Make sure there is at least one file in it (even just the README.md)
ssh-keygen -t rsa -C "[email protected]"
| 阿爸 a1'ba4 18137 | |
| 阿昌族 a1'chang1'zu2 50849 | |
| 阿斗 a1'dou3 42632 | |
| 阿飞 a1'fei1 48603 | |
| 阿富汗 a1'fu4'han4 3461 | |
| 阿訇 a1'hong1 34432 | |
| 阿拉伯数字 a1'la1'bo2'shu4'zi4 35937 | |
| 阿拉伯语 a1'la1'bo2'yu3 30476 | |
| 阿妈 a1'ma1 16220 | |
| 阿门 a1'men2 47913 |
Make sure there is at least one file in it (even just the README.md)
ssh-keygen -t rsa -C "[email protected]"
| model.zero_grad() # Reset gradients tensors | |
| for i, (inputs, labels) in enumerate(training_set): | |
| predictions = model(inputs) # Forward pass | |
| loss = loss_function(predictions, labels) # Compute loss function | |
| loss = loss / accumulation_steps # Normalize our loss (if averaged) | |
| loss.backward() # Backward pass | |
| if (i+1) % accumulation_steps == 0: # Wait for several backward steps | |
| optimizer.step() # Now we can do an optimizer step | |
| model.zero_grad() # Reset gradients tensors | |
| if (i+1) % evaluation_steps == 0: # Evaluate the model when we... |
| def parse_category(self, url, depth): | |
| """ | |
| Collects the links from a category and downloads/parses them | |
| :param url: | |
| :param depth: | |
| :return: | |
| """ | |
| page_content = self.download_page(url) | |
| if page_content is None: | |
| return [] |