This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
patient_data['Claim_Start'] = pd.to_datetime(patient_data['ClaimStartDt'] , format = '%Y-%m-%d') | |
patient_data['Claim_End'] = pd.to_datetime(patient_data['ClaimEndDt'],format = '%Y-%m-%d') | |
patient_data['DOB'] = pd.to_datetime(patient_data['DOB'] , format = '%Y-%m-%d') | |
patient_data['DOD'] = pd.to_datetime(patient_data['DOD'],format = '%Y-%m-%d') | |
patient_data['Claim_Days'] = ((patient_data['Claim_End'] - patient_data['Claim_Start']).dt.days) + 1 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
att_physician_count = patient_data['AttendingPhysician'].value_counts().to_dict() | |
patient_data['attend_physician_count']=patient_data['AttendingPhysician'].map(att_physician_count) | |
oper_physician_count = patient_data['OperatingPhysician'].value_counts().to_dict() | |
patient_data['operate_physician_count']=patient_data['OperatingPhysician'].map(oper_physician_count) | |
ben_count = patient_data['BeneID'].value_counts().to_dict() | |
patient_data['BeneID_count']=patient_data['BeneID'].map(ben_count) | |
prov_count = patient_data['Provider'].value_counts().to_dict() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
train_d_inpatient['whether_admitted'] = 1 | |
train_d_outpatient['whether_admitted'] = 0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
patient_df = pd.DataFrame(columns = ['Procedure_data']) | |
patient_df['Procedure_data'] = pd.concat([patient_data["ClmProcedureCode_1"],patient_data["ClmProcedureCode_2"],patient_data["ClmProcedureCode_3"],patient_data["ClmProcedureCode_4"],patient_data["ClmProcedureCode_5"],patient_data["ClmProcedureCode_6"]],axis=0) | |
patient_df = patient_df.dropna() | |
plt.figure(figsize=(10, 7)) | |
patient_df['Procedure_data'].value_counts().head(30).plot(x=patient_df['Procedure_data'] , kind = 'bar' , color = 'purple') | |
plt.title('Procedure Codes vs Count') | |
plt.xlabel('Procedure Codes') | |
plt.show() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
patient_df = pd.DataFrame(columns = ['Diagnosis_data']) | |
patient_df['Diagnosis_data'] = pd.concat([patient_data["ClmDiagnosisCode_1"],patient_data["ClmDiagnosisCode_2"],patient_data["ClmDiagnosisCode_3"],patient_data["ClmDiagnosisCode_4"],patient_data["ClmDiagnosisCode_5"],patient_data["ClmDiagnosisCode_6"],patient_data["ClmDiagnosisCode_7"],patient_data["ClmDiagnosisCode_8"],patient_data["ClmDiagnosisCode_9"],patient_data["ClmDiagnosisCode_10"]],axis=0) | |
patient_df = patient_df.dropna() | |
plt.figure(figsize=(10, 7)) | |
patient_df['Diagnosis_data'].value_counts().head(30).plot(x=patient_df['Diagnosis_data'] , kind = 'bar' , color = 'blue') | |
plt.title('Diagnosis Codes vs Count') | |
plt.xlabel('Diagnosis Codes') | |
plt.show() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
s1 = outpatient_data['InscClaimAmtReimbursed'].value_counts() | |
s_s1 = sum(s1.tolist()) | |
s2 = inpatient_data['InscClaimAmtReimbursed'].value_counts() | |
s_s2 = sum(s2.tolist()) | |
outpatient_data["amountgrp"]=pd.cut(outpatient_data.InscClaimAmtReimbursed, [0,50,100,200,400,600,800,1000,1500,2000]) | |
inpatient_data["amountgrp"]=pd.cut(inpatient_data.InscClaimAmtReimbursed, [0,2000,4000,6000,8000,10000,12000,14000,16000]) | |
plt.style.use('fivethirtyeight') | |
counts = outpatient_data.groupby(['amountgrp', 'PotentialFraud']).InscClaimAmtReimbursed.count().unstack() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
rcParams['figure.figsize'] = 5,5 | |
sns.kdeplot(outpatient_data['InscClaimAmtReimbursed'],shade=True,color='green',legend=False) | |
plt.title('InscClaimAmtReimbursed in Outpatient') | |
plt.xlabel('InscClaimAmtReimbursed') | |
plt.show() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
rcParams['figure.figsize'] = 5,5 | |
sns.kdeplot(inpatient_data['InscClaimAmtReimbursed'],shade=True,color='green',legend=False) | |
plt.title('InscClaimAmtReimbursed in inpatient') | |
plt.xlabel('InscClaimAmtReimbursed') | |
plt.show() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
outpatient_data["age_group"]=pd.cut(outpatient_data.Age, [30,40,50,60,70,80,90,100]) | |
inpatient_data["age_group"]=pd.cut(inpatient_data.Age, [30,40,50,60,70,80,90,100]) | |
fraud_count = outpatient_data['PotentialFraud'].value_counts().to_dict() | |
outpatient_data['fraud_Count']=outpatient_data['PotentialFraud'].map(age_count) | |
s1 = inpatient_data['Gender'].value_counts() | |
s_s1 = sum(s1.tolist()) | |
s2 = outpatient_data['Gender'].value_counts() |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
age_count = inpatient_data['Age'].value_counts().to_dict() | |
inpatient_data['Age_Count']=inpatient_data['Age'].map(age_count) | |
sns.violinplot(x='PotentialFraud',y='Age', data=inpatient_data,width=0.5) | |
plt.xlabel('potential fraud') | |
plt.ylabel('Age_of_patients') | |
plt.title('Age_of_patients vs frauds') | |
sns.violinplot(x='PotentialFraud',y='Gender', data=inpatient_data,width=0.5) | |
plt.xlabel('potential fraud') |