Skip to content

Instantly share code, notes, and snippets.

View OleksandrDanylchenko's full-sized avatar
🌚

Oleksandr Danylchenko OleksandrDanylchenko

🌚
View GitHub Profile
// LABKA 2.5 v.2 Matrix methods implementation
#include <iostream>
#include <fstream>
#include <algorithm>
#include "D:\Studying\Programming\LABS\Labka 2.5 v.2\Headers\vList.h"
#include "D:\Studying\Programming\LABS\Labka 2.5 v.2\Headers\grRepres.h"
GrMA::~GrMA() {
if (E != nullptr) {
package ua.alexd.domain;
import javax.persistence.*;
import java.util.Objects;
@Entity
@Table(name = "Shops")
public class Shops {
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
@OleksandrDanylchenko
OleksandrDanylchenko / ClassResource.java
Created April 22, 2020 19:33
Duplicated resouces and services
package ua.alexd.CarRentService.controller;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.*;
import ua.alexd.CarRentService.domain.ModelClass;
import ua.alexd.CarRentService.service.ModelClassService;
import javax.validation.Valid;
import java.util.List;
@OleksandrDanylchenko
OleksandrDanylchenko / base-schema.schema.ts
Last active March 30, 2021 17:03
Mongoose Typescript general repository
import { Document } from 'mongoose';
export class BaseSchema extends Document {}
@OleksandrDanylchenko
OleksandrDanylchenko / flexbox_mixin.ts
Last active February 12, 2022 09:43
Emotion CSS Flexbox Mixin
export const flexbox = (options: {
display?: string;
direction?: string;
placeContent?: string;
placeItems?: string;
wrap?: string;
shrink?: string;
grow?: string;
alignContent?: string;
justifyContent?: string;
@OleksandrDanylchenko
OleksandrDanylchenko / euler_cauchy_2023.py
Created June 1, 2023 19:16
Euler-Cauchy method with table
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
import pandas as pd # import pandas
# Визначаємо функцію рівняння із умови
def func(y, x):
return (np.sin(2 * x) / (2 - np.sin(x) ** 2) - 2 * y) / 2
# Реалізація методу Ейлера-Коші де крок ітерації визначено як: