This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| patient_data['Claim_Start'] = pd.to_datetime(patient_data['ClaimStartDt'] , format = '%Y-%m-%d') | |
| patient_data['Claim_End'] = pd.to_datetime(patient_data['ClaimEndDt'],format = '%Y-%m-%d') | |
| patient_data['DOB'] = pd.to_datetime(patient_data['DOB'] , format = '%Y-%m-%d') | |
| patient_data['DOD'] = pd.to_datetime(patient_data['DOD'],format = '%Y-%m-%d') | |
| patient_data['Claim_Days'] = ((patient_data['Claim_End'] - patient_data['Claim_Start']).dt.days) + 1 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| patient_data['Admission_Date'] = pd.to_datetime(patient_data['AdmissionDt'] , format = '%Y-%m-%d') | |
| patient_data['Discharge_Date'] = pd.to_datetime(patient_data['DischargeDt'],format = '%Y-%m-%d') | |
| patient_data['hospitalization_days'] = ((patient_data['Discharge_Date'] - patient_data['Admission_Date']).dt.days) + 1 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| reimb_amount = patient_data['IPAnnualReimbursementAmt'] + patient_data['OPAnnualReimbursementAmt'] | |
| deduct_amount = patient_data['IPAnnualDeductibleAmt'] + patient_data['OPAnnualDeductibleAmt'] | |
| patient_data['total_diff_amount'] = reimb_amount - deduct_amount |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| diagnosis_codes = patient_data[['ClmDiagnosisCode_1', 'ClmDiagnosisCode_2', 'ClmDiagnosisCode_3', | |
| 'ClmDiagnosisCode_4', 'ClmDiagnosisCode_5', 'ClmDiagnosisCode_6', | |
| 'ClmDiagnosisCode_7', 'ClmDiagnosisCode_8', 'ClmDiagnosisCode_9', | |
| 'ClmDiagnosisCode_10']] | |
| procedure_codes = patient_data[['ClmProcedureCode_1','ClmProcedureCode_2','ClmProcedureCode_3','ClmProcedureCode_4','ClmProcedureCode_5','ClmProcedureCode_6']] | |
| Seven_diag_codes = ['4019','25000','2724','V5869','4011','42731','V5861'] # from EDA | |
| patient_df = pd.DataFrame(columns = ['procedure']) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| patient_data['is_primary'] = np.where(patient_data['AttendingPhysician'].notnull(),1,0) | |
| patient_data['is_secondary'] = np.where(patient_data['OperatingPhysician'].notnull(),1,0) | |
| patient_data['is_tertiary'] = np.where(patient_data['OtherPhysician'].notnull(),1,0) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| patient_data['PotentialFraud'] = np.where(patient_data['PotentialFraud']=='Yes',1,0) | |
| patient_data['RenalDiseaseIndicator'] = np.where(patient_data['RenalDiseaseIndicator']=='Y',1,0) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| ClmProcedureCode_1_count = patient_data['ClmProcedureCode_1'].value_counts().to_dict() | |
| patient_data['ClmProcedureCode_1_count']=patient_data['ClmProcedureCode_1'].map(ClmProcedureCode_1_count) | |
| ClmProcedureCode_2_count = patient_data['ClmProcedureCode_2'].value_counts().to_dict() | |
| patient_data['ClmProcedureCode_2_count']=patient_data['ClmProcedureCode_2'].map(ClmProcedureCode_2_count) | |
| ClmProcedureCode_3_count = patient_data['ClmProcedureCode_3'].value_counts().to_dict() | |
| patient_data['ClmProcedureCode_3_count']=patient_data['ClmProcedureCode_3'].map(ClmProcedureCode_3_count) | |
| ClmDiagnosisCode_1_count = patient_data['ClmDiagnosisCode_1'].value_counts().to_dict() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| col_to_remove = ['Provider','BeneID', 'ClaimID', 'ClaimStartDt','ClaimEndDt','AttendingPhysician',\ | |
| 'OperatingPhysician', 'OtherPhysician','ClmAdmitDiagnosisCode','NoOfMonths_PartACov',\ | |
| 'NoOfMonths_PartBCov','DiagnosisGroupCode','AdmissionDt','DischargeDt'] | |
| diagnosis_codes = ['ClmDiagnosisCode_1', 'ClmDiagnosisCode_2', 'ClmDiagnosisCode_3', | |
| 'ClmDiagnosisCode_4', 'ClmDiagnosisCode_5', 'ClmDiagnosisCode_6', | |
| 'ClmDiagnosisCode_7', 'ClmDiagnosisCode_8', 'ClmDiagnosisCode_9', | |
| 'ClmDiagnosisCode_10'] | |
| procedure_codes = ['ClmProcedureCode_1','ClmProcedureCode_2','ClmProcedureCode_3','ClmProcedureCode_4','ClmProcedureCode_5','ClmProcedureCode_6'] | |
| oth_cols = ['DOB','DOD','Claim_Start','Claim_Start','Admission_Date','Admission_Date','Claim_End','Discharge_Date'] |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| min_max_scaler = preprocessing.MinMaxScaler() | |
| def scale_fun(X_train,X_test,col): | |
| min_max_scaler.fit(X_train[col].values.reshape(-1,1)) | |
| X_train_=min_max_scaler.transform(X_train[col].values.reshape(-1,1)) | |
| X_test_=min_max_scaler.transform(X_test[col].values.reshape(-1,1)) | |
| return X_train_,X_test_ | |
| for col in X_train.columns: |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| parameters = {'max_depth':[1, 5, 10, 20, 50], | |
| 'min_samples_split':[5, 10, 100, 500]} | |
| dt = DecisionTreeClassifier() | |
| dt_grid = GridSearchCV(dt, param_grid=parameters, n_jobs=-1, verbose=1,scoring='f1_macro',cv=3,return_train_score=True) | |
| dt_grid.fit(X_train,y_train) | |
| best_depth=dt_grid.best_params_['max_depth'] | |
| best_samples=dt_grid.best_params_['min_samples_split'] |