This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| resnet50 = tf.keras.applications.resnet50 | |
| conv_model = resnet50.ResNet50(weights='imagenet', include_top=False, input_shape=(228,228,3)) | |
| for layer in conv_model.layers: | |
| layer.trainable = False | |
| x = Conv2D(128, (1, 1), activation = 'relu', name='block6_conv1_table')(conv_model.output) | |
| x = Dropout(0.8, name='block6_dropout_1')(x) | |
| x = Conv2D(128, (1, 1), activation = 'relu', name='block6_conv2_table')(x) | |
| x = Dropout(0.8, name='block6_dropout_2')(x) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def create_mask(pred_mask1, pred_mask2): | |
| """Reference - https://github.com/jainammm/TableNet/blob/master/TableNet.ipynb | |
| """ | |
| pred_mask1 = tf.argmax(pred_mask1, axis=-1) | |
| pred_mask1 = pred_mask1[..., tf.newaxis] | |
| pred_mask2 = tf.argmax(pred_mask2, axis=-1) | |
| pred_mask2 = pred_mask2[..., tf.newaxis] | |
| return pred_mask1[0], pred_mask2[0] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| def get_file_size(file_path): | |
| size = os.path.getsize(file_path) | |
| return size | |
| def convert_bytes(size, unit=None): | |
| if unit == "KB": | |
| return print('File size: ' + str(round(size / 1024, 3)) + ' Kilobytes') | |
| elif unit == "MB": | |
| return print('File size: ' + str(round(size / (1024 * 1024), 3)) + ' Megabytes') | |
| else: |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| tf_lite_converter = tf.lite.TFLiteConverter.from_keras_model(model) | |
| tf_lite_converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_SIZE] | |
| tflite_model = tf_lite_converter.convert() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| # Reference - https://github.com/jainammm/TableNet/blob/master/TableNet.ipynb | |
| class TableNet: | |
| @staticmethod | |
| def build_table_decoder(inputs, pool3, pool4): | |
| x = Conv2D(512, (1, 1), activation = 'relu', name='conv7_table')(inputs) | |
| x = UpSampling2D(size=(2, 2))(x) | |
| concatenated = Concatenate()([x, pool4]) | |
| # concatenated = concatenate([x, pool4]) |
OlderNewer