Skip to content

Instantly share code, notes, and snippets.

View OlafenwaMoses's full-sized avatar
💭
Coding the future....

MOSES OLAFENWA OlafenwaMoses

💭
Coding the future....
View GitHub Profile
{'predictions': [{'x_max': 712, 'y_max': 261, 'x_min': 626, 'confidence': 0.99990666, 'y_min': 145}, {'x_max': 620, 'y_max': 288, 'x_min': 543, 'confidence': 0.99986553, 'y_min': 174}, {'x_max': 810, 'y_max': 242, 'x_min': 731, 'confidence': 0.99986434, 'y_min': 163}, {'x_max': 542, 'y_max': 279, 'x_min': 477, 'confidence': 0.99899536, 'y_min': 197}], 'success': True}
using System;
using System.IO;
using System.Net.Http;
using System.Threading.Tasks;
using Newtonsoft.Json;
using SixLabors.ImageSharp;
using SixLabors.ImageSharp.Processing;
using SixLabors.Primitives;
namespace appone
using System;
using System.IO;
using System.Net.Http;
using System.Threading.Tasks;
using Newtonsoft.Json;
namespace appone
{
const request = require("request")
const fs = require("fs")
const easyimage = require("easyimage")
image_stream = fs.createReadStream("family.jpg")
var form = {"image":image_stream}
request.post({url:"http://localhost:80/v1/vision/face", formData:form},function(err,res,body){
const request = require("request")
const fs = require("fs")
image_stream = fs.createReadStream("family.jpg")
var form = {"image":image_stream}
request.post({url:"http://localhost:80/v1/vision/face", formData:form},function(err,res,body){
response = JSON.parse(body)
import requests
from PIL import Image
image_data = open("family.jpg","rb").read()
image = Image.open("family.jpg").convert("RGB")
response = requests.post("http://localhost:80/v1/vision/face",files={"image":image_data}).json()
i = 0
for face in response["predictions"]:
import requests
image_data = open("family.jpg","rb").read()
response = requests.post("http://localhost:80/v1/vision/face",files={"image":image_data}).json()
print(response)
import cv2
import numpy as np
import requests
cap = cv2.VideoCapture('furious.mp4')
out = cv2.VideoWriter("scene_recognition_from_video_to_file.avi", cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
24,((int(cap.get(3)), int(cap.get(4)))))
progress_tracker = 0
import cv2
import numpy as np
import requests
cap = cv2.VideoCapture('furious.mp4')
progress_tracker = 0
response_label = ""
skip_frame = 20
import cv2
import numpy as np
import requests
cap = cv2.VideoCapture(0)
out = cv2.VideoWriter("scene_recognition_from_camera_to_file.avi", cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
24,((int(cap.get(3)), int(cap.get(4)))))
progress_tracker = 0