Benchmarking seems not to be a main focus of any specific academic field, although the problem has been addressed by many different groups in CS.
Some papers I found interesting:
| (ns clj-automated-reasoning.core-match | |
| (:require [clojure.core.match :as cm])) | |
| (defn simplify1 [e] | |
| (cm/match [e] | |
| [(['+ 0 x] :seq)] x | |
| [(['+ x 0] :seq)] x | |
| [(['* x 1] :seq)] x | |
| [(['* 1 x] :seq)] x | |
| [(['* x 0] :seq)] 0 |
| #include <RcppArmadillo.h> | |
| #include <omp.h> | |
| using namespace Rcpp; | |
| using namespace arma; | |
| // [[Rcpp::depends(RcppArmadillo)]] | |
| // [[Rcpp::plugins(openmp)]] | |
| // [[Rcpp::export]] | |
| void updateImplicitX_p(arma::mat & X, const arma::mat & Y, const arma::mat & P, const arma::mat & C, double lambda, int cores = 1) { |
Benchmarking seems not to be a main focus of any specific academic field, although the problem has been addressed by many different groups in CS.
Some papers I found interesting:
Find it here: https://github.com/bitemyapp/learnhaskell
| #! /usr/bin/python2 | |
| import json | |
| from TwitterAPI import TwitterAPI | |
| c_key = '...' | |
| c_sec = '...' | |
| t_key = '...' | |
| t_sec = '...' |
| #! /usr/bin/python2 | |
| import json | |
| from TwitterAPI import TwitterAPI | |
| c_key = '...' | |
| c_sec = '...' | |
| t_key = '...' | |
| t_sec = '...' |
| open System.Xml.Linq | |
| open FSharp.Data | |
| /// Use F#'s awesome type provider to access arXiv's API. | |
| type StatML = XmlProvider<"http://export.arxiv.org/api/query?search_query=stat.ML&start=0&max_results=1000"> | |
| /// Request Stat.ML articles from 'a' to 'b'. | |
| let APIReq (a: int) (b: int) = | |
| "http://export.arxiv.org/api/query?search_query=stat.ML&start=" + (string a) + "&max_results=" + (string b) |
| { | |
| "$schema": "http://json-schema.org/draft-04/schema#", | |
| "title": "Scriptoria object", | |
| "description": "Meta-data about a publication registered in scriptoria", | |
| "type": "object", | |
| "properties": { | |
| "source": { | |
| "description": "URL of the original repository", | |
| "type": "string" | |
| }, |
| { | |
| "$schema": "http://json-schema.org/draft-04/schema#", | |
| "title": "Scriptoria object", | |
| "description": "Meta-data about a publication registered in scriptoria", | |
| "type": "object", | |
| "properties": { | |
| "source": { | |
| "description": "URI of the original repository", | |
| "type": "string" | |
| }, |
| /** | |
| * Computes the measure of an English word as defined for the Porter algorithm. | |
| * The definition of the measure can be found here: | |
| * http://snowball.tartarus.org/algorithms/porter/stemmer.html | |
| * | |
| * ...but it's overtly complicated. Here's my definition: | |
| * | |
| * The *measure* of a word is the number of vowels followed by a consonant. | |
| * | |
| * Examples: |