GitHub repositories can disclose all sorts of potentially valuable information for bug bounty hunters. The targets do not always have to be open source for there to be issues. Organization members and their open source projects can sometimes accidentally expose information that could be used against the target company. in this article I will give you a brief overview that should help you get started targeting GitHub repositories for vulnerabilities and for general recon.
You can just do your research on github.com, but I would suggest cloning all the target's repositories so that you can run your tests locally. I would highly recommend @mazen160's GitHubCloner. Just run the script and you should be good to go.
$ python githubcloner.py --org organization -o /tmp/output
I screwed up using git ("git checkout --" on the wrong file) and managed to delete the code I had just written... but it was still running in a process in a docker container. Here's how I got it back, using https://pypi.python.org/pypi/pyrasite/ and https://pypi.python.org/pypi/uncompyle6
apt-get update && apt-get install gdb
FWIW: I (@rondy) am not the creator of the content shared here, which is an excerpt from Edmond Lau's book. I simply copied and pasted it from another location and saved it as a personal note, before it gained popularity on news.ycombinator.com. Unfortunately, I cannot recall the exact origin of the original source, nor was I able to find the author's name, so I am can't provide the appropriate credits.
- By Edmond Lau
- Highly Recommended 👍
- http://www.theeffectiveengineer.com/
const I = x => x | |
const K = x => y => x | |
const A = f => x => f (x) | |
const T = x => f => f (x) | |
const W = f => x => f (x) (x) | |
const C = f => y => x => f (x) (y) | |
const B = f => g => x => f (g (x)) | |
const S = f => g => x => f (x) (g (x)) | |
const S_ = f => g => x => f (g (x)) (x) | |
const S2 = f => g => h => x => f (g (x)) (h (x)) |
(by @andrestaltz)
If you prefer to watch video tutorials with live-coding, then check out this series I recorded with the same contents as in this article: Egghead.io - Introduction to Reactive Programming.
THIS GIST WAS MOVED TO TERMSTANDARD/COLORS
REPOSITORY.
PLEASE ASK YOUR QUESTIONS OR ADD ANY SUGGESTIONS AS A REPOSITORY ISSUES OR PULL REQUESTS INSTEAD!
Latency Comparison Numbers (~2012) | |
---------------------------------- | |
L1 cache reference 0.5 ns | |
Branch mispredict 5 ns | |
L2 cache reference 7 ns 14x L1 cache | |
Mutex lock/unlock 25 ns | |
Main memory reference 100 ns 20x L2 cache, 200x L1 cache | |
Compress 1K bytes with Zippy 3,000 ns 3 us | |
Send 1K bytes over 1 Gbps network 10,000 ns 10 us | |
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD |