Created
May 15, 2017 19:54
-
-
Save Puriney/98544b779bcb815926f7acf87f537e61 to your computer and use it in GitHub Desktop.
Working on sparse matrix in Python: Create Pandas sparse data frame from matrix-market format.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Working with sparse matrix in Python\n", | |
"\n", | |
"Sparse matrix is saved in matrix-market format (<http://math.nist.gov/MatrixMarket/formats.html>)\n", | |
"in common cases. This post is showing how to read in matrix-market format and create a Pandas dataframe.\n", | |
"\n", | |
"*Note: the Pandas version should be at least 0.20*" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"0.20.1\n" | |
] | |
} | |
], | |
"source": [ | |
"import scipy.io\n", | |
"import scipy.sparse\n", | |
"import pandas as pd\n", | |
"print(pd.__version__)\n", | |
"import numpy as np" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"foo.mtx\n", | |
"%%MatrixMarket matrix coordinate real general\n", | |
"%=================================================================================\n", | |
"%\n", | |
"% This ASCII file represents a sparse MxN matrix with L \n", | |
"% nonzeros in the following Matrix Market format:\n", | |
"%\n", | |
"% +----------------------------------------------+\n", | |
"% |%%MatrixMarket matrix coordinate real general | <--- header line\n", | |
"% |% | <--+\n", | |
"% |% comments | |-- 0 or more comment lines\n", | |
"% |% | <--+ \n", | |
"% | M N L | <--- rows, columns, entries\n", | |
"% | I1 J1 A(I1, J1) | <--+\n", | |
"% | I2 J2 A(I2, J2) | |\n", | |
"% | I3 J3 A(I3, J3) | |-- L lines\n", | |
"% | . . . | |\n", | |
"% | IL JL A(IL, JL) | <--+\n", | |
"% +----------------------------------------------+ \n", | |
"%\n", | |
"% Indices are 1-based, i.e. A(1,1) is the first element.\n", | |
"%\n", | |
"%=================================================================================\n", | |
" 5 5 8\n", | |
" 1 1 1.000e+00\n", | |
" 2 2 1.050e+01\n", | |
" 3 3 1.500e-02\n", | |
" 1 4 6.000e+00\n", | |
" 4 2 2.505e+02\n", | |
" 4 4 -2.800e+02\n", | |
" 4 5 3.332e+01\n", | |
" 5 5 1.200e+01" | |
] | |
} | |
], | |
"source": [ | |
"!ls *mtx\n", | |
"!cat foo.mtx" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Step-1: Read in mtx file by scipy\n", | |
"\n", | |
"`scipy.io.mmread` is the function to read in matrix-market format and return a `coo` matrix." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" (0, 0)\t1.0\n", | |
" (1, 1)\t10.5\n", | |
" (2, 2)\t0.015\n", | |
" (0, 3)\t6.0\n", | |
" (3, 1)\t250.5\n", | |
" (3, 3)\t-280.0\n", | |
" (3, 4)\t33.32\n", | |
" (4, 4)\t12.0\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"<5x5 sparse matrix of type '<class 'numpy.float64'>'\n", | |
"\twith 8 stored elements in COOrdinate format>" | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"coo_mat = scipy.io.mmread('foo.mtx')\n", | |
"print(coo_mat)\n", | |
"coo_mat" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Step-2: `coo` to `csr`/`csc`\n", | |
"\n", | |
"Scipy matrix in `coo` layout can be easily converted to other types: `csr` and `csc`." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" (0, 0)\t1.0\n", | |
" (1, 1)\t10.5\n", | |
" (3, 1)\t250.5\n", | |
" (2, 2)\t0.015\n", | |
" (0, 3)\t6.0\n", | |
" (3, 3)\t-280.0\n", | |
" (3, 4)\t33.32\n", | |
" (4, 4)\t12.0\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"<5x5 sparse matrix of type '<class 'numpy.float64'>'\n", | |
"\twith 8 stored elements in Compressed Sparse Column format>" | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"csc_mat = coo_mat.tocsc()\n", | |
"print(csc_mat)\n", | |
"csc_mat" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" (0, 0)\t1.0\n", | |
" (0, 3)\t6.0\n", | |
" (1, 1)\t10.5\n", | |
" (2, 2)\t0.015\n", | |
" (3, 1)\t250.5\n", | |
" (3, 3)\t-280.0\n", | |
" (3, 4)\t33.32\n", | |
" (4, 4)\t12.0\n" | |
] | |
}, | |
{ | |
"data": { | |
"text/plain": [ | |
"<5x5 sparse matrix of type '<class 'numpy.float64'>'\n", | |
"\twith 8 stored elements in Compressed Sparse Row format>" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"csr_mat = coo_mat.tocsr(copy=True)\n", | |
"print(csr_mat)\n", | |
"csr_mat" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"## Step-3: `csr` to Pandas sparse data frame" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" 0 1 2 3 4\n", | |
"0 1.0 NaN NaN 6.0 NaN\n", | |
"1 NaN 10.5 NaN NaN NaN\n", | |
"2 NaN NaN 0.015 NaN NaN\n", | |
"3 NaN 250.5 NaN -280.0 33.32\n", | |
"4 NaN NaN NaN NaN 12.00\n" | |
] | |
} | |
], | |
"source": [ | |
"sp_df = pd.SparseDataFrame(csr_mat)#.fillna(0)\n", | |
"print(sp_df)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
" 0 1 2 3 4\n", | |
"0 1.0 0.0 0.000 6.0 0.00\n", | |
"1 0.0 10.5 0.000 0.0 0.00\n", | |
"2 0.0 0.0 0.015 0.0 0.00\n", | |
"3 0.0 250.5 0.000 -280.0 33.32\n", | |
"4 0.0 0.0 0.000 0.0 12.00\n" | |
] | |
} | |
], | |
"source": [ | |
"sp_df = pd.SparseDataFrame(csr_mat).fillna(0)\n", | |
"print(sp_df)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.2" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 1 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment