMICDkCjQCeUBAelBFZMBtVBxpqvWRmvsWBmAoYKiFoUMZuK0yFDIRxrLqY84vvRAAqKM6WLvI5nqtk3gVvPlSMGcGhEyiimwGPLBCCMfiFTExoxLmYAZICiQIBIo4xvHGWaiGoRzdLnuO1y7FLqiySwBBazDDFth2HZ5c2QF1uNBdVQ1RCg9tVsFtrGt20122kmLQYvBiqWobACqAA5X0+r6R4HxosCMJghophTNTJIhljVtXf+/MnC1ywiOWZQYqLVejmd7Q2x9Nsup4QGJrazs79cPlv3q+D9EDtymrUUgOlk6jw3VdNULaIRQ7fdKGQjKpoI1RNuc1+0GKJZEREkn0tyRCRZcnaIJuqBTApQAaWRgM8EAKSi4zbDe183TUlFTUMIjslXLeF6HHSz8+wrSINacex8qLPabLYbh+F8ee44MCmatZPJarPc3Z0VQmZKF78e+9jN5i1x2JkfzHZub4d1M/V3P/oQmuaVT3+xDFsIfufo8mJx/vjJA2QsImhiigRgaE/PTybXb9R11Q9D08564SyCCIVgyuGgmayWC63qLWOeHtYNcKjA6Dytcc9ZHWi4UE+TsgIgCF0wXRQZiQkIwZN5AG9KxoROiQksow1ZtoXCWIQCBYNSLOn4HQArFwGbMVAMyo4MEFQcMkEGyBfpf0MFQqRRmQpoSAjeBzcJ2qBvAjYeAsmoE76wjiEwAQF5IiYlQVBCILxoLRqojp1FAGdgelEfKKoqKrGkIa7XXd+nMuS8LZIMxHRIadv3q07Wyfos6x6QAZDAQWA3qd18x+/tTA53p9Mpkc8qmgoOhQpAEsYQMLTtTl3vGAsCykgV82hYDJ2BERCiVaFGg2HTA4ComErKueu27MN0unN8epqlFCloMJ3Ompru3T12OCJ/SaVoGpDatq4BqG1C8GxWTDUNEcaBshUwRYglD2oiJuNtx0zHP8aKWc4OsJiAoyLCeCFCuygxG3rnEAgVqlCBGBqWnEITACx4551DsvH4GoKDDeYsVVsTOzCYNLNzPiXkrotN3aRhcN4BUoq5DbV3brvZ5hTrpt6uVykJc1VV1Wy2l886Zt6U9b177+/tXzq8fG1xtmord+vK5bNnj4Y8mF24iQQAAWJJ5+tV3TRd1yXJVWiGFA2s1oACizj0Gj3CcCrd/NG8uuTrQE476/y+B69Uo0fSyhuLjHeIcQ1EDIRGRM5d5DIJcLwRGOKEA1VS0TDr4ybL1jQ6rrAw5lWS3gwRdFQJIOqFSgkMgEiZHU48rBOOKgGQ0dqOSOMYBxi4ZqyIaqKGuXbmCdyYnQYb0QpsxDAqsAAEwIgulsp/UpUEGYM4JqqGOBIbs0qOJXdx2PTbTZ+GXLqcu2JRNOXS5bTt8jZBFIgZkyEZOgZA19RhdzccHPqdnXZ/bz5rVKFLfcEBBCELV8GTC2HSTucU/Nh3JlGDQihADBpIAQy1pMbV29W223aAoKqpDGpZ1fb3jjaxj1GcC0gmmmez5vjpYy3Z1XW3XhOAY+o0tdO5a7yvoGkDGKopIuYcAcw0jx9wMCma/0TcBKAlDSF4U1DVkRiMgJ55yAWtADKgIvH4HXDOo5qqOeegrrzzMfbTSeWDz0Np21pVkRAJQ/COOQ7D3u6uITrnQjVCRGBxfnbt+i1Rm7QNnp/lFLkKoZroYtlvN/sHl3qizXa7M2ub6Y4LjffTIjCZ1l23evedb+9euc7EFofpZDaf7/anTwDITFHNcAT1wxDj7nRKzpVSXDMB8mhZQbYapetF0xQx5Xh++uho3jrkuq570OqgxRor9FQKqQXCGEspGouO73scr58EnoSImJW8kSNTQhRDQ8K2rqqZzwtL20yNuJq59vGsS6sBRBSUlMbQKCFfJMQAnNaOolgpF0JdGx2ShoaIQJ7II9QIDWlFGsa5BDDSyBY3HEMKjphs7MYTXiSSERWQxrSlgojq+E8B1VH3l0oc0rAe+mU3bIcciwyldKIxy5BKN2ifLClmRTEcnY9i6BxPpn6+46Y71WyGTS11Y0UY1Cuq9KwVkFLlqJ66yhvZ6LMEsjEepBceGGdi02b3zrXr8XgTcyIwInPsi0hRcc71i16NmZ2ZIUFKcblYAZGBDaknU195M6zrqmoDeWwndb/tx3KdmgCbFDEsSEogZiZoCipmyG4dFxVPyHlRRcMxqAoIqkVVgHhkQY2tQEYiRjRgIqBqOp3FmJCwbZvF9rxtWhvJgQjOV96FFIvzzhDIkQvBu8o7t9qubrErKiF4733OPWBwzgNA33V0CFWoumFVBZ43O3Uzda7KkqdVMyQ5OTn98HvfefX5l5+eLye1Ozq89OjkKSAqKkAxAwIoakNMPHOOOeVMYN57ERHQbMkMRaTvt76uu9WpbI+YGoe20W7/5ktcV2i5ZlY1xJIYu6SbDKkICDogrxZQAiE7dEzM46qUzCyKJkIIHhAYyVdF+wJB2CmyM+O42kAxG23oaPYnn08zZ8bgPLpiMir0FNSASGAsBhgzuoqhJggEntDhiBshwjImqt2FJni0YVwgoMc3hBEpoVkBGakrIwOnZE0xD33q131cD7lPJRZNYkksisZsQ7KYMAkUo1HiO0JHTX0b3Kx102k1baumIXZFVEXVCMm7oEUIx/EVXQg5xnyHmY4ffkZEdUYeJRy0O4ezg/uPVwgmpYioEaSSiR1aVbIQE6GgCTPH2G83q8msLXkwEeecM+iljHtuT7Qzb/vNepTeq4pZ6cq2t+Q1m47nS1QiVSTvGKmU1ISqiBqgKiAgqBKTihJdrH+JL9IfIXhDtWKO3c58cvLsMRI57z07Q0VPfV+QPSPVdRWHgsTEjMzsfFVViJiGIRcx1VxKFfwQN1lKqFrHro9dStG7drNdd0Nf134y23v25DGSRpW2bRar7u7D965fOkLGmMp0NmvqybJbMyoimIoaAGBKqWj23qVuKEM/m0+XyzS+zwABiGMRjdE7Grp+f3+27Ld+2h7cOEi80YrRSJBcVihSiu9Eu5RTllIUAYiBHTgPzIBk7ABMy8dwElEBRPRk9dj7RmP1XCmaeivrDmI2RDQyUyUwNCNzzoCRCocLr64h0AWiaeRoUkWucRwcVUyByTE7Zuc4+DGXma2MkV0bL7d4YecgA1YzlahjBF+0SMpSkpSYh23abrq4zhozZtBipADZoKjFhClDURCjEcwOpGoGRsGF3Xm9s9tMZ6FufKiZnRYbJ25gRBycI2VEsZgtleirFkzNMkJWLKCFQIgBa4dZb968dnn/4P7b7xOagmZNCA6NALhkQUQDAUZmpzl33dI5YiCVEmPyXBkROt3dm+7MJ6lQ0walTIAj79GA2LhyQWAwyQxYRsi2GSqC2WbbH+weWTJGUlECiDmbKpAR0mihGrHgjokJmV0syfuqbWuRjAREOJlO8mbjvSdERCDCuqlSjCMuyhAVrGkaA8ilrNfLylcx9j74kcxFTOxdSV23Xc3nR6KWUslFq6pxwUtKbIDknOO07R49eniws7NaL2b1dGc2X25WQGNrCgjQAWYpXerrOqwXRU2uXD/abs7HHZOO+1W1bUzOUbfZ3r7CD7cnl47mU+YtggueURxXHhiliOahlC7lLg9DKalAUlVSRXHeGQPxeGOVj+E7asWgKCKCI/BGwthWlbIAYQjaRRiSZkUxNQUiVHDOEbEpE3kejwjojDyjc64lPwtu6t3Eu9pDYA7M3vkqhMqzd4qoKqnQaI5RBAQbq5cXzuIspWjUklIpfdYsIuMdMw2rYdgMmhSSkCAZXtC1sqDImMcDMxQEJBi9P8xud+5n82a+207noW2drwBHAQgCITCSgQ8gakASECQtEyRyHqyoRMUBURUSOHWhmrbT6bTdbPuSi/chbSMZj8gIRAIxRySo3oNpHvr1hFom1CKx703BUR0oRCB2vgr1ZFbPdzxoHo1SxBTT0MfOrIjFlCITlBIvStSoIdBq1YuUFM07r2pk2FRV7AYy+xgtD4jmgyPTUKGZMSOgzeZTT1RyKqqhrVzqK8+M4JwzwNl0ulwsVXV8Ayqg8xUDlpwWy9Mrl67Gfmh9AABRdOg9h6Kbbrs53L3tAHJal1K7UFf1dNmtXeUMcF75Rdc9PXl6sL/XDwmsPzo6evDk4eiVBkA1RUAB2cZ+Z7pb1UERSKGt2y5vgeHCsuIoDXp+th6OBjfDB+8/aF9q93yY+wYxVaqzMG3ZC+QopS+6jsMm+vUQN6l0OScwFQMF5x2i0fhkLFqilKwmhmbjWZ88g41HSK49cuPL1ts2li6VoYAUMFPHDh0VykLFGIwYKsTxkV+xq8i1VTWvQ1u7xlNw5NkF5+vgfCDGYlKKOXRYigKKmaqoCoiAIihg1pTKqE+VvkiUHLOkolGkK5gAo2IyVgM1KyNtxMAE1AgQDAFRAZDYAKitaFJzYA4+1E3dTB1VYrlAQQQDAodWoKSoOYICoYLXblgaO+8YtIgWxExOyDA4X9e1CizPVjJkNEDCpq5bnj5AUMtRe2ZSU0SLqTdUdpXpoCYp9xmEGFMRV9XtdNdX1Wx3bshIXIqEpvLOZ8lEiOQEUVRCaHI5owvW/HhhpWJFVRwxoMWSjVsF9Mygo+BBEbQOBFKYhYCUTCFWlW+aJqXovQOFg8O99XI9aacG6B0HroJ3Kad6Mr3wCTGPRthus8HLqBdNb1I1geLYmeYYN1q2latW21MpZmKTyWx5dpyzTBpv2ZDsbLPYdL0BPTs7Pdrfbdvpcn2GH5+rxxPupu8Bdqdtvei7s+NHIfieGEc6MgAiT6eT7cNnqzgsNC1ivnnp8NWjQ3ENaWyRWnOK1mkcNPep1CyB1NRKwcJopmKABcWZI4JCSaXLGodsWVQR5EJRRGjkyHBUrVbkmYIvVdCqpz5CBxCFPLmRIQKeuPbk2FXkArnA5MlVWE/relaFtvZN4OCdd8RE3qFjHbVEpGh2AQcaWQxmWADEREGTpqFIVB00r1OJRcrIiBYyABqHu4Y6llo+tk/qxf4PdHz0MxCjY25qqgI6p6ajKMqhA1VFAUYAIzbwwFB6GZRMEMXAXEk5poKMBJYBIpt6Cs6Hqm18qPpuA1FHufg4vUIiJFBTYqJCjCwlMbuiOabBgFFAU8qmB02bQ6NKYri7u9u2tWNOQwQgJsfIuRRSVc2DSnA1FFQ1BgMATz4y5rxVEyTHRFEK+qqqDAVFMoAiOlV1ngGVCQmhqrnrUh180zSSChMB4HQ22SzW83Z6tlmCYV05H+oUB1BDpvEIY8DBuc3qLMeeAEXKGEfPOXnvrAioLJZPZ/X++eqpSTbTUFVEvkgvog6ZETQPJ08fNs0sSjrbrGc7O+erM7SLYpaaOeRcdL3tD3YmveRJUx+fnofakcFol2MEUGPcCZN2IF6dbT/z6mvPXbpMIXEpmPoU01aSM+Ws6E3VFSo9c0/aq9CIwSIYx/sGkPs4bPu0zZLEFAmZySkBERAZOkZCZCTvgQC9s1BBheIRBgHvXOx7JufrmhtG54CRPFWN50DeWz1t2lnTTNqqrX1w7J2gKYzDxjJOisZ1PepFmwXGmacYFBNR0Qs2CwAyekRBT8qkQlhIAeWi+ouogMqgAjq+vADMBMGAyQecVNTWCqjIaiwFpKhiQVRAQS5M2nicT9y8mb/9KJ2cdAKIQmNXtGQpWdEyUwHQuq6Do/3ppCbXaSGEVHJVh0++9vrpo1MmMtOL3wxgRWJO87odYkRQLYZGVd2MFwnvqqYO3rNzzrGrqrBZdQjgiGv2nQmMwBWTwBQ8qmVkJkI1BHQxZsvmmdjxINmQm7YR1dLF8V4/Mu1dcJ5JRJrG5yRgWlUh5QSIdVNNpk1dhSylbdq+jwYSvMspSRGiAGboLjCD3WrbbbdNM1FRVQ1EsQwGQoQ5pc1mNZ8cgGnJKTATs6+rs5PTvaZWwNpVmxgXZyeTy/uquNxuqslMATwRqqgqmo2vreVqe3laA+DebGrO37v/4OrulX7YlLQVlPPl2c0711988/l7i0eTS7NXn7s598bOkwPgdqBMaVmKZCtJAFEQmYAYxy2WKgGSGJuCpBj7zTout2mrqmhKCMIszI5Z0fHFTssRE2EDxIgOfe11EmxQUXQAhdvaTSqu2IjQUz0JdeWArK55Np/szCbT6bSuax88Eme0wUqfYwHDUkwvirbjFPWCJgRjqsgMdIRrCZg5NNXxgoAOUYnQrLBjUEEUNTRAxdEtpgZj1n/0GflAVU0hWHBjgEZGaq5dxCzAazulm3uTG7v1zEvyYgCrRcoF2cirlwIlZzQPFgnFB0eity4f3ZocvH3v5KFlA60CO9ZNPCVGsAtKGIL1cQsGRDT0g0kGoqKJgcl5c84F17YNO3bMBthOmmfHZ7mIc37aTk5OnyBKLimpNGx1E4oOyEqMwNyEOvYp5uT91HmvBfshzmfzXDJxkSKIRIgqpZ7WTGhR2XE7abbboap9ytFMneO6qWY706dPn7nAsskxkvfB1HKMVVWpjlVVz+xySTkP3oVpXUkpAIKoqokRtegwDAAFEXOKVTtBouBrNLfq+4ZpXk1X277frrF0WfI2pcN2isRmMgILRomWY4o5nSy3yHb/0cPP/tgPniwXCbWdtadPz9rJ7IWXX/j0J1977rXn/vt/+rs//KOfvnp06GCJjp06M/V5KBQ77rclqmYtogImKIKmZgqGRAWIwfrUP9tuj7d50WkHgkQuAKCigivgEQUQmLwCojmjGsG54FEKUOuhQBF0rnXcsGs9OULHYRLCxDOCY2zbMJm0k2k7mTShrtgHRGIzkJxBqCQb5whZxHR0LUhRUUMiIhA0RTMydEATpKlDBVJEICuiqZRBhLKURH/yRbpYl+n46VYzIzAj9p68N3MAQcHHbFURMQVWRPUN1bv1pcP6yn41bTgPvL/f3DY7nQ3bDgQCYWPmzKyueegX3WYpWWftZNrUgcgzqGpOufLOhcCOLxYOQONRQVGc8wAYUyTEXLKMLC0mYw4h1HXFBEgqKvPZDADi0CFQ204cu3EFnqQoWFs3OQ8j0ziqVVW9Tl3fbfd29pgrwJCz1dUEcYi+iJiqEbrxjl57b7IlxBBcER+8VzNVYcamDtNpfb7gLOqcL1pGBWbfbWezXTAFUB8qIMxS1DSnKMExkYoSEiKNQZm+W2vpHHPKg9kEkRQMnRtSrJsaGZkpp2GzWRL6dbeczhyyRwMpGRGKFkJW1V6GLvvL+5funz/78N27r7728tvvvLtM8vKnPv3mG6+UpIcHh+/de/Dk2dPbr/zF6aSyGHC0AlNpK+3AuYEBsAjEYjFDzjhEi8mKkhY00bLOm+V2/WwVlxvrCAqhqVFhT8hkaqqlOAYrpsAVXSAxCciHYGSqmNSV4qpZ7dqKApHn0Fa+CeSJHYTgQu3rNlR1cME755kZiNSEzPBCvCdDTLkIAIrax4Z2UMkggAhYcV0jEqBD8iSqpmrFNGnuYtwkQkCzXIrmMnbvTbQUuZAyESkAV7U6vvBFZbWcURP44mc2mXIIBA22c5hNMnBZF+iLZpRqQjtY+wZ6YVA28cyhqVwz0Xbi0rqX2JU+LrJsVitUVQUkZnJMDg2laEVBpJQsbd2GUOVc8MJOAkPqwmTqODC7UFcjpRsAVGEynTZ13XWDGtZVmLazrlNSzKIiMK3a425NClVdFe884WZjq83iBt5ENO+5226LZmQKIcSYpQgCq4hkrWch9gOgIaL3LlQVGEgRdhyqUDd10zRl06lK3w+MngCGbig5h9ZL1lAFIihSiuRJPU2xV8lgXjUjopTimIqWrl83TRNTVJUqBACrQrXdrrZOCHQaqtPts77fWjXdiHX9RgEc0liCGQ/oOhp7yfb3J2sdnp2dJkLXNm+++ZlXbz//6OEH06bZ3bv87rd+d2350nOXkBSI1BCJwLtsfSJLpjHnrqQupy6X7ZBXXdrkpMaIlDap22w3621eL0qPlgkECGiEJFIwc2MCR8VEFJ0kDcyePVrduFBXqlC6Ervi/Cz42vtJVdUVhrE9CeyJA7vahcZT5dARMiIjAYkpmY4asJSGdbceWVh6oRdAJmKPvvWVc74aX7xuTPGMQm0ppQyCG1IkKAiKElPqhExNBLN83GBHVTDvsQ5+VtFebYGx8dVhs3957/Bgb29WN4SmOUPMebtZRNmwKmegTJgMEpZBZd3lblU2y2gqDrBpmJEdIGxlu1zGCCdnz8iBWhli38sSHbCjOERVjWnoh36+t8PoUkpoKEUYALkOoSVDIg6hInZMDgxVrK2b2Wweh7ReburJZH93Lw8dIKacci5tqGRVSuqa3ctbWPgQADl2SbUUFRf8MGRR9cFbZ865Uso4Csg513XV+WBmYOYdVFUAhCFG55gA2qauq7Bed96H/nRReaHgVWzottOdqYh475z3IpJidnMCKSUnqxpTQzRVUbAieTt0VTvXoqWkqvJEmDQDshpusrTECt0qrquqMok5FwIGs+B8SnGU54paEWPkfsgItNvO45Amdb27M9ls1pPJFIoltQdPHtPMNZd2sxmBg/EoJv1aumXutil2Oa1SXObhvI8n63i+3gw2ti4hpRS7nIcipbFxBTQuORUJzUqGioHJyHLK5D16xsJUhWq32dmrcVobcFpnXIprd2bNrHZtxd4JmUABQnSEDv0oohmlwBe8qhE7qVok5bxcrYZtj+SSlFEuFirftqFuQjU+FoNjz0gkY8RC2IlKLplFVXMvWhV12QVGB7IpkGWM6BACjArgxoU9x7vIe+Rn7eRoZ+/a3nx31vrgQSx3XVyddWcxn5Nl76fNZD6ftD406KzyvndF4mZx/KxbDaUoGQWyishje+XGlbrxzMKeBFXJYoz37t0/fnLa913XbVf9XtdvgWy+N3928jSVdAEXIvAhIFoRIUe+dkjgA43m0aapZ/NJ1/dn54vl+erq1Uvr1YJD6GOfNLdV453bbJbXbloIjhDALKWYsxAysy95GIZcty0SE2KWLEXA8xCHug5V5XNMxiRqTdMQwtB3zrEZTKatc945r10caTsiJlJi7EwV1Jhc8BUi9f0WzBoftGSF8YhtqkqOVaRkqcHMrIg0FIiJCNU0FSCEqedge8NmO5ntJMxStoSWJTuPSKBFi4IjUtFVlxbrTrWknK7euPFsterW3Xy/cc5Fyas+niy3k/29eq/Zlm2QQkiGtpb1eVpvS9xIORvis354st48W/Tni2E7CCADgmQtuUgGNE+INj5EAQ0MBcDABFUKeQIH7AlNyNChqzxNJi1OA7QVE9XBkzc3mc7qSeA2gINsYmaGpmDAOJ6Gx5usmoIUU0s55ZxjSsvVerPqSteXpPXEVW0zn04n06aqg68De0dj453REMdENhWVogSEqRTnkVkZMmpRBUMVgSxQlIHGE4l3DdYtTSt30ISD6fTyzvxor57V4mSrqz4X7fqT82dnZ8fDdlOSMp9XrZ81k8tXr129fmm+M9ltp1PvIG/O6rLZdhKTICpXdUvPvXTDtYymzaRCAjFFoH7oYxxiKgAwxC7GqCZdPxhCyZlxrN/5Org49FgzMLJ3xOx8rR+rONtJuzvfWUzO3//gw1t3Lh8cHZ6dn67icpBNwmYyrbvuPA2L+e5sszgHgpzLtluIFJFcci6lMJELLsdspjklq+q+75ihacLQDUiOkIIPzNx30UyYKFTeM1fel5y2m03bVOAbMI19ryUDIBNVrvLsYo7OMSggUpFyEc5VGYcOQ4zteKXTomaVr7MIstexf1dyHerF6WO4fK3NomkYFyVIxM7FnMbdAntfTLnhvMmelWquoh82620IIThAzAgnzzbXP3G5ONiU7Z7jhLYZNou8WeXtWdycxM2zHB93/eNVf7LYpN5Mxtb4xaoJlAgcjDYjQGAbIzioBAIjaRaAEJAYiJCMiVkcZs/sPCGSo2qCI6qN2TE4E1MyyppBDNDEtKgUUzJDEVAV0ZRzF/vlarE+O8ubdVxvducHN65fPjrc351OvK/IU2FSAiVSusDcxlLEFEgQDdTUjSkDM1XJkvusRW18/IuBCRvnrCmX+roPV2eTW3s7Vw7mhzsYqOiQUtKUShy65eb8+GS7XEuXtBhq2qie4vLk3vL8heXl65cP5rNLs3bywvNPu+26W2436yF2JLg3nUznjqh457FwUzULWBfTGIuamVhFrUZlYOc9k2+ryVqWQFr5uq1q865PKx2xqMyIVFVBtaQUJXgEaqp2f3f/neHu4nx15eqlxWL15OzxkPIgqW4mm218/OTRG298X7dcgIppWS43UkRE+iH1Xb9cbdqmSUNGsJKjFJ9Tv90Os0l9/OSEHYwpT0RSkaHvveMQfF1XzjEimKqK9nnjvU+xyyUSIjGFqvY+5JhU1YxGqXIp2QFqMeOR420isZSEiClG7xk/JlIS4UA0qWuRNAzdjDAPa7KSLXl1jfddD2NspYh2KeeIFTskLCW1VTPKrB03VVW//+CjTdpceeWNzXbdBa7YbWO/zt0yr5e5P8nb09Kdl7iSvIp5yADoTIHGDYoyjQZfACJEhxeEUFIlAwMUNPn40U0ATIAmznKAQsY8XjyZDEXRAamxAH/cgxGTUX+qkopkp15NxjeDWCl5GOJqs91seo3ilQ+uX3vxhedvXr00ayY1MxIZagRLoAWsIEQo2Qoj5CwOTQkyubUlyypZJUrZRt1GSIJFsCgbSTTTgjt+8tzuzptH9QuHk1tHO3t7ZDAM3TBs49DlYYibrjtddYtNHsQUUNEEsBARDMvN/bfuPTs+2Tvav75/aXc22Zu17bwuZV81a1ZHoVAWiFCiYUFGQ1RVIRADJCaknLN5JGI2bEMgMjNFcqGq/c5EGMgH710IPgTXtLUUWZyfm0kRAdDD3YMrR0fHj06O9vaee/7Wd7733W3XTacp1O180hw/fmifeuXSpb17dz+UULq+C8Qq461bhr7f252bFLOSMsSUUhcXZ+eXX70DlvuuVPXUe0+AJefteuMcBe+auvaj+Ey0FNEsMPp6Sgak4F3wrvJVKbmUOGlnSFyylJydI1MFxVIKgqmUYRhUxyMHjlQWMQWBHqHxAbEahn6vbh+cP5tWtS8oVhL4USStY7qs6PFisTv1zgxMppNZzGXYdHWorMavv/sN24Xbb9za9psu1FTiOm03sVvk9WkeTnJ3kuMi5W0qaUyaGtnH4FgCULwQYCsZMUNASQWM0KuBXjAQFFDBRM2pgQGb0cjRHV8OpsXSEF3WgoLePsbqqhYVVMuFS8k5c+ZMzGRWSskpb7puO8SclYh3d/defO7aCzdu7c92Kt9URAVUrXjNCbRoyabOoDdVBVNjRVNISWLX96ttWg7pvC/LZINZn7EUK9nEcZiEy7OdT146ePPW9NIe709hWmvWFIf1+rzrV3noJZbcpTikcrFaAPSIBOTJEqhYHiQfb7ednj7dTnfqZl5PdqZt20xC5YIvYstuu7+zO6srN6/yKTJSGqIphKpCBgSLukXyAGBcBIpCGrt0i41QWjc78/2jw9B65zlJEdWjywexi5vNtsQ0xKGy+lMvvvCVr3z74cOnn/nBz966/s6H997ruq7mSdvUp6cn9z968JnPffatb7w19H1MvbIXNRHtNt10Og8+jFI9BUgxlZIePHj4yU/c2ds/eO/du1IYgJEw9rFbd1a0rUPbVG3TjKBIKSXnVDSL9yUnIhemlQ+evSt9GuJw9eiQEGPqY4o1tWqmJkUKOy+mRXPOZdo2IpkB9U/sJ8YesHJN3613J+1IYNCcFdCzn7eTs80ayWlSYuxi3p/WOcuIpwlKuSRkDvPp8eoszMPs2m5XhvOi26yxxE2J50M+i/EsxsWQNkPu+6IZoBCI0ZiKAUIDAgI0QyVHIw4WHRbLaIgejRDUUNEQyHBkHgICsAFZRcTEmLHv+81y43IafAAQRUPQ0XBdSEyRCyVDViqCWZFjTsMwdF1MMasAKM8P9i4dXppM5nU1nYQ2oCtQTAVLQktk0TTlsdusREImlrNtNv3p+Wa97PpVl9a9DoWKwSCajJumPtyZ3zycvnp1/6Vr7eVddk6Kbs/XQ78pfey3y6xJSQHR1wxcCeaRiQhi6BFUkBAyGZAhWizbYbtd91zjZF7vHMx3D+ezybRk26xWlYVXj25X8xpJLUcRiTHNpgfGHxlRiYZSGB16iDlpATDLFiWLdf2wWu9MdybM508fvvvtt9ebTVVPX3rxhZu3buzO9whxsTlv6vba7b2Hz45l0X/h9c8/Oz4HcTEWV4dpO3v86IG312/duvatb7+1m/aRIcaeUNbnq+mk9e568H5VVEBTjCpyenp696Mnl49md+/xycmxd/V2s5WSNtvNEIcQ9tu2beu6CVVJhSsnpZSiWlKOyXkishCYCcEkDgMSVXW1Wa5SytkXAxWAXLL3zlRTSUUKs4MxingRSzFVI6MQqnXsPEGFAKaevZElkTp451hFFVENYy7JuEZs6hCY2cwQJpN21fXPTk6nt3aaxm+6/tjilLnXtInDKpbzoSx7WXWy3pShy9IrJEAlUAAlxBHdAACGxGaqzjOpOmWXSxITFboo3iGAmCGMAWZiB8xQMZqUfh1XT9f9dnAl55IcFIExq6qmqaiaoMtOkhcvRROoQUpp6NMwpJSLZGXn2+m0qiaVayeuqaly6NiCOAkAOaeMUmg0G1jMJtFyyt22PDleLJ6t8iLmTYSsTGCgRojT6eS5o/md3fD84d7z1+dHu2ZU+m67WK3Plv1iXWIu0uPUY+OockzkPKJCj1RyGammROjratJMVXDYxmGTLaklkULbfi3bFDdd3NupQnh096Pj8njvB3Zv375RDbg6Pl1tt12/uXX5jvfeEKh4MUmlMHEacuAmFwFL49q7JHt87+npyVka1rPpvJ1M0/Lsq7/z5CtI+7uHt24/d+3WlepSc/vlO0Ly4b27t68//+lXX/7O9z64dPVqkdzhplt2x49OvviZN775x9/qNxs3wVKGnJL5tDg7lVLapjLNIlDYSukaqz/84D2R51966bl/92tfNlouV+fB82a7SimWUpratW3T1LUjKkXANMcIFS8X55ev3owpVz6AqqnmFEtKTRPkTIqkmOuLUlfJwYchRVQruYzNbVMdu50jV4nR6qpapNNBy7Sp18NWzNCQgItQW7XrfiOgo1Q6ikx95Yg9YfAo4GbN7J0HH6xTunL14Hy73a62Q+M3dUiah5zXw7Ds87JPy01crbfDOklvmi/2DGNcn+zjnwLAWDsHRRgfg2JkyGJQLtwABDYSZhkYrSVrpZxvNtunm3Tc521xarkULil74AvblkkRGYrzFjLYoIWylKIjtSHlHPsUh6EJNbMjxJp9IB/QO3AKki07y96GpH2JQ5fyeczrfhg2Q98Pi0W3eHY+LLfWF1GlwFgZTNXNdqZXdqprc760e+Xlm7v7O0U0d93mZLU5Pu2Oz/vTdZGEEwrVFGtCU0Rm7ybzifMch2hqxK5qq+lOW4eGkSWVxbPl4tk6bYrvkYg1l2jD2To1k3ZW76Xz+P5HH7lLt3evXf3cj/3I7/zW754en+ALMGnn6806VE0fOzUNXBlA1TR5vUEiAzAxAVktz6ewM23m65O0fHIy35/WTS1Wzk6f3nv/rlZl58bVH3j988+/+PxkNk3gb776wv3l+ePlky986vMPILz3nXe//fbbP/S577t27ejZ6enOtM0pISTJXbfIw2Y5baeIkGIMnvrUXZnuispX/+iPXnntkzduXXvrrbf7YSBoF2fLlJIBiGrbVrPZhJ3LZQAjSeo9n548u/Pcc0PqqHGIktOgIqvNsmpqMys5Fx81mzFZUedZuqiiJoJoMj5ZRnHKqHI1rUONBjmnylVL3ZAjQCAw0eKIQwgxDawgAEMuznkyCMSOQsrQTNrvffh+odxemz87Pq1zGcwvExtBLmU7pPUwbLbDarHaLtZ5ozg4UKcIgEhAZBf05NH5cNG4NVQ0x0jImpWB1ch0TFaaGiiKWpyH9tZh7bGcdMv87MyeDjidOCAULSkOQOHCulSEwdBUs4hIQTGzUjRFyVlSzEOXShKMvcQkOWoZtHhBBwimWXSQvM156ON6se1ONv2TdVxvY7/u+21cLTrpo40ImECA5IKrL82rndqmlTuYXHvpzvVrl/r1Nm036/Pl+tlq8+i4e7DSbVLL7qDRmZAb9eXI5BDMtVS3lYix51BXVRM8eUdUt83hfLY6io8fPOufDLoxKBRPjY/c5StX9w7mWHh1vD5en3Xnj1qqP/OFz3znj9764O47VVP1Xe8r3+duTPk6j4g+ZI79kFKWrDHBZLeyJFDxtVt3+r4szk/PVycKxXuc7kwNafXgwS+8dZ93dl995c4P/PSffuUzb/zVT37mt37h53/ja7/xqZsv71yt7t396NH9J2+8/sl//nO/cPPoWuXcoGKW4mY4eXryxhs3Gu+X/RIg5JyuXL50eX/v/t2Pvva1rz535xOTyc5quZm2k/OzZdf3YyHGVA8v7de+6vstomURSrharlTMMQ3DUExjHEBlcbbcO9hLKSpYKklVmFhBxkSTgpViZJhyVBVUNRvlDYBgjfMIVRry/nznfL3IJgBkaiOIPriAGNVMDJKA42AZ0aOINoe7ffDvPHzf79QuVMunqxhwk/vgyDmnokMqfR8Xz5aL46V0gyXA1ACwodlok7g4iSkBEtHIsUW6QPODARKNNQCDcSumJlqFagLuxcPdTxztPlv0LMVyhiSakmNiM8s5A6iCKooJAKqv2TNL0UxiAiVLFkm59EOOQ5Ih9TGfPDs53Z3OZxMAqzUxs5jk1G/yZhU3z7brR4vF0/PV6arvupK7YhlBoWpabBBUycwBBgbvPbc+7M2uXr/y0s2reUjLrutWm+3pejhd9c825TRxRPJMG7NzUR37kYoeiA0COO/BjwB4JueY2DnnXRWcb9s5B/eQnmyfrPG06DnPXz6Y781VKfVpvd3M9yfQ6t0Hd/snwydff2lGs9/+D7+bIR/tHa37NTGGqr127Ubb1nVVgY0mWnEh+MoBNXkdY4Kb129fvXQdSrr74NHb73zn4f0HXb8GtqPDNqbuO3/0te/94bsvvHnrp/7KX/2Zv/kff/T1P/rD3/v90/Vi6OMfv/X1n/lLP/Wrv/rLDx68f/3wckcAknNMjx7ef/P116bT8Ox03Q1w6fDg2uWDF196AdB+8Rd+yVNzdHBUrIjIZtienS5VMYSAjFUVLl05fPrsaTOp66ZJpZcoKfZNE85X50XLoJskseu3e7C72a58XXX9WlTROyAyE7wIs0uWLCWP5x8cfwTIJq3zwfth2Iajg0nTLtIaRtw9mIEQETuOsXjQXIiIJYMHTmKH144er09Ol+v6ziznfL7UOiB6CJ5GPGxO5eRkffp4IdsekqEQlI8Z4jAm5NXUEKCoEjMiqAnQ+FdTVYULv3pGBFVVTrzDB3vh9uWdl68deWs8a9VMjFbZYhkBbgAqJZExCBCKG/tVxcgQFCQKApqYJElDKbFo1LiKJcYnD07a2vuaup2+qStHQUxiTou4PtmsTs5Oj88WZ4tNn0TFeaSqriaTpqmq0fg4migRDL13Lc/2ZlcPmnkZjterzeZ8u1qX03U63ujZAEnAGI0wO47e1pCK+Nq4BgkKNWAAAnaNByJkpRG/RQpoNdP1g9028Ed0rzSD51BPdLE477fb7dl2b++gAIDzV2/fevvBd377P3z57/yP/9M//dM/+c/+8b/wt6q6aUtOTx4//PC9d1McJlUbqrC/v2eACun8fHnr9guvfOK1SbNz/6Onjx483JvtXrl687kXno+5fPDeu1/9xh+ePrrfTvytSzONevLWO//0e/+X259++RNvfv8XPve51ZPzX/m3/+bLv/+VL3zxB/+jv/Dn/7uf++f3n2yO9i/loU8xnp0+3G5OZ5PKdLj70fF/9Ff+fOpXracf/sL33/voo9/7rbeee6Xamx9pNlJ++uhpikWK1nXVR7lx89q7770XhzidtItFjwrr5XJndmW5WKaud4W67dZTSKls1t1+VW/WGwTzxI69ZnU4CmmxFIkxgl4M3RmMFBWAnA/s+9glKXv7u6ePVwx0cR4BBAAfeDukpFnZyIVSShdT3c4Orx79+m/+djKcT+uuH/ozmDaMFaCj8Qbab/rV2TbFYkYoAOJJ+U/+WJWx2o2jz1GzAJqRiYoBjOQDUNGP88e+clzTzpX22p39l4729pqmIAf2ddVgCOq9IbpRCaymWRTMQNSRWiATkKLArBfXJun7lFIuRUoqIlqynT1eMpOxHR7u7uxMJ1WjWDZxOF4vj89Ol+fboYtaoPYhTJqmqtq28aFiZiJHyIBqBCMmUUgoSLZuse2X3dBvuvKszw+6cpogjp7WcecRnNWITekknxmyYoA8iTApoWXYratdZgMiQ9CRpC7OKqyPQhWagKrrTb9dp2yD87C7X00q72vHzHmTj64fdCebX/wX//If/q//l1/76jfv3rv3yusvvf/2R6LWTiclx7OzUxN7+NED55lADO3ZvUff/ea3vu/zn//k629WIYC6PvX9Yj2btp9+/cVPf/8rx99593e+9B/OF2eSS+2bTPb+299+6zvvXL9++XOfev3P/tmf+MZX//ibX/vm6uzs7//P/94v/Ktfevbs6fUrV6o6PH14evLk+OBw13J3fPzh3nQCWt57552XX3nxL/zFn3z/vY/efvsbk3nbD/3epf31WTd0g5qoGrNdu3H50pXDh3cfS4nNpEop5dwH74+fPuo264OdS6kbwoEvOW7Wm/39ndXqvOHgQ+0DZ8vjoQBRRTUNET/uZiASgZVSuMEmNJvtcrlZ713eZ6aixTGPpixRrUKY79BGrZ23zWQOCCmZq/Tx8dnXvvMNnTHUrt8kp9SrYWHlrEAqpcQERMRe8rjYZUUCoPEVQMCgQMqmMo6mbHRmmYmORgEbRVqGhYjYO3Z27cb+izePrtbNrKkGpR60pqlxrZNkjtzYIzCDYgCSWUbFCjozFOVsjGwCZIbsm5oz+QrcGnQt2YpEjQ+fPlttVvv7873dadP4qLJYrs5PVzlT3TT77Ril9syemIHZORfYE3shKypFUslJSUXLsN2o8mmXt2ddurvUh8kEiQPURuQcV+xrqiZhPq0DlS7j+WDL5Loi26h1yr2yceUqZDI0UxW0QsqsTnl/b65F67o9PHCO3CxUE+9s4G4hmSUV92i9vXy4d//t+z/7//rn/+nf/dv/u3/wf+jX5c6tO8dPH01nc9XCSHHbCSmz+bGhUUHp11/69X/z1d/90o1bz7/6iVd/5Cd+/OWXXjg/OT9+fLp4dvLilYNP/62/du/hg4f3n/zxt955tDifXd6ZEB4/evzPPnx852jn068896d+/Iv/5//T/23oVv/Dv/GXv/G173zr21+/deuOpnL/7r3rV480m/TdrKm899vV6df+4PS1T37qp3/iC//X/+d/Azxtm+mlq5d3mvl2vX765OnZ2aJPUQANiq98H3tfWR+3wDjk7vHTR0XzS6++cnZ67gMfnz6rm8oT9902TKlup2GzJQNmumj2qcYcjUyLACoj08ViDCvvvHMpJgSaNJPVdokXSXZVgNo1UvBwPrn5/CtGlrUMQ4/z9r3Hdz989v7k5lEBwVw0ckZEJaqZHDvPnhxZtKhApgxmBIZqaBdWRyNHVsp48aXRfKWgZvwntJPxi0PsgiOgtvUv3ty7M5nuE1bGlXBWmXENwBKImsqJCJgSkHwc+mFEAiDRRmGvmVyZHxzu7lSeV8Ow3nb9kLYxL7ars8V51/Vh4rii2SRUFagMeUhFtV+vsOTLly61ja+8KxgMHTOTd+gdIHtgA8iWk+YYY5FMBMLckUpE64qeDunMoKq5KegdMjpyDgL4mtqAoeI6OCdaWHusFoa9sgfrWEWTy+7QjL0h4YhmsxLIQIgAJ3UDLiCS41C39cGRf299Jqtu8fD0+IPH1kk7a/7oD77+yde/780f/uzv/Icv/cgXf2i1bVPsm+lEcykppTgUKebZMSAQBZo2TeyH73zra9/8ym//6s//809/9nM//Wd+6rOffb197fbJgyfL07Pdo0MT2G133n/86BsffhDm9Y1LB001l9S/987da1ev/9W//pd+9mf/P//i587+47/2l9vKHZ+cvPnma4/vPyuWVuvTO9dfuHP9Su77cHjw7rvv/MGXfosoXLu8t1iWz372jQ8+fP83vvJbv/5b/6rkeH56xgE3XTeKopkIWRHoV379g5xzzJkQf/sP++tXbpyvn3R93D/caSctoG77tRJO2wmBGYyBGslSUs4VoqgRjEVREFVCCc4hETOr2XQyPV8ughuPICNYKQ85X53Nh/V5pHnfR9Rq/4Z764MPYDLFqRczErZCZRAyJEZGcBfEt6LEhmwjncTQxke9jQZTRYcgAGomo07URggOjugoGz1d6Jw3xZ3p9Nqs3SFswFXinHED2UhLAJtyqJ2TXJhoLOKOgvbK2GecGN7cmdyc713eP9zZ2Z82EyFbbdfP1utNHDrdW+aj5XotYNXEN4GAAEyylNVmnS0dXt+/fukyExSFiGzEhGhEiuNUDXPOQ4zrbiO5ABRCGIzReSPkyuaXw3zm0xa6HoqqIqICgwcOrqrQe0QHjriqMPQYkQqjMDABcAHeqmIq4/9PAPKMnkbQPBsrGTD7delXZ5u+aXvZfOed97f3ztOih1RiBnT+V37pl//O3/5773znnT/+5jfvPHfzPGfyoW6nJiYlx74TUQAaCz+lCALMZjOatTkNf/i7X/7qH/3B4d7RG2+++dqrL7xw6/bRtRvtdO/88clsf//Ktetvf3T/2eK0TGTSNmj427/1pb/51/+KyvALP/fzX/rt3/3M979xtLc3bSevvvjqers6fvj4b/31/0HlEFBZ7YWbt7/1vbff/c53Pv/GZwpXv/V7X/rWN79eSlqv1oBEoDYAOwJFA01KJkJA67wIPjADCByf3D159qjyrmmmjuvK0cH+zsnxyXq1PtjfJQFSISmqIxIye2YRIB5JXaZoqlixBwBmKmXki9L48SQgUBMzRvIcEACQq6qxwts43D87Dge1hgtdSRE1Rc86kspHna1H9sSCrCMqCXCMjcFopIaxgjuqieFjeAKMLyeEC+cvMimaIDI57hVrCy54qnqVJyJP+l49usb7mp0aODEyBIDxkYGGJHY0qa5PpgdNuxfCHoe5m1AVLrv5rNqc9KtV3k5wZ/fgoEvR2C5YliCVST2pm1k1nR048mqWizJAHFPUJjKOq7R0Q1ytNyXLmAYDE0msZjyhSzv0w7P2IMNqXX9vqR+u4lrRFEhY2RkHYKdEZMRt7Q+mOFXCgq3CLsmlWveCBlKHaECmqqqKymY8DoccemeMxNhrund2lrZ9jJl9bea58sAF1R599PDXf/OX/9xf/HP/9Gd/9t233zu6dFD6DIKO/WQylZRVUzYJnoMPYFaS5CRAhuRDS6J2cnr8a7/2a//uN/Fo//ATL77+6Tc/dfvGtQN2zen0xo0rw5DuPTu5+/gpE/+rf/NLDx7f+/433/ibf+uvvfedd86enT1/5/akrq89d+e3f+93St588rVXGKEJ3C1XsRRP+Od/5s9994OP/qt//LP37z3yTaVqPgQRQaScoiGDATEajMVTC+wZMA8J1CrPVe3MbBg2qt1ycRp8cJ6eHj966cWbm7M1CuYiSDzkvpSCRGrKNILnRAGKimNHRKo6P5xvn5zr6C4EMwBVAIFAfoRllhKbUGHl1rE7K5twuc5OkUCKQjFyPGLNyIzUwJCVPHMaNS1AAPyxFhEQ8cL1psgISKjjuwlIGYAuBFumgIAGgAj9Vu590IWduj2Yb4N82G++d356stmgo4onTe2ccw6LEY4KbSEDVVdX/rCaHvhm388OXbvD9QSYoVIOfQUZEJ1nk5plCpItgxYFKVDUMmJbNZMskM2S6WC5F00ipqo2OvpgSLnrhyFlKAhl9HqbZJEcLUM9d8u24loIdJf4sG4kgYhhYTEQuCD4OuK68rPdnZl3oZ6UCQ0NbT11zGkE+ypkuRDrMYwOQFSALApgCCiog6QYIxEC0/RoTlXYnJzFk6VD/+U/+MPD27c+89nP/+Yv/5vt6fl03nTLtavAgYYq9F1EZB9C3bT90CkRODSUrOido5K45QpJAc42yy/9wZe/+s0/fv65W1/8/Geeu307nZed2fSNg+knXnrudHHyzW9971/9t7/4L/6//+JP/fj3f+773py0k+D93v7+dFIfP3r42st3rl65DGLE2E5b3XZvfPL7/vCrX/0n/+yfDevzT7x45+6jx6sUHTvvOMahritTG7/4SEwKjAgAknPlOHDFhH3fFREiZ4amOPS9Q9xsFg4FEIEwxyglr1YrBCuaDYQoECEYA2gyrZ3zvlKxhutQV/DxEHSkY5qpY0/MIzVIVKuaO+p5z9dHHoahpGJQmAnYiMcHtylgGceZROQYLoylF5/m0SxhBABGpGPkDkYsAxHxx4Z0ARuphshQdNOXb95dLnb0ZCU9y7vD+dOu74zIueBDIO8mk7kMBcBEFbJqKpWrZrPpTtPsVG7X8RTJq5kUzakYgEhFPKsaz4DeFUexDJoHgKyoQNIN+TSv12U9aE4l95JikVGHMVoEU9bNMKRc1AwzWiRSb1iMTUCl6CDuw4Huo08gHWusQD2iMSkz8SjFYBcq9keGh5ybyszjeQBgFCNRHFfjpZiqipkCIQAhV84zcSy5JFPVPg4lCjquD9onjx6oK82kwRUrQ+4L5PBr//pX/sJf/Yuf/uyn3/6jr8cIzbROsRdvGBymaaiaq7eugYIsl4g2xHR0Ze8LP/qnh8XmN3/jF3PsyDEAKohzVKB894P3Prz/4Md+5Ie++LnPV8TTibciBxP38vWr2647Pn128/r1V194sZ22Vaj393ZTScPi7Mc+8wO3rh7mHGPXM9HBdO/dhw9+/w++/Lk3Pj2Z+K984+3ZZELs1pvt0PehCohOcESvGBOpZFNTKUxgojFvc0qeXVPViAzGzCxiaRgmTTNsY+ub4/XpYrU52I+AWns/DB3ByFkkKyqGqoqeiQiJgB2FSu1iTo+AF8EWj4TskTwiIuwczp+WTds2XZVJjIqSQyRylaPx/AxoOrbTTAwVCRyPVHMzQEJDG33SF3D98ZFPiowMKGNe70IqaoiEiIowDOW4X203+aOT8+h0A0mDD+20rgI5JlDXVhOHJWkeUslRkEJ7uNMe7lBT1xNuKnWckm6HPBTxWW1tKaIqGZID8wDOM2S1kku2nCVt+rwctsthkzUPorHkonoBhzBKal2MSbWY5KycuVJHQMAOnYUKvOekcpbMEGMqQOQq751nZkceiZmRkMmFlsOBlh0s5m3LKqgMVBsgO1ecE+tA8vhKRGD2s8lsPpsS0vl61aXtkHIupQ7VYMP8cH7W+NPj5bQ5MEKYeEbBKMv757/yS7/+xR//wWGz+d5b32zbdjqb1HU4X3VhNr12/cbBlT1G75rz1Wl/5+DaP/zf/JcvvPzc8UfnDx6+/61v/KEo+ir4CmM35JLYuT4Nv/qrv51j/qkf/2HmuqlbnLYEeNUdvfbac9PJjDlUzreVK2koJf7oF3/k9o3rBFp7x77drtbo5PT4+PXXXl+dnn7zW2+dPD7pFisBee7wyvPPvyCgD043q20HxEMazs6eDrEjFYciWQzEIc2rgMTSDwpk4AQAgF+8cv1w7ygEv9mmdx7cyxI365VDmzT1YrGqPHt2xAwmKeuguuMDEgECE4fgDRTgY7o/UUH1da1aGJhVgmt88Gfb1eTGxFwE1IHAxJwPPnjAC641IKiOlU/EUTkwylVG2xKYmQGRASA7YzGHyGP/wSx/bEO/OCqhjWPTQimVtN0sSdQDzWsmCo49OSQokt3cV23GjNw7GKqKfJjs7bo6UN340DpQktyLDgARrVNZQ05oSiBM5B0wK0EpaShxK2lT+lXXrVLqS4pqXYxiow3JUEHUuiwCoABFwPuqclVQZDMgRW+VB+cQQRFAgaoquBAcBkIHF8j28Vk+AhmSoiRMmUpEQbQAxgg1cmC3FcsiA8EIWfTeV77xHBio8hXHCCTsAnOI2u+27e6Vgyffvrc+X7Hz3FSK4plqwMXj1dd+9+s3n79ysx8evPOeFGiuTm/duvT0eHVw+epkZ+atmk8P78KjP/dX/vyLn3jpo/v3/vUv/uvvfve9pp70fd9vN5Np1TTTbdeXXOqqwgC///tf2Z1Xf+ZP/TiSVd45x8G5uvZVHZhc23jnuAxxf3f2E1/8IWSSXEpJXJWzODx6uvi1X/63x08e9rm4Oty5eevHv3j75U+8cvX64cPO7j95eoc4IvSrbnG2ySfPTp4+3Jw8Kf122HQTBxUHMNikhC1Voc5aUtHve/X1z7z62nc+ehjC7v333vro0XFT0xA7ldLu7w5QPLH3TqSAKREVU0TPzhsTsWOqEHl0bAGaoZF3k7YlTTthYjnNp8EowRHPntvB1DXzJschpixFLxC1CAA4fofUkYqKERIgA4zGPRuneGRm6NCcgQP0DtDQzC6esAhmZAbAOKIlEU2NHedosilQM9TGRcGURkGAofNewOmMqzmH9ZCyq4i8Aon3a3KosCrDYJjUOtBoZSARhMKoBnLBeDWRvM3pPKVl3MZSRKHk0qecrBiCCoqoCooIEJuBmgbws1C3XAdkhwzOkMGjMaNzCsjGiMSKNALdAQFGdYcBIzpCJlQqPabieoE4kiIJK0MVIHCsRkPJWUHBpJSUhg6xqaqmmuyxw806ppRTEbJMcPP2lfuH7dmju86FsLPDbaNoVGTi+OTDYy3DjVs3gsMPvvvugw8f3ni5uXz1NlHNfjKrpw1THuTJk0dvv/Xe/v7u/Yd3naN5s/PaJ9/0Nf7h73y5rsP+3qzv+267mc4mwbmvff1bL966/alPvIIE3lEIrqpr70PbNqGuAWwy3dnZ3UE1SYLMpGiBZ/vzf/kvf45dfv0zn7l5/eqNK4eTZubb+knf//x//2//6O13F4tVt02bbRIoAP7FO9f+wk/95ARlanFWu9/87d9/8uTppKq/7+Zz8535/WfPnh4ff/LlV/7yT/z5/+aXfnG2u3v30aNvfvButDIBH3Ougo855xL9ZELEIoWZ1YogAKpzrjCod6N0VbWwYzAQsMlkGjypRSNpJ62b8HG1wcOZVojmKs9BXMgybJMWuZhnjuUVMGUzJnRmWQANiMadDiKZAjo0AvRjbR0Ax9zSyNEBUABjvPAfjhMhBEV0DtuagiNwWAgLohAAOvDOQEqNNCcgoERYSAkFMRJuxUwFQCJoVogoGTUxKFoxSKIZoaCpWV+G5RCXeYgly3hRHdEmiCIqRSRbSVqKmisCiIYBqXY0QQyOHHnwjgJWCJ4ZGZTpwnhpZoA4RifG16SRJwzoKlS1lEYj4IXp1YCMiCv2jBWRZZGzYRljXKalE3M77CeNo8r7igQed8/i0CVNJ3ntm+mtTz//nadfH+4u4GYzvVILa0ae+VlVx9MPnjHr0ZWDT33+jY/eu3t8/HTblb1LN5wPfcnT+cHtm7fefeu70FT/+d//n37/Gz/4lS/9dj3bR9/EId558cUP3n346ddfmE6bp6fLDz+8d2lvhljuf/Tg9s1rzcEuO+e9D8GH4NtJ45z3VeXrAJ6RkJvaTB22YHZttvO3/+5/plDSNnFN9+89fXS8eHz30X/9sz/XyXrvYH9v3hrItTs3FPHe3aff+vbbDx589OKtG87kaD5/5dYVYbt6dOXSpWsf3X/46OTZ7t7+j/7Zn/jg5Pjh2Uld+q9/792Tbj1zdUuhIe/JkemkaduqBjVHKEVHiJCMZiAyZGT0hC7J4F2IMe/t7Fy+vCdFggti6ir/YHHS39jJ+9VgA9c1mKgweWVgSAJipmrlYoKjqMaqHk1AS2HGMfwDJsaIHqkeP/3EzhmopHKR1xZQHX0UhnqRnANTScKEzhERgBqoWjEUG7nBDj1Ppy60gFiChzxk2LjgBKlsuYpqZpiBFbQQq+NCYASCIkiCKiabXFYpdSUlkzICU8QqctOqGiRtSwQxzYpJQUyLIqA3rJkaJxMoaqYXEwQ2QlAeBckK6Ma6P35880EGIAIKDlnNSsqogGjAZt7AEB1hTVyRrxk8G16e4hTc8fFJ7su5LkHMIYRqggy+gHYxbntVKUTP8nb2wtHR4xefPHwf7w46q5tLO0W64unKzo2y7pcn52rl2s2rN+/cWJxsl4v1t7/+uz/wxZ+4dOng7PR0b7bn29nv/MaXDy89//yLr9y8/nyBmEtOMTX1vGnOnx2f/Zf/4P/46muv/73/2X9x7979zfb08fHxutscHOyMgHIXfNXUoa7a+dw1DTJ/nG4ZozBmikDxyos3Pnz7vU2f3vrm3e++++7u4f4/+r//I5vtfuYLP/adb37t0QcfQWCYhBu3bn36yu3vfee7taP9qzfe+cZXz5+eHD96dOPq5ctX71w6vPS1b343VPVnPvP56fTGP/n//b/vPn08PJa7j+4C1Zf3Z0dHl19+4eYrL95mSP/+176UY6qCH4bEiD0Uz0GRx8knkfPMxLRdbieT2WxaX7l8xcCcYzXZDunZex8eN8OVH3xzkFwYnaEWQiAtBS0gjcIQ+ZguWADIsBiaEVHlVAuTekYKSI3jBsEhMhc1QxU1xXFXhjamWA1BzETB0ASsKBqgQ/yT7HRWyMrJEEiKut15Ow+ALjmEwJHdOVBwYbep9o19x2AIGcnQgMdh6RgyUwQhzDkNyaJZYcwODFAFzTmaNi0jcOKmCgyAoCIKYpzACVZmkyBTSi7r1nSbVQzQw6Sq6roJTeXqQMGjc46IkBEdEAI6QsfIhIpW2DOCy4VVWcEbGpMD8I4rJMcWKs8z38ygdgWePnq0Wp/n9bZbb2b7R7Pd+RSay/PLRWS9XYh0yg3Nd/Zff2nzLKZvnm+ebv1kOtmfDYskTmdXdtdn592qGzZDU9VpVpj57Pzsa7/3H370p37mys0bjz56NN29/OHvPPr5f/YLP/Nnf/LlNz/13jvfNszAcPzs1Nf+s5//zA//yGe5hn/68//Vf/1Pfv2X//k/+vf/7ud+8Ic+C7ccsGdfhaoJoa4mjWsn4NgQzcYEAIzwVHCoSq7y3XJ5erJ676N3wk74t//2V6itf+Z/9D85uLr7u7/zO11MwdVnJ4uz0/WNWy/ceemVv/8P/rc3Lf/v/+H/4tEH9zabeHba7TZ752frvtt+3xuf/ez3fe53fv+r//4Pvlw45wwA9cuXbn/6tVf+zE/+qes35+dPn37wzj3vfR+3ztdV5m0ehJ0hO3WoICrezCH74AfZVlV99eiwSM4iVajA+Mni7O7xmX12P7jhfNWrQ6foiRHowtlQ0AqaoAmjKiqBmhUyNSQmZ1TjdMJ1DX7CrnZUeSQyomSWiqZsSIBZlUGLmRpm0QI2fgeKAY6ubQYAMCYkKGqDghciVmB3e29SUVYyAnEUKtxpda+uDinsL7FeqCbToiP+gAgJEYAUUBViKRkkOcs1iAfxCAkJvW+q2nk/5OiIjJhCcIQOsdOoWVyxgEZGClJUylCG0+2wShpgmNTNfKeZN/WkqerK1YGcRwJgBgdIBESI7JwPLpBRliQ5JmSFgkTgPII3DASO2AUMrOg8V3u8E+rj46er4+X2wSJRCJPJzUsHl/f2u9QvlnE7bM7Pl2Vru7t71964fQy8/vB0dW+5/9xhXflOO56GHdxdnZ6ioCdHhDn3jmR19viX/7t//EM/+lM3nnspbuxv/K0f+Vf/8je+9pU/ePn56zdv3Hr89KEFu37juT/9E3/6v/jP/5PdFgDgvUdw6c4Ln3z9s00oj54+ezXKQVWFpglNU7eTajoH5lFpD4bwcfFpLFghkYpMZuF8KY7gS7/1pRjd57/wpz73wz/ybLEBngIvS7G4Ggzh3nsP37z24vXLN/PdbwXDL7z+xnQyuffw0bbf/tEff+365Ss/9IM/sE3bX//Sr5xsnjx363lneHj76Kd/6mf+3E/89M/93P/jl37xeyWlbhslZWJD3i2ARl5EmCFCDwSmxUTMxAwaP59N50093QxdgVw7Xi4395487Q+bFz/x3HY9bLqumDjlygfvAoJTARkd1yNsDUjNTNQE0RCRqspNp263laYl1zj2nh0H5wr4XmSIqRvEAw4FQErf9doryPiNMtOR9Ec4+mTAANEMmdnEUipEUMDcSwctmvbqWErN4ria2u6KZz3xALAxTUWyGio7pYDkEJmFURCSlQEh1pSFTZGLMVQVcYvOrXNyY5yDSZEYmcxha9EiohCIrzwFRATK6AIhQNmkvpgUyHGImy5UlWtqV1UuVBxq8g69snPOeQGnwB5NC/S9rEtvzjz5piJDdo6ZmEZtKHHliNBNJmH/Vnu2s/row/uppCR9X7ZKbtLU146O3tssH737Hmu4dnDlcP/G0as3XQj9985Xx8v50U5oOIPM6l1RGVLe2ZvVVf24exz7vplUovZ7v/nvb3/i9OQUb9+4/IM//vpHHzyYTxazdv9gx4Wmdazffuvdv/uf/a/idstVmM13m8nufL7/Ez/5Fw5bBvQIlfdNM5mFtkXv7eN9/7j9BDCwC5QBEivz/OoBnp6fHHfz+sZf+mt/cXp4e3bwWn0A15779NMHJyZqliCXxXrpiE4//PBX/8k//cSdl37gU59C5J2j995+9NHdp0//zt/4T24/d/u//Zc//623v7U/3//UC699+hOflGJ/9qd+ZLO9++WvfyUWA5WKCBF2XQOZu5iyoqcGi2btBygGgCql2Lrb1k3btq0iGJIaZSzfe/wgT/7/bP13tHfZed+HPW3vc87v97vtrVPeqRj0DoIEBYoSm4u4JMdLVLNDSbGlFTlO7DiJ5RRreWU58UqcyJFtWo6SyDZjKrZkW5ZEQaRYQBIkQYIoQxAAAWKAwTRMeestv3LO2fsp+WP/7gCgPOtOe++su+7cd5dnP8/3+/nCe7//nUePP/TFV16cZ1VTA3cJFSB0N2+D21a3B7U2qIMFcmTBw0GOV3B4lFJPQimJkEjKYsFZNTMgmZla7zJZOOjctBiIAJAImIABiIMa8CUa/DwIZ7cYtQLI9YMDV9s4q5ZqOsJ8t+7uFV+HrA23GFUjnCRShjRg1yETz4hz4I5g7slYUic9YEN5y4XJNoKwZVRBQncjQ2fkzFCT2Fgl7ID6ntgdUpgYJCStUKa5bsvIRClJlrRYyKJLw8DDwH2ibuAsIjmxZKAExW13MY4XNUCgl1D1RRiLEzmCO7oDGEEEMDFGunJwOD/+8INdZY9xXIN0B4d5PW7uvPEGXKxtSq+8MZWHy82b1688fXy7burkhh7gaZGzD4eHV8xVWAApdwMgqRkSUecA+sH3v/VLn72rFR959JF54i5xv7xGgASaupwQrl+70S+Wh8tVl4fFglZDPllyn8mDh9VBXiy5y/vW95vn/n6uE/t9gBjEB9euy/KV1bXhz/wzP3x4422f+/Jrw9YefRf/2b/wvxaj55/76m6aUhcffu8H/6c//uO7N15+/PrBR9779qurk9t3L97+nvd84rc/e+PWrQ99+EPPf+PFn/3Fnyvz5qmHnnnbM29/6PrTr7zwnE/r3/rUZ7ZzwdxLoIAzwkLydp6nsETJAwhwKnNmWU+Fkaptt/Pm5OCAkweoW3WPe6fbq09ce/cPvu/kvY98/fTuOO3cPYpHYB3VKAgo9imLAEQRFIQeTuFIQAm6npcHvDrCbgkimISFhUSkS+wCxsFUSFPFcavtQQAQEIhMRK1YZmRqSbMADgmkF2YEQQcw1zKbgKeUBCzmiPPwbcUN7E7rdKG8dpgAIxBDEnDv2WBSEOZCuEUaE1ZEFBRIkjM3vQjWllpDe8NyIDFxA6haF12BXlktK6n7XGwKn9zVPBzmi0mLhrfbniknXmbuO1lmWnbRZ+6SSMqJOmIGx6iT1sIOxLUzUzRngNkqdTmwgyBp0iYxC0VyvNL3zJKEVjavBE/dxs3ZbrMBEKgdzPDg+dvzxQZ7eOi9Dy9ODs9ePj19MB7IYrFcUoHTzTlkOTg66O4Pc5n3GaaMD+6++r4PfNcf+JHrL37jtZhheXCUBFqaWhLqknR9Wvap73IS6VLuMy8SE2KXU5KUuixdBqZW8cO39kD7F7yU2iBy7oej6zduvvMd73zr29/2ym0vc3d2Z726fvyH/un3/MAP/M3b5xcXlVbJH7p1uHvxjb/7//5/wube/emhV2/fu/XY0+u7m/PT7Q/+yB9++olb//gf/cM3Xnrx2uFh3y0Wi+HOa68LA4S+9tqdSeOwZ7LK4Te6xTDI2TgTi4WKYJJuu9kNQyfIvfA4rotqzpkZIez84h6dLK48+vg/9SMfkUcWL423749rTEJFTcNmjcbxgEBsIbB7f2tQRGgi4gyM2PfQL7hbYOpRCJOkJEytBHAmTkSiUddb2zt/gwCCEyELs5AIctPrNq20YUZOggmB0SIMwcXl5bU+csSKtA041WlTxo2Pa5OdpSlwCopgAnMPwRYG6+A7gw3FiGxMXU6yyEGd1TAAQSdrkGiAcMDGTmscrwhORGQxVzfdqG1K3U06T+rF6m7W9ezRYvbICExR1WGjeDFFRk8UwkTICImYGVJG6VI67NOCo/iMMyESYq3e5apqfe6VaTCQaq66m3abcoYACROAznOZi4LVG9cPX7s/w0WWCm54cX/qrhMf9tZDunm4OICupPOLXc48zdPrbzz4rg9919n93Xp9Hghhjujj5mx9ev+9H/hwFtb1NGTKOSUWJhTm3HVd7vtEiSUnliRJOCXJCbsup5z7Rfct9ct3rv5LkNP+L0SMAI88ceuJN07VdjduXHninO+fnX3ip1+t051Hby2Prh0i9r/3/Itf+sKvfurjH7/Wlx/6w9/zuc998SMf+Wgl/+VPfPwg5+//6Hd1fb1168Zf/kv/ym/97hc3Mz589fjzv/WlD3zPB0uFe2drTkKkOelxXj517ebt9ZoBwl0SEZKAWPjp2WZ5uDjbrosWCTYLSDSX6cl33nz6e9937W3P8Mnha+P5xXpWh8TJi9qu+KykACCXMdMtPbKx6AMwIAsDSwrJJIkpMQskQSHeBxQxMokTEfIMQJVgdp8CKhIhS2IRkkTMQISMEYAMgUCZUAQ5UCCAIiQBydfP7hY6CIlTLReqo0PxZIFBQMEJGJwJaJWGhVAHTjqr7yJGAu+xW/Bi2eWQhIyhNpuf1+l8LLuplGLuQcSE0kJkCADVy6TTdprXu+2u6FR1W2CjPtU6q2M0VXYgYVAEhgIwoFsomRuMFSxQobgTAPeQlrnblcX1g7waJq1aoSoQFRbu0rrv+qFLx7knI6y22W6++fI3Y1sWV5dXrxwP3bAl6Jf56WeeqNUfzDuArr/OR4+dnDx2AiwP1rvlwWJxOMx3tg9u373anSyvHFw8WN+9syVkIqw1IFBISi3np7dvXjso23mSjTiJAHND0khKlDrMiSVxFs5COXFOMvQ5d6kfhm7oWy78P7H6Lxc+vPkMIAhYDIdvf9fbT+9taejf+65HvvR7p1cOjy/O4YXnX/jal7+2ubi7TPHoUfeX/+f/wkPXrty9d/e7Pvx+hfx3/+5/+9xXnvued7z3bU8+8vqrrz/z5FNPPfzI8fXrv/5bz7726kvn44PH3/rkK3furXeju187Odqd2epwdfTwjdvT1rZzl8TdUyYHrObgfnyweuWN18tcVv1wcJD/5T//p4+vLkY6X3dxjnHP7ynOXqsEi3Mp5mMNDTPCZtQAa03ulgWH6JKRAwVBCJkamQ6JkIiISIgJmZABSS0iCCe0TdRt2BRgQSwkTCxETEyB2BjDgAFClJCEkRtXDhgSZJHnzl9ex/WTwyNAqp7MAYKEsXdi7EogkhwMQ4eJwLxsppjNJoyZGTj6AxQMms2i0IOx3hvnu5tpPc7TpOPkhJBYEiVmao6BearbzXY83emDrRZMTIlRWHgITkgrqTt1jX1FyEA94yCUpYlAogZO5mBQAyy8WKVKmadtCSbFwKnMtXJi4iAmEc5JzvtFXRxcyd3RsOJ0dPbV19c3711Mu4NrJz50xSJ16e3vferO0dZmPr5+VRY5epxKWQ4II4zrab29oCVV0Seu3Hpu83svfPO549UVSZ0ZABAShI9n98+WQ75yuLgYRwoiAGZkxiTEiYX3VWwSTpKT8NB1i0XfJTo6OSDhaMrGbzvz8Vtr/82NgPuBIKXjk6s5LS42dvWq/oGPPvTCN3ePPvrEBz7w+EHnQ1dXg5AV363P71586Lvf/7Wvf+Mf/P2P/danPvnkjZt/+KMfJo/xfNNxTAgP3bh69WD55d/94smNR4fj1QvP/s7tB6cHy+XD16+/Oq7f9+H3vPOpJ28+fe0f/OwndlPJSZixRFWt10+OR5/rbPO4ZcB3vOPp93z47efr10PDkm7nivOk8w5dMwAZanUzDwsKaHSJlv0J0PQLQAkJSNhYiKll8Lp7hAEyUIRARDUOnBTMscxwcTruHkzz2VzWJQwkSytKkRGRGgaxaWhQgBIgBRISN80r8dDJz0+f/0H+3m5xMHBOQEK1hksEMCqmGpikT8RmxozFbdIZVRkrkIULwiIitrPdV3tjs7nYztNs1dAVydHULeoc2u63Os/jOJdJfVIiysf9YpkXnXCFXIpXrWalVNVQAyUKQRwS9om7nohDHYrbttqotpvqWAxqWiZZdZjJIBpZoHHcWxBjO10q+jmaEBzm/sYjD28eP7+492D34HyL1h0eQ5JATrk7eewAZcg8lDrONgYDJfaxbqctJC+1jCnWtDm5efj6q/ckdddvPPL6a68IJLAgw4u7pz3DyeFy+9qdnCgAmEMohFCIRDgx7690xi7nYeg7kb7vVscHlw/e/QaI37/2LzuhbSwOgcSc8mLFLD6WENbHby1efele3Y3r7byNi5fX693mYnt6GubPPf97n/3cZ07vnj712GP/7Pd99L3veue4XvdM6WBJXTq/My667tVX3/joD/0wpe7LX/nKbt79wPd+4PT2S+95x1seuX5ctbz9bW/78Bunv/bJz2YSJh7nnWMMQ97qbOjucf149dZ3PfHci88Nfc2HsbGZ0TuKFJEDMxBquIIZ7GmF7WWzFzMDIpAASkgX1AdnI2YCNIPqUBQEg8nU0R2s6sXEs9Lp6fzGGxcX9y7mu5uogO3B29Z8g+Lun03EJJQAWhwvORK26RICyAl/eNmdIPdXDo5ypvV6uymTBRjCHMzEhFJd1XVXdJwbjDscgB1V0rn5oHRf7dX19GBTSo02yk2CgjBHKVM1NQ/TonWerPHoMbqDPBwOy2XfCYnzQi0HQGgxndRKYGF24WByIeCESKBBxTTVmmZDFGHIfT5IvEzQJcoMgomZOeXMqZPc5dQlZg7iYJmEe8Orh0v50Nuf+/LzF5u780Yrj7wcgMGUDCN3SWfb7ka12bTWqeimQC15SQA2V5tgc3Jlee/03qu3X334+rXjk6Pd+VTKLhjW63ullrc89di9515pGnckIEZiZMEknFOLkqG+S4shCUfKfHJtlTve694vj/9vFTzfUQPB5RWBAUGEIdROBtF5OID8GH3td1977vkXXn3lud32dNqO02Zz/+7ts4sHj958+CM/9O4Pvfu973rLW4acJZz7bnYni8Ww2K0vINNTTz3ztS98+ctf/epTT966cbS4/dz6Az/4UVTLmZedfM+73/7Vrzz34Ow890fTZk6dcB6uLBbLk9Xt22/cfPhaGujlOy+9+61PUAv0cmf3njER9czC6HNBdyIiBNo3eoEpiIEToYBkSAPnzNJTl1gCoULdBVTzhHMEQ3XganB24RcXu/PTsjufd6cbqxVVUChqdUBEdtf945Mp3IGAhIIdKJCaN5EQI9zlD157+jjzMBwlWWTiw0yCycx24QLMRMVtDitWp1LcAz0CFNEYegK5P9dptvtWzndzLQYuTIQE6BQEKWXXqFajglXDihLoYUBAHIhuEC6Jc04sS6AFWGIwsAcep0AVyAE1wi0iEBMQOVtiEuz7cMMU3BMkxsSUmRJ1KeUupY4pI5MgMwRU86Jlg2DEvVOS5a3HHn3xxbIZ1zVvSVDyAgWN0IvhFHWcx+3FeLHRnVKgCBpqJNytRz6EqyeHt8+O1uu7F9vNB9//ntM7D77w+d+x8LI7PT89+6E/+H2vffWFe3fuA3NEsFASTlkWi77LHSIlxuUiCwUhrA4Wq6MltAiS2L+BAxAv13y8uRV+37O4RXMSoEAKYFTAujjpDt/z2GM3h9/57Xm3PfII18rEN69dOz48OF4sjxerDiUFhAUiea3uzkxfeO6rtx594vrNhz/2Mz9XY/qeD7/rC7/5yYdvnNx66MadV7+5Wg4A8dCN43e98/FP/MZnEFfm1lFaLLsn33Lr0194tqI99o7HP/XlT3/vzQ+ZP5YrrqLb2MQWHE7N3k4IiSEzMAYQADChEBE7C0pC7pAz5EFSJhFmIQK2ErXOAJYJBcAt1NNuivX5tB0nrV5mK+CQYs/X2UPsDIlYACkclEU4AbJxapEBQYSEDggoKMfSn/Q9IV3MRWbowInFA8AiAEYtmzrtapl0Nm+AJCBgxKVHt9G0CzgrdT1N41QxJAkLSUBEhDVgpIgVJQJGCAQwFCTnQHRHdXQUgI6xTznJUoyIJp2lGjmChrVRI0F4ABNkytwvjoYMAQBBFgKUW2EhnLjvEjMFWaABEEC4RdRSJy3TPCH3IIvCx/3inU+/9flXX7o/nypPAIKpC8SwyNGVrZ6/sa7TxAFsBOLSeerS3Yv5jcWDx04eObxydHq2Ox6O3vXWd/729tnlagiA0/Px3r27164fvPv9b/+93/naZrsjRpK0WKz6fuiGZRJS9SELkbuVLufjq8uUW849ftsxH9+20tsY7Fufg0t1UOB+9AIARIDgEHZyZXlydfnWtzwS5uEWWsO8lmqzwqxQC7mFGSDoHGa174dPfOqTX3vppX/vX//ffOOFFz/zhWc/+j0fPFgML33jpT/5r/1F4nR0dLwYur7vwOz7PvrdX/jC1+c6IwQBPPnYQ1957iv37t/5sb/wp556zxM/e/qLp3p/hJJYtDQzjIVbhBadxzJSpkwCEUwijJ0QM7IEJ5SEkjBlSJlTZqJG9QC1qGq12NadA93Ci263ViZDYWYBKJizGRAgBmI4oiM5coutM2DiHCjWAkiFkSIIg5MEglNI13VBOJbdzt3BcwBSRHgFm9zHWrdlrOrqTXSkBAAgFlgjX5hfzNNc1N0EJOWuCfDAAQEI0NsjHxEQiQU4ogICIDkStbZHO8aCQNnP0SfT9Vy2pcylVo1qaEHhgE2KBCkEgbEVfJxySkIdY2ZJKXWJEAMNWuS8h1sAOCJZ8bDQqDPghBLYHWL36Mn16Wy3qWsbwSlz13UdVi3n55t5DAYhVyKNWkH8+KEr3gtivjds7QrWl+3hhx76+otf+90vf6mWcrha6knZnO044LFHb+pYX/zG6ynLsFguFsuUO3fgFgLrPs07pjg+Xi2WfSuE4zuO+N935F8WQ3H5EoDLbmk4QFzaZPfFEQYwC2C4BnIyr4CcBMMR0L2EgdlstdagfFrq3/hv/tEHvv8PPvXEe/4f//H/6erN4cf+7I//1E/81Wfe+vA73vX2utksTg6HLgkFkNx6+NYf+p4P/9wnf1UIV4thHqfnX/rGB7//fR/9o9/9zfXd9JbFLp8XdzWQSBkoh1Ogq4cbgxNBEkrS/qAuITGSuCSQhCIkGVOilAgR0MA9dPJSrMzuFcMAAqOGO6degKi6M7uIYxfBDhGIQIkkMYo7AknijjEhsDdyl0RIi3YjBCGULDPM424326Rm6hYWHoEYxKARVfeZAgHBABSGgBZcA8dq01zneTZzJiIMAdTwPUjYEZoDshWyHuiOEQQYFZzbvBoB94KXIBgD5rle7Ha7ea6luJo3ymnI/jWLErw3/jgBC6eU+n7oFhl7IhFEwHAC9BZWTx5ugNTMezprQ2YD4gUWV02Jb16/KrsYgfdTmarn5w820+TkiI5MWTB1vFgNDz1089aTvc6Yotva3Xw9Qa6f/eKXNtsLqhrMOSfVGm59krc8fQsNxkmH5SpJQmJAoDDVucyFwY+OVleuH4q0a7vxDPalzT9R8HxrCNAUA/sLoLXPA8AdCfbnDiGYQotMCAc3cGNwd0VT1apW6jxPm20x7q7e+ls/9bfOMP35P/cvXdy7e/76/b/y7/7bZ/fuffHzt//P/9a/2EkU23W8T5JhJjP/wPve+1u/87mLs/WH3/22r37jpeXV1R/5M3/MMo2gb7/xzHIlBYo7kVMCyZDdoGoNN2YQDk7UdTln4sRZEAk5GQswIwvmhDlRx0gUUKHWqBxoGiXcGIMCkJNI5vAwcK8oLJGAuWVNc+KEnBgZiShlTgmlvbUN0QUiAebWWSUIRhCUi/HU6mRhxb24qpuZgxkBeAQTJkYhZgBpvmfkyXxrPu5mLc3PDsjo4CoaEK2V34T7BEQBjCnInQM4MO1zUYExwoEAhbhnEVSt55vdbtpVLa4Bgc1pCmgehBCI6GiO5EFBgMwpd6vlMi866BoQ1ZMBmXvQCDwBGDoAMKecAb3abARAgRY+k4LHQN3B8kjCTAjIq05GNa+S9+aZhpQOhjwMfd913XIlSRjBjLvF8qEnbz7//Dc3uhsOBr3YjmfbaVfu337AhMyx6NMTjz10drqudd+Qdnc3A48s6eR4deOxq8uDPvayle9c7fjtf//O2v+yU3SpEYo36yK8jPUGAICmMXCA8HAMBdfwal6r181uM7umo9Vvfe23/8bHPv1v/k/+xHs/+tG/+1/+F//6X/nfP/rYQ//hX/3fft9Hn3j67U/szu4LA3MSksSJSGyyRx96aJU5ISxyPj2/+GN/8Y+dPHX11e0dW9KH3vcRntfmZQLMLa2EdWtjgerkgc6JWLBfcOqIEkoCBGBhIhBGJm6rVwgTOZo3DhAiBlEEERFFg5YAOqECEhKLAAYIEJBIEiFgQmYUyhmJgyLAAIBCGYwBG3KIAg3ctIpbEIl5NDhRACE4IIIDhUnT7Hl4wASsjgViVhtL0aJkTaAPYQYUZZ5ZgFEQ0PfHVoOaXpJNAZCCOur7zH2Sg344GIa+Y6GpzucXF9txNK2wF0Ji4wHvex8IjQQfDfzuBEESkjTjzAZTgIGZqwF5Qa8QFUINwgkBc6KMCXtyVTBHDXK18AAeeNkJBXfOnTovV8N804vOgJ4QBCNJEhEDnOddnW0awzVyTqONJaZEiYnLPE6bcvvOhXtIZtA4OhrSgONoYUGMhMg8pMTSc7/oOBFQi958s7XzT6z3/4FeaLOIXzaKCMPfJIdbu2mjFVrggOFgiA4QQa7s7uDq3eog8fDVl1/5S//uX/vnfuDD/7P/5V988NLLR8t47Oby//Wf/Ps3jusf/yM/XDZrQepynySLZOZMROK+7HqdymrZ39k9ePjJ6+/83nfcGS82UrQLcBsiz9txYrAcc/BW541OAWFRnZQk0oJlCdQ5MoC0Mw2RELjdBpSYhIiAFHTyWqpbtQghbLqaVuk1tA5xBAOjoGNQIkqSkAmJIAsnYgkER7cIBGBEFgIETLzIGZMY005dkhCEtRWPiAkhoLFDaksYr64GWBxnkNlcg9TVK5ITAdDlcUVNkOEO6AxIxBGAIUwoIhBubQmbIajkEIGOoSfPOsZmvNhuN5u1e3FgooSESBz7lgi22U8TV5gaMoeZ1+ox13rO5DNP1QtagbAZsZAbC+QGIU0YyCKSu46TaY3ZolZyojBGRO45J859laTOblDMqlcNQwRiIGJmwohSEH2qZVYo611JvVQNB5BeZJlXQgcrCkdGQgESTks5PGlmHsTLRidSRGsm7Fc9fmtFXx70AIHf0oB+5/rff5U3nwTUwlvaXYlEYHuUGuxNgtg+kITJc7fczrtPPftb/86//1/eOIB/5c/+2Tc+/+zf/on/7Poj6ddef/UDj9185ge+16ZZx03uByIhSixCJMS5QywV59n6lNebi1tvexwXeF5OR3GvBbHiPPUU92weYlmJ39idzVDdi1lFgTxAWgIvDBIA7s+z9l0DBTIwRsYYzEFhmn036ThrUXAHQkKi/cRsH+eFAMQASMGCmBGIgBBImIQpI3C0yxCQKIgBWbsec8+QuWWGCbJkslame/vaYeY213muxRvmKKw4TI5bqzMAQSLEJIIR7aCJaKRSBIcANLNqoTEjQGAHzmHkiuAUwMhAGBjVZt+W9bReC3qtOumkMTty6pY4dMhMzG82QCgQmmFOHayWcBc1Kgq7Mzf1qjC371S9zo4zuSyWedUNw3LIy5wytSEJEBFTQkBkJwoTJBbukoR0kyQGUgVmY2tubAQGRmYmBlxK9rSc+zouxrv1QfKVnh7tXt2wsCzEIJIgRjTBAiIS4+UtfLke4U2C5aXqZ5/08O1bIN7cB9+xJy4/GZefePPpjPsxmYcHICF6tPYCNA0KErGFRdjd27d/6qd//hd+85MP36I//Ud/bHv24O//nf/q2mL+g9/9h1ar465LVnwDZRp3B8OCmEkESVgSInV998oLt9frzbBceKErN49n0m2MMwLFjHXyKHNUcDyb5/Ucd9a72W03TxqOCaEjWSJ27ggYzaHS1pxDEIYlIDJQD1M4245n2+08Y1FEQGIikj0J0SKAAJEInYkYQAjYg4CYRZiBGNt6g/YgRAAAZwnpKNAcHMECgLokPRACOEgNrWamsKtlO83W6EoBDj47bmqdggtgzrLqMwKGN9ZDuBO6gyOgkwcGQPFSqlkoGaKgc9P7ESZC9DYVm8ay2+pmB6WCunBg6tLVjDeTpA6FAgj3eC+kpsKrHhVqMZ2cIBDJqpbNepp2pUxQEatHcVUoKz969PrBo8dCWbCAg2OEBAhSm4EjMAaTExExOEPsz2lMxCBZIBef4RINzsiEAOSJKKc8pAQ3Y5She1v36vYVPd8xQ4Cut3es7MgRc9p399HjWy2ey5cs7OeVv6+kuVz133HuXw7I3lzsGPHmFvjW27ippRtJ5HLv7APUAxzQLGaPOnTyQ+9+60fe+citJ5/okOf1g3/5T/7Q4TKBhXl4HUkBYh7rBIhJsjAzETMHYbdafeWrv7zebQ6OV5Ntjq8v80GMdbcOXIaKlapznaaqNhVZF9gZrOu8KdtAJw7KjIkb3r8tHndo9tdAZMHsgNV3s+/m+Wy7Pj/fEi4hhAQlc5fYw508EFt7zxE5MQqjoLEGYctBQgwEoAZbhCDAQCVmTuERCGTobuCBmUKQE7iRVw+YVbdz3eym6to4kBZogZP51mAyoEHyoiPicNtfyIjM1MyXAIQI4k4IWi0oKSUgRhZoId8tflW9bMt8sS2bCXbKNcQTGfNima500q1IUkAgEEQjgQEAoAeYa1Gf1XbV55ZoEnVX6061BGrgBH4h1Mnxo/n42pXlakGBWg2iAlNDXgoTIiEB76dJ5oxBEKiGHIgoRCSI0uAs2NpVrb/kYGAGgQJXTlYjdSYDbe2l3/46COUun96/M23XuVuFVcQAZnBogI5vrWy83AMRl7/4nX/s40B//4Xw+z6Ll0/eN/cDvnlj7mmy7ZVsAAqgzECBq8P+gx95Z61lN5Y6jWlF6GK1upmrmrprVJuqm7sxExMJMXKS3E1z/eRvfBqIIYiCNw82p7c3s7sLVwJE8iAL3lXblrJRGC3Oxt0utDIEISbwdkc5mboboiMSWAsXQJzcXf3B+XSxuVjvdtMcwtYv+i7nw2UecgqFWaNWqIQc5M5OBMgO4ELEQBTQYFrQSH0cSI4QzCSOaL73yUc4uLtrEaMOoiroaPVs2m22U6k1cI+jtohqOlrM4dLlg4NFThzq1PQ27QmHxCROHubtfS4WIhoOjAzA3n6rI8DDSszbMp3Ouq4+OSuDi0M4oSxIDlaUsjsENQ+gt3KCMBBQ1XyadTvNF6Vsikjqhg6NCFISiIgQy4/I8uHDo8evpOUCAmsFJGwYsQD0QHNAbF0DdjBHDgQAgnbfcbR7FoEYUyMUAQaAUWC4mXu19q7lvOyIOn6S1nfW9557pV8OFxfbN15+4/g977ZaiDHscrlTYHvD7Bfvm3KH1vj8J54Al8v+f2AI3PLSv00eAYitnRaA4HHZIWpLzdGdw9HUtIRWMLUye61c59242YM8I8I1PDxCI4DYKgA0wQwDioN1XXr2M1/84le+enQwdNKdbtYvvfLNdx6+5xe++KWHnnk/dQndCR3C1OtsVjzWpWznqbobISDUcNTG7oioHiUIGBidPCKmHa7n+WKathfrcb1DSsBdznxyOFxdLk5WmAjrROsqlX2baHY0ZwN0BABgAaDGRgyEYCcOAfI2LowckKDNcSM83MMjnGs12VZg981cz8ZpM81TNb/8AaK3URwCpOOjfHh8hMS1zuERZuFwOeZCJGTiYOJwsRBiIXb1Old3Nw3ziAA3KNNc1xvfVJgBkVACkYEB+5wePpDFQk2iBnAABxAQESMzhmmt2910bzOfjrpRH0tIliuYUiLJ1Tww0smwurFcXFlhn4qpK6auYxYmIiFqgmzalxltMOHU4hEJ0GHfZHfHlseJGIS4f0xGgDt47NvrpoUQgzAf8a23PzRfnNWLUjf2lS98450f+CBobYR9AEYk2FP/LgWdl2XPt+4AhG+vj759I+zB+N/xCoBv+0+jXQUNjQng4d6iIKPxOUzDFFzRlbwxn0stxbRkJnXzQHBA249uCHCap5ODg4X0GMhJ3JCQDPTv/fd/t/o0LA7Od+fXrpy88eq92y9Ojy7fV3ZOhAvPFqRIAK7oY522u7nW6h6AYQC4R1xBWFhRVERvP2oAtXWt291ut71f10UipUV3eGP1yLWjG1f66x2BhLopg1gogzCbEzkjhCMaRNA+x5UJxI2itC5pM8Ya7bG0LW/JzcICHGEGmVVNx/NpN5cKKCJoEQGNH2tEvFhINyyH42VK3TjuPLABBzECiffqU+C2tjDcLSwZStZpmjbbutEyFVUjahOOIGC+MkQ4uGE4KhFzOur5oCvhoYpAFO35xkJEQTpP24vN+Z3T3Rsbv1CqQEEY7tsZV5SYIae8yosrQz7oPUs1R5bcdf3Qd13HzCypfQOt6eYtECTQ96U6tTWPAUBAsB+Y0WWLsuH2HAmBEueACDBwxAUC0MEjxzfedmvz+umDze1f+Y3f+uN/7seQQbVw2qtPIAKpLeaASxvgd1Y4+B174Ds/H7//V/FyFwFAg0Y1LUVEG5A1vGB4gO3BZV4bJdXdANxDzWuEASHt3Uvk7gEwqwrla8ujgTrB1MCqw9HJx/7eP/jM5569ef3GXD2sevh8Vp//zd97+p9+z5d3X7OcEgykzI7upc7jdle3OyvFVSNaryQAPcLCFVwDFdGhWEH3WqvOs5ZRS2UcuuXq4Pjo5Gh5Y+ivMHfEalEKmhVFUA5r4yVgCH/zdAJAJoJwj2rkgE7AIYKcmcWIrGHrzM0KGIdDGMmoZkWLGiAJCWcGiCAABGbp+oFzJsnUsalJeEwlqqG3unbfx2pilLZGkIJCqaLu6u7BendvU7cFmdJiyMtFOuj7wyUI1FLdrLlbpEv5oDMiN4NKhA07iYkJgHS2sps399ebO2tfFy4AQIhOCGFerfTLxeHJUX/YUy/BEIicOUnOXbcY+q7riRmRiZGQECMQ2+9HOAYQYHD7f0EH9HBwDGplkRMBAmF4kANakKNHoCEACXFA7MAs6smNoy6xKHz6879z+8U7Dz11PI+KpkQMTt/W2Hyz53MpbIbfvxvwO//5zU1h7hDhYIzcFn6EBwC4hRvur6cAN3BHt7AKpmA1QiEc0S/3QHvV7NN225zFAZFI3YDg+nB40C9yToRipgfHV5773S//5E/+1GK5YsrbaZcYSrGe4I3nX3hyfHp3/2KnWvur7HKxGx9sNvcuNmeb3aZoNTfb/0+7BzlY8XDyGqgB5mBhpaip1+pGBId56Fd5dSSLrNlURuUAOLc6uxawmaMCOuPePNQmfooYe9u7mxGogwUaQW49OUFs2XFm7g46z6Gg7u4sqsVM96cQESMQEWXmJKnrUtcjcQBFaIT5NMc0gzpCoNCeYwqEjRPW3DsFQqNOdXO6uXj9tJzuQEP6DF0nSbplz0NyACYMNQhgQEmCKaupVhdwIiQMYgEDLRaT+nYuZ6NtKpQARSTYC7UzLY9Xy5vHcphBCBiJMDGiSE5dl7skmYgJec9eDQO4PCu1ReE6IzgGowMoNAEHohogk1hLmmCzIuZeSzU3N3BkREMrU9ltRwaQVZLS9Y8erbcPfvJv/+Rf/t/9q8zoXvd473YJXA5vESgu98C3dTXxzRnwm8s/Lm+Ay86RMRhhmx44wP6wBw8wb0NCdAfXsBruYRZurhbm+0StcA93bynS7QpBa2jbCFPNlE6Go0V/4AQVdHV45cH5g7/21/76TnW1XFZTIQ6M8NKR7M52915+3ev49bMvHV95N/OwW4/r7W6znXdzmS2q7dVh+8Q2C9AI86geBugR6qHhGm7taUYQpBGT21TmeYSEnBIVmqUFxhAGAjH4ZUFq1S/PDAwPCLBmtseK4Q7cYpsQmBFd3Uw1wAwmr9VDQgt5oAe23FJkRkaS1HXSd6197hZRdN7sxvWujhM2XDUxOEQL69jfAq0vA2Vbtmfj7vbFfGcToxICSSYkZkGUBvwNguaUZCQi8rAy7qxWgQVwAkRHn2ZwRZ/r5v44nu5iW0gBgAkg5ZxPhuXN4/7KYVp1tOokJSSiNjNhSSIpZZHExA214O6BTSQT7hG1kBuRAwDvwfPmoU5kAArhM7ABGZmB1gqqNk1ztYAQYA6AwHmew2EBCUPy0NER8i3/B7/6j7//+9/70T/4g7q1CGvi90ZxbX6dQAci3D+Q2wbAS0PwflW/OSD+1lgAWwSL4LfnYUXTUUfLhgtTdAvXcA/X1m7Etu/cwhuG5PILtkFOACMHenGloCH3i2EhnLc+LxaLGew//Gt//cXXXu7zEB4oAODV6v3dulscxq6+8KXn5el+2sR92DgVL1pKWIhHdtNoN1DDn6ijQlQPR9dAAwjHpldSCAtDZAGtMRWFUk11RsyeJFPqGDK0HJqGZGzfeQsSA48W9QgGtD8WPFABPbBHCsfACFVXDQUpIQ5eEbdqgmUk81BrzNOg9kATJEZkB4pidS7jenNxdr49X0cxBsLETVKNYMAO4RhEGj5bORvH++uLe6flwdbXBUpgL61+AMMwd3WkQAt0Rwhrrjer27M1mmXHlkOik9epQoDudH1vPY8VAlAIhHk59FcP8o1DOlrCosdFx32X+pRQKJiQCCmxsAi1ES6iBxjsQcJmZqrkDm4BhgQBoOTk4InMsULM5rO5FfPq0zjbZD7OdZx0MooQIAHCQKuRkni3WHa9EHMGuZ5tjf/Rf/a33vXW9x1fOS6bMQ0YzntJBwKgI3B4AO353w57MVsrZPf9TAckwG8NuwIgqAHI24UQ+7sBw8H9WwK4MAiHMGwnve/VhvuM3RYiGm0M0aKHGnYc3FWQcxqMZGdlODxKy/x//7/+xK997tmDoWdCgoAIRi5OiDRr6G7aPn/n8UeeGPTGdgxNTTYgQAyQ0QKK+WyhFhahAQqoGB5ePcxp39NCr+AKTu4exKwKtYQnbNgsNsRokgN2Ikd0IGs9CcMwCMO4HMW6tS9Kbkht6OMNmEseYMjqrtG6mBbMMlcDs1qKqkIgJgGGMHOPAq6mupkuHpytz9fjbutjzSbUyuCGMQIiUhTBalZ1PtvN986mO2fzg12slTbOTOyIxX1X63aGLAxBBGHm1dSqVddatMzlYkdE3WLA5VCs1nG0sYDCvJvK+UyONIigdMthcXXZXTuUo2VadKnvpEvS1nkANiEAQnC4m7syRgQYoINCeLXGkwSGYDOKguho7Al4YEAoCNVjNt8Uq5OVsc7bMq9LOd/FNKMFmqUAYUqSYwxSsGW1AzsYei+11Dkfd9947dX/4K//x//2v/lvsSStKhzAACQAEeFITSzouN8G3EwwGBDhkxXlcfADvuRvQgS2LBewcAgi+FY/qS13bx3Pfa/NrOlAG6jV3SD29bHvmbFtPBGIRCgGVmsJaHxuupjn1cn1dHD8V/9v/9E//uVPHC4HZgZApoZYQIhQtYms74ZyGvZ6Obx6uHHb1trib4MBgMJRS9hoXq2dfaTYvl/XluPiRE24hFbNIZi5iTb3A5gm3EwJM0OCYDQGh5bnHq2v3ijQjSxt6gwYTqFAuAAW5M6hA8xOHOEWGAYYPYeyBzvLpszoWmvxCswsTEZuoKHVtnUcx+3pen26rttipbKCowej1QqB1CcgNSIqtXqdN9N4Z6u3z/3+WC9q3VZ0REIqEOiWy9ztnEA0E0eo17lUrTqrjpNNk83GgwSHAZRt0YsJtqaz+1TZW0MU8qJfXl3111ZyuJTFgocsfZeYAV1LddOo5CVa98vZnIpQMLVSC0UICRMRgyUwgB34NsIyZiceMBcnRSoIFqrmZk1D041Vy4WhIRpSOJiHOA9IicChrH3CkgI3m3NVQwK+0f381z775H/3X/8Lf/xP5pTAPUDDoaniwuNSGOTtz30oeUBECMh2TimH7C+FcAumAFdvcLig1t7BlohyyVSGaKDZxp/3y0FYs5abaY1odVFTIAQjuQc6kmG4jePO5nG1OFwcHRnXv/J/+Hd+5Td/8+rxssvZ1JihWWwpkJqplxABGCIuan/QUR/WQMeE6EAaUd2K6lhB23cBYYBO4C0XK1o1SBQYhJG8VKeQ3PY7ITYNklCWyGwJAsHDPPbdAG+lnjsCemhRc1MGihpsSTAhZZQebAgTIHYyoCQpgWcKw7AcKGMZmcgsEDl1CRIFo1NomadpOr13erHZ6XaWyhmwE0qNMgfBSBgB6g6mXrXq7sFmvHNhdzZ0OtumYAAIgjtUQrDYVOMduPqUOXGYq1qtNYrGrsCoaMQHqVtmRI+p8DZ8EzQR1AFXygvKq25xtOiPBlkNsuxl6FOWLCwQZsVqLZNrIZ88CkJE0VltTB12mYcuD0POfcdCiWCBlilqlI2OTLEimcM7BwlWwoIRxWzWMCLIGQXNoXXJLZrd1BTmWVOflidDitR3w3Y3XlyMLMyCfcfpSv93PvkLV28c/ugP/yiCoDujhVFQIHNcytfAoNXxcWmOIKSDtJy1CBIh1OLrs42W85MrV1M3BLY3Mca+nor4tsonXPe1fli4Ndl8RLh5OLQYobYxWqZvw+tXV06LcT578OL65JEnP/ulr/zET/zNl9945dEbN0RQ1aipa+BykASh7iUi5nGVunJRrz5+/MpcAN0E3Bw1zMzmamPxYk2T2mwm+wIMm1TBwTG8Sa5E1cy99t5FBCELgTDlhEmQGcDdfc/Agn3BAzWseqiZVlWDiDAiZYDkmEE6siFgAZCA2JMhFUIQYmLjMEss1bR59ZNQCBqFA3l4mbZnD06ni5FGH4y7rhNBvpR/EhMRgYdXVSdX8KowV9hMfjrFxQwVuAn8TAHCq8NYIyLm2TqhRBFobTLenHsSuITuao89BRkROgJmZCHumFddWua0SNL3tOzScpGGXnIWZsJwLVpKHUsda9lZHQ0KEFIp0/b+OYD2C1oOfLTsqO/7nHImztjntMh2wCJAS5d7qkuI6vM26jjvttt5msOiB1ymWOY+62Eum9nBAAIMwsJGdcG+w8OjxUL6+V5JliGCFDQAe94J/ee/9ouHjzz5B977wezg2ro+EN6UzIGt4+s1gp0DaN/zYYQhJYBwByi2pJ6vLzFRIII5oYWbIiEChYNruO2bIgDu2gZhl6/DMK3WRA6ta37ZeyVirdpWpoVfAD7xvqd+4dnf/Mn/6mfnUm7cuMFM07Q7WixbPgNjMzW1LBZ0o6rKhnZeb8riYZrvTbsaYQBYXMeimzkmDbXwNspvf9mbm9qLxhUQYv+GxOxVdat2HEjEOUmXKSWkJgL1MLtUeXgYmIWpRlUt1V1bkxoqcxAAIwu4BEmzATe9XVNLAQIxUQQgCHp7JOzVpI7g7lZsvNiND7bb87rq8mrZM8ll07j1S9uTyMwj3BwcivJU0+w+1SgKppeRxQQOGAHF3WvMClyMGuoZkREIEAA7SkddfzK4BENQCjwQPkHuUpJMKWNKPIj0nQyd5E46EQbauxrqOM7ztpbzcT6vdapE3HcdE9js071tXUAdYur5XEQ6zgn7jrtFWh52Vw+HZQeYq0Y987Ku091xezremwqYL4JYOsySRTgnnvq5bsd5LK6qxViYlkmWPa86RFldX8jCdTtTZfSwCMp8Xtb/wd/+m39p/vEfeO/3LDlxeDtD41LK0+rcCAwLJkKv4BOMFxha1qMgkRseHkc6RM6X6kSjAAqyqOzWJhoe1vzgEOFurdsZl53BJn1pYocwAGv3DRPgrGqYp1oXy8P/5md/4ROf/nS/ODo+ORrHbUQc5BUD1zAWics2LkTzp9eEQbXSOOfJ3v3MredePAtjg4hi83a2bY3iLa2oaT6ICBAxCK3dQki4F/AFAHURtXk6AhBTn3Jmlr0OhTwIwgLMWtsXwBTmGUoVcwAFFzLAQELCZm7h1v7Q1nQ2UABt0kAnJAIkECfB0EAEQUdwA3MvWnQ346R5jDzw/s0GgUT7HdSCYYO5caHcw4xNE4EPSceixVqRR0Cwn4Iit5awhmM4OjBBwkYwZSHpO0LmEokgZ6K+4z6RMGNKuUNJmJmSkCQREnTGIDdV303zbjuX83m6u9MLM6+UBQGBCZiigp1GHc27KKIgSBIsIgsZRt0GHh12Hdia1NmnqKOXEuZtvkI1c+RM3cGSTzAM5nEcx92425VSCVASQ5eMaBZGyhILAAJzNGQgM5SeJyv/+cf+dp/4I+9+3+CUkTFxuAPT3hWAxIS+NX3jwb2v/XJ642L+6u+WzZltLkQkpQxve9vR9/3QwTvePasjJ5QUAUxO+6FvO+89Inz/AvbLpFSNMLXqrhHgZuHh7gBgZm7mLpTyxfr82S/+9ic//YWXX7lz7fDKCDCWHWoxVxiOzYGJGAkAA8zCIwCQJrAkMY3bo+OV7+Znjm8wcEKaA3bzPE9jTIWsCUqIGCExs+yxVepeMWrspwHRECkoCxvVPZyZMpMgMFiHwuAIrk050bTMZlFr0inDjGCIFUkACUUZcmAlVEcDCAMPMEMBqE7qoQQel100EeLwIEIAjNp+hhrzbOdbfDAPIPsU+Wg/7L32sPVhCbwl1zERJaFFP1+FKbySb86trosVB+Q27QmMfcBlIO0bGG3GH4FIIkGsJWwXecCuz93QObMjJkokCTm1cAwioojsym7mZZ7Kdj2P59P4YCqbKWorKAFVKYAzyBWETXUIUvR25BAFSESqM69HsBy94JYxgufq4RzADIVIgWrHsehJOsmYCanv0+JwmMeFagUDZGBM3JqiTZxObBGEyMzoZFokQSnbv/OrPx0DfN9T7+MQUicS3wdBBxBFuF3Uez/1iZfufur63Zm9Bhb2tCuzUy33vvjyZ1/cnly5N89Pv++p9/2ZfykvekBH8yaF2It/WjPEYq+69GjzV7MmjAsEdA8ENI9wVtdaywuvvPaPf+mXvvHCC6X6laMjdzha9QTJtqPWSdkEodsTxyJae2bfdTInKqC86OddefTq2/75D6X/7jO/VOpYpl0tGzRDT5AYE1IWzMxEgU1EA7QXOBFQRLQwvMiUIbBbdDlh4ujIO5aeAJA8GIHRkdTRlTTYMSghBXHTDrd5lOLe2YIISEHhZAAVzUDN99Uh+95HKikogsDaNeRu1Wv1cYSL0j2AQIh+dkISbmk0jNQAtAkwEWWmnKhrJMflYgKeiCYiTDjKbl7PPptrYDBEADF/K8iSIKAdTCEMgKZhs7siSp+WAEnAiZiABTkREbTOeRv4g2nMdSrT9lzPd37hBCQrhoGYmbOkJAjoA/JguhFflyjRqJBIHMRA4pAnZVepKhoYGKYZ0AkvGJVxE8IZtuRjomWiRMw5dQEew7I9u9QNDAkYDZ1Rk0GyViLmLEPqO1oQmERQZx/77McHzx95y/tlL4YOBAykwAhEOZGja1ceWnzg+O2RMPMyEjIgzWN5cOfuxZ1p3p09/Pjjb/3oD+c8gCmYgzk0vYM7mEX78Bpm4QEQZlZVLxuF0IgH+4sZaTeOv/m5z/ziJz612e6Q5Mqyq+4EKBpMnnOewSdVSghEQQga+yKqjaUNHLAkUZ+PhDdf//pH3/3MT8+4O3tgOjnex9W51YcgLbjP3GcUIuAIZ2RXB0SfLJrk19tFYQSUu2FY5JxwkDhIkKk9bAiNKCQ7koO6qVcLDEgM2SEi5gAD8L0hKQzdAio5R7AThGATq1poYGRnAAQhmWuFuTBBsISHqtZ50m3BrVMQzmhbM6/WITBlYqIQAqboEXqwDC4RKRAQPGFeJCKQCKcgRso8n466M2+dq0BHwkuJP7TaFZteMsKDhfKy41UXnUcQowQ1YTSYB0aFCCfcm8oaiB5Qhi53A3OHjYcICEiBgRDhVuZs27lcjPVs9GJA5IRIFEAeqAVxIuI+JAEChQIixogwJSoopZMJcQavzt6uOkIiEQjPZmoaiq22VAAQi+QCkoiuHi6vnxwc5px4yD2lNH/+d57/73/tZ24M19762GMeTsSI6PuxLkam1Z//SPfg3fWVe9PtsvNzNwJAOkoH73zvtStHb7u5wqGDgEDdiwvqjGah1mAGYeqm4L4PTXc3s0vpLyJQRDMsMYk8uH/3H/7sz3/y2WfBSViMqCIRwJCTELrX5i3bC4YupxQe+1co7F94GIiCsJjni288d/P97/r+D33w5Z//GrPI6kiBsEjqO85dc+hiAAZiBDHQm8189UtbWFhCWXG/kK7jnDkn5iROHAYR0kx6DhHhHCnc96bzFquBEm001cwk1AyLjmaoLA6EJmYKdY4aLpEkWGS82MZuZCJgZCSvoaX4toIyHXJedDgQ5hxISEGtPYsgCB2EIHpgsSgGABGEkJmRJCgHuAtKJ5TG2FavphHugc2O0ib4gAmpZxwYMqdV158MtBQVD1QKZm/hsVEcwozCmTwn7Lp0zAKCnrOurs/UWQgENd297z1YbRFYqYuyHvt+O6U0XkxaWhOeqJV01WPnEE4dMiYmCM4OxwSz05lADHCBdEgwOuRAMAgmQmQCIU5s1jxmjkEhkJogOJZCDy+OTlJP7CQK7F9/5fbZfP7GvdP/z8f+63/jT/34jas3yCIhtt9CRAxKhQSuH6WjG+m9EKyABEQt8RkwwFuKkIYpNv6Zh+t+3YfvJZ/oBq5u6mqm1dVdff/6dUdOxPiFL3zh7/3ML7346uuJchOKt1idpUgTGu2/pb3Wuq2luOQR7G8AcSIPJB+E0dRnnU63f/S7f+S3f+8zd3R9EeOoPRql1EMkpOQaodjaUxiATMKO7SACx0Ano0QpU9dRzsyJIeea2AMU3BoFKcLIilVHNzAIACd3I5Cm+MBozmBEQEcKRmRnVTDC4uiFfCar5qFdZ0Mn0+kDUCcQZCJAKBDFIECE80F/fOXg+tVjZrnYTVrnqBoerV8nYIFoDq0NARGwf9IjMklOuTOoQUP2VQ01a2KVFvtNCICUmBaJlhJ9oqMkJz0sxJIHVnDHNjpSL/O8m6rNJqqENnUIR4cL7A4WOUNyTmsaNsTWFjRhi5YMcIQgZ3RMCaoEoxmGXxRTdwzF4DAwtLmYARcX7oUBRByWwMcU1W2zibHLF+IHbhkokDsL8XDGZnNCRmLOGMzB5Brhqy5uZLrGyFruTRe3z892Op3eP9/tdkKLL77xuz/5Kx/7H//ojz1yeIXBCRrrBwNBCQQjBoa9dnov2wO35mwH8zY9C/eoGqphZmph5q7hFhbNL2gNkNH8J4gOaB7S9/fPzz/+8U/84q/++no3Df1AQTkJQCChNIdokxghtpOWmYUY9r1H8zc7qQ4pEZhJxi631JV8cWf9lvd91wefetenT38PupSmAo6ccllHFCdiQ/KmSAFDDZTAGsgeEUQRbCzByXIKScjMCNwII+7khqphxa3GVN1Kdds3ZCkEIeGenBAk+xrDG4SaQNkpAsNZIVUKBeQSSrZjqbspAoiADEMBFZhJOsrDsDgaTq4f3Dq+ohUzpnHOlWt43UsODbQBU3zPfmPklFhSuBPLDAzROCuSuXdydI+W8MBJqJO87HGVfOAYBI4FjwZfZs2MzNQSUTFcayll2hbdKo8VSxnBxmE3PtRfvXFluRgk0SbJKLLnRyAAE6BjiwUhcGDsurQKMO8Klhq200ByD7BGWEItimNBnFNOIYyMlFh0YVSLamcXh6ssK9Ja3DuE3kg42C0QWIAyBGMPAh1i18FVhD6mNVRSON2sz+f1NO0clZjnWqGXT3z1M+uEf/Gf+RNPHF/Pe9SbEWAKDwCkSwGo4x4jHh7WVGMOZuEaqqAFzFwruEeYu7lHhDWlE+zdUdHGxSxZo37+d7/00z/zi199/kUkWOQOsDHDAAASizC9+dRFQAcnQG+7s2mpv01HgYRZeNY5yyL3HQRFCT97cIzde2697Xd3r/jVLu1G6SQcdrnM524TQRDg/ioxZuTAhBSBHAFBQIHIDCwAwsHsiBHkbk3PYWqmUYrWWrU4GiLIHhcCiEjtHGmxqQAeTRVHzSwNjhHkwE2DlFkSL5diVpESQCNpkiykW3TLoVsuVwdHiyuHywVgBTZOKUEBdqMwDS3Vws2pNn0JIhN3LOQUUIv6bFE11LC1nFkoOZi7AybGZc5Hi3zUx5C8R19mOhReZeoTJiIRJmInBLWorgDFqUTUiNlimrcXRd0DF3TSyUJ3OmsK4ozcRPzWbsMIjWiSkwAGHIQOs2hRcy9hAQ7BDIDOxChEiUg4mJEAIYcvA6qVnetFnaderTu5FnyobuKdsASga8HipBt0FIiBCsF4132atru5WPF5msIjqpsGICFbiULCn/nCp2KGv/jP/omnr92UhrltjYvWEt+LiNvbKKAhENquUA/dq/9NW30fe4CBuamiOexxSuCBhIIZN+vNL//Kr//9n/nZ8/W2kwGEGp44CRO2ACKGxlLdjw0gEILamLbpWKFVIISABIwkHGfjfHR4I6WMkoUQzu/z+eY9t97x8deenfrTZc4ghAGUnFJMp1AAwwi0OVjClMSgCdIJoOF0iARYkBiIPBAsTEPVtYSqW3Ut6jVQMaKFZTAgNvhMExo3jwwARRi0Hr2GOzT5NCEIMhNnEh4WEsOy47SPvpHc9ynntOy61dAvhkTsuyhAmMI5oNvzSnWai8+zzzWqqZmpQaBLquTJqI5q8+S7SkVDgxVQHdRCHYRpyP3Rort5kI86TawD8CLxMmHHkgQFiUgYSSNqQAAZSgWvERGQyGfyneqF1sMKnWupG1dc2eogc0cgZOIEjuEVxaKqqrs5BArZKoEPRBilkiTJuaVeMifhzJKJGJBYiCExLNi7orsyX4w7241zKg/yMUbfUxQKAsTEkggBLdzqvJvmHdRJaziOqluogcZRGXywkEAKEggcgVHs07/36fHBg//Fj/7pt731LbQ3ChMFtRIEEGvDmwSgO4btvZhhBA6ubhX3a78dkGaq4Q5wCbh0JEnu+vUXnv/YT//cb/zGs4Q4DEMLult0WUgiPHMbVe7Dpi8da7GnTyEygkGom5m1DhwRZRYsKN6dHB5lyh0nAsd5Wr9++/ozD10/vvZKOaNlarG6K+GTBWwHuP3AdGcxNQ82hIJbUCCCBzkQAnMDhUKLQvdqEFW9qruTG5iGK6AiOiMxEpMwNNv33h/auFZtDA6xV8C1a6L1G4jdgTCQSV2uHZ0wkSRMKeWcc+Iup1XigUXAvZYNmBgOylnd1Ee1sZR5mqZpsql4dVOdx1rGWYsjBBtBBTf3auAUs8/VS6muFoHYCS+TLDP3GZJYh7giWAoNgomQEemSa8GNB4SMIE2gH+HVI4CSoFNMNG48sK5Pt5VDr0zLowUv2AdkARJ0EvUwIAdvhSKx9NwNqxV6tIZos3MyN7ekEDIyM3OmRcfAccWhjvO4Ph+nTfEt6OBOTqIUjMDhzkiSkRDcwYqFMmlFROIUCKYcIDazUbLI4ZmIgUQ6KKTPvvilv/VL/V9Y/nNP3HyYMJH0ABZBLSWbAH3/OsCGewsIBAuv4BphsTc3eri/GS7ZInKDULKcPVh//Bc+/o9+/hfu3nvQd/0id8TUsSCQMDgB70H5LZA19irrS8/9vuWy/0dS9wb3Z2JBjuqrLh8vliI5dQkjuNaLF1555B2PPXny6G+/9I04YCTkCOIQAl64hAiDUQRWcLs013KwozlQYCeYO8idMVVX9eoGquSGrqHVvQQYtNdXo0ujkCMicNtHuB9WNXm4N80cAWlEIHgQNENcgJnP4yTHx1c4olu0ZAlKQlmoBxerZOYFSkB1pDmxQdWyqfN6nqaplFGjGMxG5jiZrjebddFRtcyhQG26GwJO5mHVwJxSEmHKjJnbRC8yY06YBRMjUdC+AqgBFphYpAvqupJmQHBzq06INBAkGWucFkfBaZx2D9bzG+t+kWRB1LkMmZYDH/W0GKhLwG3qQkiYiaRHhktpPbYfJiIhECO0V19LmuLEKGBHc1xdWqnzHDqJ7UDNm1R3b8ozJhAiIeBkUqDOrhzWGZIGVgPn5EBMXZbl0OeTo4cODw4g2+b+i59/9Uv/6cfO/7Uf+VNPPfUO9z36F4MJgMIC9w0GhD3stulhPPb2RwBACCSwaEIhB2Lp8maaPvm5T//Cx37la8+/AOTXb9xoMCgiV4xBKAlZALUmVDTgIOxnXREAYJfQRQd086pVwTmIEQCRMQxtuei6vqPUoTCZ58zT3Ze76YMfeuyd/+j5X9sWh5wIECMqhAlxJ7xg9MDQMINQ4IhsqN7c7ZgE+uSca7Pqw37Kp83iVva9/kaFQiQibgRBCEakaMb+cAxoLeD2E223TIDvReQABOBudZrleLVYdILMzIgESIah6JN6cbW5WlWiylgCPWadttN2muY6FSsaRaG4VwcDDKE66/lsY4mm0iIjUAB2AHeHgEgtD7PJDAIEITNmhkTOiBRv4kI4gEEYIlxdAQxsrLZTcEBiDEEUAxznikqG4FPd3dlNBIEGZJgoXzvqbh2uHrqyuHLImQLJoeHhLx9NDfzAvI+pEo6mVGlNzuadFw7ihLAKNF8U8wewK2XjXhtwoCGDmrSLemYRoqSzRE1W3KeoBqoRyMSUZbh2ePjI1RtXF0c5p8Tb+7R6ZTz93Etf+C/+nv6lP/JnH37XuyPsUjOJAdhEzhGOZuCK4Q0hQYhAHAaEGBiGDpQAsONcA5977ss/8/FffvaLXypzGQ6XAYHGOTCSWRgB9l0vCNqMBA0Uc7nyEfZyy4YwQ8QIdA+1lvdATaMKFE5+cLKiYWBhZBZmUw8vdj4+9vBjx3LjfH0XjhkdMTDIqzXKZ8JEKBrJwhUw0BwlGAEb3S1zNO1pWHt0uwYYshEFmRuYRwAyYsMMAiIQYgq/nAd7NVNr7QFsvqLWzG1cFGJiInCvc61yZTEweYBzu/FUPWrUqqXWUko1VaSa5xlAY5rncSy1VPRgg3AGiEAKMOYk1CVSCEBHtLbNuN3aHKDIrdRssr5wJwhCIuDm7Yu9JJhVOQAAzA5JREFUZx0BEYOhgG1rOZum0+3u/raczxTBe8O8NFrcrNUnLOZBXG2GXdNSBaSYZyju4YyB/XEPKQW4Vwxt3ihra4lFkCn3ibseMgRChLobAKInjDCg0qE5oGMEZyNS52gpI0jU6ClAhMyJOBgzpkxjxXAblWqwNV0cHebu4WV6vN8NMJv5/Xk+Wz/YWrHBf/2bXzj/G//Jv/Gv/q+eeMczzdqISGDtbHZ8E3Ciik2ME25aW+xWmLXRrlK8+vprv/Ibv/mrn/30ndtny747OBoIGKuBOqp5NWZe5NyJtGVkTZMd+64BxJ4Y1XxiCNhEy+qqpuEEFNCklQEAdOP4uCPJrWhkNq1gXs42J0+/9bsef9+Xv/CzQy+qnomDQ5tdK4iCEcFbSCo6kCNGAJIAyZukkYb7opaoxcEQYepQIXRvpgiD4LZ5CQIJJMygjT9qdTMEQN77hi7xPQIEguRYNeZ5LpI5eiIMUtPqxbwUq9VmrS0ZzK0SqKkZWmitZSyuNQFIIDi776f64dZxitzBgF4cHdwprI0MKSCY9o7EUmrMVTyYiIWJeG8GdyJkAhImniE2c7273d052905mx+MqEBZUAiNG9ekNcV1tNjOUCtSa1LvObRkBBsr93cbFFdPQ1aoGEAOYFHnuW4mLdXd86I/vHmyPDnCRRdCKBweTIRMgqRugJwQE6EAojuBtkcKImILASMSScKCCChBIsoFQOcJcDKswIJ9l24s6bHV7hAnUlrv4u64fW19Om63qjtZ5C9dvPh/+f/+xF/6k3/u/d/9IQz0WvA7Vr+j6SVSsFqZvU51nhtFZq7w2u3Xf+trn/+Nr37lft0ev+3KU295aL6zycZkUOZ5Pt+UaWbAZd/1LALo6AThe+HAZdUcAQEU2CxkCBgNQtj0pJcgFkEC84MuXzk4GDD1krrETABhhFK309Li+5/80D/8nV9/8OAisVhUlKRIEEIqaG/aIcAhENAx2iiWBFmQmYidEcEd9nlGru5qasV8f0E1YR0jSiCBIzpHqKm5aqhieFO4tZCKNhqmPR0WSoSrZ87ScxwizUbmUR0mj2JQCngFUggnR75s1OqsRXdzLTMAAzA5ijqop6o+eqnggQhEQmphGESBjg4U4S3pUkdVJqdCVclRkIT5TX4aO2cSnsNOy/jqxfbVB7s3HpSznU+FJe2v42YisfASgRqT6Vh0KhaOXXssEhAQMThiDdjoBPOca4gRKAWgmU86n83lYnQIPyodSeLEiJYYslIi4U4Y3Jpj2ZETt9h7UIRKjsBOAIwozElSImYSJkQAaZxUA5wLqHP2lPHo2B4+Ltz5mYEFXrie6zSVuVoNs41PuEpfqC/9H//b//THb//zf+yH/6lOBBzCDEFBSzhGWLjZPPtcQWvDGZ1O4wt3X332a89/6tXn7st89T2PPXPzyvqNB36mWYXOjauG1hmqYT0cDlY5JwBwt8unon0bjCgCzPSS1oVNoBDuqmoRSA1JC4xY3Y6PlgeHyyyy7IYhs2oJSYtrR0Aau83Tx7feeuOJX3/103l1sN1MjhXykjokD9cWBlpdHW3vCyUgJCYmaZEE7BTOhEGhYGZV0YzMKUINEMOtMe1aBerh4bPqbDprLW5GjQsM+w8CJAhhFCBFRYzM3B+uJHGbcnsBHU1ni2lWq0bqYO1RAQQIYaAViup22o27TVBCFqSkUatpqTrZNHuZNSwIqL03AgJoDy5o2CncqRu4kx0UGwoseyAXFVA0M6JA17qep9cv1q/c377+oJxtsDpYQEdGij06IrKFEoICgJW6RyI3r54wZUFCq+5zhc0kKZMk9zBSAqdwdo3JqDqODuaV6tiNw6oOJ5kXPSZOQ0J3AtBa1DQgMbNxQBh4TaEOGMBEOTFnYeH2akAiBghg5CyilgYGICZcdHA8uKFfuKvqdoqLnZ5vJyuKgc4YtVQHORju+vonf/3v/d5zX/uRD370mSffMvQ8NA8whlW1UsPBjMbJX797+/k3Xv7tO9/46vnt05j7d1555qPv2zx/txI//Mwju9ubi/LAL3aM6EQnJyfXHn0ExgLVSNWrA6EhQAAB7Lv+rXHYLAQArfPk7mru1ogVSASJqe2Mmw9dH4YhJ+m6xImKW14s+uODtBpA5wUf/uDbv/dXv/JZSDzvvIJJzcmBAHyad+v1vJtdjQOzMAoDOqFnkZw4JxJmgsBAq6porbPj1qye7h7I7GYkBs4Q7uphUepkZYqwRhOEpkXGPVsdmzVhH0gjnSwpD1KQQXDb5gym0zTPcyGr4NZkRe7u4EQU4Go6zdN2M6kTASRAqFbVtXoomHqoI4B7MAEHOqYm8wiIYIoAqjOZesR89zxUtUy8yDJkYDBXdIex1tPddHtbTtd2PoW6NFBoMUD1/XXGRLZ/Mre9JULIiECDyGFPgmVdbFtsp4VHZKJIJO05B2BOENJR6TC2phe7DRj33B2u5PCwR84gxSY1m+bJ3AIgSRfi7nWhpsUN3VNKAImR2xwGaH/QRAA5guQOlksb0dwLdeIZ1+peLUq4e/Vay2RlL/hRREhkiXGQkeLT5fkXf+ONJ569+cSVq9fzcsVdzkMIlLlcbC/ujBevlfuv7O69Pp+d5VqHULN+e/Hkbnv13Q/57U0GypLqxXx+b9tTfvLGydUuxW7a3D/1VGIXoQZgtZ2fjdsITeqwD+VpVmINNzdVb+gWQkiIiaS6ro6Hqzev5dR1qUPmAt4tF1evX11euSLDAkxJ9fuf/tBVGubtJJS1VCamCdR0Wo9lO9o8hSkBujNgYuk6hEGwz8EdJckc6GazByJHKAAhkoFduh9MreYQcHSHUqq7lTq7GWEjoyPSPkYAIIKCEkonWRASYIvhBpRpj05y86hzmXeTtVFiw+21N54ZuROERaiZFbPirqbqUdXMIdorhiEcAN2ttdgpAIAbB9lbUgmKqcGken/nUy0XW15k6RIymhbfqm2KjSVGi1JRgYCoRYu7uxv4vsjZu/qY0Bv/moACheWw55MhCTpD6AzV3TTKBGSgCBRh7u6MgIZdlpitbOY6bs+cq9FqNx8cH3bLpKEKPtbJCNNY6mxw0K8WQEkwGL3NY4haagOGutM+GJjAEYMwAaek4bW2cVVHmRIJybzdjae7udaK3vC4AlqCgykQUVY9Sd4APlfvvrK+N2yQCkyqI9cJSpW6yz4ugq8L9IvFshcW3Yy3v/bypz717Ae/693vuH6z3N0l6Us/PPD6+I0bD187qRfr7TRTs98hGhEEupm92WRtfoF98ePNduyXBmIzdYJEtJRkZsL0+MM3jw4OhpxI0AIE8o3HHjq5ca1brGLognMoHB0e/KEnv/tjX/zV46dvGOIinwzpeJx2r42bURXV0YwpGp2eIWX2IUeXQTJmJnSaw5seClrPF4O4vU/c3TKREIRVLbVOs7qpeWgIBjSgPUNbwpxIBkoDYG7vNiJidzcHmUq1MDWfxnEeJ69GyAEQvnc/tjhvJ2AWogQkEeRjiblC8RaphxCEhNyoLIDAraOwB17Gm+RiMObqTqo4glvotiLvkCgioFYogeYAjtbmYS3/szlCAcIQkPZPNccIFAH/lq1K+i4dLvGwRwo2mx9sCMJdbcbwiMaHNmBCESZHImFRQrKNl3kzTfPF+nx15bg77CGxJqqulTinnK7qcYcgkoi6LsXFBYhjPnQLRAtrBjtQdclCe0UNVw9FUYxafCxV+3S8wJjj/npa70ooNVOnEHvp1CVWRCDIGRZ5ZBhNp4rzQqTY1ssWTVOYkCaGzEHEiRUDyPvj5fV3PvqNr732uc9/dXi/XI9sW7177/7xkG9dOyF31RK17NvKaApRQOu+8udmcXlTQ4v7OSqYe3H3AEFiwoUkRik+Hh2snnr6icQ8HK60VEC5+eStG088wv2AkqJfoCCAkpZ/8ft/9NNf+sJu9Efe9uito1sMD7/6zW/coZcZXN0QWqukZuAeuWdc5ZQ7kA4ZIBQsDKIqmGOAoJcwjOAIAxLqOnKvVtXm0iphdvQARCIhScwdUSZK1C2FF4jZMFGHKEgAWBWyk4xzVdBSyrybQZGBLAAbqckREcAxBWZhny1VxgI+aRS1sZLvSYpEgIGuge0upT1eHd0Q0WE/lnZiDwDisIoa1OJUIVpnGdTBL4Ozoik6ifZE2SYOC3RCYyjhUbAEdo5J2rEVhDQkPupglbi6e0BxLOGu1QHT/ksjAefsAQ3czsyUCVPEiHq/FPXNWuvhEg/76ASJU5dWxzJIMo9tgRCUbuBhNfsMrgwoLQSSqX2j5gZIwKDVHEBSVoNqU0zz2TjNa9TtVHfG1IMAGaA7V8ye0BEqS5LgKAmNzEHnCA/rM0ZKDEnJiUKEHC/t3UgRaAEnV45vvRVffeXOs1/6+nc9fGt8fXPv/tkfePgpCdIya1HUSu4KrhAVrNk+m0W5PRMh9meOeyMqgpmhgyC6W2Y+6gerMxO++6knbl29TpKGgyXndO3GzSuP3JDFMkggpei6kIyUcLa3XL31P3r/R/9/z/06URqOu97tToeUgpLTZBEVyRCVIXLi1dAfLnM/CDJEaLEgG11nd/dQBw+CYA+JACcJixoAbhVKETV3AggQTpm7PnUL4UzUU17kvJDIjS2zh8e4YQAEhUxlrl7LXMOaYTDcrc3hKcgdYAbOSRzLWHxX6ljrVLwasDgiN7Ly/pES0aTI7i2roMXYNEE7AWEgWQSCUXJkMMfEmHh/hnOKohEETm1C266hFinSeB6m7lHBAhR0dpoVhw57JqZISCvBVQKhMMAaNBoWCjQrgMlRkHskJvDmxQlwoAjpSBUwgkNgQnSz7cQXgAddv0qLPh/0i476eYpAMBFIRAuq6800R58rSyJsYnsAhgBUczOrWtQMwoHC0WefywRqTBUzLRgcw7OAUHSFSh+jhUVKQQ6BEsXBXKPWotAHZkqQUmYxCG1IPWg+UyOEGrEr6XBxVG/G5nTz9Rdeyff0fdeefujgxHZjteKhboFxOVg1Vwv3JnBrY0pvYTYe4YGjuYW3fBv0IKZeUpZ8Om+eeuTmW556ppdheXxwfHL1xpOPDoeHTcCDJCiXYp7gqAUZf+Qjf/jnXvr87nQ7P65dpio1stOAGKTmYSZ9eALu7PCou3nSF0oRXIu711JnnUtUQkAWhp4oCcpczajP0LOr++wBQIAtK4k76YZ+WCYZiDrABaWl0EDAaIZgagruZg5qgAFSS1GrrnshYiu4zDwMAVxnpxl0Fzrr/GC7e7CpmxlrgO3nCs0b0QbObYbYgo3aVdpofBQYQQEQjWEHEcRBQYksAWbgLJjQNWACm4wU0fcKxFb/tWdZw9YiYMNQtIUe6uFAXaLDDItERMCAEKBF2kiJnYiQgjrGxsjA1tRG2HPzAQVhAAygjriTlBP3koe8PEj9KkmiWhVZArKCqCuEW8Xzi3PbbE+Ojo+PDiG4QhhJyqktLOTMvVTqU7JeBuVKPU331+PmwhB6htwSCxAwcY9IijNQkKQuKUHVOpXZdiNt9VyV3fOw7FerbujUMQQdAhhaDgYQeRRQ7PtOVr559fxDB489c3grW+EMZbNuBC0IRAtwr2bWAPmtTL3sL+9VFg2p1yDZEa0Tf3WxmuftST+888knCHWn24euP3L11sNpuaJ+CCRgBiJgBiYgAIgw1c104/jm973le371/peLMg+9VguktEw0oDthVAHvO1weL/tl7he5g25SGudxZ/PoxdCQSDAxuqUwc8pIqtxIXYSUMFJgOGaWBXerbrkYpBNIIAumFdHAIeBhVMHCHTRcVdEU3VFgNjNjEA4wRYMAi1C3udZtrZsiM4K6bud5Pc/rqWzm/eqPS9plq/fbzxj3grw9QwkRgZsz390JAACdiAShI+yFlkzLjvsUBFTMdnPAbKNSNIYyMqCB75vTCA6GDEFEwpSYMmNH3jOsWI76dNxhx8jobD5wXE0wBTGhMKYESHsiE+73EwVioCm6ATWZ7MDDle7geNV3HeQkQ5aeiFEkUeqIklnUADPEwHG9Hb+5rVd36ZG564bJQ0n6vgdkCGJCCAJCDE45E+RR7bROm3HOgE6kwiVTTuREKXHqUAeSqwu42UeYmtdQV6XZcNL6YCpJy8m8vHoQy857cfI2piXiMDPCADAw6mAOvXF09WgxlF1Bhy7lgggBaI4WZj5rXCJT9oK3pqEJBzOoGuYBSBFASOFxuFwQ024zvf3tzxweHbnHySM3Dx+6ATkrYJuLI7c9IPuPQES0ee4O5Iff/8HPffwb87p4n4vuAuty1Xd9TomZIlxpmkNw8rx1GTIjwsbnHcxFNLKLEEAKCHOodkmVbTKpKCERKSABL7A7THmVOBMmzsvEA0XX9G8NowJR3YvVonVGbdTm6WwkBs6IwOxgQVwjdnW8v5lOtz4Z1VhPVadSJ9PJQh0AG9dp/0oIAHDEy3TOvX5wT3m95L7sefRBCJ1gz9gnOkhwKOmgo5wizEaFLqBZOsIFEIAiwAwcKQAoEQ1JlokOMg/CSYg5EsOC4aiTgx66DjMjBPeyuH5gXeBogEAgEGiTgQEhcgS3THVwtxYKG+4RPUjuFseL7mgQZkiMHYZge0g1Qb5puLnOgYaU+p3u7r1yWnY6DKLgqi7CCJxyR7lDYWciYgjUyTbrMulMA9tcp7GaJc4wJ5rJckrSSRBBQkZAIWTglktAkFIyq3F3LhdzTB7H0l078CR7MzF5ADoFBKp51GpuSfpeugjUvaSBCMExKtnsamYUrejfm/MdQKMFblpViwhgJAJTW/X98eHyzr3Thw+PHrl2BQBvPHbrkSeexNwrAwsDUzAhSzADtQ+BvXOeo9anbz38tocffeFs/Xp+Ya3b/rC/efXKtePjIXcCwqCoVsb/P1V/FmPblp1nYv9o5lxr7SYiTpzm9jeZDTOZzEySIosSKVklqjXVUZ0FuvRg2IbKKDdSWYJtyZZgGCi5jJKAsg3DsGHYKPjFTb0JNgzBdkmWLImkVGLPJFOZzJu3PeeeNprdrDXnHGP4Ye64lO9LJjLPuTgnIvZac47x/9+3Q1n2szVUC5rdKswzcc4SSq4BbhZhIHM0RztBoaHEA3FG2opMipGwknE96pSd3VEtepvGbal1Lu3Y6sFqVXcYTG+e3662A7uHKhAcobWWV/vlk5t6c4yGVqyWxRuiOQUTCXchJ0W4dTVGWG9g9P4GnYAX/WrVPwwEUkFinRImoUlkPcq9jIus0wSQ1RJaQ9gXYA6vc+sUsh7lG1gGXd3bDPdXem+kzRAq0ckSiXlKPkgoEwmEVEVWeVhJ3BuomkOpuBSjxZabpe4rE6h5s7qYt14V6GBOlbxOkfIxqCpT4jRyWkmMHANDyGFh7s2Wcjjul3J0g8zX+/3TvaaoNvuhUgMTk+a8ybJKNGRJmVVD2DSFMK+UR8bKTyRzhLuZc2JmCfclNSKRlMSVIwuqB4WfYV5m3qN9BDuisQ3n24gMFhLyMMrkLczNm6FGgFQSg6xT0gk9g2+GpTSv/Vwa1HuDgActrYfIrK8++vFWmB5uLm72B07y1huvQad7D1576/OfHzcXnHMeV5IySIlTf/wTS5AgOnxNNdiLTWfbH/78D37r1//RfDGtt6vXHr3zzqO3ztfbFY9ZkhIpBXPZH24+vXq2X47X+92xLcYgFRIi6tBzgmtUoCHYg9xLN8CxqCCBhJChK9UN8xrOzdzCjMKotTbX+bgsS/XFvIpXrbW1CK23S3HwYpZMCWqu14s/n+3VwW5rnc1qDSJiBXUrBcPD0Mn3fFecJkQv5H/GEOifgN4xpVBEFtlk3Wask6yTXEx6f4i1EgncYwlJHil4UTpQzOJuHICwC/NG169fnL95zvdG3mRT6Yk7YvCoyGy9CIxgFlVNomTqlikAcC40lFZe7cuutGOpsyUhNPfqZE4gZMmj0mXyTV7IhQzMohpTwqTIHErg8LAIM2/hZlbKfPTWSNzLUvet1YWKwaTP79qnR16rrBNPI60Tbydac0qa7rQFSZUM3oyNhpRlrbTOfJ6h5OZMknSgyZqBauEzliNQwLdhte7pph5sOJs45TQO/cBYjWqzWAyGRsSsADeLYm4ezd0jDvNSi0m3ClFv2oNAVlut3iyqBUWQMBMHfDutSltqnT/32qP12Xrz8Pzdr31xdf+ejGNerWUYSJhVKSWcuox8yrIherM0uMLKV+49vPD7iumt19984+L80ereWtcrGTIrU8CcpJXpsiEdXz6e7XppLTg8OSmFdK0SUQiLSAkQGyys8exoRKRIgcx51Gk96JjA4dFL0i2W1ua6HMpyaLVGlGQHbrNVX2q4xiGa1eO+kXAi5BJ6bXRVbG/lYFYMYBZhaHS/bj9FO6gXVYmpX3y7oaYz8PxU7wOjdZ/3lHibeTPweuSzzGeDXEy8zRiYQe6uqiIJUWJlbZ1pDqLEHEgkq3F4OG0+d5kfXviUjAKACgWBhKFyOmlzACSqWVWI3GoLAZEajZPyXI/Xu0Or87HUV7MNqipsLFDKxJPSJmOrscqRFaKkmlZjmgZJmURB7EERHadmAaQhD6thaSZTitpiDk4jRsCYFqISYYHCQeQRPODExhRKSfM4jqMySx/0qogkDWWekqxTKLVWJYDRTi6PBUxIZRWl4hhpb/HhYflk3iemdR7Wo55luT8V4YbAbGpBfTNObOGtd8Us5sWOc+t88X4RIsCB6u1QSqmtuYUHU89QRtKUkx7r8vrFvfPNdr09+/IPfe3+m2/SuB7WKx0niJAwJYVoSNexcxdyopsr18QuKOWd83s/+NY7v2XXbzx4593V+X1djzSMrEoM8gU12D1iSGMz2x8PS6maT8t96pBDMZgwmA3egjgCjgY15dFoHeN2nDajKsPNqrm7VYvS2rHOh7YcrcwIE5/Zj9Fqa1Fmd5V9tWNr4cF8MGjztPd2qK2Gh0MJEIjgBDP5bLN1Mph0wutnx/676RzuYgoAEU/an9wYEm+znA20zbwWGgWpbxEiXGNwSomahVlwphZg8FmaLs/W99f5wZrGoYYzgwXMAorQfh/5rB3BrEmEwjyke5FkAEujw3G5nQ/H3cHmemrcCmgQUc2blM4GuRhpmyIrJ2ZRHdK4GWTImpVVTqJHd4vmYaBIWTZnqymrj+SrwYuHo0tKUOG1P3KBFDRlnTLGjKQqqpo0JdbEIioswqzCyiZBo0IlOKDKQIxBxMHUDhoq6rA2Ey2043xtw84WWlrdl6MfLkBfvMgPt8Fc9hXXxcIKtybeYBWtuVvFcjAr/cmMCHdAWMzafp7n0oqbe2MikBCxsIwp1Vov16vzaa1IP/CNr735+e9L4ypt1nmzBXOkFExQRmfQnhr2HXrKiMDYUJUbVqo/+cYXrp5++9H44FHanlEaSUcwERmaCozbbmnmbXfY3+73S62QJCoIDyJCiy5YdLCQCNqymM9ERhvTLaftKq8yifTurzeL5m1pPvuyr/UQtnA0ggXNhBJs0NARoXQ9B9FSa3VzCjITQ2+hUMpwd6CRy0naznw3QvFTiy5Op32309Y4evcyesqflNKonBJrpinnaaBhoKxQAYOEIJ2NSTLKMKRJtW5W7bC0UqCcz1fb+xcyDDyqkau17kfrwe7u3yVmEWFVUgphpgiRFImCFJRLxNKOt8vxxdFeLVGcpkTnSUfVcUjrIZ2P4+UqbdcyJOslKGZRTuPAwynp1u/6JMEhTMgC1YQ8YjRZjTbX1tgCEQ6Lz9RX5mbikZhYweKiKonvmpjc5a0qqsJ6og0xpJkB7CTECZmYhCk1zcQaniBKq5I3RofIx4Zri7nWT+sxrucne4sgyVGimS8aFdazH2FelnI4HOHh3DeTp6RnqXV3XJqFd7MWn5KTY84ePia52GyOx/kHv/GNr3z9G+N4Nk4rHdfEEiJIuf/i/nuCpNcqeznXg0OCvL/88KV7D79w9TK3vJk2K/AIGk9lMRPim7aUui/L7e3tq+Nx9hIuJokiKHozH/0n0IkpKEiaDuZcIwWvlCcJ5YrGETCqtXbAvR28zuGFqAjX8BbUOoebRfOYk84vd6xaytLcEE4URgLhngv3ft6h8BMogNBRLZ2+HYG7Ky8J9ysAdQLuidTYMRe960ii2p98IT3eQ6hwJzohfYlUdSsy5VoK1yoieZN9lYgZ4uHO0o2O/VcTUac2iqhC1AQQ5qAUUHCEm9s8l+V6/+r5y/nxdRTjLDxpvr+SMfOQ0/k4Xq6H7ajjxMLkfrKMMWVVVmURYuWOd42IZO7hZtGib5HUA+6Lw3qcrLVoBnPUMHcjsxPROVr3TNYQdgoTF3KIsRhSMFhEc0OYR/f9NeYAKxIjMWfIiGhGty2VGCrlJqlyCkhZXt349b6+MiaWMbej317t+PvH9qHDjCyitMPtTWuVwt1r9NC/x+J1vyyz1XAhQJlB4cQ5ZQJU5OHFxeF4XJ2NP/b7f2x7sUUWGYb+cu/7/n4MQK9H9LLhqXfozOK+Cq69jbJa61vr1fNlt7r/aGqawhKCqNWYZ9u9PD6/rS9eXD+/2u2qORpFRRgRMUm/aUZ4C2/uAQRJk7HoRImFMzmIrMcR4O61hBf4TFiIm9RmVpstRAZxMARKnDmNK11qcFhbam/7gxFMcHBnoJPEaYZAfS14V5m+q8T+G1HyLu7pjb4WcVJfEeqJJ0enrgoA86gc0UhO9/tAOAmUnAEvLVyTckqNlcIdJnHKGwcxTjNJguRI0k+sThFMXZETRM1adZuXWo/7/ctXt9/91F7t5LVzSgIQBo3E+XKVL1c85ioUMOlmeoYw9Z2OiKqqJFWW/sxEcNRWI5qZmwc4SHPOeejPP3drrZnV5tVabbU1KjUW41ZjLlZro5mTQCg4QbkmySn5MOk4DhcbHzmsSeovCzUSZGh2ksVQ8yYFceNSo2ip0F31ZWmlekNtk4MoxH1Z2vd+9bf4d/8YJ4I3am2+uTnsDtqNNBGt1xSDdnO5PhzdmQKnYy58O47rNJiVy81GCdc3+z/5Z/74m++8DZCqBgykp6F2P/n2f4J7xaA/p0+PRVYokbcIT0FfeXj/4ye/4Ze3m3QJ98Q1MFtc3Rxf3JaXN8dXT158eiiLBZNTNLJqBIecZrbo9QwzRJBWphBmZg3qQyshQ2vRitfKrQQVliXa3Orc+sK0D+yZQ5RUSTPrZ8UIgFiyi0c3NzFEhOUEWjlFEe4eZqenP3OfIjhAfAKK9V2TO3XpD1GgGZqROTXn2jC7e/jCJ2KPh3mzUgGEqgkFRxoSrSZQkICFmZxZSQRCxD1p5CCXnFioA1EDTsFsiIjWnKvXYmVeDq8O1997Sb+y5yHJRZJVUspg4UF5mz1LIWcgvBkCEUIUDgHX5pohYA2O1tpcOVDLXI/zvJ+Ph8MyV0DG1ers4mKtF8OUWRXsrVldai0L5uLH8FadHW5YSr3ZzXM7EiXmHASmUE7DIOMqDfn2YrN6Y+uKxeFZMCQRYUQWFsi83+s+clVfKJrWm5vy6REvb+SwaLN1qAdKi+6D/s6v/Oazjz6ZqMZx8d3t1fNntVVB//IAiMXbbim38+IR5hiIlcgQ23HYDIOZ3dus1yld3+x+6g/+3m/8yDfcLOWRWU8rtFM+uqPZeu+w/wTg7kPRk0Ud7wFYA+zh2flrj/V485gfKMQ9itH1rnx6Pb+8Pr58/Or585uX1cw8ErTDWAB28h5RjVbdPaxFOIuRBJHeffM50MzJC9VDWPFYHIvXYz3ul1a9Lw2IiZWViHtZ113Dmp8GmZ26gf66l8yaUxo1lKKnpd07cZ56ShAnyQlA2uMPpy9AIILhHcVDwhSguQHFCMtcXaJRa26tVasN1dwsihMxKfMmy+VKLrdpRE5ZUnYyiuj2UzAJEwU7iSReCUXEwidVMSPI3azxErHYsj8erm53Hz4vH1zLMcV9rM6me196TUyvXu5NKaYUSkER5ujnPUKgRQRRmReUOVWVgbiUpR5LWZbDbj/vjsvtYbk5ltuFSc8eXdjbr8NC7nPeCKsm6aQab4t1nCzBnczcaq3zzd5nV5CCEsUpmzqOw2qgl1fz9Wb1YEOiBQGwAUP4ejWcDZk+me35Xg6O62X//MpvCtf5jElTNmBuYQ4NgoFJHn/39pf+s3/xE1//nB2XV0+e7nc7WKphxa3AzWlf2+18LKUFQZhAaPD1OGzHlUVbT+N6yDD/oa9++es/9HV2URkC4Yj+i+kzsSXutJXw7qru2km6sxaCiEFg9bpwih94/e33XnxQz58nYUOZ24vr+dObw6vnNy8+fvHiet7V0xqCC0FaEFwCYERzmAcZkTEF2BCMiCAlZ+p+EDNbuO2aFY9j9aPV41KOFu30RCcBdZkmhxPK0ZS4U1d78qa/CCCDyCA6KY3KAoRECzOjaqgWlTSoBTwaKOiECKGIO/SQgCCqTEOirMQRZj7XpdawsKV1hBP10C11RIlABRdJV+N4MY331qvtSqdRVAwcBAQLqZ4GZwgWZcnhNbyjuiUoUbiFLdHmVq5ub55f7V5cH5/emtU4o/H19Ve//uXXX3/40YurXTFi1zER2OvigQhnEicEd3czyry0Y0U1eHipNtd2PNZj8VKjOFVEcbSCo8VC7DJwUgghgUmqtVZ9nutcvFRynB6UHKIRzXy25ggOJiKlOC6xG3iVy+3x+GKfkmo4O/tcZMj5/HJzyfa07D+4LldHrrYJTDnroOZtWVphGRSNolI0C2W+dx//+T/9uXcnX1P+5NPrpbqSV48ZVszm0g6luoNFYMYEFVmlvBpToClzYpxvpsuz88+/85acnunsEdKnuujBrGCgs1Migu4i+6c5UJwE4NQjAR7EOdrh0fnlp08+ePz8O689vF9RX83Pnu1fPtldvffs6dPrfamtA6gNrRjEiSsaPOCJQ5lIDeKUQGgIUEgvTpMjGltpbYd6Xeqx+bHVY7XZw8CcoAJiMPXWLkLCYl7m0/mpq9rQFduqPBBloUGQBAx2CgaaRFRyIjMwWBHNw+x0ye+E0RNHI4gplCl1XyNCqPGp1mbVogSVLiMW0u4GET4b8jtrebTKl1PaTJiGGMWZItgjJEDmjNO/XDwkvJBXRJixg0JaRK21zqXtj8eXN4fnN+V6780jkz2K9ZvnZ48evJrLTSkYh5REZKDqXtxbaZ2goezCThaG5bg/vNqXm9IWj2JklQzwDh1WNnK3KOV4PEZ5ys1H8NAYZQK8LWUph8PV7fGwZ+YpDyHKSXQafXFeNasF5tEMhCjRjsVQaVAT3fM+I8jKFuPn7r/1te//nDh98KtP4vnLbbPJMyEGIZAfrTU/gUq4NWVTIUOAcLle18PyK7/826Ok51fHJFy9LmY1rLTaWg+AUlhkSSo0JF3lYZV0aUcJfuP84sG0WolmYbiVepyXY1pN7I0iRXcxnWY+TD0aQ58dfe5G4iA+PRadyOAWoDQMD+/f+9Wrb+JCipdPbp9/92b30YubZzfLUiOMuDvq2okiwd7v2+BElFjChJEirJ0e2NTc22K1tkXKTO3g7WD1UOuutINTIwRDnTwITv32coJSAWB1+qz1e9J1UGZSocyRyCU6eSaMet89Oq7vNOpl4nCL7oRA3KWW75Aa/R3oDE4sg0oWwFEDZt7g5OhPmyzpbBhf2+r5hCnxKvGQOigOTOSiHtQQtRqMSZjEAy5UKEpUDzCcQ9ysOebdodwclutj3+JRItmo5pTP1x989GyxMsNDiBKDiM39el52MwbIKhOEmAKkQ8rkVqqX5p3oSCfydE9OAoDDQF5suV6u20v21Pa+vrchxrEcbpfjcjiW8PXZtkf0VHPS6jljIB5grZLdYW3RhNjMoZ4RUdrZlH/vD33jh975wkePP/mNb32nVl+LRD2pp65brW7oauB+QGQVaPT7lxsbhccHj5/1OQRKGFGzaF7DHSd7PVJSApLwWjWhHQ/zZhzfenB5MY5kxjCOCLPleJTjgXNeqWQVModEkJN79wTgbh6E3xmO34UiwUEEqixB0DB+cPFOfvH6J6+ubv3mgxfPHt+Ul7elVDBxpnBns0DlaK1vMeBQ5RgogiKBOBwIFyd2JxhFtXZs9dDmY7R92NHrobR9jYXEhE6kdKNgCqfoLEWJCOKkouIV3gcc6AWL8PA7RlWvi/4OMawP4QNkIHQwNdzCieGtwaNvZykxkkjWEKaRZZ3y+WrYjjKJRESxzrV3gBPxesj31rodoOoMJCZlF+6KG2KQWdvNZTejOrsnEiGB0kLeGFAioe5jc0nz7lj3R2vuLDSkLqVJq6FRXO1ueRBTDuUAuzWZF39vx7tin1PLkDywUBryOA5Dy4PmcZqPL3dtV1EcNaIZ7BSg78f3EIqgOtv146t2qNN6pMRHK60dHcGbkdZbAAxJkl1biBsTJ2Jp5gh3IomE5iwyJSEvZZqmP/6nfvrzF9tv/eK3f/vb30sqrMlbQzh1i2F47R/3XhWnEDAHGdCsenhvuna6mxJ5dE9AEPwz/zwzB0KIRpGgmN22Q3r34f3L7SpKAUt4LPPRWrFWa1nKsqRllqQcKbyRyAml0tUXcdqT3iUhT6ROpxAQqP/AWRTPunr73pf+6Uc//9ifPr55frvQYSkErALNw4KKM1d45VYQNThwev4qw9V6zh7swR4cxra0tlhZWpvNSpRjW3aVjs4uPU+PTt0OFnAS5buga5Kk4S1Ceq+2hYUBFZFALZ14tMQ47U47GYw5yCTMAv0NJ4CjmREczL1Zykyk7EK6Ur1I+XI1Xky6GmlgMKMatVAHOqtyGnjS0L7UjRAO6RteFk5hrR3K/unV7pOXti9UPJGIsOQca41BaNAG94a8GmWMelwASBZShEm4E1GaxlObMnCXWESNeb565R/s6kX0sy/xyMo6JM2JRVUkpzRkna8Pdbf40WwhL0aNwomFkAgTs7MIE9COy7FVEmoIJ6MhS4cJASRESWVMslQ7zJaNxmAicBaoZIImrq7F37h848//zJ94dDH+f//BP3728XOmXrYpQR5kCK5hpbU+h3Uz7wMKCwSs6yfIa7MwMLGHlW5jJA44mNxBp2y5K/GQU0SzFmer9bsP7m9XU5gnIi81civHZTkch/XS5qXlpQ6zpiQpqWbc6WI+O/Tg/++fPiUn6eQqohA/6eUCr917RO/R81cvrsv+UNUMAhLAgymYEObRWnhF1BCAicxYjNm7U4EAZqhbUCE/Rt17PVKbwxeP0qh2tzHTydIoRMTMmrJQv9R4MJtAg41UTqc2ISgodSX4Z336joWPCBbpcS7y8GrNg0hEgB4Vq6X19Vmgi6UpjyndXw2PVnJvRVOOnCIxEcNDAyzEKXHf/xNAPaASHUksJFkkDPOxLdf75eXu+OFVezFTBUeniCmtNKaELBhVz3OeRi8m3KEYFKe2CESZVUkVwb1M1S3fx92hfng93grWC6w32k777l7dZCHNTGtOkmedqyxVqlExsiADkTOQXEIlOvcorDp1BGXumo44ORuFWUjHjNZs4epOEBVRiBhTGue2EMePfOXLP/vHfuajDz/8v/0//z+HV9ebnEtZEI1EIsIcHja3pZmHOSwQ/Y1MBDd3OCNOxG4CWRfsRMCIOJyoy3F7C15ASQRhILrcbN+4d7mZkpWFiBII5tasHkvZH+vqmMaV5bkNg+ViWriLZaCMILj3FdjdmQe9DQLcIXFOP9gcRgxYrHX15be+/ItPfv2wYDZDBLN0fan7KXMQ5rUFjBHBBO+XiGAY+igfIAl4I6nBDexdwQSBBITAJ5OyCitLIh24T0A7K4gJBFfKAicesgoTk3EEOYOphc9NEgmTeyCIVIY0jJpnshb72gJBOibuIj+i1Kwt5nNtFWCiIevFqJcrPh+xyn33FImFRToCPTEl6V+ak5SnB19ZmGmklBBLrTGXdrvMn9y0xweZnQLCwhVO1Q7mK5fzLOsh5UQgUEg+7cmALvTintFg5d7udhUQRy316uCfVIZCCGCyPtTQTp3tqzZ0CnGi9blW0TkvNYuV5s2iBWojc2lMjVCcLKhGWBBTSEREVGuHYqvKKpRUNKcseeLDzUhHDItERCI9vNxvQ//I7/upP/t7/9Bv/Pyv/8t/9s8JLYkuS0FtJm4OWF+zWTWLPvfoT6bOD3XvruwOzjmtKU/zbUR0jQn3iikAYcrMAcuSXr84v7eepqytFvVglqVVBZtFXcqyn9tmqftj1THlxfLQtIo2UoM1qMI7QMFPSbG+bQN/dhc+tUSYzOkkhDL+gde/9u75rz17+pt735NbY6rg4lErrFA0IfNwCw8LiMMDwTjVYKCAECt7sJBLEBuBiRgkRF3TRdRFBol1yjIoEiBOd7cVAohd5TJpJOlZznay9SGIa3htUZyF+2pAE1QIIHNbSq21pWFI23HYZF2lAKxYCnd25+CBZTMO60E3I68TkggziSD19IuKCJL2tm//Xp3YVkzOKglTUGooHrbUcnMouzlAUOGgMJjDhaDMU0pno24mHQcI9aFTH8v2lbH3bwAzWPprkCQNw0RpO89P2y5Imc4lkrIk5cQigPZfLB1UrhwpqEUacppqPfbda3PrV4LgCjo2u3XfFzrVNSM6gI+83Mw8ZGSVzDlrpqTbcXt5P6pJkTKb3yxvnT/8c7/7v/B7PveDv/zPf/nn/uE/HSfMxdoyS0fgNQNRs9JadfPeNO0xLfRMf/c/dK0RvP+kx+ka2vNp3ZXEhhCWSYTDg+JsWr15ebFJOTNamVMQIWZzilCRcG+11uNSj8dhvW7L3MrgdYg2eluoClWwymeL4X/zFNRRzB2OcPdNhtOpm8O1XW4u/q0v/fCvPHmfqbV2ZKZo1BavC3sRq2whRDAKCg/nMABGJzmfI4xYhRWZdQU1ag1kQRwkmVOXtAslkUF1GnRISKdZff9oCgcG1tVbZ1KiB8ZRhYOohpfwxb25kVdxVs1J2CENRI7aojYRnc5Wq3trWSUwnFxXjEF5JJ6ER+khHcoaSqTMIiwcWSQnzQmdiYoOgAiGEIWAQWBW4W5hMj+0en0s1wUNQgg3azjh/BPL2ZDur/L5GDmzKKFj/qnnaINgdmrU891dLNzRLMzj6nb+8JU8MHmXdZWaCILD4EsIPMI5CzmFuRkJOAiSwGeDriazhhYeTt6sOReLXWl0LFa8eJihOVgBYQu3ZfYrUIxvnEnK0JGJhbuhPN3b8+uPzv/Y13/31x+89d4vffOXfv7nVluaS12WGc1KR4E4OvGYIshPnjncDdrv+qg9gnPKpt+dwhmnZD71ET7AU1JEKPP9s82j8/MMiEeYCTwcC8KIVqwsCoKbtWWxufi80KpGKV6KtxKWwio3iipdFRluYDkl1j7bB9OdaoACEUTSz7iaU4C/8dYXHk2Xz58+681vn21ZvCzhja11RC/xyfdJRA6uAQcxM0IA7s01QQIPLEXYWjTu2CcoWJREaFAalCeVJOAgDwYIlJSxYp0uzny/uBuMqCEMtFigokTHUzfvTxOX4kwmEW2ZYaaa8pQkp365pKSyFt5kWSuNcirGdApRYlZhkVCmIcmgIArrU9N+GEMPYfYmLVFweGs+H9thf1xujnVfbDGvBnMRRmIZU96O6f6Kt6OsBxqTccCdjISFATO3iNMZiFhTEqGI2pZS9odje1qf7/NZ3v7ABYYgIz66O7W5+FIXIqbIKROhtRjGMeesog0gZeRBMQjBazFvhOAgGWsVGM/OBXunU5WctTIAjmqyq5th2m5JJVhFWTltg7/xxlt/4HM/eg+rD7/1wT//Z//cvFDQfCxh1txLGIBoZh7NjU+XmlMgK+5+/vvmCZ89gukUxw0AxNo/BdHYsU7jyJqGdLHdXmwSLxUA3HuhyQKVISwgNiIWikCrrS2Ll2LLYvNipXZnC6cWTajW/kyGcv8z9NPsKWBz+iTc/WnNECAyYgmz+8PDH33zG9967zdl4HBf5rkcURrDiDx1XwOrsLiCRSrrkcWJOSQDBgkEW1J3hhEa90WsM4UwFgILiVJKlAQi0C68dyC4l0kEOqxG43B3MkGBF3OvxB0Z5tG81x3NWnHiRoYoxwWl8aAA3BwCGZKeZT0faOIYyfluE8CsqpxTL2eQiIgy+qPolBvs3zRiBvffEeompfjiZXcoV4d2s9ihekRkAigEvMn5YtKzSTYjrbNMiswEb621UnnImhOf8OIUBh6kHZYQr8djq8syl3bYq+Tz1y5ppSSgVrE4wtt8qPtadrOXhUGcFKI5D3mc8mqQrEhCKTEQZk1Cx5ymgVUlZ03CiRe9sVVBaYxEkOSsymmT+XIj4zZTJk46DEp5e9QvT2/80c//rjfT9tUnz37l53/h+cunLri9nlvx6rFY7cNns9ZDbJ2pYfEZeCBOycvoJSyAKbznMk9AcALCjQhDSmdDXg8jueekF0OSpbC3Xt0ODze4hyn3n5FGIJARelPYl+JzsWGx+WjzgCFFlTgVYNBLMNSr1nSaZRDRSSoZDRGwhaxRCDjCBaQg/Mhb7/5nPtyWeqCl1tpKeGMiIU/MznKKgGWqaXXU1YEzwExkgcTkRgzJlJQt8cBi4i36ERBCFEqsnJRUSZT4xCqkE7LCbDdrmpIkt+bdG+oO92Lt9M8Jk+jSKpNFj5e34yxLC692XIZ1TtuUz0c5H2OtnsMlAhZMQtLLH6H9S3KnOW586tPcPRxOwgeQCA9ApiDIoVpb3I+OJVJKsck0iBBJ4mG9TuuRVwNNiUalLD2A6rXZfm4vbm1KeRpA2sLCvUadrw++FJtnUaVROaV0uY7twKPAOnalWF3s+lBezH69tLlGa+QezAeEk2hWGYesKYIphZ6txy/cS5tJh5xyTiNnnbYxVGzb7uh1BkRZ1sqbaaBhsPPJNmtfDZw0cd4u9MXVoz/4fT98Rut2qL/08//yo4/ed4rd8XAox+pWm7lF89Y9jSfoDKGzN07n/7vnx50qhrs+hYCIYOIIR/iY0noYsmrmZN4YIUJl2Q8EIfRmVQduwyqHiIp7d0+HEUqfklpErSjVj4sPi+VFVNBVsV3qSkTM4YgwYvZWmIO6xT4qw7wd0WYQM4/BY3AQ6xfv3fvy+OAXX73PE2Ku1HnMBAaLcMqcEsnUOBWRWYdZFMxC5ByN3KSfixFgcSWoQk9fnSBiKHMSTZyYhIIjqDPw3FvzVi1cOefT9pnQlmqltUOxXfN9taWFtUB0ZrtZ+GISgeI4Oo6LjQfLKW0zgkFCkoKcuDOhWSUlSnCy6n2zJgEGMSSoI007h4/kFKRmgUgEIEFBap4ZW5bLKWXKbWBHEpEpsaZuqqakUAaTWUNzPy52tbPjsgizKFgizFvzcozZiYSVeSXMebx/rhcjVslSwAPNsCy2X3x/lFY5TFpEY1i4BXk0GFGEmoVSnui11Xh5Np5tOSUIBTFLWk/6tm5jVXa7w2FZTHliPmMoy6JpGSkkwYVL2ri+nS5/9Pzzb/D6TIdf/hf/6l9/69sI7HfzfrcvVqo3sxrNezOdgzws7jyNPWHW/7PjksASzRDGRADcjSmYjIlHTVMahCkLmRUBTVmZ0CWMYPcIPtGyAubmZsrDwGgNDGc2eDkJMqK1WudZ56MOiZSDIR0rFwyQeWVVAlAat4J2iMNNO+xsnsv+dt7fluM1vGUZdLOlaUjTdnX5hf/ST/zUd/4vf//m8JEwI9i5Jp7HYE3TOESaiFdFx2P4TOkAImJlMoJwuIf0D5+TMCkLNBFCunSSKTElYSEhEhA53APNW3OzsOqtKTM7MUBRrR7asl9sX+qh2tyi1m6cCI9olaqzmPe9hogtXm4OoRErUM6yHTW4ZwP7uVsh0cwC1Wpti6piGGgI98bMxmjUE9WIIHeXkQJRI2qQExdhX2WJzZCTHAqWxgEWZWXIndWqg6PNvcGW2nZzuZntWBzBJCDqylQKFh45JUnCiWVKNAgPiUScwiNsbuV2KdezLwFwbDJnj9rImBqz8SDCyiHEmzxenI8P19PlRoZETOIuCGVab9ZnjQ8E9kqpC4a8hNfgGkHOuWAMfTBu3sgX7+obn1+9eTGdP3nvvd/6pV+c/bgry2E+Nkd1twj3cCY39MIpg90bQKe95GnSEh7BxO6dO+5CbNFEaNDMICYeVZnQwqOWzJJE+xPQ0ZSEDRYwQ2tmFhycmeaGRSOrcEi3VzihwYuVaEQLZBl1Wbqil09cFYRXaERStra8fHJ8/vz2yQfzq6tyrNFmuHnUTiEIJydi+NIKrbfbz33t3/3J3/N//IdXv6k3w4imTkmEeJ11TJTGSpPx2ODeQqLPfyIh4lRRCbdm5hYkJODc/UcsoRI9ZybBTqcNrVurUWcvxWozEm3uZLDF6m5ZbuZys/ihtKV4s1O2r9f3gDAPD1KF9IGl16XGKyAIC3RI46C66bwGuBDcm1mZl+WwWFuwHjJn45CUJYl5QzjcCWwRQ8oKoYbeEajmDRFMPHKSIa0T1d5Co7uwYEQzMnROiR/ndnu0m4Mfqu9m8IkrCkIkHs7GYbXSURuaJ0ImyogUFe7hNs/Lq7m8PPrBEBECHpjWSXVkkLCoqqqo6LCapvNVmiYZhxC2FN26rGGDasrTopWNxsr7aqXOpZZdqwNn5E1a9Hxaf/7s4ZlPZy/5C1987cG9M6fyK//qF5+8ejZ7u5mPs9Vq1dwizGAOI47eie0jkU4b6POVnuAVFm81wrv7hIBBBhXuRcUsDArzUALT6QSqfMoWzLARUlqt5m52ii87JwOXJtwGkqFBzTWCncjMl0JMMR9iyCFwmKOxD1aONGSd1Bd79dGHH//Kr9VXV2g3mUKpO+2I6US0byADd7n78dnLT777T974sW/8+3/ij/2f/9mv/rPDd1zcRh6G9YqzastDk9RInRpXz4bWD3/9rxxBvVkbkCAiFaZgJjZhZ+rX3R7LiwAcVqLMNu+tlDBzqLbScCjLzTxfz+V2bocas/eKN041t/62JRCZuZOrCouYNHj4oZbl1m9nOy44PhpeX9OYkTmEmttyXJbdod4uvlRK4/S5cf3u5bgaqxvZySMWoESSkbBAIsS7Db2H7oiEOSiYwX6y3xrCCBHiBEcUb8fFD0vbH9tczd2ZEEbhFIBIynL/jbOLs3tHL1fL3hGUlFThHC1atHZzLC9n3xEamToreJDxbDVs18M0aNLEMiTJOY+riTUFwZ2DyDhCIKxJkqp4CqO0xrQpoB2ez6UdVTWBQ50eXlx8fvvadofxO7vXLr//7Xc/lzerX/jH/6/vvvevS5TDfFhKMTOLkwSiR3QB9I4C3RGsTmPP0yYH0W1ncGZWTgIkYfNOkafmjQE54Qz6njA8YhCOZha0hB9qPSknI4S4RAxuUiFahULI1tN4RsitypETkeSgWmlZSNjhS519GNI4kJfD7vjxd7/78XfeOz57mpspR+JQIu2LWAERMYspeXiN4CTrMxkveP/+Nzft+372R3+If7X8XHzP7w/Tw61cHykasa/CwgMkytlILap5NHP2FiTh5M29Fl+qO9yAxnCBSyAhEFBEFwK0iNpsqbVaadxqS6TL1aHdHMt1qftiuxqz+WInP+eJyhkg8m6T6lI4Q3exUHUKePN6U1pcz/Nxen423r8YHm1DcbjZ7W/2tj/S3ohItzKIXqxXlbC4UQQj3JH7kKg2JqJwNg8Eop1K95AWzXtyznFa+DiSpISwVsqxxLHW3VJ31VsQM1RQ3D2EmZNIkrNxOluPSzErIFEZchBZdZtbPc7HZ7fYNZrh5JjAKx0uNuv756vzbR4Tc5ogm5TTqMHULMLhykF3emZWYUGgks9jOluv39LVpm43x7yUQz0eHe3iYrOtXD54Oujnf/AHv/jOj305b8arjx//4j//+aOVuZXDPNdm1k4gsz7pp9M559S0C9gpesPs5n3BW6xmFeUk3Pva3MykG9yoo8P6lA1x2pd1UpO0ZkurHDA3BvEp6xjMBDiYG0UIDUkHTUwBLwzRyNw8lobcnBa3SookggUvn738+IPvPPnkw+XmVqM2lVNFrKE1wC2lyJqEo1EfVJHVSgBF3q7X5cmnZzH+7I98jT/EL/qTdr+U6vVgmxYDsZImicSSBLMNDl48AKlBpbQy1+UY89wTgswmREmgQQNhAGeCgOBoHq0tzZYWrVkQGWu52s8vD7YPLy0W86V588+mk5+lW/v0iIVFJSK8BbMIe3j3cHBUzNezk8s4TLHa3+53n17XfY1q3EKmxFuetjnlPNvSZ9R3GS0KMkfAINbgDUwejhNSHX3uRdJRrSzEOfGkZPu2Pyxeatkv5Xb25gSOntINQk/KGJTImI5CO3g16JCI1JtbK20p8+5gh8pMNlQaTdaa721Wl/fW9y7SapIsKes69EzHLNSsGQlYu7a3EAyG3ug5RRWiJL14tPpz9z539eD2N771nbndPnp4n9NZmvXN3/P1d77y1TQOy7Iw4jf+6a89211FosNS+703mpP1TuNpfdSHiU4I9MdgoLNNBaVWgKZhTOhYDLRWCMEnZzTdLQaIPguadBC6UZm9LLV5034H6xdpILouiZmYQ8iTSFLNQ0jiJKlrpFkyC3lDC5bk1j5+9tHLl1e3h0MrS93fjgBzahQHYLJgYxEykEVEs7GziIKY2NxbVwA2Tjwsr54O+dHPfOUHrj+++uY3P3Vd7a7nCrNkU87TEOOK3JBBSjqIzC3m+Vhu23Fv5RitUjh7p5RwENU+eXcEuXb5aaulHRsKAQwhHrP6TfFDjYVQHCWoeZfR9scvdTEcEbjvX/u0mbz7FOjUCoUA7KKyvbx45/UHC+jq1cH3hRf3ACUmPgVTrBlFmHW2IpiEEF49SjM3b3VpdUFU4n7jPkW3unnAIXAOR6XdcS4v9serXd0d59s55gYgaty9ORidXze3VtLiXmvb75bwgLJHRHGn8KXJAgqhNejByBOl1WrcblfbM1mPMghlpsyhKTiZh7oOTov50U1JtCtDWShCIL4rrcqt+i/f3Dz19378wTt/+i/9xXz/HKHNWXXsxRB35JSf/ep333v/t1PKL3ZXh/lYrLa2ND9dgMNPDXx0x2E/FFGPTME9zAPg1TQqJFNqtrAjkfYtQP9dp3sCxSn9AnBiBPbzsYZnoJojoKd644l0DAaESYSZk+o0JJWURKaUxpzHnPOQRWUQXq2mAv/ww8efPvvIrZFhqUtn5FSHuwsFmXkwhbu4MycZ3KKRUYQHRV9DeEWACYrBnr58MD740+986flv/avvvnx/jqEBLr7oVFY5im4nZRUi9Qg3awv7ETFHNOeQ/lONkwGdCPBesDRDDY9qzagwWsJAWA2y3miYSCSYWTvFsU9Qq67MiVO2mYWDfufLRMJu3iewYQGNvF49eOfy7c+/oeNwc/WyvJzjaOEE9fCwhhi4RJv3R1NQ366BAA9zb8V3x7q/xq76dTtUX1Ypzlc5DUC0wxGlhTW4hDvV6nMpt4e6W2I2mFsLoh5k8PCexiYi6SVjd7y6nTOz1QaRIJhbT5MwmFKiy8wjYSAaUhqntJp4NdIkyEyqyCmGYXEWUBjvr3Y3r3b1SMt+YajmgTITC3Ehlhazp83Xv/Tln/qB3/XVt7+PuTdejIUNEh5EiBZA++iTj793/dvH5Ne7V0ub9+14iOLUuqqYO1iNyCOIyRzuJpyAMDdi4ojVajNMo5XFvfSCbNdY9kPOCU5D8AgnUuFq0T9ftfnB28iqQQVAxMlyRmBCJkoEZQwig2pIChVNkpQ1KWd2cUkuazUv19cvX7141l7dZkRrTYgspYMISQ8DOTPUO9CWW0UCHSkO0Vi7RAhErEQVyswjHQnL4dnuDV3/hS98/n/50T/ifG/f6AiP0YTXntRVTBQEYzYin1JYQzKBMZkgwT0cHuJGVsJnspq8gms/UJCEiEiMAzYpBtEhZVLrPigzZ3PveRKVbpHt8p84pSs/e1qc1IVg5qTbB+vXv+/NR48uPcWzp8+fP366XM0BBGloIGO4N+XV1MyPh/1iwSsljmAG3LxZmwPHWnZxNfMuR0tpEmGq17e3T16Uqx0t6AdTgMTc5+LHJU6GegQBaYBKd6aAO8mUCAghFjneLp6YCH3NEBFkIUA0l0lkSqGMpDSIjJlH5fFOYa9Cg0CYVaZh2n/n2c33Xl7qve9//UtvfenhFz7/xbN755HI2Y7sN7CHJN9//60zXXNQdJC2CLEQAt6R8tHnab/1W988WtlzHPbHeb+38ETcrL8pPRAQcg8WWUrtm8JeEOpqZV0Rc2KKvkNRTv0lEafNAPf0JBw5ZQocl1bNtI8QgonS7J4JK+a4g5sQMUtSlhGaSZVFJJEo9+iiSMfZDashj+rcPnny7PFHH1L1lUpbllIbaU6hHS2VwApieP6dd5hL56oOVNw