Skip to content

Instantly share code, notes, and snippets.

@Pabla007
Created June 3, 2019 20:42
Show Gist options
  • Save Pabla007/144be6eace6efc3893d46c2b52b620db to your computer and use it in GitHub Desktop.
Save Pabla007/144be6eace6efc3893d46c2b52b620db to your computer and use it in GitHub Desktop.
Added the Brush Selector Feature in the Spectrum
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/tqdm/autonotebook/__init__.py:14: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)\n",
" \" (e.g. in jupyter console)\", TqdmExperimentalWarning)\n"
]
}
],
"source": [
"from tardis import run_tardis\n",
"from tardis.io.atom_data.util import download_atom_data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/tardis/io/atom_data/atom_web_download.py:12: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.\n",
" return yaml.load(open(atomic_repo_fname))\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/tardis/io/config_internal.py:18: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.\n",
" return yaml.load(open(config_fpath))\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mtardis.io.atom_data.atom_web_download\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Downloading atomic data from https://media.githubusercontent.com/media/tardis-sn/tardis-refdata/master/atom_data/kurucz_cd23_chianti_H_He.h5 to /home/jasims/Downloads/tardis-data/kurucz_cd23_chianti_H_He.h5 (\u001b[1matom_web_download.py\u001b[0m:37)\n"
]
}
],
"source": [
"download_atom_data('kurucz_cd23_chianti_H_He')"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/importlib/_bootstrap.py:219: QAWarning: pyne.data is not yet QA compliant.\n",
" return f(*args, **kwds)\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/importlib/_bootstrap.py:219: QAWarning: pyne.material is not yet QA compliant.\n",
" return f(*args, **kwds)\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/astropy/units/quantity.py:1067: AstropyDeprecationWarning: The truth value of a Quantity is ambiguous. In the future this will raise a ValueError.\n",
" AstropyDeprecationWarning)\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mtardis.plasma.standard_plasmas\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Reading Atomic Data from /home/jasims/Desktop/tardis/docs/examples/kurucz_cd23_chianti_H_He.h5 (\u001b[1mstandard_plasmas.py\u001b[0m:76)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/IPython/core/interactiveshell.py:3296: PerformanceWarning: indexing past lexsort depth may impact performance.\n",
" exec(code_obj, self.user_global_ns, self.user_ns)\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mtardis.io.atom_data.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Read Atom Data with UUID=6f7b09e887a311e7a06b246e96350010 and MD5=864f1753714343c41f99cb065710cace. (\u001b[1mbase.py\u001b[0m:175)\n",
"[\u001b[1mtardis.io.atom_data.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Non provided atomic data: synpp_refs, ion_cx_th_data, ion_cx_sp_data (\u001b[1mbase.py\u001b[0m:178)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/astropy/units/quantity.py:1067: AstropyDeprecationWarning: The truth value of a Quantity is ambiguous. In the future this will raise a ValueError.\n",
" AstropyDeprecationWarning)\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/tardis/plasma/properties/ion_population.py:59: FutureWarning: \n",
"Passing list-likes to .loc or [] with any missing label will raise\n",
"KeyError in the future, you can use .reindex() as an alternative.\n",
"\n",
"See the documentation here:\n",
"https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike\n",
" partition_function.index].dropna())\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/astropy/units/equivalencies.py:90: RuntimeWarning: divide by zero encountered in double_scalars\n",
" (si.m, si.Hz, lambda x: _si.c.value / x),\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/astropy/units/quantity.py:1067: AstropyDeprecationWarning: The truth value of a Quantity is ambiguous. In the future this will raise a ValueError.\n",
" AstropyDeprecationWarning)\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 1/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 7.96915e+42 erg / s Luminosity absorbed = 2.63370e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 9926.501965 10171.209103 0.400392 0.500372\n",
"\t5 9852.611678 10306.111379 0.211205 0.191331\n",
"\t10 9779.813302 10174.379204 0.142695 0.116864\n",
"\t15 9708.082813 9910.442275 0.104556 0.085962\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 9933.952 K -- next t_inner 11453.040 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/tardis/plasma/properties/ion_population.py:59: FutureWarning: \n",
