Skip to content

Instantly share code, notes, and snippets.

View PharrellWANG's full-sized avatar

Pharrell PharrellWANG

View GitHub Profile
#!/bin/bash
################################################################################
### OpenCV3 Installation Script ###
################################################################################
### Dependencies
sudo apt-get update
sudo apt-get install -y build-essential git libgtk2.0-dev pkg-config \
python-numpy python-dev libavcodec-dev libavformat-dev \
#!/bin/bash
################################################################################
### OpenCV3 Installation Script ###
################################################################################
### Dependencies
sudo apt-get update
sudo apt-get install -y build-essential git libgtk2.0-dev pkg-config \
python-numpy python-dev libavcodec-dev libavformat-dev \
Enterprise: NJVYC-BMHX2-G77MM-4XJMR-6Q8QF
Professional: KBJFW-NXHK6-W4WJM-CRMQB-G3CDH
Keys are generic ones. These are the same from MSDN account.
Product Key : -6Q8QF
Validity : Valid
Product ID : 00369-90000-00000-AA703
Advanced ID : XXXXX-03699-000-000000-00-1032-9200.0000-0672017
@PharrellWANG
PharrellWANG / doit.sh
Created November 3, 2018 03:11 — forked from charlesreid1/doit.sh
Download the Large-scale CelebFaces Attributes (CelebA) Dataset from their Google Drive link
#!/bin/bash
#
# Download the Large-scale CelebFaces Attributes (CelebA) Dataset
# from their Google Drive link.
#
# CelebA: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
#
# Google Drive: https://drive.google.com/drive/folders/0B7EVK8r0v71pWEZsZE9oNnFzTm8
python3 get_drive_file.py 0B7EVK8r0v71pZjFTYXZWM3FlRnM celebA.zip
@PharrellWANG
PharrellWANG / tf.py
Created November 23, 2018 02:54 — forked from koaning/tf.py
tensorflow layer example
import tensorflow as tf
import numpy as np
import uuid
x = tf.placeholder(shape=[None, 3], dtype=tf.float32)
nn = tf.layers.dense(x, 3, activation=tf.nn.sigmoid)
nn = tf.layers.dense(nn, 5, activation=tf.nn.sigmoid)
encoded = tf.layers.dense(nn, 2, activation=tf.nn.sigmoid)
nn = tf.layers.dense(encoded, 5, activation=tf.nn.sigmoid)
nn = tf.layers.dense(nn, 3, activation=tf.nn.sigmoid)
from PIL import Image
import sys
import os
import math
import numpy as np
###########################################################################################
# script to generate moving mnist video dataset (frame by frame) as described in
# [1] arXiv:1502.04681 - Unsupervised Learning of Video Representations Using LSTMs
# Srivastava et al
@PharrellWANG
PharrellWANG / youtube_format_code_itag_list.md
Created January 6, 2019 08:07 — forked from sidneys/youtube_format_code_itag_list.md
YouTube video stream format codes itags

YouTube video stream format codes

Comprehensive list of YouTube format code itags

itag Code Container Content Resolution Bitrate Range VR / 3D
5 flv audio/video 240p - - -
6 flv audio/video 270p - - -
17 3gp audio/video 144p - - -
18 mp4 audio/video 360p - - -
22 mp4 audio/video 720p - - -

Keybase proof

I hereby claim:

  • I am pharrellwang on github.
  • I am aliwang (https://keybase.io/aliwang) on keybase.
  • I have a public key ASB5ajalS_G-aneb_wQ9P-JKYyc7wIgtkMOfyRa8I_zntgo

To claim this, I am signing this object:

@PharrellWANG
PharrellWANG / BytesStreamFormat-AnnexB-H264.svg
Created September 3, 2020 07:09
cdn-svg-264-bitstream-structure
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

Install Zsh and Oh-my-zsh on CentOS 7

Based on this article

ALL INSTALLATIONS ASSUME YES WHEN PROMPTED, that's what -y does

This script can be copy paste to ssh as is. No hands installation. :-)

yum install zsh -y