(by @andrestaltz)
If you prefer to watch video tutorials with live-coding, then check out this series I recorded with the same contents as in this article: Egghead.io - Introduction to Reactive Programming.
Latency Comparison Numbers (~2012) | |
---------------------------------- | |
L1 cache reference 0.5 ns | |
Branch mispredict 5 ns | |
L2 cache reference 7 ns 14x L1 cache | |
Mutex lock/unlock 25 ns | |
Main memory reference 100 ns 20x L2 cache, 200x L1 cache | |
Compress 1K bytes with Zippy 3,000 ns 3 us | |
Send 1K bytes over 1 Gbps network 10,000 ns 10 us | |
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD |
(by @andrestaltz)
If you prefer to watch video tutorials with live-coding, then check out this series I recorded with the same contents as in this article: Egghead.io - Introduction to Reactive Programming.
These rules are adopted from the AngularJS commit conventions.
#Test credit card numbers to use when developing with Stripe
4242424242424242 Visa
4012888888881881 Visa
4000056655665556 Visa (debit)
The following are examples of the four types rate limiters discussed in the accompanying blog post. In the examples below I've used pseudocode-like Ruby, so if you're unfamiliar with Ruby you should be able to easily translate this approach to other languages. Complete examples in Ruby are also provided later in this gist.
In most cases you'll want all these examples to be classes, but I've used simple functions here to keep the code samples brief.
This uses a basic token bucket algorithm and relies on the fact that Redis scripts execute atomically. No other operations can run between fetching the count and writing the new count.
Libuv and libev, two I/O libraries with similar names, recently had the privilege to use both libraries to write something. Now let's talk about my own subjective expression of common and different points.
The topic of high-performance network programming has been discussed. Asynchronous, asynchronous, or asynchronous. Whether it is epoll or kqueue, it is always indispensable to the asynchronous topic.
Libuv is asynchronous, and libev is synchronous multiplexing IO multiplexing.
Libev is a simple encapsulation of system I/O reuse. Basically, it solves the problem of different APIs between epoll and kqueuq. Ensure that programs written using livev's API can run on most *nix platforms. However, the disadvantages of libev are also obvious. Because it basically just encapsulates the Event Library, it is inconvenient to use. For example, accept(3) requires manual setnonblocking after connection. EAGAIN, EWOULDBLOCK, and EINTER need to be detected when reading from a socket. This is a