1QOS9miIccxR2rCRFNX+xfPnRo5/+4lf/01/79vrifg0GQ1gjeDHxKpzYWEHOyXUb40aAGuyECIswWPM6RwWialTyPshxdNFXTkMbrAjaQJrGSZe2l9b6MEFATgEN8pMnCd5LD8zCItxHcv1KwKKDbu+dv/v5ty8uzw91+fTps08/fX57vWMST8wr8HrI98bp/kbH7B51roebve+xvn9GqgFycyveZnfXSBrZh4dJ760dvnv8yp8cpRBqEHMkIoAW4BaYmVqEO4hIuS/eIJ2X2z8pICEokTB5tLlSYhmJ+vmdgrqpexowCCemJJRVsrBSNz6yMAmTISd6sNkev/3pi9/4+M/86E//uZ/+6fubSxXF3aTAu2oI3KsbaEF8CkP1n/iTifousPPp+x9+7/H3eEi7x59QrbAgc0UPqLf47P7FKK2xKAnXqIdaVOVye29aT8f5YC2sLn323/NufXwU4d4hb8wILBEWfigL3DlYnZV1vEvPlfCcBBLCPEhKIsp84j6okqgwJyImYWYGRtFhyPOyfPe977569WoCUm11MaYsU4pMWTwJk5Ag5YCwal/fwQnuHqUsUaIK2COYmgQ4EkwAK9FYOLflZq/gP/zGl37joxe/+umzi7ffIkkNqQSwtH7Cc+3CLNacwQwXsIMQDidEJdwZD/riAAEO194IUKKBkUDmutKLhuLiksOpHeKIZnC/e5a4uwdBuSMy6ZRAj5NUNoRUtC3+yePHj58/v93ftpsGET/TdLka76/SxZQ2WcaUxhTkrZov9bg3nca86SQpK9W9UFSRcVitx7TdVMXLj659rmmV3SuFoQ+0W/iu4Fipes/bUuLoLlhlyUIipCLCECJGdHnpqbgY1AvXtfXyGmVFUiSFElTA2t0WMIExLHeJ3eV2JZ+Wm2+9/Ot/4d/9oz/5RzrPws0ieraX+kMep1klTnnbz06Md+qQ0+4q7Jvf/M3rMh8Oc62l93AIHmandAgRiFq0iNA8NPfbeU45f/UbX/uh3/UjP/dPfuF4cz2uVrvbXRI55cl78AdE5n0/JMIBbrXUusyleg0FK/cCvZ9eRAQKa45R8yj9788Brx5rSlmzigqrEvfABGfoSC9vrz748JPbw+0qi7i5ho4pWFYSMsmgnJhZE2kHynbNwOkdMJeCIxhoRoDPUd2NQDUkaYqgObzVRqDji1dDHv/yD/3ev/f//oevHt/mh5cGPoY5M80cA0UyCFlKyOTk0IAYmMLJmY2IPDEFU5LEXkELkiN1/jlQiSI8EJpvd+0IrjzEsADEEtwdQv0qFp1EKMLM3KGIcWpdhIdbjefXV68Otxa+zEdDS+M0XGyGN9fjg206G3nKSL3IzhYECxi3q7KfbpMmKFkxa+ZeSWkznl0Oq13Kty+u51ezjAOtpaXF9kvMzYv54mEWgiCEETggQKJe8mZRzipJOCkpAwgKCJ162242L1EXp+DMNKYQ7c0KCN+l8bqBtjGLl2ZCUQK35fq39//1P/2X/vDv/kNh3m0sd6Fr6jwQ3JXACXdh5OiEjLgjCBAQ0bwcD9/61r8uXvfLwTwsgokMCCYLF+Ie7ifKEDu0hST90T/+R3/6T/3ZL3/t65qGd7/8u/63f+d/sdmOFxer/c3Tk5HSu+wlOsdSkrYgq23f6lwaCqUYRuVEIPKAGYMihPoVweHe9TnVGwegSTWJiIioKDFHuKhMZ+vHNy8/+vRTm8vAlswbgCHRyMG0SjENHf+umjKyqAgL6+kMHRTkrc7LYS63h/k4z3NZRFpYtT0hKE2aatTsWcLCyu7J03tvbP7sD/74/+mXfuH20xd07yxzSuLCCwmgSmOmIfPkNCBGNsipMuMUYJCSEk1CmcWBQlQAb60QSgc1Aez63Q8+1EqtFqvN3U8Llw5JCQRBhDUpC98R5E6AuOg52sBxXtgQAAnyZrt9cL55dJFfn2ibaVTrWN2+MQ8LoHprUg8vlzSO03ayJephScxvvfbo/naa57h5cfv8/Sd1b6vLlQw9SYoWQAPYYkBICyNYgCKYOjwCjBCigTEkytK7zHeC8GjVvDSUamZIgu2IRCpKYDLuu0Q2cDWKIGmUYewsLAXXz1/+22//8B/+sd/PIDMTll56orthy2etp7tsH53SsH2Cf8oCBwIC+vB7nzx9/NzIynEmD3hIVwsSBGQWICKmFjbb8qWvfuW/9pf/8u/7t/8AkIt5bf6Nr39ts718/uT9d7/v7XrM8MY9Qe7RzJyNhJn0eHMzH5fbMtfgM9JV0kQALBAg6/O7brsXFiIytyTSsdFMJClpkiTMIGVZb9ebs/XjJ8/f//jjirZSVu3htxPrMmlMmbIgJZGsKQuSjNNASsrMRHAoM8fkdZjruJ+P+/2erhc+zOVw2FscrfCYR5na8ciCgVPbleXJ469dPvyJ197+v3/vtxw40kQsRBYEzmOekNe8cpZQDvbcQugELDQiJGJCEkrCn4nAa1dO9uJtKEGX23lubqWER7/TElEHnLMwdaWuiHQEQCee9MkyAxBiSUl1UhlEpjTd327un+X7Z3SPfZQQcjoRMjpB1c1ChbPQ3G4+eWkXW1YdxvFLr73+zmr9/s3uw+998uy7H87v3aQ3L9KYWXNk8hHSKNCgLbyh9qGth8fdaYMQQcIkQiLRCzZ9OdSPgtHsGLg1GEg5iPgya1I0q7uFamN3AOzImmgcqh6cxFVChzLHv/VTPzpgito+G4NRr1wREN19dprc47RDobuUfnxWD+n/y8cfPrm92blUskoed4lhvsNTEkFKlF0pf+ov/tn/7l//K2fbB/NSl6U0RF3qvYuLn/j9X//7/+mvwy2JOIWyatKUUwjc43Y5Hq7318fjbo515K1qJiGGk3f4cT9jiUNA2id+0TmGfRMZIpyVu0EhD+n+2f3Nav3h+x988vRTEuQMEVlcm0KFM9GovEoqIppTzkpZZVQkkSGdXrAMojAiIqXKqclqPQzraZyOL55f3ZbIS7Uaiy085gHpcNwNOSnG+XohOvyBz33/rzz++Lef3sboswWLgDgPiMJi4q5cOSbFyEhBIAiEJCIRJ0Dc2c2tFW+tLS2WGkXYPKJSGjTMvbbe2kSQVwsmUJCSJlWV/lbrEoBAWDNTbybuTsyUk65zXmcdEw863tvk8xVtFSsOBYSEuC+QhYQsljJnYRDay+Pu6Qt7tHv05be/+Nbrr2P10beff/Nff/vl9z6uHxZdb2QcWAZW5Ry6CjAwiC2CIlE4UjNuKOaBHgSkJEEdwebMTEr9bgCEV3MPWxovEUYEHs6m1cVaEpfdvr3cxe1CSw+xgoYUOpBKHlJhorSd8tmbF6/DrDO5/MSPOX0KPgOB0F0v5e4TcPrvp+BCBIID9PijJ9WXWpcwh5uHNTrJdSyMSWfzXan/xT/7Z/7m3/rbzFKKeY/2VU8gAv3hn/7p7/z6b7V60z9XHl5qI2ERqa3sXl69eHndqp/pkIKFhblvFf0uThEAgvu+pDcO42S2FVKWIaUhJWHdrFeX5/ci4r0P3n/+/LlFG1gzkRCHcL8aTymNSTSJjEnHxFk5q46ZVGTIkCAFsfcHggMswpEyi1eVMeUprcbx9vntfCjW6u5425ISoR6PkrKnPF/dPBzv/cnPf/U/+YV/+Wq+Dh7mYFZlo4CaUynZDoqV0CowULBBGQoJYbCFRGMq4Xtrx+LH2ZcWVTMCHFhMmQGOU4r8VKkLArNwznm9WaVB+t6uMw56caj1BF5ABsWYSYWyWuZZ3KWqCpCCVVJiokYhiZOR3VZbStvPx0+vDu89by/qtKaL0up7n/6rD14+/uj57slzOxjTSCNIIigosXIOhibm0VN1qy2W6rXF0mxuVhsIpMLS2Xbe9W4kjF6HR0DCerNBjLKkN2h4fUir7EfzA/gI7CAHDrS+QnELrDEPKipVOW9pLSthru4dyw66K32fYlJdCXVKDp7gK/1D0THJbiAQ2JkfP7sptZZlRgQHIzi89cENy1CsHVr7mb/wF/5H/5O/SZClWkD694SdzNFK+IHffP3N73z3qt/Giltp7dX1dal1KUtrBsMomUmYCTB363nlnjCiu1iQdG0mUYA8yD0UPKhMecyq2/V4ttma84vrT69fXXkpQ45RMAQP3WuQZMjDmAdJnEfN40CZZUicRIcUSVgTBJQA8aAggJjcnJiJTCCyTsMqp6x51NunBxz2t0vdtzmJEHNpLYFXnOzlq6+evf573nnn//Ebv6nrXDxaeJOo1MQpqusiWIgWioGRgEQknojDrTQziM2l7Od2PHhZyBqHMeALam3KmeGCoBDt30QiEJEI5zGP61FVIoL7O9o9zCEhxqrqEcRs4KW15Wjh4KHZGloZJRJJ/4EQFQlqt8v8bD+/urn9+MXx41d4MSsQH91+9OS3rNnt7uCtIIJdHSUsM8LZm4FURYlqYvMwFzMvFrVisSgWZlat1hrhRHehDWFSBrN3ZkIYM0iJNmm8GNefO88Pp+BA9Txwy+IDswWCYGFz4VBqZGNUNME4o0hGkBOhRaSu970j4txF1XDnRcNd6AxAwECV4AyJUDKOF9dXy1LsWMmpASTk9YSir26HVv7Un/nz/4O/9Tcc4q1xiAHNLIyWFnXBfHP8B3//Hz57+aLXYLyD5cLNu5uDlFmn7EZAkDv1QDj1yhZ1/ywRCZhPsQoA7nAEK2Glsk2yUV2lXMvy8vb57fW1NVt1zY1yzppT5kF1GsbVKg1Jx5QHzWlAYk6KxJw1lKEKBpSQnADAwASrQf2tDc6gZCQCxsADXdHxejkufpjrgARI1DLkti9lu+GffOfdf/GbH75cmmgq1Y1rdUbzVK1VpopYgIEpQ7MSGbm7cW3aoK3Uejy2UuBNYEZkp3ygakyJg9DMmTqI8FTuEZF0Gn1Sxwn0kHp4eB9IWqe2d5Zsp25wVZa+OHOzEsWyaGKlYzs8eXX9yXW5vjk8ufHbmRoYKC+WEkv3FPadvXsAzV8e7FXBI0YnEicm5nCDcxhzVq8S0pwNtREbebTaOILCWYiUmXtZg702R9AgcpZ54OHBdrh3LjkbB7MQiMGWhPa1zWb1yJkBiYSWUqhMY3rVrvbL8T6dC9+1ONEriv2Cjc+e+NH/nx5h8GiLsznXAW7IBpFgP8xWaq2tSMCjNTcQEWd3W5r9uZ/9L/+Vv/bf4ZSW1vpfIDwiaC52OHhZ7Nd/8du7XGvW5hY98RpBDgn2jvsCrYapultrXmu/W1NAiE6+8v5pu7uVcH+7E5RpEB6VzlbjSqf5ML+4fnU8FIENgwyjjkrDKHkc85hlzDJlXQ1pHPI0igrnDBXOiZIiK4RZE5igFBrEQFjAES2iEtzDQCBtNKVhFM77y40vMtfnZX+oRskDYxaDOdp8ePHly9d//K03/sF3vpvPUnN4teoFSB6emkSNWFrsiTJlEWX1dmzGi3EJsebemnsjNmZ3akYIMt4klaS0kjjO8HB4P91SH25n6Ue3pQeRzdzMzOBEdlJqBsGEfWCmpJOkdceTJHfYXGNZzHl39P2HL28/ftFulpgXmUMsToKRfoLwQDdheo+IWtvNt99+1jbj2ZsXMA4TyeqgoABbmEcPB7lbbVaau8EsAMpCifvoGcFwE+JQIaW0nnTS4WJFU47EJEQJOSWdVnaxrldz3BxBgxDUuRyDDYlz2ZWb8up4nCMA3I3dT0P+OHGf7spZdzV1UABG5WrB7Om0oCO3YEpjUvPaf2MERRCLLNWX4D/4h/7kX/lrfzVPudbGQdGDIiFLjcPBWsG3v/Ph954+Gx68Xh4/aTX0VEfvIJj+tgURD6tBEfvbPaozBZ8MQ6erS0e1CZGcbt6eSUeWpBxE29V6M0zFbX97u5SFKY1TOpvyOKYxsY6qQ06rUcfUy2YyJB4zlCMlZEUeIimPmZKSdHcqSPvdKMIXoBEq0MhauIUTJahqGld8xa9rdpd2tFIRHNURxCy8LPPUdr/vq+/+y/efPLcimhEIbhaAaZijukcNuIdViJLAqRnMuXUhOnMkCg7rUExYSpwTKQE6pDD3Wt2anSyv1HEKQWThi7dqzaqZmZuhOTXAw6p7dVemtaS15vNpuFhxFnOEuS1zebG/fbq/fXyzPNtzNXHmAAfDuWtr8dmEpI9yiJqFgIBou9vDr32A611+sOb+yBlzBMwsqllpsVSbF59LlIbWyIwdvF4RS8DJBeGIIGaRJApS1XXi1eBJMPRTHkcEJWZRcRrzYK22eS+Sxmq+hF0t5eV1DGfphMM/HaBPk/3OukGvWwR6a/d04422r7G4Hc1KVeGkwCgi2KweLMeahajTTZAiolj9Pb//J//m3/lrwzgdl0VYlMkc1XhpcZjbYv748YvvffhxY1iTaXP+ciEizyo9VhinJBuL6rTdzEtl7FofwfWNCEABpd9BZnUjjAAjpzGllvi1s/Xl5nK/WFl25XDIKTYXebsdz3IaxyxJdOw311GyUE45ZckDa0JiHgakhCFTThjHSALNxIq+igmHO0KAFmhENaxSGKx2pQC208CZYgfPXuTTpy8bLBCt2agahNvbq7fW937f59/4R59+opOYkgwQBaLC1IpbdavNzepSyYICYUxGcIYSRrVJMTAEISBqeRqH7UZTYlhIEkdYWLjbiT1EApY7lVo/9piHWcActaeNIwAh5pTz2ZjPBh6ERVgkSMux1ZtyeO9VfXotrkwh/UfGOinAiD6T6kRPCQSCidzBQUPIcjXv6tP0cq0Xg6wGmQZKYn5CBPpSfK5RGkrrEypRYhE4vN1ZqwhIxEOigaHKo2DgyL0NzsEcQWbkydrAEiJL42vQy+NXHr37Yz/xtTcevXFvtX7j4eWjy23UCuG4Q5v10Q5wGg30cQwiwgIWcNihWCnNjMzbXo05b5EF77zzxj8udVpnq6WFg3Bs7as/8OP/vb/1N8Zpaq0l1ujjIeNqcVzscKyfPn7x3nsfz6XUWorVvN2sLh/sHh9lDWKIN4YbEKDVNIwq7XBgDz1RGsAgjrtyVEdgn579vJKUBcFxf8wPp3Wpy2G359bWYz4/W23Pp3EaxiGllFkoTYOukmalpHLnACdVGhLlkbLSkDEMNI6UEjR34CeIEA3ucCZSoAJCRAiDEBxgCwZlymu952qL3B7w8vbppMLgqBaJzEPq8Uc/9+jDsnt5MdmIYYo8kDn2N7Z7VXa3Ee7R0GtSbu5B4kQh4dRPigHhrCCWrOvz9fd/5QdVhGtr0XdnHaoRp+oJ0ylEzmCJcHSINLyv26XHKVmmcf3W+fDG+XBv4imhOw9FZBTPO24JJbOyMvNpkeDo6SS6KzadDtbodpHOMiGGMPneWzvG3tq20rjwJM6neghKs+Ko1uePSIopBayVSpWcSZRIhZk5C1YCyZyJVBlKEDhLP6t4IJHkhOudvdz92MOv/Df+vX/nx3/kR8dh7E98NvKlfvrNx6995Q2eJHBaAxp6aCg4olfY7hSR4cVbad27Dg82373A6iGPZ+mHf+wb/4f/3VJzohBnerXbfe4LX/zbf/dvPHztQWkVJ3AfRZBZzEvsD/X586uPP36ynw/NbWnVQJSni9c/N7+8qXU/TgOwiHmlSkTDOJm5tZ5pFDqxeeLEDew2nb4KADak65Szxmazfv3idVB5ebgdWO5fnq/XeRzyNOZxHHToq4acVokG4aScVHLmnGUYeJwwKOWMlCgPGEbkEZqREkhxQlpYkIENcGBBFIjAHVTJCW7hTBRuC9PwgFe39XD9r29rOU7C3n8TO2x+sF1932uXm7e3cYktlwTjZrev8AndPintqiDMQxyJ3VsEDKA+DnQng9f+MFAlHXQY6qBlLnUxCMDR5wIwYwZrsIK1m/oiOlNdKTLzmIhZEsuYhrNx8/By9fBcthONAgGRR4TKEOtEF5vjajgSmElZqOOLGRTR29Z97fxZ4eazMSJRuBuxCEk0x6GdDrpZ8pBIxVuxSkLo/kkWknEgkrZUlMYIMHlSzsJJs3DKAySxkpAm41Sl9HIXhTUIa3t2m6/sL/2RP/ZX/p2/utGphz6YpHevlXz38fN79zardx/YqarYlbCBfpCPQH83WlCJWFo0czOEBcLFbJbrJ8f1vfUXfvDN1x69++mT7222q2e7w2r7zt/+u//Bm9/3Zi2NIECYRQDu/eLbrl7snz15dX29r63VWq1zuh3Dav3w7devn35MglG1tCCuA0diKsdjXWpfPRIR+90HlbmvmQlgxMgyJhmyPNyMD+69QZJulsPmfP3a5mKTNCmmcViNiZNqVh1yykkGRSZW4aScM+fMOXHOkYSSIicMiXJCSiEZPEIGoowAolK0sIJwohG0ACXC4CUQ1EDBpIlTjbRL4/Juxs1h+eT99ypqSgwPWyoyJvHvO9/Yetw9nAf2wY98ZJheHOXVDfgY7HBiUrhSzI3sjhjTqyxmXsLBplb3y8tPFp3nRVLOmwQmK60uSyvRSpTF5qURc4tm7D4gmEWT6qg5yZDTakjnq+neerw412ngnIIjqJKHmGloQeh6lS5WlNQDFhAIiAMUp0rE3Q6pz1WiP/6YcUf661azQViVpqTrQTeDjNmB6sbaIliE+moZgFv1ahGdAc1MFCoySeY1AAr32mK/97m2Zs0ihLHKHhnXh9eHy//gv//v//7v/10a0rM11AEvvRVRcXxxs//45eqty0Cc/BIR0UtrQdSAFtECFjY3bwEjWN+FuStojeWK5v3x/HL1Mz/7M3/v7/zPTe3Ba6/9R//x//QHvv8L81ICSCru5gFvWKrNs+1uj6+eXT17/KqUWlt48TAiqKbBHWcP3iTKy80rnUQaeDkkIautlNlaFeZwJ0D4FAwnYqHTO2YgbFOaUjpb5Xv3LtbrTW3716aze9vNoDIKT4LVNLKKJJWsMmYWIZUevOWUeMgyZB4GJIUKkiJnpCF0BA/gETqBx0ACAsgIBxd4AxuQgIIIRIF7WKGgIOa0xSaBd5PRlz/3xePVy9vrF6eLPnEEo/mWeff+4yc39OkZbcaY1Fu0W/EyuKxOEgyLyJmJyRdDcMRpbyMBNDJ4Zb++2sn0XR3un+ftOp0LEflS5+N8vNnbPLeGKs6wprDElIVXKa3SsBqn9WrYrPN65PWoqyxTppRY2MMCiSykOWqoLSSUJtWttpul+enoHL15R7+zLsLdQv50yeyHpf7RJYgoT0nXw7AdaUyk3NyEiZNEkqQKltas1Wq1xNIiIiyIOILlLK3vb/NmIKFlt9jL2/Lyyl8uOByDHGMeL8+Tr+6vLv83f+8//OrDd9lOTZ0e97g73LMfSj0sL99/ev8rb8n54N6Tzg6glzfJAuZR3Raz2cLQBZj9whOIYJDS/noZ18Of/9k/8Qs/953D7e6v/o//q1/52ldqqwARo9uqDVybz0vsj+XJ46cffPDxca4GX8rcrBIRpUw5p2EtOQ3nD3fPnt9cPR+GwxyB8N1uZ612jWP/EJ8GRHdgiEAk4nXSSdNa9dG0uZwuqh/GLNv12aiaNbKKZqYkpKxjkpzQ+WqJSZn0dAqinCml6B8ATUgJOSNPkBG6BmdA7jrJgr5sZQEWhCAyMRAS5MSMsGglsBBNGAKHw/bi/K233/rOzW2EE054mBZlVOTSXv32td1bPWXOG03s9UiRk14QVZBRa7DikaMtZsXhFCd8UXDfY1qUQ3319BMd3jyfzjd6kZjUl8jLMh7m+XhbD4sv3CCVnddJN5Oeb8azcXt5vtquh/UEpUhMIqxCwo4TYPq0HjA395a9jeDzAcWsNOoVKXiAmII7BQug4IAjvIvo3U++kX5CIgrNooNIVsrSfWUp9b6iSid27Wc/Ni9mPc0WQUxgHy90XAm5t2btsF8+vYnnVV41vVJ5xS4W7+zykf6Hf/e/9Y2Hn4ti0d9D3cDQOSIBeCxPD1zm2xfL9bffv/cjnw9OILhZdx3AAr1PV927VM+CvMc8KRwGr9w8e9D6eFym1eq/8t/+i6+/+fC1186bVUevVUYgzHrPhw9L+d73Pn7/o8d7K5WsLLUGgplIVBRgFcqSS/iD7cWLf3m1HHZCZKUwQXv38t9MZZx2d71XH6PyIKyM8+1mPU61HiC6SeMdYZg65hHKmrPmFKpgIRFW5SSsIqqUEqlCBCKkiTRBM0kOmSATeOwK+dOe5PRISQBFGKj1NTpBKYIZ4cW5ui0gAxlN2Y766PXXX3zw9MXV8yBKkizMzM84fW21+c3nL47mHny4MRnAEZQzZ0QwBUkLX5xrcHNfGhaQUTgkQB0wg/AWh/1O6d64ulzni4k1h4WV5stSyma5neNVqVeNV6YXQz5bre5fbC/PprONZO0HHgi4p6RZhCicuoo1A8FtlqMOikEwqpyPbbdYCZDf5eOZAAjfTVR6b+SzMxHDKQLkJCzCDOZTsoYRCBlSGnIaMnnUWr0tdOveug7WCRRwmvJwf8XKEc7hHJZKw96weNqz3mpFtORv3Lv/R37fT0S1qIaeJ9Qg7qkKJpUIj9JwKyG3j3/9g+G1zfT6606EhnCXAIGiRTu2duwxfnMLcweMOFp1E2+ACzSzqlbH1374S8Iw91657m+dk38+eLev77/3yYcfPj4clhY292kSae/fsSpxFiSxejZpbovZ7TLfMnkPrBtgHfJD1Dk5xKdovgQUzsQIur/aXK42zB7NN9MqJxWBCuWsoqJJNSfNqeuZQwnKECIV6gce7Y25hCFDE3J//G+gG5B2ed7dwkQ64qDPXtFzy/0gcFJgC1jII1CJDORQ8KRjWb3+1luvdrcFR2aFE9DY+a1p84CG96+rXCZWCW8u/emAYAqGN9DEXIMryUJUGTVQnFqQdRdkeEQ01+FyOzzYTOcrlRQR3szq5G297A51fWiXlVY63FuPZ5vpbDOspx6lBIOJTwg4IkABcgaHZCFqdiw16TCOa9LE4xA1usSX3W1uUdrpJBSOU1jwVNQXIrhHCw4wQbJylhA+zVAZnEJT1tU4jAMlxWJ0oKZZVBhoPYVPICFZZ13nU0KtQVj40brBy1Qjl3YRUqYs7Y137k/j2JZgZ+6D/OYQUFBrFRpZwGdsAm9t2b94/IvfeecnV3qx9WZYKoPdyJbWjoZwb9Z7WX1x3hMUDV4j1meb1dkkjGI2ZDnBGOgEuDOnau7Q3aF973uPP3j/4/1xtkC0oCDpH2kVSimlQTSBdK3D2XZ89tu/afsXiNa3EHFHlAB5byun7gIDEnilrGSa9XK1vdycESKKXVycjdPQmxRDSmPOnDkNWYSJlUS4fzJUOmxTklJWpERDRkpICZIgKSSBOvVWTikp+qwm9DtAOyKOuwz4XU+u3bXlLHwBHGQYNETP71+c3Tt7djNbNI1wREMbeXx3e/Hd6xfz9YE2WXPC6XgT2jPqcgorhhhrrzcFL47qUdytK+482HS4vPAkLIOm4fTY8wjzcbX2y0YAiXASGjIPKVQ7y4GZun7l1D0nPiFOQNFqnZuGJM6vlmZu6XyEe/MqaRBFdnADiteltdK8r2W624o5mNktmrlFEEzD2EWckvsQNCBthmEzpdWQVCAccwu47Fgys57mMhDWVc4XkzPqUoMZEWnU4c1zuj/Z7cxzoaITxk3evv3otRZlkslKQ+8snFp0YJVarKoNF6v15b0XH71cZZpvrp788nfe/r1fh0etFq15jagW7W4P0H1q6GmjIKb9fNw+On/93YcgsPs6q59+Sin8BFVZagvW5Rgfvv/kvfc+uD0cekjz9I5gBjOpSM46DKya03A2pXZ49d5v/KqVQyKxE0vi9N0XEmZOII6e3aSBKRGvNW2G8cFmrZmV+P56O60GTpKzJtWkKkklJ0ra6d6sIppCiFQ5cwf7QTU6fV80KAUJcSYZg4cTLLdbQ09ci94GQoQR+enF0BXiRHBHeHg7XRDdYTXCiIyUxs14+dq96+U6DoUBDVTncHxuvd68fPXk5ugFMiINmQdiIWKAFT3SL0ESSCAnCnBmdoqZrIEMDg6Q5mmodV6WwqRJknaiKDloIIqwcKfgMCHvpROCSOeY92tNf78KgfvAw6qpJCW/ur7Z3ewgrFP2UlMMaUp5PaZhYIe719ulzK0tTYBwr3O1YoB4cAi5eQSgTMoyMBJHYl0Pw73NsBllTKqKcBeu4dgn3ChS4nBIyDqt72+Hs5W3KLFASZPk1bQ+m6ascdu01LVO0ogO6fHL61/91V/+yZ/4CSN3czSKgt4tNDUkKUsV4ftfvv/Jd7/TIjL8+uMnZx/cO/vc20drrRg1UPUTutYJd3b4XoFZajOit774BjH163tvMt+NfykCc/GAloYPP3r23nc/uD3sDB5B0ZfFRGBmVdGU8pDGPEzjehyzL9/95m88//g98U7xJQ8wERFH72oyFDSAErMyDURKtE7DxbjeTlNivlhNm3HQLKKaVSSJZJGcJCkJs6gkFVXRhERI0pt9YO3LIXT3d0QQE/Pv7HTo1Af97DMQp4p0TwQ1ghEhepwJDq/kHfzRkZAGK6AIdR3T5cXFzfW9p8dPLbDWvLc6z4fLNNwnfbwrtWlZvCSTQXVMnLT/oYj7zUeJQQogQgMCmsDNvQVFKFhlQTuU42I+2ZizqmoXnksH8UV4EKgCQWCPfpEXwmfR2uhN8IhTuTsoar3a3X766fPD7khZiCCrQbfDdD6N5xvV3Eq1WtMDG06YLg+3Opf5urTZrFo0Cjf3gFJaK6+U1pouxvXDzereVqfESYWJI0zJ3W2T8lmyY6MKnXR1f503KxY1BSRArGMat6vxbBqybEY9D6VGzeb122dyFf/J3/+/fuOHvz7myQ8tHN4IxfoW0LxC+WDt3ve/Pv3q/evyYlwNFvXT9z7evPlImY9tkQYxnGiSQSfGWiCYjP12P3/u62/roLV6Eu7sqX7DCYIBtZgFe/BHH7741m9+7+Zm54G7ikyPIgYLWHMahjzm9Xa13awGwvP3v/vBb/3ntFyNVBdqLBSknVUd/WpGlAgZnJkyc45Yq65zmsY05nS+Wq1yznoS3p3ij0lZmZRYmIQ6ChYCUoacHA5gIpZgDnTsZwpOQQmQ/uXuZIvPcrJ3Uak4Eb/CIwxoRA5vCCO3HmaBBdxhLdzDnShIeBzGh2cPX718ZfOBmchaWN3I2TuafmPv3qxpa+q0L5KzDqMmQmLJjO661p4oDyjslIBl9oABTMpHs1fLYuWot9NqzMMgWWkQJKIkQRCwplTEPQiNiClZJJHu0CYRYglDuEcLqlZ2N7cvr549/fT21Y7cRTillFcpb6fN/bNxNVlDXZYOQmut2dK8FFtcl4XGueyLHZu3ikjhIObhbMrneXiwWT9cr+5tx/OJk7AwMbMHsqZBElv/g1ppeRrHzSRDCuWQYAaz6qSr88323uZ8Mz6M6cx4npeDq6hszocPn336v/pf/+//+l/5b6YxLcfFzNAQIRzBKZkXGgTKn//xL37zn7ziIuoxP73dPXk53LuEhzenONXueiWn33BI5er25XSxuv/gojTvIq2+Mu4xOgeO1dwB0JOnr771a9+6vt0ZQCHRH/4UwWAWFtakmmVc6Xo75qSHq1fv/dIvHp59vCJjN6EIZiHuQkowC0EIiXhiSUyCWJNscpqGvF5P6/VqmiYO6/QAUeWeI0xsAjBEmYRd0DlBPUsUBOHuSz+18OKUAP/s4X/6uwPhp0f/ZznBvnUviIWiwhuiBQytolZYgwVa9wmEVYMFG3phbsppsxpfLTfGIhBCZdS3pnEsdGjNmS01Vra5mrollkFjTLSSrg5hjuB+DT/tG/rxHQkq13u5nvfXr8px2Q9DWg3D+SZdDLzKkjMrJc6ywsJm1ifKcFmcc9KUVEXUvbXSWq3Hw3J4dXPzydOrxy9uX72azs82D87G9UonTdOwuljlzRjEYU1rdzeHttaOpc3Mi2kT2eZpsc5HFxWVRMxpVJokbXPajtP5Kq1TMEiYicgRJqyiHQQ+5DYvolnHzMrBFAJhFko8chpSHocxj2us9NicDqyhCTr6O19/8J1/8Wv/s//wP/prf+3fu7j3aL45LLXETK0aja75/1fWfwZblmX3feBye59zrnk2fVaW76qu9t7BEU4NRxgCA0NygoohJX2QyImY0DA0MxETFIMhjSJGmgiO5UAaKcZoKBIkARLkAARBECTBbsK0766uqq6srPSZL/P5e+85e++11nzY575MQNnVGS/fu/e+a/beZ5n/+v0DJNQWd59/dvLV76yGRdc0Bunumzdf+uSmm44XSgd3rz6kioCB+5IPFief/Nhrjm7mKKQOCJCtYq3d3A3IER4fHH3pK988PT4xI1i337Dq0xGJWdooEkOUyaTrJtFSunv9+q3XvyWaCZTdAnG1xQ5YtSIYEYQoCjERE3VEM6Kp8Ma0nXRN0wQep/WcRTgyV2nwGOQQEsMI1xiLfWt3Oaxxr4/WXTRCYEYJhzrYKLZbd/hx3B8GnsCyWwYvaOqeoWQfMqQMlYqpGTW7FlfTlHAolExLEePtpj2kPJgGajiIqW40zblmun+yUITSIxIIBwgBI3s2z4Yq7ExExFyb9TXtMHNCQiJjENpfhmXGk5z3VkNZYgCeN3KuDZtdO+uaWQiTKVCXsWisQwReyApGp8AxoOJyuVrunxw/Pj55fHJy/zAfHXvPvNO200k7a8I0NJOu2ZjKtPEYAJ0UKUhFxbhaaLOlDhWgormKkwI4enXHIURBY4OA1IXQRWm4Pv36WhQIXajtGkRHGlbDGKLVfr9ArYRgACAvRYeUTh2PV/1pf9Q1NJt20RmCPvfyuXtfv/6//o//kz/3sz//qc9813y3O9k/6ZfL0yPcmnUxtM7YdO0zH3rh9r/5w8AUGz56/Hh1ekRIxRQMECp2vA5lYvLhnRt3r7zvmXbepMGIyKzmyVAq+tARHHLRR48Pvvn1N0+PTwCJAXOp4pM6pIvMJDFwjCGEOOkm0wlFOjk9evcbv19OH3cMXoxQ2FwRmCoYFBihHee5SYQnIc4IW4BJbKbdJEgMEpiYHJiZJBCH0VKuyoCZR7EgoRNWLRkDIHIdca5VLqzCRC3AYqrACqwACSGMZe71iBK4g2fTFdgAltFLbQB7HjArqoIW1+KaXUtVlGhWSNmGMuTslhtuRGIZhg6NIJfis9BcmU2vHxwioqrXPpc3gFrNbRzNzJg8hFofrUEhjKm2O6CSyLLgacGlcjZI6oPloqkMdLrqo4RpXE2b7tzmsIHeIiIjQCHAUJx4tbLT/f7w/sHJneNh7zidrjwVEmg3N+POLLTBEYCJmjD6AY9Ca6k9wSpEQwnUuKtpVlXz0YgJRtEnuGsxL0TYUCBe353JVa2WkIhYKEIAbzGQqoNX0wgcWwvkDlA0p2F1qgPYanFyUvrF1elsMp9PBU4e9fZg2Umw2P+t/+v/+Z/+w9/88T/9Ex/97s92OtdHe/dvPtza2QgUjWD35Wf3brx7ePfxljTW58OHj7fPnc9W1AjdmNCgug3aWzeuh9nsxVdfLGoGzkjFbDBzp3JWAAYYcrnx9tsP3/hSs/uSIK9SYWB1Ryd0JEJqQmgCT0KctO18Rl1jvnrnzev3btyckkMZxhYXjQxQMmhIhDlQdebkVqQjaQkngSZtG5vYhBCIGYmpoh3qoh8TZ+KKe/EqnoCRBzt+YrXIUzeAW3UnJSABEs8ZAQEEiJ7YBoOCgXtx7UEH8IReD/sCOUNOUAxyATWwjKquakVrW90Gz8sh9clTzjkFCAYFARnQVNn8mY3JBHGRlZGtGHnx7BoNimEmS2QDYzLKhlMyIYj18uUEjAamKnnRp34opRiZBXclc7eVqmXFMhykPiyOH57iM23c7eq7I40oQ1E4PVocvHu4fPc0HSRYGZqQE0WiVkigaMaBZaoKXt8DBKPRv7uOkDtBdUAvZq5FNasVd9VSdOiHNKScUk4DSp7sbOxOGLBD8tp7UHQDdXcidEQhQUBkKuquBsVyKjml2qYgoJxTD1YABsPlyWnISpQvHSQ6lhvvnsCjAZZJIZ+7srV/cveX/9bffPY3/8Gf+5/9R8+++tJkNrl3b69dasraTsP5115+5+D0tO+BeP/6nQsb25qVGN3MihmBRbr18MEyrb7/89+j6EMqKKzmSavvgqthhZ2nPBS197zvtd1zu3/4O19YaNPEDXcndAUDImkabmMzjXHetbPWQ7MqqQwnb/3b359IQSuaVSIamxpmQQTeQGlAGAkYjTFKbCv5LlDbxNA2IYY2NkIEVZA7GkvXDUCAo1khkzBJBaCRV8pMjfEN6pCZo6oROqHDUBASONT5frNCIqO+t/JISg+6wlGhr2gFVCEnVAVVUPOSXK02UryYFa+o45I098VWQ9+nMpT1PJIooRbfbMLFSXv/4QEEITU39EyoGTRaZpwEBjfXoRRK7A1jyyAI1ac2eTGTY03DKA2rSlHAOsJDiETE4gQluyy1hEIt0YSQoAzlZCjLw4WlJAG8ITPFgghEzORoKzPKThRyrFi6ihqqxaRaKEEkN8hDSsvl8mSRh8ENQV2T9ovl4mjRL0512YMjNDyc8mRzY2PXYaR+A2EdQVEAQnRikoiR2M08WeqXq+NlvzhFkaZtuY3gMAym5k7kvXrvZnrzcHlw+/HR4+Ouh9ZRGMBT24btzenx6eH/8W/+Vz/6kz/93d//A1eeuXrv5gM0OEy9ULN57fLh9TcJzRYnR4/2J5tbh4tllFDckGhv/9HB8eJ7fvBPSdvmrAisBkm1OFoVTZu7eVZ3ZyMkknPPXv2BX/jRf/2r/3J//7ibbSKDO5Awd0077yab0zhvjDCVIow337rhR/tbnewfLJuAIqSEQSECzWMX6lgMuBGKcMMuBF0TZl3TxhBjCE1gofFizIhMle8DMGbbRMIswFRP+2q1VOcdqmUv1E+08uysVK8rRAMvIAFAwQYt5MjV4A9B0TNZhpLQiruCu2eFUtwUi0ExsBF7bcUsFytmKVtSSzmv+tyvtJglKGC5sYJuZMDYkp+fSXjkA6AROGRyRBVP1fEALBfMDAW0qDeMU6FIjkAS0N3VpLAt01Cs2gcjAGFAnjBOQmgbbhpqERsycWoIIwOTZS+mvsyuwG2ETXTA4hmGseNggwINjuBNWKc0gOC8Bms5AgF61rJKw+npyaP9k0cHw6JHEETSoaTFSlPWUrgYMNOU2ylFCRWUb06VDUfghmqqDMSIghgimWNaDsf7x8PtRzoUCILzIpO2dDE2WHKy3hvlrb7LD1a3+z6fKuZcGxzCFIQJQEsREUT4h7/26zffvfezv/Tzu1d27j98LMTLRR/a2XznwuH+4Wq1uH3/7tVJg2DDsGw3Znsn+zcf7X34sx+Z7syGotVLxM2LugOZUVFNWnMBcnN1KOBg3Ey2Pv8LP/a7v/GFt/7t7bgz2djeCiE0G+3m+XmYBI+siI05DquHr39z4uqrFWBREiNoWBrmljtAdTB3LG4BuOM2kMamnUym06bpIjVCDUeuVaYaiI7KP8JxXgbqpWA9qAfVUQyJ6UyoUgd2iIDczRwNiiMoGmJh0ALBgNCIHJnA3BNBJjUo2cpQco9GmCuq19gA1NDMzUAV1byoJ/dsmkpJaqV6OrplSkgWvXd3Ygfrgu90Egl7cOSgCOgKWscpzPM4ceWO6GzugGYJgKCwIpE5yupk2a+ye/UNRiCihmWr6c5vdJsddxEaMPKShqEUIBx9ipL5oJ4RjWhkvTBkGIGKRSHXRgSMZ0yNIG3UPSOAFi+rPJycnjx4dHjvwero1FbJilcEixdzcyIk4Waj235+d+vK+fms9eI2qARUNXStAV2pwktDd0chSCkdndjdo+7BEAcrbaGF4dS5VeiYS4lFuj7L0lMxNJQsLYSJoDCxEAsaAJGwS5Cu7bpvfP2bQ/+3f+oXf3Z3e/fB/fuBpM8JNzaw5Gyrt6+/HTe3J9OJgz04Ovjm9Rsf/MT7rz7/bClWzJ1JHRUQEFPxolZJhNWwczQ9RwT35WDUhB/7Mz9w+4MPf/O/+Td7y/0XP/7S7pXtbqNDQQyoBpHDja++udx7POFgOc+7makFiQ2HyMwAQIKaUylu3jC1Dm0IO/P5RrvRidfiNgNhbTSsjbN8NGqoRN/1qLODq2E1MXQ3t8r3oxH2WD9NdAIwrVpgLRq8MAi6ILLX5MEL+AA2DtS6qatiLqRV9OVahygqcces5GKpQHYfchkGHbIltaHkVSnFT8FCUgOgQsFcELam3awNx4MDEnEAdWMAMFz3W1AB8zioauYo7uDExlHcUZaLfaeO2wYFnQmCh3m7dW1rfmlTupgdkpcyFGQnqwwzqA5udS7RSx3hAmDyqtUw9+wogI7M1ISmiTGEsaJT2yCobn1eni6OHzw+vflwef/YNJkVz0hKAIYRMQJ1PN2enn/uwsb57dBMVb0cLokoNCQTdkQM7ABIqOg5DcEZzPMip6OBFzY/tbIqZQkYHY+AY6bILNBgCYkwoQIJeCBvBWPAdTzABEQS0AJhYA7nd+YP7+/9w//hn/zIT//ohUuX7969ZcHAQSbdpm+m0/47X/32ez78/sdHB7cPHnz4c5947SMfyMVyMWRBJHUcVJN6MXeHQYfKFaXReIoAkMgbpKR6mPPlV3Z/6a//xG/8g9+HVmZbE+7aKOTiZoqlv/P2mxM2QUhmG82kmzRNYKyD3NnQdLFUKtpy3G07IGsY510zn0TUFSOM4jPEs1lJWM/11BGfyqEwVQciZjAfRxoAocKJCZlY1aoiQB0CCxEjh9rQh6ScMmEkcDBzHwAUvIxQHTcqTgZotXZcV1Ttf6lZsZzLMECyMqT6X84p5zQMJWdfeRrQGhZMRkYIsDudn5tNHpVFwcr2Q0Qfx+pGlQ2aejUA8ALGAASFvPTqjUi8fIExKDgSgkiYhe3LW7vXtr2hZJpzhuzATtV2FBAVCMlMR7PNatlV/cjUrbpPEEFEajjGpolNQAYFQDOk2hPs+9Xy0cHh/b2Tm4/yvSWvHEIPbIRCAsKRJhw24sbF3fPPbLWzaTHMKa8OTo4e7edlP9ud7jx3vpvPyQjIjAjQA4XWxPuijwfeL91p8d55ZQIO7MAImJE5BmxEIobgGIRDwJl4y4iMKEiEiOLASAIoLsGJOMhs0t17eOuf/Oqv/qnP//ClS8/ceOP1SEjSUDPfvgR3bt7/0pe+nLN88ic+/tpH3m/upRgJA7IaHpyu7u0dFIcQw3w2DxLMQdVGkhcYADsiETCJgp1kaFv+8V/67rdv7WFHbcNBpEeNiPfuPjq8s9cJJ+2JgZEnEkUCcB0vwjRoKSUiThqJU0KUeRO3AgfMwDiOI9GoD6xT2GNQ42ZObk5EYCP4bmxr0cg5UkAgJHXNxYVrT48ISRWhuKKMSUEqWmfAAMEZqmdJdbUc58vd15YTdQ8ouKppckuq2bSUoaR+KH1KQxr61PepH9KQSlJ1y4begkRiQuyCXNqa30xlCZAdyciLVWOcit0wMDRy0yq5rAgexAIKXoq0l3Z1KKAFmaRp5ucnO1fPhXkzeLKk5giKaIhEFIVUERENoUIIgavCg4JalHqBRANE5oZZGJHcIacCpJgRCcpgabFcHS0Obt1f3r+Pxw4osM3czmLrTEyMIQaZdvPdjc3dbYlNn/PR/vJ0sTq68/D0zsEmOT533qe4zdxWOzh3aQIn9ZPeHi3wznF8sPTjUnrzoU4fuHNmYhGUxCIgAlG8YWuRJ4wsVJ0sgBiYHBiJAQNyQzJh6YJ0u7vdab/6x7/2mz/4Q9+7e+7i43u3hSlL4N3z1y6cu3n7xqc/8uHXPvohdS86+hkvlnrz3qO3b9xTAw7BXUnk/Lmdzc0NYc5ZWQirHLheG9GhVkuLRYEXru0ukyUzZEd1B73/7h1YDFFNtRAGUy2DBiAdQ0sHdBFic+lYpmE7tlwUwV0VfQzjzWoBwXE9eTe2pdW1GAAhP1meUKMJd2BwNFAqqVQGJYhTXd4OVrKOfSZzB1N1d6u9strQWztcjm7VWD3vfWx4a60EFi2ppKIp52Eow5CGlPucU0mppFKGZKuixVRjKA4tFYjC6Ben3bxdDA7KYg6Ys2ct1V3T3R2oipHYvarlGNypXp6EZiFzJUNS3OzmF7fivDNKWnIp2UtCdTIDRI6h4YYZrXhiHMBzHQYHAmQzIHQnQAVixkDE5pb6xVH2FfUEjrkfDu8drh7cAZVyOJhD12x055uwEbGtJThHgtBynE66jQkKn5wsj44ODx8eHj08gr2027RXzssk8HCwLHzkxs2sDZMmDJr2T/X+Am6f0MOFLLIuCq4KZWWg0W/dUBzFKbgISGSOQIHWBXAW4AAkyBExME9YOpI58SRKYGQka5rm+PT0C1/8wqc/9dE46dLp0oWSuoi89+Pvf+VD73MiNUBmQD466b/++o17D4+ARSR6ESJGC/fuPD4+7i9dOtd1bVHFgERk6MRgiEQuRCFSXYBdw1SgODDocrm8f/1GKCq5D1bMVCEfrWyZJAQiQsuahgGLNjEKcSSZNNKrrfo+xiYQFaja81GY7OZsoKZoSAbIqKWW7ZGdgRSt1sy9ouXG6r8DALFV8JyPozw+Csdqmsx1YWOdaR2lcQAOaFDZAbU3Dj52fIq5qqqWrGXIZVU8mSbLfa7/paEMfemHsspuRo5QGAyUXRVgc9LstM2j5UBNAyaAvUsx9HrUM6FQMARFNUREcyJyNPJALLSBRG7Fnb3badutVlmz5pyKl0JmiC4RKFCcxKYNzASOZUj9Sb84XgzHKS+8DOMbAOBWhViBDCyt+lyyP2LPpRwNw9Fg+TTuBphAmM4pxulk2m5ORBAIKnKOooTI3IkjL5arx/v7x0eni8UJR3r2tYtX57PpkJo+2xGudIE9xQvzSXLbO/a39/T+Eo8L94oZyrKQeSAZgXNIVPucxkwYgBgrG5xwNI4Q5AgcgBvmlsOMqRPuiCMRMTIhOcCkmzDx3bu3n3/u2fO7W6GJsWuaGLtNCW1rUN1a6Og0fenrb969dxC6KVGDEGviaMAxThaL/v79R888e5mkKieqCQMgoCAyupszVTSEswAotkL39h4v9+51mnzo66RaUQfNBdNqWSH+rnmYsBA06AyOGbCo9VqYpS7ANQIWAIAQzNDqaszFEJHdcm35AjiBQpXUATOYep2GAVB1ZyZFEnOmEUmG9ET8X9uPiE6IY7Oy7o06rVD7QgZ1etXMVCGZarGSteoje9WU05CHIfd9Wg15lXWVLWdI5sWLN8jomh2ldIG3Jw2f9LkvRAjAiEYAKEIN8IRjE5Qw51KyeR5LMUTISLK1PVkIHi+XsWnmu1NgS6Uf8qrkAoYIzkISsZlImDQYuIZzgtCqg7tQSJHTcnAeAB1IrYp9Sc3Ml4MnthzFbbIB565NZ+fPoUQIEYzB2UzrIGCxom4khIEh0qCui8XpyWK5WlkpV87tXNvanRq2p6nJME+oybtVGQ5O8OZpdsKTVXPU+4nqYGhg2Tl51wRwAxgRsMi4Puxr41OQhYiIA5IQReTGJRJ3JB3zhKhhilylAVUESVQcJrPZxz/9kfPnL8QYqkUXwJoS6ghAfbJvvP72nfuHEqfELWFEYMQqka9TD3J6sjw4PDl3Ybuy92gc4HAkAjBaW8UIY0lGRC3x0ePH2veuWUtGcDYF9WJGSASYi5aizJzc+pKXOTVDagNrMTMT0hjQEQRx7L+MaH8ER9NSuxPAAsLsOHJGiRwBCcEcCUHBTd2sCsBc0XLmECqG3rEaco9CaCd0qNu7iieeiOWgGkqBgZm7ejEvCmqachmy9sn6rH0uq1SGNPRDv8x9n1eD9sVULZsBInkR9xiAURlxowsMWlYrkoKAjE4MzExdoLlIKyCIiWCVdQFeqsTAnU2effnc3r1jOhHEUKCU5VBKr5pHMY0QCzWTNs4iBgGsKAcrBIUZQuSWAhKwAFFk0iwOWu3UpKGmk9hJ205mGzEERuSsWDKrB2IEoFR0WA5pldTUawTFbg65pH44LSU10ly9fO5y001XJZ6kcGhxhZPC7KSIDoXcB4O0SDQ4aFi5qhczaANJVRUROVHtExALswiLVL5xPXBrlZEaxEjUEHeIE6rTI2t7Vwdl5uWwDLH5/h/87LXnL5ViQOBUP0usYysAkM2/886t73z7tsw3WVp0qcOwXv8/SuMFQBcnq51zWxKpknZp9MMetQZcHU8dA9NyKFHwpWef/ebhigB7NcpOQGSYi4MbABb0kccIjFl9ORQFTT4TIgXwQdWDhEJKSETABMauhjCW81XZWEyCmDmbOyLXwh2CV8EbIShSKS4OTIYORF7MxskoqcwJr2JpQCcYR3nWGtGzIYiKNB15m8UtKyQtQy6plKFYKiWVPJRhKMOQh5TSmAZoLlDJGzYqxZHZkHFrEiMD9IMVMDUgwjZiQ0IsEjgwMJlSCa6kpgZa836XK1e6SYj8QI6Ol/1iUVYZoEhDPP5P2mnbTFuMoaonQNUAtIrfkVFAADlw1wUqHhBjy9OumTY8b0JomBsEt4P+9DStFmm5GlwTpiRmGqRljlZM1QcoA2dkFEA0zWWFnjYnMpF4vmu6x0NzNPB+2eoxqAUrwUPrzg4KmCSuJCzyUNVgRAiaibCy/4wQuIb4ghKQA7KAROAIEpzIMBIFpxaoBWodO6DWqQHiekw6WAhhuTzp++HzP/79z714SdWAwAgqT6xmGV7MAReDfuMbbxeQtp1SlY6Bl0oHBDB3grFMkFOpjSczZUYa4R2jsxkBAFp1tGCixWq4cv7Cez7yube/8gUXKa5SUX2a1cFBjJ0cBFEdsxObnw7J1VIIsxBNPRVrGxMSIgyILEQKgkSEXltfDG4IVkzdxEkEinu1jaq9YEJidEYrWmcDiNmKATMKoYITIxNIbTOgIwFyrZQAGGKdEXNUHLXgZqAKyWAo1iukYkMqy2yrVIZUUkmpDEPJSYdsfdYhlWwVg5ujkSMpUkQIMWx0TRsjnWbTbEUHAzXj0GEBKcwmRs5IoGZ91t5IEQRgUJlIRxu0yj4M6ejBwvY9zAFRsQFibCeh24gUGajWjiq71r0AFCCrhzagIIm0RI0IB2aEQn4Kaejz8nS1f7gYyiDMTIGBRXHGYdLMNputNs72F48fpSPFYE0o5m5Q8pCGPJG43bUdSHc8bD5K8XjgEwuDsyOjAgABBxQmNNNWRGMoboMVRMEwSi2sgik5oAQIEVmII5KgiAepEi6kCNgBTgynAK3jlDAiEDpwhRMJFrc792//3C/+9Hvf93wxdUBiHtvaQG6IaACgBvuPFo/3FluXrjAigAGwARBoPbDWTFwjYlezom3HNb44w8OM6cB6slcNGCA7L4p88vOff3D/5N2jfzUXUe0LJKLqB4BqxERaAQLMBRDVwUrKJQedN20wz2bMJAgBKQgHDkao4IEFEUXYFZyJRExMggOTw+ihVkXQbgildksQGVDYiAyVAqPUGqQYOAgCko+A35HcS4BW8+LiZGhqpkVLtqHoUm3ImlIe+mE1lD6VQYdsfcop5axe1JJaUsumg3sCzymDsDK3gB3qZDrd7qb3fUGMmlyLZ88L8sKOQaYSWqdSzFdFh4IFrZhldUQxg0ZlGtpp2x7YsQNCQmDDaKHB2Vy4JWM31Dri58UsmQ5FB4VkphVu4VEYiLLBatXnnJGslP7k9HS5XHGE7a2NzWY6l8nOZOOZ2e61zWvn5/PNyTZR/Nrtb/3e6195e5mVhF1zGkpKncFW7DYHCUc62c+TA2t7wgStUfB66XMFUHRCZgcFBUaKErSYucSoagA14CeXSLGBEDEEIiFmYLHAGiIHUWk9dBZnJhsqE6YpCgtR8GyogXE+pW9+481Pfu4Tn/rMR9WKqWMQr1Z9iNV1qjaUVuYP9g5KHpDcRvKB19hkLACuyYeI6ugsJIwOaGAAo9cZqzOCA5iBgxeA5E5ED5dDnMfP/uKffvBfP9z7xu+dp9gIeukRIYEouCEDBeKar5MCZDM1Jc0lW9vENoTIVNwzgBAFTCISmQo7E5ViJaswxejKWlIhRGKi6ijFVH3FkGsgSUBYsiIRCpsqRUARB3XAkcHlAUDW7RXjeh1RcCBUQwUshtlgUBgUB8OUYTHAKmNSHMwH1T5r0jzYkDQVT8VWqivwQg7FfSjAhGiScmP47Lmtmw8PVylFhqG4qpchw6k3Dc2nkTDYymyZoCjU6xoiOMmqh6Y4FWpFQiMZFApQjzzBGBgDOhg4oqkXtGSl79NiWJ32aVlsyDm7KYrwpGtWAFq0FAUyJ0up6KJszM69//lnLm7Mtqi5Ntu6vH3uyuaViZxnUkJUP84bkwdt+/qt5X4rE/V26DfRW2o2D0p7Uvi4dKeAK3PXCYQOCZ0MAVENrKAHhMYJAXt2JeygyVnNsXBl7DJJwBClaSm2GAKQrPVeRMIUBUNTwjTFzcxbJUxBGmQhhAgaPF3a2bi599b80u5P/OyPZjPLziJgTpWbhcCIVooDkYiqPtx72ONgBEB1MgSewJgRRxoqoQM0k9i2IgHM0RW09p8ciCqO0cm9ICWHAaF3BaG9nNrd7mN//s/8s7/16N0337jaNMEDZq0d2Yqk4RHUgesRbh+KuxUFV9VMHJEYoSAmB6YUgzQhBhFWrO36YdAQmJgRgBglChFXWRwQEKMEFq7BFDkhikGg2lZmBAQkNiRAGyVGVHGkdWDGHcy8FM9ZU/I0wKrQYNYn63tfJerVU4YBYFAYwJNptlJAsxX1XLQgFHd3sAzemxC1mDyvLuzMX7i2e3/vYLUqTJqyqbn1Q38Ix4xh3uSVlmW2XB1DhICYG3m0WM2KrlKfi3ZTwZ2sR2b1pZNYnbuqzfGiaSjDcrU6WS2OFv1JSquhrIq7sPCxEDgRObhxFBJmjZc2L/3wRz/20val1vlCu3FhsjWL01ZmRJ2TCqY0nFxI9ipMvrIK79w5vTqfPQMb05Rw0cNyhRlYQ5e5NW6ZwXGJ7sErfggIqZ6OI8CX1N2igAACyWiIxSRCbde0HccGJSKHqvWt0ncSIgklTDXMs2xkmTi3lXc0WJ53s3B++5tf/rf/4Z/9sRgkr5JwnQ0FRwUgLQlIXL1oMcQ+a0l5SH21rUQwGmdh0cHNFYEqG9JAL146P5tSVjWwGKkyjcBV61JyQEJVyI4r8wSQECTIwSrFi7sf/6mf++J/+3cfPLx+cTKLwc2UzNQ9UI1AERHIqhRGHNUAsqqbZyiDoyAwcW1/p6xDsMB1ImbkGtOAzMw1VehzCHEEgDAyQ+mLcCFhYSEmZ/OIqM4GVpyCszNoIiYMAZR8NPow82yaIWXqUxlW2vc69D4UH8xXg6be++RL1ZQ1aUnFhmzZrJq/K6qCARSzwdQIAqKRhSFPid1sOpu/8vxLu1tHqyUslouTRX9yerpIyzL4an+ZV0XddVAczxlEJIIge48PltaYqlkhRp6RUs5a2sAo9XkXRYeq204FVsVWVlaWFiWvBk0F86qoJQOEjmNsW7YStqaza+cvffa193300ns2aTIN3Y40M+ma0IWmcxIDRcsSbAqL90T9RNO/fe+r7+3ay5mHvcXq0eA5axuqt48ANC4AXkjNTAnUfawDABbw5J5JTCJQAECtnhVuaEAxhLYLk5ZDQxKIIzHyCHtBInQOFlqJnUowYmVwCQ7MQV559cqEEg/d1eeeGZJV5w0fDRcrR1u9qBr0RZNhMr9w7XL56r9ZHZ/ML03Na1ughjMMDsDmYKbl4sXtZy5PzRTBAxFXOJwBOAO4OSCyui0MevWiqE6ArkVNadnrzsWr3/czP/mlX/9HR49unWs7z0PjWhEjgjzOotfIi4gB1UpRU7diiKZozkjMJEQhSFBzw0gkAMIsLCEIUfXZYUYMrFxn52u7HKEOHVeKCghaRGpVsos4sXIwbpRFWYqGQFwn+7X40myBeYl9slVfVoPlBDlbcu8HHwboE/YFUsGsmEsdlPE6zFslqyO3ybKaIgfhIVuJVNQ2OD776vND9rRyKJ7VT/rlzceP9g+PD/vjwU0tH1GfU3YUVxQiM5d3r9/ZmmzM2glWPC0BT0hYwpyQq182eHFPasuivdoy28kAxwn7QnXyMiUsCdWLMWgw5J1u88Xzz772zLUXNp7fpitXz+20jBOwKMzcOYoDATKYA0wkbl+YrTZP9JMkH4b29ODowd4pLLSC3UG8kCZkW5eusYK9EBwxOWYnRcmhK5MZNlMIjTOZYy4JhiSlxCAhtsyxumdzIEYSFl5jn4ykSODILMJEQOjsMYYXr+48d2V++PB+N4lEQQ2jYClFiN3AncyLOWjJKRWj5tHxIkwnV65efv4979+7c3tzc2MymRQDdHN0QgKElAbP9uyL51595aKDZvXALARDNqcaPJODKVF2zgYKFUYD4JzUhlIqPfRk0I2rVz727/zIl3/rnyyPD7rQCgKrGpbaUaju87XM7+BE7GbmoxsYOqg5qgI55SIsgjIQCTgjAqCIMGGUwKNEkAKj1B1D1ZqZAUGYJbBEgYa41xI1BGURjoXiwNIQr1iQ2AkQNBcYQFeeB18mHzKoaclWEhS3Va+rlQ3Zs2NWykrJOGu1ecEC5DWUYgevNNhcDAoUwqF4sdxo/+Lu5u7Fq2WAVV9yhoJ6rMPe44P7B/t7B8f90PdFT45Ph2RggKkkRXnr3TvvuQA0p4YYwEkwikiHW5c2Z9NumXLus6pjUTLPxWxIcNrHk95Tyta7ZqekXCxgJO+a9sJ85z1Xn3/x0gsv7j737Ma15y5fmYmQ9zNpGQlAiouCE5JjIzY05unwkd+487Fu8uJJ+Vf7x30aiiMCVnxCBSkZVhUuAYI5ZMCCmIkzBQ+TMp3bxhZ2M5TGmd29DCs9PjFbSHUqZMF1/VuYmVGImLnCTZXRBC0gCcem3drZeObChUvnQqDhkfdNy8WgAGBgdygKCF4t1nPRUtxQFqtUnKx4oPC57/neb7/5xt6do76czGcbEkTVVmlBjt2se+69V689t+XupQATOloxFMHknsHRPZufLvNJ32e1rotOWApk9VS8FAcjckBpHieI588/+5nP3vmDL/anJ1vCmBMqkNs4IOlV1gaIQJWq50UN0MFN6+XBVZGgTz0DjfonZiaiooxEkKkKYokFkYVCEEKvlhdrU2ZumsBNkGAipsFYaheINSaKQuiIFZpZsifNg/cDDe5ZXVVdx+ZWX3BQGkyzF1NVhaojdwAnNGMDQawDmhWhX8yKWnFamE9Kxn55ueFXrz4zJHi0WJ0OOpQyLb7RbVw+f/FkcXp6ulj2OeWh6KjrLsUEeuoP0rL02DYcsBqMTudN3OwUkUE4uSmYYSnZ+5KH5GUgyAGzh0xtoga4aUNs23BuM1x6dfvF91599ZlLz189d/Hy5s5GO+vI+/5EtYQwdfcK1chm4GRF9x++e/2P/jCdHlzcmt98+Phk2SugMzpwbVQBYFlDxIDQERVBiRJzoqCx9W7DNrdgcwfbGUsrzOhGq+Wi+LA6iV69IIRACICQBYWRAwVCZCYHDITOOUxhujk5v3Nua2dz2rZCGckp8GQ2O+1T01BspGmC9WpashY0K+bE4gaLfqB2Bs7ZnEP7/o98uLw/3b9z92T/2Ly0LV+4uLOzs7Wzvdm0VMxTBQTTKINHRGKK5Ive37p768239q688HLXxtPlIjYtR85mRdXds6uiQ8NeOFm3+fKLVvTR69+wfjHvuv70RDRbjQ/dazcXtYA6ITmxkYMhVEaIASCaWXUQVlMGTGCALiyIwLUDji5AQZir8wkiAyMC0eiFslwNQbgJTQhBmimLCbtE4qZhEeJ6LTLwnCBpUUyKyaC41xlwNRsK5kxFMSuoO2i9UpHXgRMTQHGsDqjklVXlgFjck1kPtCylDKnxQVqQ0CQHZJWiVDw2zUx1Z/NczjkXM9NSvOSCiEFEgNAWpqialSfEgZrNdnN7A4igeJMQE3gqqwRlKHlY5LwCNJ80Qk1sdtpOuGvalmZdnMbtl+YvfuLSR1+4+Op0vjNtmilHcDI0pHZIC6JBXRKDFiCE1XD81ld/9/Vf/0eHb910lLuL5f5iyO4OfjY5PGp1ERQRCY3AEQxFmQqxNm2ZzG22SRs7cb5DXUfSMjOCh65z0P3l3qq3udZGLRGiuxMSIVfBuFpiT7OONi5d233mhTCbAgcUJy4USI2atrtw9dzJ6ZIFVzltdpOGGNXNoAzmIAh+cNpnYEJWc6iT5QDzyWT3/S/VIpogxuAEYI5Z1WpVZGQHjnwdVVys7PHRcv+Yvvg7X919+9GHv/tj52aT0/1lO2mkIa+zlI7VX5Ei5xyg29z90AcNbHjjjbxadk2nK6tlVXSvzVun6jbiBmgkBAZW4901hB48maMruZGjO0JWcCMkRKpIXABApMBE4ELCiELATKFGS26BljHE2KQQmcVYgCWEQKNdLTpgKZAsGxagAlgMTc0NtMCgqA6m4IoASurgCgiAjEQARBYAxDEYEqG72VhY9uzUKw1Zh7QcfAm6LM652sMBCBNxaADNKs++SlJIHVLKechycTqjgi4KbMQUumY+myGxFiPDfsjDajX0w3KV+sUwLFclOweJ3aSdNJNuGttWQrMVmguz3RevvPyxax98aeu5yDNHAbexcsDehE2DOUohROagSdPx3Zu//Y+//o9+Ix2eWqLBbVnyArWgOoKzGzqPapVaUwQDUiRnVpTMrLEt3cwmmzjdoekOdRvQRucAUcCdRCZ8frE86h8+WEFqsWV3AhASBWPCooUANybUgW7uTp578Wpu20RWSJ1GQ10CiIhXrmwMOS0WdHLid4ZjMHcbIlEUNndhDNJSbIu60zju7IYpGRg0DQoR49g7L646Yt+rCAiLQvVuMMNlby4T6uyA4N0vffnO/Uff9X2ffubypaOD02YSuIvoZFrQvZgbgEdJqVApO8+/9PDOo9xngYQsbgqk4IjmbujVArlq62BcBKP4DgFcwcFJzVzByKEyQ7x6qrpVmQaTIGqlrDMooVdthBAJEwEEYsKVyDIECgGYgJmFQAgZAQQB1UnRgRRRjdSrTaCZkgEDEzigE9dn6HUEuRpgCkLDPEXIBYIXNKrsXUByCEVxSJYHW63yo4OFNeEoFVUsAIbs4KrmVkWtFJibdoIx9ikvjlbSNG3osJmFJkpsObbCSJoN2PtVOT1crA5O+n5IK0unmRYWfbIRms2NzfnmvOsmbezmcefa9qVXr7323JXnt5uNplqzEQt7WqV7d+7fv3/j4PHDZQYKuQsTPUj5xtun3/gyHz7YKXAyxKXmAcvgZdCkCMAMtdNIUKHpju7Ijqwoherqb7SZWDfzbh6aKUkLHEZTp6oscwoEu5ef2UuLw8WpWB8ooKI4B4kp9S+/8MKnPvK+jWk7nC7e+PK/OLr/7saLG5mDIAKSIqATKAjgfGOOjqs+F4OTPj84OH24d+90ua8pI1DThJeuvPDKe15sm6YquqvckhHUPRdAMqnXmwq7IlBzGM8kAAAzc6ds1g/ubdg77o+V4PzFR6vhd3/n6x//tL783KXj42WTS5y2gGimhj5gcTLnctIv7Xghm5vp8V4Br7wMB2B0QHcoa8F/xdD46L9QFdHjXqxEFTSIimaoVt0/TCvkkQDRs4IjeIUqUK1cITPWzQCBBACEswgSE5MLUuBK2UQQJDaq2CJHrrur8g/BAhIhIDuyyeipYVXMLKMc14O7IQ2EETIUdCRyEqTAFJhLHjBjXunR0QKnXXZRFyB0QNM1nAsqT4ebELnpkGMrrUiGOJWua7qunXZR5giRzSGfaL8/LA5SPoYhk/fIK9nSjcvTzRfPX766dWG+vbGx2Z0/f+HSuWvbs91IUzOGzDIJzPL4sP9Xv/fF3/4Hv/3Nb3zp8f7dIa+yY2y4IXqWp5+bNJ/cnnQW9odhYZCZloyrYgZIJDUkrqNKBnW0hxzZUAqGTKISLHQWOw8thgBBXNDHdjtVODALkfnG1nlMq/tvf/vg5LihuLu16eCLfvED3/PZ7/r0x6wYOGzunrvwzC9+819/+fjBw8m1a+rgqIakjmCGaA1z5fiYYSA+t70x25gsVpcPj1d5qUM+fffucTt99MJzV+IIjQJzV0cAKOM5CjSas4ySB9UxIqowdgBfFc+AZnjz7uNFMpk3053ZMtuXv/EWSbywMz/cX8wMKIqZlupW68YKwWmxOEHNyAwgCAMSVbRuXeYVyTkqlOsQTOUy1OuQGTgY6KgMXfOAHNXRtULMzcGxgNeLDwI6FgQkVAauyh6CUiGOFaFbL/6hqrMAQTywM5GcAdR9RHsQYkZgdgSrpw+4MBiCGRKSNyIBsTgU75vSd0YBnYo6QUAnMAQE4262syjt8QpiQJMAHKoRhtS9ZdUkhAJHhLrFEYSlzxNcep5w7toQpiKNxLabdCKTdu7hmdgZY2xmTbcZ58/G7QvtbLudzkPHjcQoAKzqCGKGMoutyFHRv/PLv/73fuXXv/rtL6suYyRnwHbiEha5kDdX5xsf3Go30ayoRRsyKEICT6BVGEl1545jFOhQ6wh1D5CTOAuMBL864GdQR7WriykDIDkSGgSUS7vX8sni/uu38wxSShH585///s9+9oO2sn7IHKhkb6X54Pd917d/71uHcmPnmWcHB/Ts4INmcmcCdHU3cgwAiBQ5bkzjpWbDsuWS++WKTkp/upTNeZV80Xr2f43EBKMRwmDmNb9RBUNQd3VXoGVSEHl43L/57m1rWw9tr8JRhlTeeOvm5P0vGJTFYtFqW7yYZQdDBVYry2U+OY0pBxQ3dSR3rYNeY29tDeMAr/Lkemmw0TUICdyLi6EhFIBKa/Q6NWbOFVLn7tXFvAZ5CuRgAlhczUFRqbJRNKB7QOCK9EUP5ILggsweCKJTQBbkplLWEJEwEAUGBFJ3M2Ikd2RgDiFKyxKy+2AWlVq3lkKHtHDUgqGVSLRI6cq5i1vnryTYWOUJaCPSVno5CXEdxAVAQgQiJVW3XHLB5elCdrevPTvffc8L53bO717Z2tm5eH5zc3czTDoIHQo7S6XLAzNQA1Jxy27glW7txIIZLHu5uX/4//v7v/m3/59/78Y73wbk6TRQaF2r8QGlnILlFzcmH+jaZwSnXpYEBrASSE5ZzREMkSpduU4gA2kdNwMxECNREiUxGpn0gFynLNDqsWu4Njmi6j0DhZr2wqWrcNz3J8tTwp//6R/77Gc+NiwTQ2za4JAB4eD0cGNj/t4feu31P/zm0d07u1efFbfsfdGe3BC82oWh1Wo0mhEYsBmiaXCYxTKkdHSUAnWTqZs7MtE4I1X9lGltBlE9l7y+TEM1N8CUQQsq0Ts375wsFxjQTK1YNm+5XSz7B3v7O9uTRRm0DIZWKhFsAFwN5fjETwfqDbwYubkT1FQWxynYEZBwxjkZJftoXsdS6jFSLVzWs2KmUGhMvUbavsP4XoCDep0Hr3OVruiOhkjuikDiKk7ozoDkHqv/rkM0bN2jewRwhsAkRAjoRIZA5IZoJMyBRQIxSWdhZhTFFbQfMjBBKApw2goXCiWVHujalWdfePW904uXcX7BmzmGCccmBCYREQZEQq6MVQSAAp7Lol8t9o8O9x7K//2v/Ceb3ayLIshc/WtQBInqcJN7qAkajFYwMPYY6zEGyxO98cb+F77yL//oK1/6whe/cff2DZrBdINCCG5uaEiohuYKZbjW4E/uTj49iVe9R0/Mxu5KVtzVDNywCmiA1uOodaiCzcmc3Lk4jae9gxuRISiAOpiTG7ozAFV9ZhXvgpv7ZDa/eG7nnTuH/84PffZTn/toGgyAMihX2xq3tps9Pt3fhHOvfvyDb33tjYPbb29fvGoGIediWsBGENR6UJYd0Zzd0NYmPxJSX9LhUpxDG5MquEgj48SggSPWfKYqPc0cHWuh0o3S4Oby+GC4cXMvKWVlNEezTDaABqZbN/cu7753kQ+HlB3Uzb04DUqLFRwe0WqJQ/JSzAwdwUDH6QNSNCNyBzODqtVHAGQFN3I0r3wGdCNwAymoNWIDFUU3X3uY1zjI3XFNOCMwx2rqieiAPPbdEMypIBCgggsB1Kk8NKCKBan00uoz6MxohEoISEFYgqCwh0ChC3EDZNtQ2LPqqi00jTJ1nK6yay5kqnBp99Jrr3zwyuVnNja3JtPNJm42YdI0k9BINW+pVtEj6cgRAE9OD9+9/sbew4ene/vy4d2rVoWeNjos1W5zpcMDw4jFG8W5UN0HjdzBROjuvYP/zX/2X9zae/vRo4dDwY0r54EGt0VxJWjcAE0RiuTl85P2Lz3/zI+c22hTakpRpVMjs5AtF0RHqdEOAjmQwZgTOQh4MCc1Bieta9tIz9Z9McvKWbE4ixM5mxHySC5GDIwdhLv399/3/Cs//mM/BIZFrSoacnVkIAKneXfu8OjQN6evfOL9b3/zrf37D3YvX0le2DOYOXDd+wrIXo0vgFxhxL+iA7RMOqR0dOI2kSYmM1WLjYRYYQlWxUsOCGj1fmaEBiVZKrgo5db9h/vHJ6loMmVkchCyQiWD9Kr9siQsrmVkP+UCS4PjEzhaYN/7kDxnsJq4VvguoAFoJeI4mIOBulYuhNc5RRyJJ6Wu3DGBRwencQspmKGhIRgWAq4F+Bpc1WjKaK1TqIBSqAd/hVsDgRERso3oMiRwRhBzckRHQhEIgoFcWJlLjE3XUNN6aE2mRo2hFBf0ScBpTCcz3rjWbJ/0q8y8u7vz7EuvnL9yfj6dTCaTbtI13WTSTWI3kchIyEzISKOezazY8dHq+jdvfeutN0jK8cFD4WJSHFEMx5qLgte3jwAqD7rO7wD4WDcbUTJ1E+Rvv/1GKifPvHCNJ88cPLzVD48RQS2DiddJ+Ty8srnzv/zgS5+Zy2a/KjKwuiMbRqBsngGAgVKdHgVQBCcCRKtoeSOrW8KhqAM5MLi6ZaVgzuq5WErUNKTObGwW2QkNkNCxo5geP25Bf+4X/tS0nfbDkkXA6jAD1HHwGqnMpvPj41OW7qX3vXr9m28+vHl94+LFVfJxXLlOg48dCXdHr3dFcBuNL5GKF0wnC3RDkVIUs1InErhCH5DIaorgAEboWNRW6sn48fHp/YODg8ViVYZaHwqG7u6K6tp2cnh6ECfQaxYnLCaD4TL3hydpsYJh8Dx4KV5pNQ4KNXQHH13ovFYzFai4hnE2l6oHDZqN3VqoLrFj4xgBzclxrMUxsY3vRGUrn0VMFZo7zjZXsvs6eQOszTRiFEVmJESMjgGQ1YSxmhA3HGOMTWyb0DYUW5IGYgRpOXQsLCKCzD7wsJjs2GVRI6Imbm5vzbe321nbNSGGICJt103alkMgBmQigeq67gVWqRw8evydb16/8fb12/duti3ev3dfRkoKQKUYGVvV2QOguguAjLwkqzzbkSIJXszU6YWXr/2f/m//1Z/9mZ9/Y3lw/oV8/tpri/twenrfIBQjRGf1lyaT//z9H//wTubTPSsFNQMUAHYyRAMHIq+WghkBAJXQakGiWqhgsYpnVXIAK2UdoBXNhYiRCuRiQwliTB5YA2oQJLSJWaeZj5af/+hHX3jx2b7vKbAzoyk7GLBDGdNDMzDtmu7w6Ih2tl768Kv61Tf2Hjxst3ZW/WqMhKEa4zigIYOhohk6IiN6LThGRlS1vDRuWhIqOXniOGkohGKKwlHEdISjq2MZ3IBO+uHW/Yd39x4fLU/NjCu/GxFdMCsEb6fTk2ExFYJSABlSwT7rYjUcHmm/kpK9ZDetRctx6KqObyPC2DZa6+OADbQmtoDgdYrcKtYA19cLNHAaCf/khLCeeQCuWMrRHoAqrHUEbNXegBEhOTNjYArCIkGEiJ1CCMwNt7VpHCFGiTFwbJvYtG3bhraRtuPYSGioEZEWJWAMRmSExgboWjyhEWNsmhA4NpFbiYGZMcTYdF1FX1Oo7i1goMVKSnnvwaOv/MFX33zjnUePH54sH3bzcHd/X7KzVkAYGDiooaHXjqkhqgOCMyqMu5sBfJz3BFhpWqThY5987a/+tf/8b/ynf+3BgweG4dXLf+bmnf/38dFCmBnTq7PZ/+6T733vLPvRw+yn9RhixwLu4FwLbDiWzw08o3r1jKxXbEDzgihuGdUBgoHb4NVzEIfkVbwm0SVByEQSmCNAAzZ32i26PeQLW1vvuXZVMpSAoznxOOoK4DRy/wABGBza2BweHu1sb7/0vpfTG995cPCwm8yKji05pyqiAVMj4Ppvd2BEM1BzJyMiT5514MDCYqnk3tqJi+DJKjchTNrYOK9Ul7lPwIcpv3Hnzhu3bz84PCxqYC4G5simhJ502Jw32PoprYqHYKagmJPlkk4Py8l+zMlKBs0jBxPWwa5XVJCOOS+QwViR8CqvqsWh0WvBHRyQzbTOYo7ok2pPW0spDuCORHWUpEKka3UFiFiESAiJSZgpMMcgTWhDDDE2EqKEiCISQiMxxpaFmUNkCSGERmIbYwwSIreRm0YCUwgiYXQHJAJGF6A6NCT1SkPEVeGBLChSM2euupJq4FTpiCX7wweHX/vy61/52tce7N199PjekJf8OC76pSAgulWxkmHFHEFwqEN+OrZhkQBVjdZ81ApBiBCs8WWf/vRPfv8ffvPt3/xnv3JweOP2/P/bXJ7DcESq79lt/rcvf/xVWfQHDyY2eAYouaaOGSCBK4FW0yxEA1QzRdQaxHsdolVHUFcAcXCqB5iZgpE5AJK7miuJYzAIZkSOsaGJ8ybws+rPN83UQlysmEAjOyEZQG1mqo09d1xfzN1dgQGPDo82tjbf89or7c2HN27ebadTtfpMiVDqqLerjXMu4FZpDwDqGdS5ZveqikaMxTWfpqaNFMPRcnmcF5MmyiwsPR2XdP3RwY07Dx8dn/RFHUfNKwMFdseh62Dr/ERjcrRsGQqKIq60LHrdP6TlClytJDMdiQVVKjsOqjpAQKhpjBNRnUarotCzYXV0cvGq2uAKkqqfiJkZkJMTMQATE0qdGCASFmEWESZm4cCxCSGwhCBBGm6aEIJEiRJjiE0IDYuQBBERCSEEEq6kDhEKrUgMzETMFEafDg7MxDC6HiASYCAWeqqpXfUZXmN95jHBB0ADOAPblWyHhyfvXL/1zq3bBydHe4/3jk8PARSGlC0Jg7N7cchINuKC16AjHAEytY8IRupIXDdALTZCi4hSVm34pf/wf/7GreWtt/+Ho6N7eIwqyKDf99rzq3hwa7m/4xkzQK4YWwXHApjRnMzQiqG5KVi2rMiAWCCDo4IRktUJWgQAL+qEgVhU3T1VuAasvQYBUNWy5qA2JdgheHYyOx/FD1b01X19/9Vw7tkMMLLunMABVZEQjAHM0cZBFqei/cnpcjabX7t6BVlef/2d+daUkCQEV9DR69OtSgocyMCr0z0aarZcnNkd0XIdrrcMq+MVxNCypIfp4J2ld7z1qZ1V43fuPbz/4EFftBhg7QE6IAIHZIaNnZlMmyEtHcHdMLsNDkdLPDwsR8dxyArFSkFQgvre1pOhcsmJKSCCaSYMbmBgCoowlmFqdWoNPwEhAiRmGSkPyABcTWaERCiEEGPXhqYTro6VjcQozBIaESEOIiRRQqgGkyQcSFg4MjEicWASGRc6EZ7haQIhExFUetMYaKOvHXgdCTlQ9UgHrAPbNQ7ztUNvxQhU5gSNm7y4m/d9vnP7/u37t4+XRw8e3ds/2HfKjOiQXJNURSrU5qGRY7U8qHlR3UVuI0tsDYlHAAJFLOpgHpiZ4b0vwqsf+titt/+B9QOSDsUoNn+0d5+2p8ecXzJAxVYZ1AqCGyzJM5qiqptDsOJavEYiDurIo7UOAhKYj/uSCKrOUTCYZ1QcNWUGWQEdYepqiVZlG+y1y5sXZ0KLFU+6fHJkv/ZF+Ivn6dy0RvPsbpWYalqze6zohiqXlODuQy5dK5evnN/bO9g/OJ1vdLW7imNJzBEMrBZlCdyhMGDBGpWpkkMkJuMYpGlDB0ZaIK3COaYZnN57dOs33936zHMfPr/9xTdvmBeUWCkUSA4ERri1sTFpxNfnBhSwvqSTJe09hKNDWC29DNkVzSqyB6EuZ6hghio7QkfmAITgTgxjBQjHVUhBhAOLCDOFIBxibEITKUaWGEKQam/PEiUyE4sQj6e4xEBMwoGrWHS0pEFirOCxiptAIHRk4WrDUZtfWIlLiMgwmk1XrlYtKY0tdR8bWHUjjFc2cDBac42qZrLqZcCNgQDd0MGcyIdU9h7u3b555/jk6ODg4d7efQcNzAheHEtRcSSrTUO3ilFQACB0HzFnVQ4CtfaOyEAGbobZ3AHYgAlDhE4gcHIt6ASmTG6oX75z58FR860uvr9tPkmzFzhsZAP37LgEGI2DHAzQ1Eup+agZktWPHBjqikcENyJSK0RQa3SMyAgMgGoI6jDkJaMDKk55+YHLO89d3IDHJ7Qq0Lbx06/kb923//7L4T/4rAUBAgJiFgb2kgY0AhcFhCqlF4RAxFpSShjb7gPve/n1b72zHI6d2B3cC3rVhBkzohq4mkMDwAhiBV2hGj73PWWLqnp8kFenNKivFieLXoib2F715t5v3X7hez7wvRd2/tmNWzQhdiBiB0bmyWyyOZnGaOBaAFCtGQAPj2n/GPYf8ZA89aAZsTbUDH3EF9ZyJLgTM6IDhro2mZEwMDOHICGE2ITYSIyxaWKIIiG0TVMN9JpIEjiEMS5hlsBM1Z8KR6AejdE2Io6VdibCsUFUCz9ItXOGPDYgALH276n+czRzXZMCqgmT+8jhBcRRLovr/Yw1OgMHXe+UcV8QAgLV1J4ADbwM+ejo6O69WwenDw6PH+w9upPLsglS3LheltHFyih88lEd4muiKdVCBNWiXb0ROjMaQDZQJzMFgOwE6GWAx+/+EeFAFKFAAHTXAni/z4/19O2Gb8yX37u59QHmrhBoWJqCYHHNCL3BQFzA1bWWrW2M7wBGpYcBgbsKB3Xj6l/DxERSzw4E0kKpZ+CZ4ocvty+dj+H4QB8PwC2dI33u+fjh961+90vDv/5S/L5PotS5EZdGpkEoJ1Ulc2fVUVzC6mAOaShtg5O2efV9L9y59fhg/9QhWS5BVWwVHaJbV6CWEIsy5576BZ6sSr/yvqehpzToYhHLwDlhNjdtodIEoaV4IXQP/2jxI+/95K2He+/kHlgMgQQmjVyYhpaTQlE1LCkUDKsie8fh8SNZLcRS1oxeirvmGuJXIn2dZBQiCW1sWomxDSFKI7EJUdoQ29A1sYkxxhAbiUFCCNUlvo0SJITAXL0SaE3TG6WjNHLyqFJccW0DX7+LOH6DxrUOIy6xHuhn0MQ6mjSq3X2kBlTrsXqdx7WoEM6m29BtbUALZ501WOfzVWlYXSwrCRYZqZA/evDw6OjgZHl0/8H91XLZNk1JgzEioTlyNUF5Whc4Co9rT6R2NXD8jeaGgMUgqSUrDlLHVABdHQ4P9u7de0MEwcwNydnczVDd3Pxh3//+Kj1eLvan2682sy1D0BywqJVClItnpwSMrobmXjsChNWEwb1K4xAB3EQE0BGdiZlQiJnYiQBAQNu8vMTte85tUnK9f6JpAy93/vwFf+6yY5m89lz60u/bFyJ/4D20NcvoxYwZG2RN6F4z8lp0VVAEEPDgCojWNc2zz12ZzxbvXr8+7B3kkxMcDtuiqz4vB+WcI/Sk5mUVhqHJQzBFrerfUt9VNgCiUpsrpOAOaUUpl1tvN134sfmF/8/d40WH0AQUvjCd7sYIsjplMzPJOE2FHz+Cx3shDWKlpKKeDd20IBHXoDwEiZPYtDG2Tdt1s0k77SaTaWya2AYJMUoTYxvbuuArJo9r9CIiJLWEQ4ijrUmFvlXCLdVBrBpsj7xD9DVjsf4hgvH2sF6gY9mpnqwj+260zlj7XNXwpn7AIxOJ1jKq2mVwR65xP67z+PWpXy8BtRJbC2FVBAPmkJb94cH+g729uymfikAuKeUcILo4CQtFIUJnqK4yI0ocR7ki+Ig8A9N6YUXHXCyrIrKDuXvBynvCW+++e//2vTZGMi1u7mJm5KQGqGwAJ9nePdF/sTg6aPRZal/Z6qiEYSDKkEvIQOaJPdckANDHEMgAeGy9r1vy9RBBIiQmrNdkJiJqHHZNPzyJ81L0boZFQxcn5X0vwnuuto3r/oH91m/Tm99Ov/fl/MIz8t0f5Q99kGfzouoAVL2gNbqrV5g2ggFhwFqiIvLAeO78xNLF69+5AffvhuWjWU6cS3QKZdVYL+bBC6tKLZ+MPcR6TUOGEaQCsMaKk8fc+8np6Zv9a6985vnI950awLabXZ3MGNOpZy6ZnakvsH+cHz4MeSg2pDKAA0kUJmGJk65pm6Zrm7Zruq5tu6brmnbSTtqmbbq2DTGGGCRICFFCCDEAYgVASKj4xzr8y3X5mxuM/KsxGa1GYesmEIztUFgTLMZzCgn9bHGPcsbRDnMtJTirqtTKCvqZvma8xzgO4Ig4JoVYY556b1uHBjWGAnx6o6034jjsQG449MOCxHNOew/3Tk+PhQRD13HDkVaOEgM7+QqsFDWzgggUfO01Rebohm5V4O7uVGcl0L36XxIYgCJ//euv9/3p5qzN/ZEgmJuBgaGbuYKgBHT0Zonhrd65ofMeugycUpscCyA5G6EJQqmDHExs5jxaHK+jvfrSHRgZ4EnoKcKCvKH6GoWXlMPeoWFD5yb5A8/BCxe4Rds/1N/5sn/t69Nlz5CHr9wv3/56fvHl+MnP0cdfwZ3t7KW4Ewk5syOAAqMhEpOb2virMxKdv7KLH3z17t51Xh5M9bQFACUp2mgJpjReGQ1HDCgBsLkz1POLqFoKo5OjIQrpRCkvUzl4/CGectEsPA3dFGDhpTdrS9G8XD3cs/2BFoldjYJ0oY1dN2njZNK0XTuZTCZNO2nbtm26JjZN08TYdiFKbEITg4gQcwjMzCxCRDh6gVVFjrOc8YR8jMTHw3Uc1xzJ6GNdBJDWnOlxNVTbmTMNL4yf0/hAa3Evjmf0+iZ+pvkFONsSuN5R69W9Ju6e9WzXv8BhzIm91iTXOxMQ0MyI+bkXX3CER7/z6PbNmweP91hiN51szjamjQCkrgQhAkJwDCaySuYAxSFr3bZoBlh1MG7mAE7VMFChGIJiBcNBdnjjO3dYBGrWLARgVCVWboIoqg1hYy5GjnSc+3eP8MrWdBl9NQxrXjVoBbGCA0FBE+LsSixUr2jI5EiOtQpcneARAhMLUOt4ifg1lK1+oMUAV1r/+AvwsWe4ETg9otdv++//a1kNbgZeGlA/LPnf/mH/jbfs915of+S75WMfwUxZVyJBKAJJGeuCjqhOUKqPlrsRXnzfC/H0e+/8+n5a3p2KsTdUnKC29bi+YWMKDwi2pt8CVk6iOxAIIAKjmxPZxNEODz6425UQBwmiTKkADSklX63o5MgOFnGQpptttDtd03RtN53PJrNJbGOMsenapg0xSNPE0NSTPlRmSa251wrNiADlcdq0GgTXeHp9rI4lRV+3JnG9wmryWXu+6z/1XB57CWePcPbH1wKJs5uv1zEA4hhTwBh/r/fAWGRb7wCAs8y2gr9wrP+vLyXoYwy//nvMHB0cmGVrY5vl9jvXv3N89HgynW5t7W5vbbbUuvZqykyCpuAcidRByYpZUc/mWneuW411EIDM8CxuQ8ig2V2zUkPHq+Ub33qzEfeUCMXdEJAVA2FAYcuTrvngtRc+/f5Pvnjp6jOTjbha3r9+8K23vnVjuL1kHvIpEKOTOrsjgBo6AKkDMtv4hlUpvQEyO4IqsaEbGKAig03An+VwWZV04QsDm/LuZR5ieXiM79y1L3+N7p14wYIIGNCY2BsK0qf89Tf09j34/r34g3+Kt9pkmFKSVowQyGoUU8gTewAiRDAtBDsf+kB+eHDnt27J6aOdCAEjqptHQylqyOIIaIIAQKVCQWuz0YG1crLI1cmF3UgANyxRXi0lHqhnW572bsMRrFYzgxa65vx8e77dtW1TSzZBQhOapqlJrEQJgUPkGOQp8h1zdYqvJ3s1xa61l/UGqCX2s7O8rjccZT3r2GZcs2f9MRyP3jFQr5gwf7LCz5b72c5Y95PGSKZW1RHHcNcB1hJMWDefzkKtMfKpldMnP3kSVXndo6PKow46ezHXYmkoDx4fXL9x62Q5XLr8/PbG5tb2RnXlLT6m1FIMyXxAzUXdSB0QsZjrKKQCNyQAGnsOTqBqpuveUQZsOr595+7D+29PugBDInMnB/VZbNiAB/jYax/9uV/6sc987lPbO1cRwEuhAi/ctpNf+xdf+J2/X6RPwwl6BiI3cqgwFEUgID7Ly9dj7GaghsjgbopqQNnV2bADekXaTVtIOTQjuPEu/OrfKTCB1cIPj/VoKWkwU2fGOuJXa8ctx6T6aLX6ld8Yfv8b8Ye/q/2ej1PblCFzYGJBJK5MbMJCLuYNY1LTBi9978dW9949+L1/OHXFoNHZ1RBJAMG1jEJtAjAHG0t87gasVBtnaIhG7IyGiCzTIHOzvZPl3qI/VXX0i5PZfDafb8w25tMmxJqq1ogmNBKCiLAISxCRSqriIBXmALXXVIUO6/r6OsJGp6pPHrdBBQ+MEorxL1iH8gDryTLHs++spSu11INncU1VSvrYJakR/pOz3Gt6evYA4xJ3P7vNmOfCujiD67QZnrqUjLt1vd1qx6A+NAGaak5ltRwePd57+zs3Hj54fO255199zxQUHj68e3p6OgxLcxXwQCzLbG7WZ1VzNyqIVVWc1Ef9eqVYVelTlaKDFQB1V3AkAsLXv/YN9p7dnGzIPmmmEX1Y9lc3z//Fv/Tnf+bP/unN3W0zz6pYPRENqZX3/fRnLvZ3r3/5i9CzQg+mAJmMccTOVtsFGPMhcEdSc0AzU8KsxqjIhOZKSI3ixfNbcjiY9WACh1mPvsXOjAgFawAJYKCG6wocElkxZGbwGVi+dSP/7furr15vf+ZH47MXMlJSbJjUlJDJRtMpBAqRU19o1l794e9fPr57fOPr7EU8sxWAQtgCcMDCXqqCw7D+evQqQhrXGAGQImYJOQh3E+qm7kGIxLyJsrO5sX1uZ745b7ouyNhqCiGEwDEICzEzMTETyzily0TEOIb46wpJrdWNBZizE3a9QtfL9sl6eurMX6/epws9Z8t5fLSxXIljzLOupo9VIqgVhbF4Wdf0eP04u1I8OdfHw/zJT9bB0R8Prs6exdN3XT+Cm/tieXz//qM7t+7evPnuyenpvJ2iwaPH95fLw8gQugk6EHjbNLJIZkXNwR3NIKObqTI7YlZDcHJnRwAkJzMzd0VX9GKoTk3b3X109Adf/AMOkvuFEE/m07Ra6Qp+6kd+/K/8L/69l156ztGLqTvUbraZOZMxnn9t50Pf97kH714/Xt2E3KuboykReh3RQK413vEC5zWqdjNHcFPwXAy9kBCqpgnIRhfwkVIxg4xI1TkXvPaSGZnIi1vdCfU0VmJ2M8QAbg2xrMrw1a+e3rnZ/uAP8vd/LEwiEDqYs5AzqIKYggGitJR7DZfPP/8jP3P3V/rlozeiOKEzFLfsGNFbdx1Lc1Rnsgig1rQRAdVByRPSiZPGydbV55bd5sPDIQluTidXt7cmm/PYttXbPTa1xskSONQCMENl1nLNyxCJnGisoY8p7NnXgIDrQ3odrNcw5OmlCOtmEz5Z++uDuGaoZ0v3bOmtk9iz1T/uFl9D39e3qpsCfF03Gq8mvj7L8enn9vROHPfoSIYCh3W0ND4AnGUjMA7dmSmkvgx9Ktna0GTTo0cHhH5he5cERt8G1ShRUgErVeON7qgEBaw4OIsjqjuPz4oQxvEKd09mjtWRMHzlt7/8+pdeB4M2zor60OvOzqW//O//5X/3z/0okWndqcxjbQGg6guBgKP/yA98oOz/4N/9797oywrJMyggIMESrbHsJuQMDmBqiFATACA1RShoRMRgCl7649NL2+e47yEXzwBQYfY1dKtBq7sbGrlXFPl4lTZTJKnjfOZAKM0qyd4h/ubv6JvvtL/0E+U8+KxRMMYaqNZBBWAECpyUNt73XvvcD7/7m48l7W+IoDkBqJtzACByq6I5hzr0hACIdWw5NAq4AJcrLz3/8R/fH/a+8caNBxnbbj5t503cnoTJZNa0kxhbCU1oYiAmImChdXUSkWou62OdpSadY5+oKvPxqSX4ZFWfHb5jBbL+vCpv1ifxuGbXpdyzFXl21q7DGB8LMX9i5f6PvnqyVZ6qip4t3nVmsd4aT911/BTX3zlb92eFIAQw87V2B4Rl2k22NrfdfLkxf3Tvnk2HjUk4m+yqHb0YWPp+LL3XJrA5GGCphtcAMIpKoArma59PzTO4mk3a5p29B3/v7/7KcrUEL8iiWZ5/6QN/5a/+5Z/8rg9gRXbXdMjX+dOoZSIHR7N50J/7uR88uH3n1/7efzvuOHQ3EOSCWu3iKgZ6/XaMmbi5VfkGmKri8qhcueD+eI9zb1rqAh8NQVGqfmkcaEWCOs6xnuIA0zEaRnBbcQwhQnp4Ew8eDA787/4UNuxczRIJvY7e14l7p0jFbPuHPnF6cPD4n//9GKBjMHMgz1QIwU1Zx3CDcF1BRkLqeuM83bjyoY/4e7/3O2+9/kfffnfJODu/O9vqNjfnm9vz+VbXdiG0EqKEwBIIwEUIeb0g6rQhjI1CB4BRznsWfZ8pa87O+7OVdRadn414rOufT4XzZ3vhLEl+Eu2cPYyPpZH1unzqsZ/c/8nRjWNO8dQWeWpxw5M7rcOf8Rn5H987uH42NeqCMRNxQCSWONuYqZUgeExsp6tgVsqgXryaCxLEGMFB0FTVDdDrhBeBAhqjuq6XqxuAG0qFlIAZ6qr0m3Ey5/xP/1///b3bbwRyA9RcPvCBj/3Vv/4ff+q9z7GvZzBgXb/38RUR1migWndbG+LP/k9/+vrb3/6jL/0LYrKSCSE6GYK5ru3UazJHVauh4GyK5qQGkIchR/MOaXj8aErmlhwQQGFUtAo4AjAiuwFW01QvDoQsZkY1T3U1AJuK7F44uX/kkw6vXcK81H/8L6d/5vvKxnRp0Ebm9VohQAQjhgRGXbz2kz/c396780e/+8yFNnJCSwUIBWlwQgYz5MpUZqC4clgB0dUrm5/45Ck3X/v937m9t5LzGxcvnptO5tvzdrY5mc+7dhJiZAkkodr5ORH52F6rUPgaUP2JsOHsH/7kbz8rX56dmmdLENcF+6fygfUP10sPx7+eXrJjPO9nD3YW3I8VoCchkp9ls+u60J9c8WfP+Elm++S5+tmGeLIj16ZsT6UJ484m4hjbaYfkGDl0IQb0Wdes+mXK/ZBKLmoAEsiLiWbX4qXimcwV3RBU0FGdqwFhfXQvYFW1nx0Oil6aNr/7j3/jn//GPyLIgyZU/eRHP/ZX/v2/8Jn3PCugROva8NnrWZ8DtH7vqc4AeLl0afPP/4W/eOftu7f2vtE1wcwqDBWIzHW0egAwK4Rc3wYbTZ49l4IKE2ZTyEfHPm+J2OooQy0XVUK5O5IhEBQDqoJXcDNgMmNnLC6+vSUvv3R6j+gjk+nnPyUzzNcPj//wTfnVP4i/+Nm2a3KfqeHRbxrGVqgIp5TbbXnxL/zo1x48vnf/G1d3ugDoJWdNqEgoEQM4GoVBeVGiX9pqPvrRcvXlNx89+ua3ryfqtt7/7Pz8fDKfbU5mG5MwbblphEOtZQIKIhnhWuR2lr0+fXCuz+2zwxfHkHw8B55aomcLc70Wz3pPf6z0U5f+U6vsSZy+LmPWX3wW/axLPP4nQhh8UrU5221P7can9tUf+xrPnuHTt17/qv/xvhmzbWISB2+De4tgBMbgXdetFqd9v1qt+pPjVSq5m7RtjPilb++pgaq6gjoU8kyYCBwJgVjGUYPgjm5IbmBqhcDvvPnWf/HX/9rB4XHo4vHR0TNXdv8P/+V/+emPfLRWOmoFDkbQxvjh0PqDGKXtAACoNdFS+ae/+q/+xn/2vwI9aZroZoRgZqMZH+DarLTGtiQobYiBRBUDSRjgP7p4/oWb727POm+4Zivk9aAkAAaonBWGdVvSEZwIGjZi3Zr7y8+H971aaErTWfPxi5jx+MaB3clysq8PHuiHLm1+5mM4j9kdRESEwKgioohSSuAei+ev3f/O/+O/oaM72+1GtpIgh2bKIbbMxpRBSrfVvvx8funK44W+/nZ/K+ula/P5ha3J5rSZzbanMm2azYBdrQCMrVkghooGdxgn2s9Wua2P2DGEX6u3xu+fhQ5P1hY6VNDBuFhxvaCfLNSn1pmf3We9hp/++qyUeXafsfnl/vQmeer4XmfVT9/3TzzmH98MT22Rp388vjB/El+dBWwAAK6mxfOQckqpXw3L1WqxTP1Qcp9SPjlc9n3evrQViGWAosXAQLMbWI9+LHLM1DFGIFNz09ZhCzyQ7WneJAmE16+//nd++ZdZfGM6O94/nsn0L/zSf/CJj35qZGE/9Y7Wd+Tsk1i/7DUioy5EQyT4/M98z70Hf+m//r/8zQGsawnB1SpOx2AM+xGJ3CtaxMw0g3cciXCL3QKUQAoOKSEgGnoxwghuZ5/7+DWBAXoIzo3Pd8InPxQ+8Yqf3zZsuWe5NBvySg+X3EzD+Y5kmlUXXz1N5db2910LG9NUWVYA42ChAaK4W2EIH3zm5X/vF7/5v/9lf9QTT8L5i7Z9zjanvDHHLspsxlsbD5T++a3Fvf3VLs8nL8dyrmkubF7e2NjoYhQW9gaA1gDPivQBXw8kjqun6tGeLNZ1vFJRBuOisPWarjd68jmsVcVPLaWnlic8WYgOT0o/T07bpyqiSGcKz6cXrD/5+smme7JTnl7gYz7wdI/46ZuchWG43gtPZjGedCsQzi5i4yUOK8QXAkdp2thNJ9PNueYMbuZW3Ve76dQ0C+gKMKpCBihFT73cWup+scfsz0/aZydhq+EuckfOrpel22hDyadvf/lLr3/xencRj1dlscL/9G/81f/JT/0kWVEA4XGm7o+95jH287MAcDx4gKrQus6S/Pwv/MJ3/uir/+wL/5K5VHtfM4N13d7rq0YGIENMDg2Qk3ROrwV6aXo6PLo9ff5ZX2UAgQTIZCUhswECkgN7dapwdg8KE7v86uynvldfuVTmXSngzLQpSupZ2o0NbCO2ANshPjOd5NNVseXRctI1IgHc9KzU4lCTY3fPZHLtuRd/6qdu/Xe/Rd3W9kc+KpfP28bMg2TmRPJ47+h2X5658sxHXmIVgA2cb8BkMtkI3oTExLV1bOawDtqtppgGNAZeZ90o/BNrtyZX9bSo3fpRUbj+uq60p+6FBn7WxVo/pj99GI/XhPXFYnyEJ+t5fag/vX+equbU79uodHtqd/3xvXC2JNa5yFnktV5GTyUUfnby/4lwbd1iXhtMAQshOgQJDXfeQJ2srEh6d0vB7fD/D1tIfUWD0J1TAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<IPython.core.display.Image object>" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 16 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [], | |
"metadata": { | |
"id": "mA1viQhx_5_G" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment