Skip to content

Instantly share code, notes, and snippets.

View PyDataBlog's full-sized avatar
🥷
Code with purpose

Bernard Brenyah PyDataBlog

🥷
Code with purpose
View GitHub Profile
import tensorflow as tf
import pandas as pd
import numpy as np
import joblib
import os
from loguru import logger
@logger.catch
def get_predictions(data):
import time
import ast
import sqlite3
import pandas as pd
from typing import List
from polygon import WebSocketClient, STOCKS_CLUSTER, CRYPTO_CLUSTER, FOREX_CLUSTER
def my_custom_process_message(messages: List[str]):
"""
# Build a clustering model with Elkan variant of kmeans algorithm
results = kmeans(Elkan(), X, 10, tol=1e-10, max_iters=300)
# results contains all the learned artifacts that can be accessed as;
results.centers # cluster centers (d x k)
results.assignments # label assignments (n)
results.totalcost # total cost (i.e. objective)
results.iterations # number of elapsed iterations
results.converged # whether the procedure converged
# Load Packages
using MLDatasets
using ParallelKMeans
#
# Load MNIST Training Data
#
train = MNIST.traintensor()
# Get number of features from the pixel (28 by 28)

Aligning images

left alignment

This is the code you need to align images to the left:

Aligning images

left alignment

This is the code you need to align images to the left:

using MLDatasets
using DataFrames
train_x, train_y = MNIST.traindata();
test_x, test_y = MNIST.testdata();
X_train = Float64.(reshape(train_x, 60000, :));
X_test = Float64.(reshape(test_x, 10000, :));
DataFrame(X_train)
Overhead ╎ [+additional indent] Count File:Line; Function
=========================================================
╎14238 @Base/task.jl:358; (::REPL.var"#26#27"{REPL.REPLBackend})()
╎ 14238 ...ia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.4/REPL/src/REPL.jl:118; macro expansion
╎ 14238 ...ia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.4/REPL/src/REPL.jl:86; eval_user_input(::Any, ::REPL.REPLBackend)
╎ 14238 @Base/boot.jl:331; eval(::Module, ::Any)
╎ 14238 @Atom/src/repl.jl:227; evalrepl(::Module, ::String)
╎ 14238 @Base/logging.jl:505; with_logger
╎ ╎ 14238 @Base/logging.jl:398; with_logstate(::Atom.var"#228#230"{Module}, ::Base.CoreLogging.LogState)
╎ ╎ 14238 @Atom/src/repl.jl:236; (::Atom.var"#228#230"{Module})()
Overhead ╎ [+additional indent] Count File:Line; Function
=========================================================
╎16463 @Base/task.jl:358; (::REPL.var"#26#27"{REPL.REPLBackend})()
╎ 16463 ...ia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.4/REPL/src/REPL.jl:118; macro expansion
╎ 16463 ...ia/buildbot/worker/package_macos64/build/usr/share/julia/stdlib/v1.4/REPL/src/REPL.jl:86; eval_user_input(::Any, ::REPL.REPLBackend)
╎ 16463 @Base/boot.jl:331; eval(::Module, ::Any)
╎ 16463 @Atom/src/repl.jl:227; evalrepl(::Module, ::String)
╎ 16463 @Base/logging.jl:505; with_logger
╎ ╎ 16463 @Base/logging.jl:398; with_logstate(::Atom.var"#228#230"{Module}, ::Base.CoreLogging.LogState)
╎ ╎ 16463 @Atom/src/repl.jl:236; (::Atom.var"#228#230"{Module})()
"""
smart_init(X, k; init="k-means++")
This function handles the random initialisation of the centroids from the
design matrix (X) and desired groups (k) that a user supplies.
`k-means++` algorithm is used by default with the normal random selection
of centroids from X used if any other string is attempted.
A tuple representing the centroids, number of rows, & columns respecitively