"Passing list-likes to .loc or [] with any missing label will raise\n",
"KeyError in the future, you can use .reindex() as an alternative.\n",
"\n",
"See the documentation here:\n",
"https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike\n",
" partition_function.index].dropna())\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 2/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 1.40398e+43 erg / s Luminosity absorbed = 4.68639e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 10171.209103 11518.516702 0.500372 0.538298\n",
"\t5 10306.111379 11554.412119 0.191331 0.217946\n",
"\t10 10174.379204 11373.574056 0.116864 0.132935\n",
"\t15 9910.442275 11040.788763 0.085962 0.099700\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 11453.040 K -- next t_inner 9948.201 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 3/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 8.16814e+42 erg / s Luminosity absorbed = 2.50161e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 11518.516702 10501.129902 0.538298 0.438591\n",
"\t5 11554.412119 10869.940791 0.217946 0.160809\n",
"\t10 11373.574056 10558.269547 0.132935 0.103807\n",
"\t15 11040.788763 10185.648701 0.099700 0.079165\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 9948.201 K -- next t_inner 11328.896 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 4/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 1.34487e+43 erg / s Luminosity absorbed = 4.47931e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 10501.129902 11527.008679 0.438591 0.512509\n",
"\t5 10869.940791 11706.138980 0.160809 0.196458\n",
"\t10 10558.269547 11444.208532 0.103807 0.124092\n",
"\t15 10185.648701 11085.857161 0.079165 0.093694\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 11328.896 K -- next t_inner 10054.300 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 5/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 8.44348e+42 erg / s Luminosity absorbed = 2.68000e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 11527.008679 10659.382763 0.512509 0.433573\n",
"\t5 11706.138980 11038.244897 0.196458 0.158494\n",
"\t10 11444.208532 10790.696726 0.124092 0.099660\n",
"\t15 11085.857161 10450.666394 0.093694 0.074550\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 10054.300 K -- next t_inner 11261.489 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 6/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 1.32492e+43 erg / s Luminosity absorbed = 4.26229e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 10659.382763 11507.437689 0.433573 0.499441\n",
"\t5 11038.244897 11634.568776 0.158494 0.197953\n",
"\t10 10790.696726 11418.594559 0.099660 0.124085\n",
"\t15 10450.666394 10999.619473 0.074550 0.094676\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 11261.489 K -- next t_inner 10069.444 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 7/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 8.49858e+42 erg / s Luminosity absorbed = 2.69247e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 11507.437689 10679.650246 0.499441 0.431088\n",
"\t5 11634.568776 11048.266431 0.197953 0.157179\n",
"\t10 11418.594559 10825.714870 0.124085 0.098608\n",
"\t15 10999.619473 10506.321595 0.094676 0.073794\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 10069.444 K -- next t_inner 11241.826 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 8/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 1.30632e+43 erg / s Luminosity absorbed = 4.31719e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 10679.650246 11459.828312 0.431088 0.506176\n",
"\t5 11048.266431 11688.139012 0.157179 0.193468\n",
"\t10 10825.714870 11441.768967 0.098608 0.122412\n",
"\t15 10506.321595 11099.449886 0.073794 0.090915\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 11241.826 K -- next t_inner 10123.177 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 9/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 8.68357e+42 erg / s Luminosity absorbed = 2.75015e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 11459.828312 10666.223660 0.506176 0.445097\n",
"\t5 11688.139012 11000.288585 0.193468 0.163424\n",
"\t10 11441.768967 10822.884326 0.122412 0.101641\n",
"\t15 11099.449886 10384.181273 0.090915 0.078432\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 10123.177 K -- next t_inner 11180.783 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 10/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 1.28170e+43 erg / s Luminosity absorbed = 4.19511e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 10666.223660 11427.410445 0.445097 0.500788\n",
"\t5 11000.288585 11612.349822 0.163424 0.193129\n",
"\t10 10822.884326 11373.245169 0.101641 0.121622\n",
"\t15 10384.181273 11047.955461 0.078432 0.090937\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 11180.783 K -- next t_inner 10164.432 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 11/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 8.79074e+42 erg / s Luminosity absorbed = 2.82804e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 11427.410445 10741.337822 0.500788 0.439938\n",
"\t5 11612.349822 11230.515356 0.193129 0.153637\n",
"\t10 11373.245169 10870.696315 0.121622 0.101050\n",
"\t15 11047.955461 10538.170159 0.090937 0.074680\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 10164.432 K -- next t_inner 11157.711 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 12/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 1.27128e+43 erg / s Luminosity absorbed = 4.15415e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 10741.337822 11507.877578 0.439938 0.483114\n",
"\t5 11230.515356 11808.852053 0.153637 0.181826\n",
"\t10 10870.696315 11557.412757 0.101050 0.113563\n",
"\t15 10538.170159 11117.762050 0.074680 0.087418\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 11157.711 K -- next t_inner 10184.966 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 13/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 8.90399e+42 erg / s Luminosity absorbed = 2.80864e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 11507.877578 10727.217531 0.483114 0.443706\n",
"\t5 11808.852053 11171.758889 0.181826 0.160824\n",
"\t10 11557.412757 10971.722637 0.113563 0.098588\n",
"\t15 11117.762050 10574.916600 0.087418 0.075266\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 10184.966 K -- next t_inner 11108.923 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 14/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 1.25052e+43 erg / s Luminosity absorbed = 4.07335e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 10727.217531 11413.626870 0.443706 0.489526\n",
"\t5 11171.758889 11697.006992 0.160824 0.184795\n",
"\t10 10971.722637 11424.445844 0.098588 0.116722\n",
"\t15 10574.916600 11047.434163 0.075266 0.088067\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 11108.923 K -- next t_inner 10224.266 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 15/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 9.00727e+42 erg / s Luminosity absorbed = 2.88724e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 11413.626870 10712.622749 0.489526 0.455660\n",
"\t5 11697.006992 11125.894032 0.184795 0.164091\n",
"\t10 11424.445844 10816.390451 0.116722 0.104037\n",
"\t15 11047.434163 10421.687097 0.088067 0.080401\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 10224.266 K -- next t_inner 11087.666 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 16/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 1.23781e+43 erg / s Luminosity absorbed = 4.07435e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 10712.622749 11352.158138 0.455660 0.500754\n",
"\t5 11125.894032 11644.968350 0.164091 0.185289\n",
"\t10 10816.390451 11320.695930 0.104037 0.119195\n",
"\t15 10421.687097 10965.228363 0.080401 0.089940\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 11087.666 K -- next t_inner 10256.946 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 17/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 9.18956e+42 erg / s Luminosity absorbed = 2.86249e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 11352.158138 10738.799194 0.500754 0.452965\n",
"\t5 11644.968350 11210.269586 0.185289 0.160945\n",
"\t10 11320.695930 10911.463205 0.119195 0.103910\n",
"\t15 10965.228363 10545.065525 0.089940 0.078433\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 10256.946 K -- next t_inner 11012.230 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 18/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 1.20741e+43 erg / s Luminosity absorbed = 3.93375e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 10738.799194 11316.665617 0.452965 0.492135\n",
"\t5 11210.269586 11599.094127 0.160945 0.183929\n",
"\t10 10911.463205 11403.508986 0.103910 0.114400\n",
"\t15 10545.065525 10958.974248 0.078433 0.087415\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 11012.230 K -- next t_inner 10314.623 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 19/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 9.29848e+42 erg / s Luminosity absorbed = 3.02011e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Plasma stratification:\n",
"\t t_rad next_t_rad w next_w\n",
"\tShell \n",
"\t0 11316.665617 10862.505720 0.492135 0.444495\n",
"\t5 11599.094127 11194.462074 0.183929 0.162842\n",
"\t10 11403.508986 11065.620645 0.114400 0.099372\n",
"\t15 10958.974248 10599.851144 0.087415 0.077690\n",
"\n",
" (\u001b[1mbase.py\u001b[0m:348)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] t_inner 10314.623 K -- next t_inner 11009.102 K (\u001b[1mbase.py\u001b[0m:350)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Starting iteration 20/20 (\u001b[1mbase.py\u001b[0m:266)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Luminosity emitted = 1.21062e+43 erg / s Luminosity absorbed = 3.88405e+42 erg / s Luminosity requested = 1.05928e+43 erg / s (\u001b[1mbase.py\u001b[0m:357)\n",
"[\u001b[1mtardis.simulation.base\u001b[0m][\u001b[1;37mINFO\u001b[0m ] Simulation finished in 20 iterations and took 102.49 s (\u001b[1mbase.py\u001b[0m:306)\n"
]
}
],
"source": [
"#TARDIS now uses the data in the data repo\n",
"sim = run_tardis('/home/jasims/Desktop/tardis/docs/examples/tardis_example.yml')\n"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Populating the interactive namespace from numpy and matplotlib\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/IPython/core/magics/pylab.py:160: UserWarning: pylab import has clobbered these variables: ['Figure']\n",
"`%matplotlib` prevents importing * from pylab and numpy\n",
" \"\\n`%matplotlib` prevents importing * from pylab and numpy\"\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/astropy/units/quantity.py:1067: AstropyDeprecationWarning: The truth value of a Quantity is ambiguous. In the future this will raise a ValueError.\n",
" AstropyDeprecationWarning)\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n",
"[\u001b[1mpy.warnings \u001b[0m][\u001b[1;33mWARNING\u001b[0m] /home/jasims/anaconda3/envs/simu/lib/python3.6/site-packages/tardis/montecarlo/formal_integral.py:167: FutureWarning: Method .as_matrix will be removed in a future version. Use .values instead.\n",
" result = pd.DataFrame(att_S_ul.as_matrix(), index=transitions.transition_line_id.values)\n",
" (\u001b[1mwarnings.py\u001b[0m:99)\n"
]
},
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"640\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"[<matplotlib.lines.Line2D at 0x7fd679639828>]"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"%pylab notebook\n",
"\n",
"spectrum = sim.runner.spectrum_integrated\n",
"#x=spectrum.wavelength\n",
"#y=spectrum.luminosity_density_lambda\n",
"plot(spectrum.wavelength, spectrum.luminosity_density_lambda)\n",
"#print(x)\n",
"#print(type(y))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Plotted the Spectrum and will pass the spectrum values as x and y in the brush selector."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Coding for the brush Starts from here."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from bqplot.interacts import (BrushSelector)\n",
"from ipywidgets import VBox,HTML\n",
"from bqplot import LinearScale, Axis, Lines, Scatter, Figure\n",
"import numpy as np\n",
"\n",
"#p=bigData['S_W'].values\n",
"#o=bigData['S_D'].values\n",
"#print (p,o)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "11fa469d7cc6407c85810895d1eb4727",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"VBox(children=(HTML(value='[]'), Figure(axes=[Axis(label='Spectrum Wavelenght', scale=LinearScale()), Axis(lab…"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"sc_x = LinearScale()\n",
"sc_y = LinearScale()\n",
"\n",
"symbol = 'Spectrum Wavelenght'\n",
"symbol2 = 'Spectrum Density'\n",
"\n",
"scatt = Scatter(x=spectrum.wavelength, y=spectrum.luminosity_density_lambda,\n",
" scales={'x': sc_x, 'y': sc_y})\n",
"\n",
"sc_xax = Axis(label=(symbol), scale=sc_x)\n",
"sc_yax = Axis(label=(symbol2), scale=sc_y, orientation='vertical')\n",
"\n",
"br_sel = BrushSelector(x_scale=sc_x, y_scale=sc_y, marks=[scatt], color='black')\n",
"\n",
"\n",
"## We use the HTML widget to see the value of what we are selecting and modify it when an interaction is performed\n",
"## on the selector\n",
"\n",
"db_scat_brush = HTML(value='[]')\n",
"\n",
"## Now, we define a function that will be called when the selectors are interacted with - a callback\n",
"## call back for the selector\n",
"def brush_callback(change):\n",
" db_scat_brush.value = str(br_sel.selected)\n",
" \n",
"br_sel.observe(brush_callback, names=['brushing'])\n",
"\n",
"\n",
"fig_scat_brush = Figure(marks=[scatt], axes=[sc_xax, sc_yax], title='Brush Selector By Pabla007',\n",
" interaction=br_sel,background_style={'fill':'pink'})\n",
"\n",
"VBox([db_scat_brush, fig_scat_brush])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.7"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment