Created
June 6, 2019 13:04
-
-
Save Pabla007/8d357661e9268302ea20ca258db70b52 to your computer and use it in GitHub Desktop.
work bqplot in nbveiwer.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import numpy as np\n", | |
"import bqplot.pyplot as plt" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"size = 100\n", | |
"scale = 100.\n", | |
"np.random.seed(0)\n", | |
"x_data = np.arange(size)\n", | |
"y_data = np.cumsum(np.random.randn(size) * scale)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Line Chart" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "2f90cd08cf1045adbde3e5ad28ac4dbc", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Figure(axes=[Axis(scale=LinearScale()), Axis(orientation='vertical', scale=LinearScale())], fig_margin={'top':…" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig = plt.figure(title='First Example')\n", | |
"plt.plot(y_data)\n", | |
"fig" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"This image can be saved by calling the `save_png` function of the `Figure` object:" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"fig.save_png()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Line Chart with dates as x data" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"dates = np.arange('2005-02', '2005-03', dtype='datetime64[D]')\n", | |
"size = len(dates)\n", | |
"prices = scale + 5 * np.cumsum(np.random.randn(size))" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "6398587bfa36440ca9efebbb50795125", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Figure(axes=[Axis(label='Date', scale=DateScale(), tick_format='%m/%d'), Axis(label='Price', orientation='vert…" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig = plt.figure(title='Changing Styles', background_style={'fill': 'lightgreen'},\n", | |
" title_style={'font-size': '20px','fill': 'DarkOrange'})\n", | |
"axes_options = {'x': {'label': 'Date', 'tick_format': '%m/%d'},\n", | |
" 'y': {'label': 'Price', 'tick_format': '0.0f'}}\n", | |
"plt.plot(dates, prices, 'b', axes_options=axes_options) # third argument is the marker string\n", | |
"fig" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Scatter Chart" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "f299a1fdc9494ef3a71edb148372632c", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Figure(axes=[Axis(scale=LinearScale()), Axis(orientation='vertical', scale=LinearScale())], fig_margin={'top':…" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig = plt.figure()\n", | |
"axes_options = {'x': {'label': 'Date', 'tick_format': '%m/%d'},\n", | |
" 'y': {'label': 'Price', 'tick_format': '0.0f'}}\n", | |
"\n", | |
"plt.scatter(x_data, y_data, colors=['red'], stroke='black')\n", | |
"fig" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Histogram" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "c55302fb2ad74a80a5b879b3b57a1978", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Figure(axes=[Axis(orientation='vertical', scale=LinearScale()), Axis(scale=LinearScale())], fig_margin={'top':…" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"fig = plt.figure()\n", | |
"plt.hist(y_data)\n", | |
"fig" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Bar Chart" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "2394e2e4861b471e8d69d341df16219e", | |
"version_major": 2, | |
"version_minor": 0 | |
}, | |
"text/plain": [ | |
"Figure(axes=[Axis(label='X', scale=OrdinalScale()), Axis(label='Y', orientation='vertical', scale=LinearScale(…" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"import string\n", | |
"\n", | |
"fig = plt.figure(padding_x=0)\n", | |
"axes_options = {'x': {'label': 'X'}, 'y': {'label': 'Y'}}\n", | |
"plt.bar(x=list(string.ascii_uppercase), y=np.abs(y_data[:20]), axes_options=axes_options)\n", | |
"fig" | |
] | |
} | |
], | |
"metadata": { | |
"anaconda-cloud": {}, | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment