Skip to content

Instantly share code, notes, and snippets.

View PBI-DataVizzle's full-sized avatar
💭
Shizzle my Vizzle 🤓

Imran Haq PBI-DataVizzle

💭
Shizzle my Vizzle 🤓
View GitHub Profile
target card =
// unsat, below, near, hit
VAR _Q1_result = "unsat"
VAR _Q2_result = "below"
VAR _Q3_result = "near"
VAR _Q4_result = "hit"
Sparkline =
// dummy value in a table
VAR _vals = {
( 0, 500 ),
( 1, 700 ),
( 2, 1200 ),
( 3, 1250 ),
( 4, 550 ),
( 5, 780 ),
( 6, 990 ),
/*
Function: fnHoltWinters
Description: Trying to replicate HoltWinters quantitative smoothing with Power Query.
Author: Chris Aragao
Change Log:
11.13.2023 - Initial release. Initial code was based off of this tutorial: https://www.exceldemy.com/holt-winters-exponential-smoothing-in-excel/.
It was aimed at solely duplicating the output and did so.
@PBI-DataVizzle
PBI-DataVizzle / fnErlangC.pq
Created November 19, 2023 14:31 — forked from cbaragao/fnErlangC.pq
Erlang C calculation in Power Query
let
fnErlangC =
(
number_of_calls as number,
period_of_minutes as number,
average_handling_time as number,
required_service_level as number,
target_answer_time as number,
maximum_occupancy as number,
// white wine dataset used from http://archive.ics.uci.edu/dataset/186/wine+quality
{
"data": {
"name": "dataset"
},
"params": [
{
"name": "grid",
"select": "interval",
ONS =
{
("W07000081", "Aberafan Maesteg" ),
("W07000082", "Alyn And Deeside" ),
("W07000083", "Bangor Aberconwy" ),
("W07000084", "Blaenau Gwent And Rhymney" ),
("W07000085", "Brecon, Radnor And Cwm Tawe" ),
("W07000086", "Bridgend" ),
("W07000087", "Caerfyrddin" ),
("W07000088", "Caerphilly" ),
bullet =
// set a percentage for underachieving score
VAR _bad = .5 // set a percentage for sat score
VAR _sat = .75 // target will be 100%
VAR _target = 1 // max width set at 500 in case actual is over 100%
VAR _max_width = 500 // set actual percentage
VAR _actual = 1.2 // figure out ratio for underperforming area
VAR b_ratio = _bad * _max_width // figure out ratio for sat area
VAR s_ratio = _sat * _max_width // figure out ratio for target line
VAR t_ratio = _target * _max_width // figure out ratio for actual and ensure it is not larger than default width of svg
Pie Card =
// set the actual value
VAR _actual = 120
// set the target
VAR _max = 150
// determine the pct
VAR _pct = _actual/_max
5x5 Waffle =
VAR _max = 500
VAR _actual = 120
VAR _waffles = ROUND((_actual/_max) * 50, 0)
VAR _gray = "#7A7979"
VAR _red = "#FF0000"
VAR _header = "data:image/svg+xml;utf8,<svg width=""200"" height=""200"" viewBox=""0 0 200 200"" fill=""none"" xmlns=""http://www.w3.org/2000/svg"">
<rect width=""200"" height=""200"" fill=""white""/>"
VAR _footer = "</svg>"
@PBI-DataVizzle
PBI-DataVizzle / spec.json
Created November 20, 2023 06:43 — forked from Giammaria/spec.json
20230330_word_wrap
{
"$schema": "https://vega.github.io/schema/vega-lite/v5.json",
"title": {
"text": "A Peek Inside The Mind",
"subtitle": ["of Michael Scott"],
"orient": "top",
"align": "center",
"anchor": "middle",
"fontSize": 22,
"subtitleFontSize": 16