Skip to content

Instantly share code, notes, and snippets.

@Pabla007
Created October 8, 2019 15:57
Show Gist options
  • Save Pabla007/ce72f41abeb97a5c3869a2edd8891f35 to your computer and use it in GitHub Desktop.
Save Pabla007/ce72f41abeb97a5c3869a2edd8891f35 to your computer and use it in GitHub Desktop.
Practical
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Practical Set 5 1"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([4.572 , 5.461 , 4.4704, 3.81 , 4.5974, 5.3086])"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Height_list=[180,215,176,150,181,209]\n",
"nparr=np.array(Height_list,dtype=None)\n",
"nparr=nparr*0.0254\n",
"nparr"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['T',\n",
" '__abs__',\n",
" '__add__',\n",
" '__and__',\n",
" '__array__',\n",
" '__array_finalize__',\n",
" '__array_function__',\n",
" '__array_interface__',\n",
" '__array_prepare__',\n",
" '__array_priority__',\n",
" '__array_struct__',\n",
" '__array_ufunc__',\n",
" '__array_wrap__',\n",
" '__bool__',\n",
" '__class__',\n",
" '__complex__',\n",
" '__contains__',\n",
" '__copy__',\n",
" '__deepcopy__',\n",
" '__delattr__',\n",
" '__delitem__',\n",
" '__dir__',\n",
" '__divmod__',\n",
" '__doc__',\n",
" '__eq__',\n",
" '__float__',\n",
" '__floordiv__',\n",
" '__format__',\n",
" '__ge__',\n",
" '__getattribute__',\n",
" '__getitem__',\n",
" '__gt__',\n",
" '__hash__',\n",
" '__iadd__',\n",
" '__iand__',\n",
" '__ifloordiv__',\n",
" '__ilshift__',\n",
" '__imatmul__',\n",
" '__imod__',\n",
" '__imul__',\n",
" '__index__',\n",
" '__init__',\n",
" '__init_subclass__',\n",
" '__int__',\n",
" '__invert__',\n",
" '__ior__',\n",
" '__ipow__',\n",
" '__irshift__',\n",
" '__isub__',\n",
" '__iter__',\n",
" '__itruediv__',\n",
" '__ixor__',\n",
" '__le__',\n",
" '__len__',\n",
" '__lshift__',\n",
" '__lt__',\n",
" '__matmul__',\n",
" '__mod__',\n",
" '__mul__',\n",
" '__ne__',\n",
" '__neg__',\n",
" '__new__',\n",
" '__or__',\n",
" '__pos__',\n",
" '__pow__',\n",
" '__radd__',\n",
" '__rand__',\n",
" '__rdivmod__',\n",
" '__reduce__',\n",
" '__reduce_ex__',\n",
" '__repr__',\n",
" '__rfloordiv__',\n",
" '__rlshift__',\n",
" '__rmatmul__',\n",
" '__rmod__',\n",
" '__rmul__',\n",
" '__ror__',\n",
" '__rpow__',\n",
" '__rrshift__',\n",
" '__rshift__',\n",
" '__rsub__',\n",
" '__rtruediv__',\n",
" '__rxor__',\n",
" '__setattr__',\n",
" '__setitem__',\n",
" '__setstate__',\n",
" '__sizeof__',\n",
" '__str__',\n",
" '__sub__',\n",
" '__subclasshook__',\n",
" '__truediv__',\n",
" '__xor__',\n",
" 'all',\n",
" 'any',\n",
" 'argmax',\n",
" 'argmin',\n",
" 'argpartition',\n",
" 'argsort',\n",
" 'astype',\n",
" 'base',\n",
" 'byteswap',\n",
" 'choose',\n",
" 'clip',\n",
" 'compress',\n",
" 'conj',\n",
" 'conjugate',\n",
" 'copy',\n",
" 'ctypes',\n",
" 'cumprod',\n",
" 'cumsum',\n",
" 'data',\n",
" 'diagonal',\n",
" 'dot',\n",
" 'dtype',\n",
" 'dump',\n",
" 'dumps',\n",
" 'fill',\n",
" 'flags',\n",
" 'flat',\n",
" 'flatten',\n",
" 'getfield',\n",
" 'imag',\n",
" 'item',\n",
" 'itemset',\n",
" 'itemsize',\n",
" 'max',\n",
" 'mean',\n",
" 'min',\n",
" 'nbytes',\n",
" 'ndim',\n",
" 'newbyteorder',\n",
" 'nonzero',\n",
" 'partition',\n",
" 'prod',\n",
" 'ptp',\n",
" 'put',\n",
" 'ravel',\n",
" 'real',\n",
" 'repeat',\n",
" 'reshape',\n",
" 'resize',\n",
" 'round',\n",
" 'searchsorted',\n",
" 'setfield',\n",
" 'setflags',\n",
" 'shape',\n",
" 'size',\n",
" 'sort',\n",
" 'squeeze',\n",
" 'std',\n",
" 'strides',\n",
" 'sum',\n",
" 'swapaxes',\n",
" 'take',\n",
" 'tobytes',\n",
" 'tofile',\n",
" 'tolist',\n",
" 'tostring',\n",
" 'trace',\n",
" 'transpose',\n",
" 'var',\n",
" 'view']"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dir(nparr)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Practical Set 5 2"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([False, False, True, False, True])"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"BMI = [21,23,19,24,20]\n",
"b=np.array(BMI)\n",
"b<21"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Practical Set 5 3"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mean of girl is : 181.66666666666666\n",
"Mean of Boy is 188.66666666666666\n"
]
}
],
"source": [
"Height = [180,215,176,150,181,209]\n",
"Gender = [\"GIRL\", \"GIRL\",\"BOY\", \"GIRL\", \"BOY\", \"BOY\"]\n",
"girl=[]\n",
"boy=[]\n",
"for i in range(len(Gender)):\n",
" if(Gender[i]==\"GIRL\"):\n",
" girl.append(Height[i])\n",
" else:\n",
" boy.append(Height[i])\n",
"#print(Gender[0])\n",
"g=np.array(girl)\n",
"b=np.array(boy)\n",
"gmean=g.mean()\n",
"bmean=b.mean()\n",
"print(\"Mean of girl is :\",gmean)\n",
"print(\"Mean of Boy is \",bmean)\n",
"#dir(g)"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Median of girls is : 180.0\n",
"Median of boys is : 181.0\n"
]
}
],
"source": [
"gm=np.array(girl)\n",
"g=np.median(gm)\n",
"bm=np.array(boy)\n",
"b=np.median(bm)\n",
"print(\"Median of girls is : \", g)\n",
"print(\"Median of boys is : \", b)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Practical 5 7"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[28 27 17]\n",
" [58 66 32]\n",
" [44 51 37]]\n"
]
}
],
"source": [
"mat1=([1,3,2],[1,6,8],[5,2,1])\n",
"mat2=([6,8,6],[6,3,3],[2,5,1])\n",
"result=np.dot(mat1,mat2)\n",
"print(result)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Practical Set 6"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Practical Set 6 1"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"import turtle"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"turtle.setup(800,600)\n",
"board=turtle.Turtle()\n",
"\n",
"for i in range(1,20):\n",
" board.circle(i*6)\n",
"turtle.done()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Practical 6 3"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"from tkinter import *\n",
"from tkinter.ttk import Combobox"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"window=Tk()\n",
"var = StringVar()\n",
"var.set(\"one\")\n",
"data=(\"one\", \"two\", \"three\", \"four\")\n",
"cb=Combobox(window, values=data)\n",
"cb.place(x=60, y=150)\n",
"\n",
"lb=Listbox(window, height=5, selectmode='multiple')\n",
"for num in data:\n",
" lb.insert(END,num)\n",
"lb.place(x=250, y=150)\n",
"\n",
"v0=IntVar()\n",
"v0.set(1)\n",
"r1=Radiobutton(window, text=\"male\", variable=v0,value=1)\n",
"r2=Radiobutton(window, text=\"female\", variable=v0,value=2)\n",
"r1.place(x=100,y=50)\n",
"r2.place(x=180, y=50)\n",
" \n",
"v1 = IntVar()\n",
"v2 = IntVar()\n",
"C1 = Checkbutton(window, text = \"Cricket\", variable = v1)\n",
"C2 = Checkbutton(window, text = \"Tennis\", variable = v2)\n",
"C1.place(x=100, y=100)\n",
"C2.place(x=180, y=100)\n",
"\n",
"window.title('Hello Python')\n",
"window.geometry(\"400x300+10+10\")\n",
"window.mainloop()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment