Created
January 24, 2016 20:38
-
-
Save RadhikaG/6c86ca0a12ddfe231f0f to your computer and use it in GitHub Desktop.
An IPython notebook for visualizing crime data for India, the United States, France, and the Netherlands.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Visualizing Crime Data" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Hi, welcome to my assignment for the Probability and Statistics course at my college. I really just took this as an excuse to learn Pandas and the IPython Notebook in all its glory. So here goes!" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Importing required libraries" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Populating the interactive namespace from numpy and matplotlib\n" | |
] | |
} | |
], | |
"source": [ | |
"from pandas import DataFrame, read_csv\n", | |
"import matplotlib.pyplot as plt\n", | |
"import pandas\n", | |
"import matplotlib\n", | |
"\n", | |
"%matplotlib inline\n", | |
"%pylab inline\n", | |
"\n", | |
"matplotlib.style.use('ggplot')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Matplotlib has changed quite a bit from when I first used it in 2011. The new `ggplot` style, I daresay, makes the output plots quite sexy!" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Loading data from CSV files" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 2, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"india_women = pandas.read_csv('/home/radhika/PS/viz_project/datasets/india_women.csv')\n", | |
"india_kidnap = pandas.read_csv('/home/radhika/PS/viz_project/datasets/india_kidnap.csv', parse_dates=True, index_col='YEAR')\n", | |
"india_murder = pandas.read_csv('/home/radhika/PS/viz_project/datasets/india_murder.csv', parse_dates=True, index_col='YEAR')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 3, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"us_violentcrime = pandas.read_csv('/home/radhika/PS/viz_project/datasets/us_violentcrime.csv', parse_dates=True, index_col='Year')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 4, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"france_homicide = pandas.read_csv('/home/radhika/PS/viz_project/datasets/france_homicide.csv', parse_dates=True, index_col='Date')\n", | |
"france_assault = pandas.read_csv('/home/radhika/PS/viz_project/datasets/france_assault.csv', parse_dates=True, index_col='Date')\n", | |
"france_rape = pandas.read_csv('/home/radhika/PS/viz_project/datasets/france_rape.csv', parse_dates=True, index_col='Date')\n", | |
"france_kidnap = pandas.read_csv('/home/radhika/PS/viz_project/datasets/france_kidnap.csv', parse_dates=True, index_col='Date')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"neth_homicide = pandas.read_csv('/home/radhika/PS/viz_project/datasets/neth_homicide.csv', parse_dates=True, index_col='Date')\n", | |
"neth_assault = pandas.read_csv('/home/radhika/PS/viz_project/datasets/neth_assault.csv', parse_dates=True, index_col='Date')\n", | |
"neth_rape = pandas.read_csv('/home/radhika/PS/viz_project/datasets/neth_rape.csv', parse_dates=True, index_col='Date')\n", | |
"neth_kidnap = pandas.read_csv('/home/radhika/PS/viz_project/datasets/neth_kidnap.csv', parse_dates=True, index_col='Date')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Cleaning up and properly formatting data from CSV files for tabular use" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Since I used data from various sources (thanks [data.gov.in](http://data.gov.in) and [Knoema](http://knoema.com)!), all of them were in different tabular formats and had to be parsed separately to be combined together. This was a bit irritating, but `pandas` made the process relatively painless.\n", | |
"\n", | |
"I've shown the state of the modified table at every step for the sake of clarity." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>STATE/UT</th>\n", | |
" <th>Pupose</th>\n", | |
" <th>Total No. of cases reported</th>\n", | |
" <th>Male upto 10 years</th>\n", | |
" <th>Female upto 10 years</th>\n", | |
" <th>Male 10-15 years</th>\n", | |
" <th>Female 10-15 years</th>\n", | |
" <th>Male 15-18 years</th>\n", | |
" <th>Female 15-18 years</th>\n", | |
" <th>Male 18-30 years</th>\n", | |
" <th>Female 18-30 years</th>\n", | |
" <th>Male 30-50 years</th>\n", | |
" <th>Female 30-50 years</th>\n", | |
" <th>Male above 50 years</th>\n", | |
" <th>Female above 50 years</th>\n", | |
" <th>Total Male</th>\n", | |
" <th>Total Female</th>\n", | |
" <th>Grand Total</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>YEAR</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Andhra Pradesh</td>\n", | |
" <td>For Adoption</td>\n", | |
" <td>8</td>\n", | |
" <td>3</td>\n", | |
" <td>1</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>4</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>3</td>\n", | |
" <td>5</td>\n", | |
" <td>8</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Andhra Pradesh</td>\n", | |
" <td>For Begging</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Andhra Pradesh</td>\n", | |
" <td>For Camel racing</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Andhra Pradesh</td>\n", | |
" <td>For Illicit intercourse</td>\n", | |
" <td>78</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>25</td>\n", | |
" <td>0</td>\n", | |
" <td>24</td>\n", | |
" <td>0</td>\n", | |
" <td>25</td>\n", | |
" <td>0</td>\n", | |
" <td>2</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>78</td>\n", | |
" <td>78</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Andhra Pradesh</td>\n", | |
" <td>For marriage</td>\n", | |
" <td>339</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>73</td>\n", | |
" <td>1</td>\n", | |
" <td>164</td>\n", | |
" <td>6</td>\n", | |
" <td>91</td>\n", | |
" <td>0</td>\n", | |
" <td>4</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>7</td>\n", | |
" <td>332</td>\n", | |
" <td>339</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" STATE/UT Pupose \\\n", | |
"YEAR \n", | |
"2001-01-01 Andhra Pradesh For Adoption \n", | |
"2001-01-01 Andhra Pradesh For Begging \n", | |
"2001-01-01 Andhra Pradesh For Camel racing \n", | |
"2001-01-01 Andhra Pradesh For Illicit intercourse \n", | |
"2001-01-01 Andhra Pradesh For marriage \n", | |
"\n", | |
" Total No. of cases reported Male upto 10 years \\\n", | |
"YEAR \n", | |
"2001-01-01 8 3 \n", | |
"2001-01-01 2 0 \n", | |
"2001-01-01 0 0 \n", | |
"2001-01-01 78 0 \n", | |
"2001-01-01 339 0 \n", | |
"\n", | |
" Female upto 10 years Male 10-15 years Female 10-15 years \\\n", | |
"YEAR \n", | |
"2001-01-01 1 0 0 \n", | |
"2001-01-01 0 2 0 \n", | |
"2001-01-01 0 0 0 \n", | |
"2001-01-01 2 0 25 \n", | |
"2001-01-01 0 0 73 \n", | |
"\n", | |
" Male 15-18 years Female 15-18 years Male 18-30 years \\\n", | |
"YEAR \n", | |
"2001-01-01 0 0 0 \n", | |
"2001-01-01 0 0 0 \n", | |
"2001-01-01 0 0 0 \n", | |
"2001-01-01 0 24 0 \n", | |
"2001-01-01 1 164 6 \n", | |
"\n", | |
" Female 18-30 years Male 30-50 years Female 30-50 years \\\n", | |
"YEAR \n", | |
"2001-01-01 4 0 0 \n", | |
"2001-01-01 0 0 0 \n", | |
"2001-01-01 0 0 0 \n", | |
"2001-01-01 25 0 2 \n", | |
"2001-01-01 91 0 4 \n", | |
"\n", | |
" Male above 50 years Female above 50 years Total Male \\\n", | |
"YEAR \n", | |
"2001-01-01 0 0 3 \n", | |
"2001-01-01 0 0 2 \n", | |
"2001-01-01 0 0 0 \n", | |
"2001-01-01 0 0 0 \n", | |
"2001-01-01 0 0 7 \n", | |
"\n", | |
" Total Female Grand Total \n", | |
"YEAR \n", | |
"2001-01-01 5 8 \n", | |
"2001-01-01 0 2 \n", | |
"2001-01-01 0 0 \n", | |
"2001-01-01 78 78 \n", | |
"2001-01-01 332 339 " | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"india_kidnap.head()" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Purpose of Kidnapping: \"For Camel Racing\". Wut." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 7, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>STATE/UT</th>\n", | |
" <th>GENDER</th>\n", | |
" <th>Upto 10 years</th>\n", | |
" <th>10-15 years</th>\n", | |
" <th>15-18 years</th>\n", | |
" <th>18-30 years</th>\n", | |
" <th>30-50 years</th>\n", | |
" <th>Above 50 years</th>\n", | |
" <th>Total</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>YEAR</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Andhra Pradesh</td>\n", | |
" <td>Male</td>\n", | |
" <td>35</td>\n", | |
" <td>59</td>\n", | |
" <td>88</td>\n", | |
" <td>827</td>\n", | |
" <td>952</td>\n", | |
" <td>215</td>\n", | |
" <td>2176</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Andhra Pradesh</td>\n", | |
" <td>Female</td>\n", | |
" <td>38</td>\n", | |
" <td>15</td>\n", | |
" <td>43</td>\n", | |
" <td>269</td>\n", | |
" <td>175</td>\n", | |
" <td>67</td>\n", | |
" <td>607</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Andhra Pradesh</td>\n", | |
" <td>Total</td>\n", | |
" <td>73</td>\n", | |
" <td>74</td>\n", | |
" <td>131</td>\n", | |
" <td>1096</td>\n", | |
" <td>1127</td>\n", | |
" <td>282</td>\n", | |
" <td>2783</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Arunachal Pradesh</td>\n", | |
" <td>Male</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>31</td>\n", | |
" <td>32</td>\n", | |
" <td>4</td>\n", | |
" <td>67</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Arunachal Pradesh</td>\n", | |
" <td>Female</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>0</td>\n", | |
" <td>10</td>\n", | |
" <td>4</td>\n", | |
" <td>2</td>\n", | |
" <td>16</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" STATE/UT GENDER Upto 10 years 10-15 years \\\n", | |
"YEAR \n", | |
"2001-01-01 Andhra Pradesh Male 35 59 \n", | |
"2001-01-01 Andhra Pradesh Female 38 15 \n", | |
"2001-01-01 Andhra Pradesh Total 73 74 \n", | |
"2001-01-01 Arunachal Pradesh Male 0 0 \n", | |
"2001-01-01 Arunachal Pradesh Female 0 0 \n", | |
"\n", | |
" 15-18 years 18-30 years 30-50 years Above 50 years Total \n", | |
"YEAR \n", | |
"2001-01-01 88 827 952 215 2176 \n", | |
"2001-01-01 43 269 175 67 607 \n", | |
"2001-01-01 131 1096 1127 282 2783 \n", | |
"2001-01-01 0 31 32 4 67 \n", | |
"2001-01-01 0 10 4 2 16 " | |
] | |
}, | |
"execution_count": 7, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"india_murder.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>STATE/UT</th>\n", | |
" <th>Total</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>YEAR</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Andhra Pradesh</td>\n", | |
" <td>2783</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Arunachal Pradesh</td>\n", | |
" <td>83</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Assam</td>\n", | |
" <td>1356</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Bihar</td>\n", | |
" <td>3643</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>Chhattisgarh</td>\n", | |
" <td>1657</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" STATE/UT Total\n", | |
"YEAR \n", | |
"2001-01-01 Andhra Pradesh 2783\n", | |
"2001-01-01 Arunachal Pradesh 83\n", | |
"2001-01-01 Assam 1356\n", | |
"2001-01-01 Bihar 3643\n", | |
"2001-01-01 Chhattisgarh 1657" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"state_murder = india_murder[india_murder['GENDER'] == 'Total']\n", | |
"state_murder = state_murder[[0, 8]]\n", | |
"state_murder.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 9, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Grand Total</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>YEAR</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>22996</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002-01-01</th>\n", | |
" <td>22173</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>20021</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>23309</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>23133</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>24292</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>28030</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008-01-01</th>\n", | |
" <td>30595</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009-01-01</th>\n", | |
" <td>34304</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010-01-01</th>\n", | |
" <td>39148</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011-01-01</th>\n", | |
" <td>45239</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012-01-01</th>\n", | |
" <td>48219</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Grand Total\n", | |
"YEAR \n", | |
"2001-01-01 22996\n", | |
"2002-01-01 22173\n", | |
"2003-01-01 20021\n", | |
"2004-01-01 23309\n", | |
"2005-01-01 23133\n", | |
"2006-01-01 24292\n", | |
"2007-01-01 28030\n", | |
"2008-01-01 30595\n", | |
"2009-01-01 34304\n", | |
"2010-01-01 39148\n", | |
"2011-01-01 45239\n", | |
"2012-01-01 48219" | |
] | |
}, | |
"execution_count": 9, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"state_kidnap = india_kidnap[india_kidnap['Pupose'] == 'Total']\n", | |
"state_kidnap = state_kidnap[[0, 17]]\n", | |
"india_kidnap = state_kidnap.groupby(level=0).sum()\n", | |
"india_kidnap" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 10, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Total</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>YEAR</th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>38636</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002-01-01</th>\n", | |
" <td>38033</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>33821</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>34915</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>34419</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>33808</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>33428</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008-01-01</th>\n", | |
" <td>33727</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009-01-01</th>\n", | |
" <td>33159</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010-01-01</th>\n", | |
" <td>33908</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011-01-01</th>\n", | |
" <td>35123</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012-01-01</th>\n", | |
" <td>35122</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Total\n", | |
"YEAR \n", | |
"2001-01-01 38636\n", | |
"2002-01-01 38033\n", | |
"2003-01-01 33821\n", | |
"2004-01-01 34915\n", | |
"2005-01-01 34419\n", | |
"2006-01-01 33808\n", | |
"2007-01-01 33428\n", | |
"2008-01-01 33727\n", | |
"2009-01-01 33159\n", | |
"2010-01-01 33908\n", | |
"2011-01-01 35123\n", | |
"2012-01-01 35122" | |
] | |
}, | |
"execution_count": 10, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"india_murder = state_murder.groupby(level=0).sum()\n", | |
"india_murder" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 11, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>STATE/UT</th>\n", | |
" <th>CRIME HEAD</th>\n", | |
" <th>2001</th>\n", | |
" <th>2002</th>\n", | |
" <th>2003</th>\n", | |
" <th>2004</th>\n", | |
" <th>2005</th>\n", | |
" <th>2006</th>\n", | |
" <th>2007</th>\n", | |
" <th>2008</th>\n", | |
" <th>2009</th>\n", | |
" <th>2010</th>\n", | |
" <th>2011</th>\n", | |
" <th>2012</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>ANDHRA PRADESH</td>\n", | |
" <td>RAPE</td>\n", | |
" <td>1150</td>\n", | |
" <td>1340</td>\n", | |
" <td>1237</td>\n", | |
" <td>1443</td>\n", | |
" <td>1415</td>\n", | |
" <td>1360</td>\n", | |
" <td>1436</td>\n", | |
" <td>1531</td>\n", | |
" <td>1487</td>\n", | |
" <td>1761</td>\n", | |
" <td>1758</td>\n", | |
" <td>1664</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>ARUNACHAL PRADESH</td>\n", | |
" <td>RAPE</td>\n", | |
" <td>51</td>\n", | |
" <td>61</td>\n", | |
" <td>35</td>\n", | |
" <td>56</td>\n", | |
" <td>38</td>\n", | |
" <td>40</td>\n", | |
" <td>57</td>\n", | |
" <td>37</td>\n", | |
" <td>60</td>\n", | |
" <td>49</td>\n", | |
" <td>47</td>\n", | |
" <td>47</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>ASSAM</td>\n", | |
" <td>RAPE</td>\n", | |
" <td>928</td>\n", | |
" <td>1019</td>\n", | |
" <td>1188</td>\n", | |
" <td>1233</td>\n", | |
" <td>1406</td>\n", | |
" <td>1290</td>\n", | |
" <td>1477</td>\n", | |
" <td>1445</td>\n", | |
" <td>1644</td>\n", | |
" <td>1629</td>\n", | |
" <td>1470</td>\n", | |
" <td>1626</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>BIHAR</td>\n", | |
" <td>RAPE</td>\n", | |
" <td>1400</td>\n", | |
" <td>1304</td>\n", | |
" <td>1120</td>\n", | |
" <td>1157</td>\n", | |
" <td>1455</td>\n", | |
" <td>1451</td>\n", | |
" <td>1816</td>\n", | |
" <td>1464</td>\n", | |
" <td>1086</td>\n", | |
" <td>892</td>\n", | |
" <td>1185</td>\n", | |
" <td>1327</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>CHHATTISGARH</td>\n", | |
" <td>RAPE</td>\n", | |
" <td>1134</td>\n", | |
" <td>1214</td>\n", | |
" <td>1020</td>\n", | |
" <td>1144</td>\n", | |
" <td>1107</td>\n", | |
" <td>1211</td>\n", | |
" <td>1146</td>\n", | |
" <td>1108</td>\n", | |
" <td>1128</td>\n", | |
" <td>1198</td>\n", | |
" <td>1257</td>\n", | |
" <td>1214</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" STATE/UT CRIME HEAD 2001 2002 2003 2004 2005 2006 2007 \\\n", | |
"0 ANDHRA PRADESH RAPE 1150 1340 1237 1443 1415 1360 1436 \n", | |
"1 ARUNACHAL PRADESH RAPE 51 61 35 56 38 40 57 \n", | |
"2 ASSAM RAPE 928 1019 1188 1233 1406 1290 1477 \n", | |
"3 BIHAR RAPE 1400 1304 1120 1157 1455 1451 1816 \n", | |
"4 CHHATTISGARH RAPE 1134 1214 1020 1144 1107 1211 1146 \n", | |
"\n", | |
" 2008 2009 2010 2011 2012 \n", | |
"0 1531 1487 1761 1758 1664 \n", | |
"1 37 60 49 47 47 \n", | |
"2 1445 1644 1629 1470 1626 \n", | |
"3 1464 1086 892 1185 1327 \n", | |
"4 1108 1128 1198 1257 1214 " | |
] | |
}, | |
"execution_count": 11, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"state_rape = india_women[india_women['CRIME HEAD'] == 'RAPE']\n", | |
"state_rape.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 12, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"YEAR\n", | |
"2001-01-01 20446\n", | |
"2002-01-01 21236\n", | |
"2003-01-01 19994\n", | |
"2004-01-01 22489\n", | |
"2005-01-01 23212\n", | |
"2006-01-01 23792\n", | |
"2007-01-01 25363\n", | |
"2008-01-01 25036\n", | |
"2009-01-01 25845\n", | |
"2010-01-01 27074\n", | |
"2011-01-01 28878\n", | |
"2012-01-01 31117\n", | |
"Name: 37, dtype: object" | |
] | |
}, | |
"execution_count": 12, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"india_rape = state_rape.loc[37][2:]\n", | |
"india_rape.index = india_murder.index\n", | |
"india_rape.columns = ['Total']\n", | |
"india_rape" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 13, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Population</th>\n", | |
" <th>Violent crime total</th>\n", | |
" <th>Murder and nonnegligent Manslaughter</th>\n", | |
" <th>Forcible rape</th>\n", | |
" <th>Robbery</th>\n", | |
" <th>Aggravated assault</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Year</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>1960-01-01</th>\n", | |
" <td>179323175</td>\n", | |
" <td>288460</td>\n", | |
" <td>9110</td>\n", | |
" <td>17190</td>\n", | |
" <td>107840</td>\n", | |
" <td>154320</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1961-01-01</th>\n", | |
" <td>182992000</td>\n", | |
" <td>289390</td>\n", | |
" <td>8740</td>\n", | |
" <td>17220</td>\n", | |
" <td>106670</td>\n", | |
" <td>156760</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1962-01-01</th>\n", | |
" <td>185771000</td>\n", | |
" <td>301510</td>\n", | |
" <td>8530</td>\n", | |
" <td>17550</td>\n", | |
" <td>110860</td>\n", | |
" <td>164570</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1963-01-01</th>\n", | |
" <td>188483000</td>\n", | |
" <td>316970</td>\n", | |
" <td>8640</td>\n", | |
" <td>17650</td>\n", | |
" <td>116470</td>\n", | |
" <td>174210</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1964-01-01</th>\n", | |
" <td>191141000</td>\n", | |
" <td>364220</td>\n", | |
" <td>9360</td>\n", | |
" <td>21420</td>\n", | |
" <td>130390</td>\n", | |
" <td>203050</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Population Violent crime total \\\n", | |
"Year \n", | |
"1960-01-01 179323175 288460 \n", | |
"1961-01-01 182992000 289390 \n", | |
"1962-01-01 185771000 301510 \n", | |
"1963-01-01 188483000 316970 \n", | |
"1964-01-01 191141000 364220 \n", | |
"\n", | |
" Murder and nonnegligent Manslaughter Forcible rape Robbery \\\n", | |
"Year \n", | |
"1960-01-01 9110 17190 107840 \n", | |
"1961-01-01 8740 17220 106670 \n", | |
"1962-01-01 8530 17550 110860 \n", | |
"1963-01-01 8640 17650 116470 \n", | |
"1964-01-01 9360 21420 130390 \n", | |
"\n", | |
" Aggravated assault \n", | |
"Year \n", | |
"1960-01-01 154320 \n", | |
"1961-01-01 156760 \n", | |
"1962-01-01 164570 \n", | |
"1963-01-01 174210 \n", | |
"1964-01-01 203050 " | |
] | |
}, | |
"execution_count": 13, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"us_violentcrime.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 14, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>location</th>\n", | |
" <th>variable</th>\n", | |
" <th>Unit</th>\n", | |
" <th>Value</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Date</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>Netherlands</td>\n", | |
" <td>Assault at the national level, count</td>\n", | |
" <td>Number</td>\n", | |
" <td>53500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>Netherlands</td>\n", | |
" <td>Assault at the national level, count</td>\n", | |
" <td>Number</td>\n", | |
" <td>55300</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>Netherlands</td>\n", | |
" <td>Assault at the national level, count</td>\n", | |
" <td>Number</td>\n", | |
" <td>67060</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>Netherlands</td>\n", | |
" <td>Assault at the national level, count</td>\n", | |
" <td>Number</td>\n", | |
" <td>69185</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>Netherlands</td>\n", | |
" <td>Assault at the national level, count</td>\n", | |
" <td>Number</td>\n", | |
" <td>71570</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" location variable Unit Value\n", | |
"Date \n", | |
"2003-01-01 Netherlands Assault at the national level, count Number 53500\n", | |
"2004-01-01 Netherlands Assault at the national level, count Number 55300\n", | |
"2005-01-01 Netherlands Assault at the national level, count Number 67060\n", | |
"2006-01-01 Netherlands Assault at the national level, count Number 69185\n", | |
"2007-01-01 Netherlands Assault at the national level, count Number 71570" | |
] | |
}, | |
"execution_count": 14, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"france_homicide.head()\n", | |
"neth_assault.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 15, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [], | |
"source": [ | |
"france_assault = france_assault[[3]]\n", | |
"france_homicide = france_homicide[[3]]\n", | |
"france_kidnap = france_kidnap[[3]]\n", | |
"france_rape = france_rape[[3]]" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 16, | |
"metadata": { | |
"collapsed": true | |
}, | |
"outputs": [], | |
"source": [ | |
"neth_assault = neth_assault[[3]]\n", | |
"neth_homicide = neth_homicide[[3]]\n", | |
"neth_kidnap = neth_kidnap[[3]]\n", | |
"neth_rape = neth_rape[[3]]" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Final merging of data and formation of tables" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 17, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Murder</th>\n", | |
" <th>Kidnapping and Abduction</th>\n", | |
" <th>Rape</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>YEAR</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>38636</td>\n", | |
" <td>22996</td>\n", | |
" <td>20446</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002-01-01</th>\n", | |
" <td>38033</td>\n", | |
" <td>22173</td>\n", | |
" <td>21236</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>33821</td>\n", | |
" <td>20021</td>\n", | |
" <td>19994</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>34915</td>\n", | |
" <td>23309</td>\n", | |
" <td>22489</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>34419</td>\n", | |
" <td>23133</td>\n", | |
" <td>23212</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>33808</td>\n", | |
" <td>24292</td>\n", | |
" <td>23792</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>33428</td>\n", | |
" <td>28030</td>\n", | |
" <td>25363</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008-01-01</th>\n", | |
" <td>33727</td>\n", | |
" <td>30595</td>\n", | |
" <td>25036</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009-01-01</th>\n", | |
" <td>33159</td>\n", | |
" <td>34304</td>\n", | |
" <td>25845</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010-01-01</th>\n", | |
" <td>33908</td>\n", | |
" <td>39148</td>\n", | |
" <td>27074</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011-01-01</th>\n", | |
" <td>35123</td>\n", | |
" <td>45239</td>\n", | |
" <td>28878</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012-01-01</th>\n", | |
" <td>35122</td>\n", | |
" <td>48219</td>\n", | |
" <td>31117</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Murder Kidnapping and Abduction Rape\n", | |
"YEAR \n", | |
"2001-01-01 38636 22996 20446\n", | |
"2002-01-01 38033 22173 21236\n", | |
"2003-01-01 33821 20021 19994\n", | |
"2004-01-01 34915 23309 22489\n", | |
"2005-01-01 34419 23133 23212\n", | |
"2006-01-01 33808 24292 23792\n", | |
"2007-01-01 33428 28030 25363\n", | |
"2008-01-01 33727 30595 25036\n", | |
"2009-01-01 33159 34304 25845\n", | |
"2010-01-01 33908 39148 27074\n", | |
"2011-01-01 35123 45239 28878\n", | |
"2012-01-01 35122 48219 31117" | |
] | |
}, | |
"execution_count": 17, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"india_violentcrime = pandas.concat([india_murder, india_kidnap, india_rape], axis=1)\n", | |
"india_violentcrime.columns = ['Murder', 'Kidnapping and Abduction', 'Rape']\n", | |
"india_violentcrime" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 18, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Homicide</th>\n", | |
" <th>Assault</th>\n", | |
" <th>Kidnapping and Abduction</th>\n", | |
" <th>Rape</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Date</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2000-01-01</th>\n", | |
" <td>180</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>202</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002-01-01</th>\n", | |
" <td>195</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>202</td>\n", | |
" <td>53500</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1700</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>191</td>\n", | |
" <td>55300</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1800</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>174</td>\n", | |
" <td>67060</td>\n", | |
" <td>910</td>\n", | |
" <td>2505</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>128</td>\n", | |
" <td>69185</td>\n", | |
" <td>850</td>\n", | |
" <td>2405</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>143</td>\n", | |
" <td>71570</td>\n", | |
" <td>780</td>\n", | |
" <td>2135</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008-01-01</th>\n", | |
" <td>150</td>\n", | |
" <td>69005</td>\n", | |
" <td>760</td>\n", | |
" <td>1945</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009-01-01</th>\n", | |
" <td>154</td>\n", | |
" <td>65690</td>\n", | |
" <td>625</td>\n", | |
" <td>1920</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010-01-01</th>\n", | |
" <td>144</td>\n", | |
" <td>60280</td>\n", | |
" <td>645</td>\n", | |
" <td>1660</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011-01-01</th>\n", | |
" <td>143</td>\n", | |
" <td>59425</td>\n", | |
" <td>560</td>\n", | |
" <td>1605</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012-01-01</th>\n", | |
" <td>145</td>\n", | |
" <td>56650</td>\n", | |
" <td>580</td>\n", | |
" <td>1490</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2013-01-01</th>\n", | |
" <td>125</td>\n", | |
" <td>52135</td>\n", | |
" <td>520</td>\n", | |
" <td>1320</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Homicide Assault Kidnapping and Abduction Rape\n", | |
"Date \n", | |
"2000-01-01 180 NaN NaN NaN\n", | |
"2001-01-01 202 NaN NaN NaN\n", | |
"2002-01-01 195 NaN NaN NaN\n", | |
"2003-01-01 202 53500 NaN 1700\n", | |
"2004-01-01 191 55300 NaN 1800\n", | |
"2005-01-01 174 67060 910 2505\n", | |
"2006-01-01 128 69185 850 2405\n", | |
"2007-01-01 143 71570 780 2135\n", | |
"2008-01-01 150 69005 760 1945\n", | |
"2009-01-01 154 65690 625 1920\n", | |
"2010-01-01 144 60280 645 1660\n", | |
"2011-01-01 143 59425 560 1605\n", | |
"2012-01-01 145 56650 580 1490\n", | |
"2013-01-01 125 52135 520 1320" | |
] | |
}, | |
"execution_count": 18, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"neth_violentcrime = pandas.concat([neth_homicide, neth_assault, neth_kidnap, neth_rape], axis=1)\n", | |
"neth_violentcrime.columns = ['Homicide', 'Assault', 'Kidnapping and Abduction', 'Rape']\n", | |
"neth_violentcrime" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 19, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Homicide</th>\n", | |
" <th>Assault</th>\n", | |
" <th>Kidnapping and Abduction</th>\n", | |
" <th>Rape</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Date</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2000-01-01</th>\n", | |
" <td>1051</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>1047</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002-01-01</th>\n", | |
" <td>1119</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>987</td>\n", | |
" <td>135003</td>\n", | |
" <td>2031</td>\n", | |
" <td>10408</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>990</td>\n", | |
" <td>137679</td>\n", | |
" <td>2143</td>\n", | |
" <td>10506</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>976</td>\n", | |
" <td>148651</td>\n", | |
" <td>2012</td>\n", | |
" <td>9993</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>879</td>\n", | |
" <td>164359</td>\n", | |
" <td>2288</td>\n", | |
" <td>9784</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>993</td>\n", | |
" <td>175886</td>\n", | |
" <td>2109</td>\n", | |
" <td>10132</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008-01-01</th>\n", | |
" <td>1021</td>\n", | |
" <td>187937</td>\n", | |
" <td>2074</td>\n", | |
" <td>10277</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009-01-01</th>\n", | |
" <td>819</td>\n", | |
" <td>193405</td>\n", | |
" <td>2085</td>\n", | |
" <td>9842</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010-01-01</th>\n", | |
" <td>796</td>\n", | |
" <td>192906</td>\n", | |
" <td>2092</td>\n", | |
" <td>10108</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011-01-01</th>\n", | |
" <td>856</td>\n", | |
" <td>192263</td>\n", | |
" <td>2234</td>\n", | |
" <td>10406</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012-01-01</th>\n", | |
" <td>784</td>\n", | |
" <td>193081</td>\n", | |
" <td>2117</td>\n", | |
" <td>10885</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2013-01-01</th>\n", | |
" <td>777</td>\n", | |
" <td>192643</td>\n", | |
" <td>2266</td>\n", | |
" <td>11171</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Homicide Assault Kidnapping and Abduction Rape\n", | |
"Date \n", | |
"2000-01-01 1051 NaN NaN NaN\n", | |
"2001-01-01 1047 NaN NaN NaN\n", | |
"2002-01-01 1119 NaN NaN NaN\n", | |
"2003-01-01 987 135003 2031 10408\n", | |
"2004-01-01 990 137679 2143 10506\n", | |
"2005-01-01 976 148651 2012 9993\n", | |
"2006-01-01 879 164359 2288 9784\n", | |
"2007-01-01 993 175886 2109 10132\n", | |
"2008-01-01 1021 187937 2074 10277\n", | |
"2009-01-01 819 193405 2085 9842\n", | |
"2010-01-01 796 192906 2092 10108\n", | |
"2011-01-01 856 192263 2234 10406\n", | |
"2012-01-01 784 193081 2117 10885\n", | |
"2013-01-01 777 192643 2266 11171" | |
] | |
}, | |
"execution_count": 19, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"france_violentcrime = pandas.concat([france_homicide, france_assault, france_kidnap, france_rape], axis=1)\n", | |
"france_violentcrime.columns = ['Homicide', 'Assault', 'Kidnapping and Abduction', 'Rape']\n", | |
"france_violentcrime" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 20, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>Murder and nonnegligent Manslaughter</th>\n", | |
" <th>Forcible rape</th>\n", | |
" <th>Aggravated assault</th>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>Year</th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" <th></th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2000-01-01</th>\n", | |
" <td>15586</td>\n", | |
" <td>90178</td>\n", | |
" <td>911706</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>16037</td>\n", | |
" <td>90863</td>\n", | |
" <td>909023</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002-01-01</th>\n", | |
" <td>16229</td>\n", | |
" <td>95235</td>\n", | |
" <td>891407</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>16528</td>\n", | |
" <td>93883</td>\n", | |
" <td>859030</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>16148</td>\n", | |
" <td>95089</td>\n", | |
" <td>847381</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>16740</td>\n", | |
" <td>94347</td>\n", | |
" <td>862220</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>17309</td>\n", | |
" <td>94472</td>\n", | |
" <td>874096</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>17128</td>\n", | |
" <td>92160</td>\n", | |
" <td>866358</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008-01-01</th>\n", | |
" <td>16465</td>\n", | |
" <td>90750</td>\n", | |
" <td>843683</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009-01-01</th>\n", | |
" <td>15399</td>\n", | |
" <td>89241</td>\n", | |
" <td>812514</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010-01-01</th>\n", | |
" <td>14722</td>\n", | |
" <td>85593</td>\n", | |
" <td>781844</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011-01-01</th>\n", | |
" <td>14661</td>\n", | |
" <td>84175</td>\n", | |
" <td>752423</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012-01-01</th>\n", | |
" <td>14827</td>\n", | |
" <td>84376</td>\n", | |
" <td>760739</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" Murder and nonnegligent Manslaughter Forcible rape \\\n", | |
"Year \n", | |
"2000-01-01 15586 90178 \n", | |
"2001-01-01 16037 90863 \n", | |
"2002-01-01 16229 95235 \n", | |
"2003-01-01 16528 93883 \n", | |
"2004-01-01 16148 95089 \n", | |
"2005-01-01 16740 94347 \n", | |
"2006-01-01 17309 94472 \n", | |
"2007-01-01 17128 92160 \n", | |
"2008-01-01 16465 90750 \n", | |
"2009-01-01 15399 89241 \n", | |
"2010-01-01 14722 85593 \n", | |
"2011-01-01 14661 84175 \n", | |
"2012-01-01 14827 84376 \n", | |
"\n", | |
" Aggravated assault \n", | |
"Year \n", | |
"2000-01-01 911706 \n", | |
"2001-01-01 909023 \n", | |
"2002-01-01 891407 \n", | |
"2003-01-01 859030 \n", | |
"2004-01-01 847381 \n", | |
"2005-01-01 862220 \n", | |
"2006-01-01 874096 \n", | |
"2007-01-01 866358 \n", | |
"2008-01-01 843683 \n", | |
"2009-01-01 812514 \n", | |
"2010-01-01 781844 \n", | |
"2011-01-01 752423 \n", | |
"2012-01-01 760739 " | |
] | |
}, | |
"execution_count": 20, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"us_violentcrime['Violent crime total'] -= us_violentcrime['Robbery']\n", | |
"del us_violentcrime['Robbery']\n", | |
"del us_violentcrime['Population']\n", | |
"del us_violentcrime['Violent crime total']\n", | |
"us_violentcrime = us_violentcrime.loc['2000-01-01':]\n", | |
"us_violentcrime" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 21, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>US</th>\n", | |
" <th>India</th>\n", | |
" <th>France</th>\n", | |
" <th>Netherlands</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2000-01-01</th>\n", | |
" <td>90178</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>90863</td>\n", | |
" <td>20446</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002-01-01</th>\n", | |
" <td>95235</td>\n", | |
" <td>21236</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>93883</td>\n", | |
" <td>19994</td>\n", | |
" <td>10408</td>\n", | |
" <td>1700</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>95089</td>\n", | |
" <td>22489</td>\n", | |
" <td>10506</td>\n", | |
" <td>1800</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>94347</td>\n", | |
" <td>23212</td>\n", | |
" <td>9993</td>\n", | |
" <td>2505</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>94472</td>\n", | |
" <td>23792</td>\n", | |
" <td>9784</td>\n", | |
" <td>2405</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>92160</td>\n", | |
" <td>25363</td>\n", | |
" <td>10132</td>\n", | |
" <td>2135</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008-01-01</th>\n", | |
" <td>90750</td>\n", | |
" <td>25036</td>\n", | |
" <td>10277</td>\n", | |
" <td>1945</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009-01-01</th>\n", | |
" <td>89241</td>\n", | |
" <td>25845</td>\n", | |
" <td>9842</td>\n", | |
" <td>1920</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010-01-01</th>\n", | |
" <td>85593</td>\n", | |
" <td>27074</td>\n", | |
" <td>10108</td>\n", | |
" <td>1660</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011-01-01</th>\n", | |
" <td>84175</td>\n", | |
" <td>28878</td>\n", | |
" <td>10406</td>\n", | |
" <td>1605</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012-01-01</th>\n", | |
" <td>84376</td>\n", | |
" <td>31117</td>\n", | |
" <td>10885</td>\n", | |
" <td>1490</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2013-01-01</th>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>11171</td>\n", | |
" <td>1320</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" US India France Netherlands\n", | |
"2000-01-01 90178 NaN NaN NaN\n", | |
"2001-01-01 90863 20446 NaN NaN\n", | |
"2002-01-01 95235 21236 NaN NaN\n", | |
"2003-01-01 93883 19994 10408 1700\n", | |
"2004-01-01 95089 22489 10506 1800\n", | |
"2005-01-01 94347 23212 9993 2505\n", | |
"2006-01-01 94472 23792 9784 2405\n", | |
"2007-01-01 92160 25363 10132 2135\n", | |
"2008-01-01 90750 25036 10277 1945\n", | |
"2009-01-01 89241 25845 9842 1920\n", | |
"2010-01-01 85593 27074 10108 1660\n", | |
"2011-01-01 84175 28878 10406 1605\n", | |
"2012-01-01 84376 31117 10885 1490\n", | |
"2013-01-01 NaN NaN 11171 1320" | |
] | |
}, | |
"execution_count": 21, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"rape_stats = pandas.concat([us_violentcrime['Forcible rape'], india_rape, france_rape, neth_rape], axis=1)\n", | |
"rape_stats.columns = ['US', 'India', 'France', 'Netherlands']\n", | |
"rape_stats" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 22, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>US</th>\n", | |
" <th>India</th>\n", | |
" <th>France</th>\n", | |
" <th>Netherlands</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2000-01-01</th>\n", | |
" <td>15586</td>\n", | |
" <td>NaN</td>\n", | |
" <td>1051</td>\n", | |
" <td>180</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>16037</td>\n", | |
" <td>38636</td>\n", | |
" <td>1047</td>\n", | |
" <td>202</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002-01-01</th>\n", | |
" <td>16229</td>\n", | |
" <td>38033</td>\n", | |
" <td>1119</td>\n", | |
" <td>195</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>16528</td>\n", | |
" <td>33821</td>\n", | |
" <td>987</td>\n", | |
" <td>202</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>16148</td>\n", | |
" <td>34915</td>\n", | |
" <td>990</td>\n", | |
" <td>191</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>16740</td>\n", | |
" <td>34419</td>\n", | |
" <td>976</td>\n", | |
" <td>174</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>17309</td>\n", | |
" <td>33808</td>\n", | |
" <td>879</td>\n", | |
" <td>128</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>17128</td>\n", | |
" <td>33428</td>\n", | |
" <td>993</td>\n", | |
" <td>143</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008-01-01</th>\n", | |
" <td>16465</td>\n", | |
" <td>33727</td>\n", | |
" <td>1021</td>\n", | |
" <td>150</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009-01-01</th>\n", | |
" <td>15399</td>\n", | |
" <td>33159</td>\n", | |
" <td>819</td>\n", | |
" <td>154</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010-01-01</th>\n", | |
" <td>14722</td>\n", | |
" <td>33908</td>\n", | |
" <td>796</td>\n", | |
" <td>144</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011-01-01</th>\n", | |
" <td>14661</td>\n", | |
" <td>35123</td>\n", | |
" <td>856</td>\n", | |
" <td>143</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012-01-01</th>\n", | |
" <td>14827</td>\n", | |
" <td>35122</td>\n", | |
" <td>784</td>\n", | |
" <td>145</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2013-01-01</th>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" <td>777</td>\n", | |
" <td>125</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" US India France Netherlands\n", | |
"2000-01-01 15586 NaN 1051 180\n", | |
"2001-01-01 16037 38636 1047 202\n", | |
"2002-01-01 16229 38033 1119 195\n", | |
"2003-01-01 16528 33821 987 202\n", | |
"2004-01-01 16148 34915 990 191\n", | |
"2005-01-01 16740 34419 976 174\n", | |
"2006-01-01 17309 33808 879 128\n", | |
"2007-01-01 17128 33428 993 143\n", | |
"2008-01-01 16465 33727 1021 150\n", | |
"2009-01-01 15399 33159 819 154\n", | |
"2010-01-01 14722 33908 796 144\n", | |
"2011-01-01 14661 35123 856 143\n", | |
"2012-01-01 14827 35122 784 145\n", | |
"2013-01-01 NaN NaN 777 125" | |
] | |
}, | |
"execution_count": 22, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"homicide_stats = pandas.concat([us_violentcrime['Murder and nonnegligent Manslaughter'], india_murder, france_homicide, neth_homicide], axis=1)\n", | |
"homicide_stats.columns = ['US', 'India', 'France', 'Netherlands']\n", | |
"homicide_stats" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 23, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>US</th>\n", | |
" <th>France</th>\n", | |
" <th>Netherlands</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2000-01-01</th>\n", | |
" <td>911706</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>909023</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002-01-01</th>\n", | |
" <td>891407</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>859030</td>\n", | |
" <td>135003</td>\n", | |
" <td>53500</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>847381</td>\n", | |
" <td>137679</td>\n", | |
" <td>55300</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>862220</td>\n", | |
" <td>148651</td>\n", | |
" <td>67060</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>874096</td>\n", | |
" <td>164359</td>\n", | |
" <td>69185</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>866358</td>\n", | |
" <td>175886</td>\n", | |
" <td>71570</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008-01-01</th>\n", | |
" <td>843683</td>\n", | |
" <td>187937</td>\n", | |
" <td>69005</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009-01-01</th>\n", | |
" <td>812514</td>\n", | |
" <td>193405</td>\n", | |
" <td>65690</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010-01-01</th>\n", | |
" <td>781844</td>\n", | |
" <td>192906</td>\n", | |
" <td>60280</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011-01-01</th>\n", | |
" <td>752423</td>\n", | |
" <td>192263</td>\n", | |
" <td>59425</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012-01-01</th>\n", | |
" <td>760739</td>\n", | |
" <td>193081</td>\n", | |
" <td>56650</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2013-01-01</th>\n", | |
" <td>NaN</td>\n", | |
" <td>192643</td>\n", | |
" <td>52135</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" US France Netherlands\n", | |
"2000-01-01 911706 NaN NaN\n", | |
"2001-01-01 909023 NaN NaN\n", | |
"2002-01-01 891407 NaN NaN\n", | |
"2003-01-01 859030 135003 53500\n", | |
"2004-01-01 847381 137679 55300\n", | |
"2005-01-01 862220 148651 67060\n", | |
"2006-01-01 874096 164359 69185\n", | |
"2007-01-01 866358 175886 71570\n", | |
"2008-01-01 843683 187937 69005\n", | |
"2009-01-01 812514 193405 65690\n", | |
"2010-01-01 781844 192906 60280\n", | |
"2011-01-01 752423 192263 59425\n", | |
"2012-01-01 760739 193081 56650\n", | |
"2013-01-01 NaN 192643 52135" | |
] | |
}, | |
"execution_count": 23, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"assault_stats = pandas.concat([us_violentcrime['Aggravated assault'], france_assault, neth_assault], axis=1)\n", | |
"assault_stats.columns = ['US', 'France', 'Netherlands']\n", | |
"assault_stats" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 24, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>India</th>\n", | |
" <th>France</th>\n", | |
" <th>Netherlands</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>2001-01-01</th>\n", | |
" <td>22996</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2002-01-01</th>\n", | |
" <td>22173</td>\n", | |
" <td>NaN</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2003-01-01</th>\n", | |
" <td>20021</td>\n", | |
" <td>2031</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2004-01-01</th>\n", | |
" <td>23309</td>\n", | |
" <td>2143</td>\n", | |
" <td>NaN</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2005-01-01</th>\n", | |
" <td>23133</td>\n", | |
" <td>2012</td>\n", | |
" <td>910</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2006-01-01</th>\n", | |
" <td>24292</td>\n", | |
" <td>2288</td>\n", | |
" <td>850</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2007-01-01</th>\n", | |
" <td>28030</td>\n", | |
" <td>2109</td>\n", | |
" <td>780</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2008-01-01</th>\n", | |
" <td>30595</td>\n", | |
" <td>2074</td>\n", | |
" <td>760</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2009-01-01</th>\n", | |
" <td>34304</td>\n", | |
" <td>2085</td>\n", | |
" <td>625</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2010-01-01</th>\n", | |
" <td>39148</td>\n", | |
" <td>2092</td>\n", | |
" <td>645</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2011-01-01</th>\n", | |
" <td>45239</td>\n", | |
" <td>2234</td>\n", | |
" <td>560</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2012-01-01</th>\n", | |
" <td>48219</td>\n", | |
" <td>2117</td>\n", | |
" <td>580</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2013-01-01</th>\n", | |
" <td>NaN</td>\n", | |
" <td>2266</td>\n", | |
" <td>520</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" India France Netherlands\n", | |
"2001-01-01 22996 NaN NaN\n", | |
"2002-01-01 22173 NaN NaN\n", | |
"2003-01-01 20021 2031 NaN\n", | |
"2004-01-01 23309 2143 NaN\n", | |
"2005-01-01 23133 2012 910\n", | |
"2006-01-01 24292 2288 850\n", | |
"2007-01-01 28030 2109 780\n", | |
"2008-01-01 30595 2074 760\n", | |
"2009-01-01 34304 2085 625\n", | |
"2010-01-01 39148 2092 645\n", | |
"2011-01-01 45239 2234 560\n", | |
"2012-01-01 48219 2117 580\n", | |
"2013-01-01 NaN 2266 520" | |
] | |
}, | |
"execution_count": 24, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"kidnapping_stats = pandas.concat([india_kidnap, france_kidnap, neth_kidnap], axis=1)\n", | |
"kidnapping_stats.columns = ['India', 'France', 'Netherlands']\n", | |
"kidnapping_stats" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"# Visualization and plotting of data" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Yay for pretty plots!" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 25, | |
"metadata": { | |
"collapsed": false, | |
"scrolled": true | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa05873e208>" | |
] | |
}, | |
"execution_count": 25, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAY8AAAEhCAYAAACHjCx5AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlclNXix/HPM8M+DOCAgIIKikviSrgk5kK5VJqWXrra\nalndSruWVmaLldfMTDOX22J5bU+ttLqWqT93vSoapJIb7qKA7DvMzHN+f4xMjuw2MCzn/XrxYuaZ\nZzlnBp7vnPMsRxFCCCRJkiSpBjSOLoAkSZLU8MjwkCRJkmpMhockSZJUYzI8JEmSpBqT4SFJkiTV\nmAwPSZIkqcZkeEh2cebMGTQaDbt37672Mlu3bkWj0XDx4sVaLFnt0mg0fPXVVw7Z9muvvUb79u0d\nsu3yXPt5NobPV6qYDA+pUqNGjaJPnz7lvlZUVITBYODVV1+ldevWJCcn07t37zouYVk7d+5Eo9Fw\n7ty5as2fkJDA/fffT3BwMG5uboSEhHD33XezdevWKpdNTk5mzJgxf7HE1+e5555j7969f3k9Dz30\nEEOGDLFDiWxFRUWRnJxMixYt7L5uyfFkeEiVevzxx4mNjeXgwYNlXvvuu+/Iyclh4sSJaDQa/P39\ncXJyckApy1ed619//fVXIiMjSU5O5pNPPuHIkSP897//pW/fvvzjH/+ocLmSkhIA/P39cXV1tVuZ\na0Kn02EwGP7yehRFQVEUO5TIlrOzM/7+/rWybsnxZHhIlbrtttto3bo1y5YtK/PasmXLGDZsGK1b\nty632+rYsWPccccd6PV69Ho9d955JydPnqx0e4mJiYwZM4ZmzZphMBgYNmwYhw8ftr6+YsUKnJ2d\n2b17NxEREeh0OiIjI9m/fz9g6T4bMGAAAKGhoWg0GqKjo8vdVkFBAQ888ADR0dFs3LiRYcOGERoa\nSpcuXXj++edtvtVrNBoWL17M+PHj8fHx4cEHH7RO//LLL23mW7JkCffccw+enp60adOG7777juzs\nbO699168vLxo164d33//vU1ZUlJSeOihh/D398fLy4v+/fuzY8eOSt+ra7utSp//+OOPdOrUCU9P\nTwYPHkxiYmKl6xFC2ARtaUvko48+ok2bNnh7ezNq1ChSU1Ntllu8eDHBwcHodDqGDx9epqVXXrfV\no48+SlhYGB4eHrRr146XXnrJGsRSwyLDQ6qUoig88sgjfPnllxQVFVmnnzhxgu3bt/PYY4+Vu1xh\nYSFDhw6lpKSE7du3s23bNvLy8hg+fDhGo7HcZVJSUujfvz+BgYHs3LmTvXv30rFjRwYNGkRaWpp1\nPlVVmTFjBosXL+a3337D39+fmJgYzGYzrVu35ocffgAgNjaW5OTkMjvqUhs2bODy5cu89NJL5b7u\n7e1t8/z111+nf//+xMXF8a9//cvmPbra7NmzGTFiBAcPHmTEiBHcf//9jBs3jmHDhhEfH88dd9zB\nAw88QEZGhvW9Gjx4MPn5+axfv574+Hhuv/12hgwZwtGjR8stW0UuXbrEBx98wNdff83u3bvJzc3l\n4YcfrtE6wPLebdu2jV9++YVff/2VQ4cOMW3aNOvrP/zwA88++yzTpk3j999/JyYmhueee67SVoYQ\ngoCAAL7++muOHj3KwoUL+c9//sObb75Z4/JJ9YCQpCokJSUJJycn8dlnn1mnPf/88yIoKEiYzWYh\nhBCnT58WiqKIXbt2CSGE+Pjjj4WHh4dIT0+3LpOSkiLc3d2t69myZYtQFEUkJSUJIYSYOXOm6Nu3\nr822VVUV7dq1EwsXLhRCCPGf//xHKIoi4uLirPPs3btXKIoijh8/LoQQYseOHUJRFHH27NlK6zV3\n7lyhKIrIzMys8j1QFEVMnDix3OlffvmlzfNnnnnG+vzy5ctCURTx9NNPW6dlZmYKRVHEunXrrHUK\nDg4WJpPJZt3R0dFiypQpFZZp5syZIiwszOa5k5OTSEtLs05buXKl0Gg0ori4uML1PPjgg+LWW2+1\neR4QECBKSkqs0+bOnStatGhhfR4VFSXuu+8+m/VMmzbN5vO89vMtz4IFC0T79u0rfF2qv2TLQ6pS\ny5YtueOOO6xdV0ajkRUrVvDwww+j0ZT/J5SQkEB4eLhNn7y/vz8dO3bkjz/+KHeZ2NhYDhw4YO3m\n0uv1eHl5cfbsWZuuF0VR6N69u/V56QHZlJSUGtVL1PCeoNU9GeDqsvn5+aHVaunWrZt1mo+PDy4u\nLtZuoNIWko+Pj03dd+zYUWWX07VatmyJr6+v9XmLFi0QQpTpcqpKp06dcHZ2tlnP1e/vkSNH6Nev\nn80yUVFRVa532bJl9OnTh8DAQPR6PTNmzKj2iQ1S/VJ/jm5K9dpjjz3GiBEjOHr0KAkJCaSnpzNx\n4sRKlylv51zZDlsIwa233sqSJUvKvHZ1F5JGo7HpHil9rKpqlfW4WqdOnQBL0FVnx6fT6aq13qt3\nuhVNUxTFWl5VVbnhhhtYu3ZtmeU8PDyqtc1SLi4uZbZTuo2aKK+8NQ3ba61evZpJkyYxd+5cBg4c\niJeXF6tWraqw21Cq32TLQ6qWqw+cf/zxx9YD5RXp0qULf/zxB+np6dZpKSkpHD9+nC5dupS7TGRk\nJIcPHyYoKIi2bdva/Fz9bboqpTtQs9lc6XxDhw7F39+f2bNnl/t6ZmZmtbf5V/Tq1YtTp06h1+vL\n1DswMLBOynCtqs6Q6ty5M7t27bKZdu3za23fvp2ePXsyZcoUevbsSbt27Th9+rQ8G6uBkuEhVUvp\ngfNPPvmEjRs3VnigvNT48eNp3rw599xzD3FxcRw4cIC///3vBAcHc88995S7zKRJkzCbzYwaNYqd\nO3dy5swZdu7cyUsvvcT//ve/ape1TZs2aDQa1q1bR2pqKtnZ2eXO5+7uzooVK9iyZQtDhgxh/fr1\nnDp1ikOHDvHOO+9w0003VXubf8W9995LaGgod9xxBxs3buTMmTPs3buXOXPmWA/+17WqWhlTp05l\n5cqVLFq0iBMnTvCf//yHL774otJlOnXqxKFDh/jxxx85efIk7733HmvWrPnLLRrJMWR4SNX2yCOP\nkJ+fT2BgICNHjizz+tXfIN3c3NiwYQOurq4MGDCAQYMGodfrWb9+vc21IFcv4+/vz//+9z/8/Py4\n++676dSpE/fddx/nz5+nZcuW5S5T3rSAgADmzJnDW2+9RcuWLbnrrrsqrNPw4cOJjY0lICCARx55\nhBtuuIERI0awZ88ePv744+q/OX+Bq6sr27ZtIzIykgkTJtCxY0fGjBnD/v37CQkJqXC5a6/PqOh6\njaq+2V/PekaPHs38+fN5++236d69O19//TVz584ts9zVzx9//HHuv/9+JkyYQEREBLGxsbz22muy\n5dFAKaIasf/UU0/h7u6ORqNBq9UyZ84c8vLyePfdd0lLS6N58+Y888wz1j7h5cuXEx8fj6urK08+\n+SShoaGA5bzvNWvWAHD33XczcOBAAE6dOsXSpUsxGo307NmTCRMm1FZ9JUmSJHuozilZTz75pMjN\nzbWZ9vnnn4u1a9cKIYRYs2aN+OKLL4QQQhw4cEC8+eabQgghjh8/LmbMmCGEECI3N1dMmjRJ5OXl\niby8PDFp0iSRn58vhBBi+vTp4sSJE0IIId58802b0zDrm8OHDzu6CHVO1rlpaGp1bmr1FcK+da52\nt5W4poGyf/9+a8th0KBBxMbGlpnevn178vPzycrKIj4+nm7duqHT6dDpdHTt2pW4uDgyMzMpKioi\nLCwMgAEDBrBv3z67BGNtSEhIcHQR6pysc9PQ1Orc1OoL9q1ztcJDURT+9a9/MX36dDZt2gRAdnY2\nPj4+gOU0ytKDkhkZGTZnxvj6+pKRkUFmZmaF06++FsBgMFivvK2Moz74mp4vby+O/EOXda47ss51\nx1H1hcZR52qFx6xZs5g7dy4zZszg119/5ciRIzavX3vA69pWSm1w1Jt/+fJlh2zXkTsVWee6I+tc\ndxxVX2gcda7WRYLNmjUDwMvLi969e5OYmIi3tzdZWVn4+PiQmZlpvYjLYDDYnNufnp6OwWDAYDDY\nvGHp6el06dKlTEujdP5rJSQk2CwfExNTw6rax+uvv+6Q7TqqviDrXJdkneuOo+oLjq3zqlWrrM/D\nw8MJDw+/rnVVGR7FxcWoqoq7uztFRUUcPHiQsWPHEhkZydatWxk9ejTbtm2jV69egOVCr19//ZWo\nqCiOHz+OTqfDx8fHejpffn4+QggOHjzIvffei06nw93dnRMnThAWFsaOHTu47bbbypSjvEo6YpAZ\nvV5Pbm5unW/XkWSdm4amVuemVl+w3L7GXsFVZXhkZ2czb948wHKLg/79+9O9e3fatWvHu+++y5Yt\nW6yn6gJEREQQFxfH5MmTcXNz44knngDA09OTMWPG8OKLLwIwduxY66m9EydOZOnSpZSUlNCzZ096\n9Ohhl8pJkiRJtaNa13nUV7LlUTdknZuGplbnplZfwOZi279KXmEuSZIk1ZgMD0mSJKnGGt0t2fV6\nfa2uX6vV1vo26htZ58anqXXXSPbX6MID5D+GJFWmMYeiVHdkt5UkSZJUYzI8JEmSpBqT4SFJktQE\nXMgutuv6ZHg0MsHBwZw9e9bRxZAkqZ4oMat8dfAy0zees+t6ZXjUkT59+hAaGlrmjsFDhw4lODiY\npKQkB5VMkqTG6mByPv9cd5pzWcUsvD3EruuW4VFHFEWhdevWNmNSHzlyhKKiousahtNkMtmzeHZf\nnyRJjpNdZOLd3RdZ9L9LPBThz/QBwfh5ONt1GzI86tDdd9/Nt99+a32+evVqxo4dixACIQRjx47l\n66+/tr6+cuVKm/G3g4ODWbFiBVFRUQwYMACA999/n4iICG688Ua++eYbm+0VFxfzxhtv0Lt3b3r0\n6MH06dMpKioCYPfu3dx44438+9//pmfPnkydOrU2qy5JUh0QQrDpZBaT153G21XL4hFt6RNcO6dm\ny/CoQxEREeTm5pKYmIjZbObHH39kzJgxNvNU1QrZsGEDP//8M1u2bGHLli18+OGHfPPNN+zcuZMd\nO3bYzPvmm29y5swZNm7cyK5du0hOTubdd9+1vp6WlkZ2djb79u1j7ty59quoJEl17nx2MS9tOsf6\nE1m8NrgVD98YgLtz7e3iG+VFgpUxP3qnXdajXfbjdS03ZswYVq9eTd++fenQoQOBgYE1Wn7SpEnW\nsVN++ukn7rnnHjp06ADA1KlTrd1iQgi++uorNm3aZJ1/0qRJTJ482XpnY41Gw9SpU3F2dsbZ2b5N\nWkmS6kaJWWX14XR+OZHFuK5+DG/vg1ZT867wmmpy4XG9O317UBSFsWPHctddd3H+/Hlrl1VNXH1X\nzNTUVLp37259HhQUZH2cnp5OYWGhzdgoQghUVbU+NxgMuLi4XE9VJEmqB+Iv5fNBbDIhPm68d3sI\nvnY+rlGZJhcejhYUFETr1q3ZsmUL8+fPt3nNw8ODgoIC6/Pyhoy8ulvL39/f5rb0V5+xZTAYcHNz\nY8uWLQQEBJRblus5UC9JkuNlFZn4z4FUElILeKxXAL1r6bhGZeQxDweYP38+q1atwt3d3WZ6eHg4\nP//8M4WFhZw+fdrm4Hl5Ro4cyapVqzhx4gSFhYU2xzM0Gg3jx49n5syZ1mGBL126xLZt2+xfIUmS\n6oQqBBsTs3j6v6fxcXdi8Yi2DgkOkOHhEG3atKFr167W54qioCgKjz76KC4uLvTo0YNnn32WMWPG\n2LQOrm0pDB48mIkTJxITE0P//v3p37+/zTwvvfQSISEhjBw5kk6dOjFu3DhOnTpV4fokSaq/zmUX\n89LGc/yamMVr0a2YEOFfqwfEq9LoRhJsiqODSVJNVPQ/0tT+dxpKfYtNlgPivyZm8fe/eEDcniMJ\nymMekiRJ9VT8pXze35dMW4MbC+v4gHhVZHhIkiTVM1lFJpYfSOXI5QIe7xVIZJCno4tUhgwPSZKk\nekIVgk0ns/ki/jLRbb1ZPKItbk7189C0DA9JkqR64FxWMf/el4xZFbx+SytCm7k5ukiVkuEhSZLk\nQMUmlVWH09mQmMW4bn4MC6ubK8T/qmqFh6qqTJ8+HYPBwPTp01m6dClHjhzBw8MDgCeffJKQkBAA\nli9fTnx8PK6urjz55JOEhoYCsHXrVtasWQNYbhA4cOBAAE6dOsXSpUsxGo307NmTCRMm2LuOkiRJ\n9VLcpXw+2JdMu3p4QLwq1QqPn3/+meDgYAoLCwHL9QH3338/ffr0sZnvt99+IyUlhUWLFnHixAk+\n/vhjZs+eTV5eHt999x1vvfUWANOnT6dXr154eHiwbNkynnjiCcLCwpgzZw7x8fH06NHDztWUJEmq\nP7IKTXzyWypHLxfyeK+AenlAvCpVHolJT08nLi6O6Ohom/swlXd5yP79+60tivbt25Ofn09WVhbx\n8fF069YNnU6HTqeja9euxMXFkZmZSVFREWFhYQAMGDCAffv22atukiRJ9c6uczk8ve40fh5OLB4R\n2iCDA6oRHp9++in33XcfGo3trN988w3PPfccn376qXUgoYyMDHx9fa3z+Pr6kpGRQWZmZoXTDQaD\ndbrBYCgz0l5TkZSURIcOHSq8UeL8+fOZPHlyHZeqrPvvv99mTJL6qk+fPmVuUV9d146jUpXa+mz2\n7t1rHbdFahyOpxXy4b4UZka34sGe/vX2TKrqqLTb6sCBA3h5eREaGkpCQoJ1+vjx4/Hx8cFkMvHh\nhx+ydu1axo4dC5TfIrGHhIQEmzLExMSg15e9p4tWq62V7dtDnz59eOedd7j55psB+OGHH5gxYwbL\nly+nT58+HD9+vMJl68utRD7//HNHF6FaSm/5Upn58+fz7rvv8tNPP9GzZ8+/tC17CA4OZteuXbRp\n0waw/L1s377dLuu+mlarLfd/x8XFpdzpjVVd1zer0Mi8XaeYNiiUHm2a1dl2r7Vq1Srr4/DwcMLD\nw69rPZWGx7Fjxzhw4ABxcXEYjUYKCwtZsmQJkyZNsizs5MSgQYP46aefAEvLofQmfGDp8jIYDBgM\nBpsdf3p6Ol26dCnT0iidvzzlVbKiWyzUV1fv0FatWsUbb7zBZ599xo033ujgkjU9Qgi+/fZbmjVr\nxrfffvuXwsOe6uJuQWazWd6ehLqtr1kVvLb5PAPa6Onm5+Sw91mv1xMTE2OXdVXaZho/fjzvv/8+\nS5cuZcqUKYSHhzNp0iQyMzMByx96bGwsrVu3BiAyMtL6Ten48ePodDp8fHzo3r07Bw8eJD8/n7y8\nPA4ePEj37t3x8fHB3d2dEydOIIRgx44d9O7d2y4Vq6+EEHz++efMmjWLr7/+2hoc58+fJzg42Dre\nxrlz5xgzZgwdO3Zk3LhxNiFbOu/q1avp3bs3Xbt2ZdGiRdbX4+LiGDlyJJ07dyYiIoKXX34Zo9Fo\nfT04OJjly5fTr18/unbtyr/+9S/rTmvlypWMGjWKl19+mRtuuIGBAweyc+dO67JXD5W7cuVKRo8e\nzaxZswgPD+emm25iy5Yt1nnPnTvH3XffTceOHfn73//OjBkzKuzeyc7O5oEHHqBbt26Eh4fz4IMP\ncunSJZvtzps3j9GjR9OxY0fGjx9v8558++239O7dmy5duti8FxXZu3cvqampvPHGG/zwww8270/p\n51TRe1DZZ7N7924iIyNt1nV1F5rZbGbRokVERUXRsWNHbr/9di5evMjdd98NwJAhQ+jQoQM//fRT\nmXWdOHGCsWPH0rlzZ6Kjo9mwYYP1tSlTpjBjxgweeOABOnbsyIgRIzh79myV74NUN774/TIaBcZ3\n83N0Ueym2h1uQgjrt+bFixczbdo0pk2bRl5ennUo1YiICPz9/Zk8eTLLli3jkUceAcDT05MxY8bw\n4osvMmPGDMaOHYtOpwNg4sSJfPDBBzz99NMEBAQ0+jOtPvvsM+st2a++s+61nnrqKbp3787hw4eZ\nMmUKq1evLtM9Ehsby44dO1i5ciULFy4kMTERsLQI33jjDQ4fPsyPP/7Izp07+fTTT22WXb9+Pb/8\n8gvr16/n119/tRn/PD4+npCQEA4fPszUqVN59NFHyc7Otr5+dTni4+MJCwvj8OHDPPHEE0ybNs2m\nDhERESQkJDB16lS+//77Crt4VFVl3Lhx7Nu3j3379uHm5sbLL79sM8/atWt59913+f333ykpKeHD\nDz8ELF9UZsyYwZIlS/jtt9/IzMy0CZ7yrF69mqFDhzJy5EgANm7caPN6XFxche9BdT6bq13d4vzo\no4/48ccf+fzzzzl27BjvvPMO7u7ufP/99wBs2rSJ48ePW8tVymg08tBDDzFo0CAOHjzIrFmzmDx5\nMidPnrTO8+OPPzJ16lT++OMPQkND5dDC9cTucznsPJvD1KiWDeL6jeqq9kWCV3cbvfrqqxXOVxoY\n1xo8eDCDBw8uM71t27ZlBkWqTaO+PGqX9fxwb6caL1PauoqKiqJTp4qXT0pK4uDBg6xatQpnZ2f6\n9OnDkCFDynRpPPvss7i6utK5c2c6d+5MQkICYWFhNqEUHBzMvffey549e5g4caJ1+lNPPYW3tzfe\n3t5MnDiRtWvXMm7cOAD8/Pys895555189NFHbNq0qcx462AZ3Kp0ub/97W/MmDGDtLQ0iouLOXjw\nIKtXr8bJyYlevXqVW4dSzZo1sxn1cPLkydxzzz0289xzzz3W64ZGjhxp3eGvW7eOIUOGWFutzz//\nPCtWrKjw/S0sLGTdunUsWrQIJycn7rjjDr799ltuv/126zwVvQd9+/Yt97Oprq+++opXXnmFtm3b\nAtC5c+dqLffbb79RUFBg7TKOiori1ltv5YcffuDZZ58F4Pbbb7eOLHnXXXfx+uuvV7tcUu24kF3M\nB/tSeGVwMF5ujeua7MZVm2q4np2+vSiKwltvvcXChQuZNm1ahaGZnJyMt7e3zWBRQUFBZW5B7+/v\nb33s5uZmvQ7n5MmTvP766xw6dIjCwkJMJpPNcLVge2vmoKAgUlJSrM+vHVc9KCiI1NTUcst6dRlK\ny5ufn09aWho+Pj64uf15i4WWLVuWext9sOzQZ86cybZt26zf8PPz821avNfWNz8/H7C8Xy1atLAp\nR7NmFR+Q/OWXX9BqtdYvM3fddZe1+6n0mFtF70FKSkq1PpuKXLp0yXpBbU0kJyeXuZ12cHAwycnJ\ngOVvy8/vzy6Rq98fyTEKjGbmbE/i/h7Nae/rXvUCDUzDPU+sgfLz82PlypXs3buXF198sdx5AgIC\nyM7OtoYBWFoj1T2r58UXX6RDhw7s2rWLo0eP8sILL9iMXV66vqsfX72zLN0hXf16RUPZViQgIICs\nrCybOlS2g/3ggw84deoU69at4+jRo3z77bcIIap1ADkwMNBm3YWFhdbjcuVZvXo1BQUF9O7dm549\ne/KPf/wDo9FovQMCVPweVPXZeHh42LxmNpttTiJp2bIlZ86cqbJOFdXx6vfjwoULNqEp1R9CCBbv\nSaazvztDwnwcXZxaIcPDAQICAli5ciVbt27ltddeK/N6cHAw3bp145133sFoNLJv3z42bdpU7fUX\nFBSg0+lwd3cnMTGRzz77rMw8H3zwAdnZ2SQlJbF8+XLuvPNO62tpaWl88sknGI1GfvrpJxITE4mO\njq5RHUvrsGDBAoxGI/v372fTpk0VBmBBQQHu7u7o9XoyMzNthtQtVVGQ3H777WzatInY2FhKSkqY\nN29embAsdenSJXbt2sWnn37Kxo0brT9PPfWUzfUrFb0HQUFBlX42bdu2pbi4mP/7v//DaDTy3nvv\nUVJSYn19/PjxvP3225w+fRohBH/88Yc16Jo3b17hQe6ePXvi7u7Ov//9b4xGI7t372bTpk3Wz60B\nj+nWKK09kkFqnpFHI2v2pashkeHhIEFBQaxatYp169bx1ltvlbkuYenSpcTFxREeHs67777L3/72\nN5vlK2uFvPLKK6xdu5aOHTvy/PPPM2rUqDLzDxs2jNtuu41hw4Zx6623Wo9bgGVHdfr0abp168a8\nefP46KOP8PEp++2pvGsprn6+ZMkSDhw4QJcuXZg3bx4jR47ExcWl3DJPnDiRwsJCunbtyqhRoxg8\neHCl67562x07dmT27NnWA/Q+Pj4Vjpj23Xff0aVLFwYMGICfnx9+fn40b96cCRMmcPToUY4fP46i\nKERERFT4HlT22Xh5efHmm2/y3HPPERkZiYeHh01ZHnvsMUaOHMn48ePp1KkTzz//PMXFxYDlGNaU\nKVPo3Lkz//3vf23q6OLiwooVK9iyZQvdunXj5ZdfZtGiRbRr165an4VUdw4m57P2SAbTBwThom28\nu1g5DG0TdO3FaFdbuXIl33zzjU0Xjr384x//oEOHDtYDvJJjyGFoLWqjvmkFRqatP8uUm1rQo4XO\nruu2B3sOQ9t4Y1FyuN9//50zZ86gqiqbN29m48aNDBs2zNHFkqRaYTSrzN2exIiOzeplcNhbkzvb\nSqq8O6M6t/WortTUVCZOnEhmZiYtW7Zkzpw5130rBEmq7z45kIrBw4kxncu/S0ZjI7utJKmJkd1W\nFvas7+ZT2aw+nM7829rg4Vx/768nu60kSZLqiVMZRfznt1ReHBBUr4PD3mR4SJIkXafcYjNv7Uji\n8V4BtPZxdXRx6pQMD0mSpOtgVgULdl2kb7An/dt4Obo4dU6GhyRJ0nVYeTiNErPKgz39q565EZLh\nIUmSVEOxF/LYdDKb5/oHNao75daEDA9JkqQauJRbwuI9l3i+fxA+7k33aoemW/M61qdPH9LS0tBq\nteh0OgYNGsTs2bPx8PBwdNEkSaqmYpPKnO1J3NPVj07NG9+dcmtCtjzqiKIofPrppxw/fpwNGzZw\n+PBhFi9e7OhiSZJUTUIIlu5NJrSZK7d3aJx3yq0JGR4O0Lx5cwYOHGgd133JkiXWYUkHDx7M+vXr\nrfNWNSxsTk4OU6dOJSIightvvJG33367wjvKSpJ0/X4+nsW57GKe7B0obzqJDI86VXox/8WLF9m6\ndat1VLyQkBDWrFnDsWPHeOaZZ5g8eTKXL1+2LlfZsLDPPPMMzs7O7Nq1iw0bNrB9+3a++uqruq+c\nJDViR1LlPtJzAAAgAElEQVQLWHk4jRduDsLVSe42oQke8/hpZZZd1jPynpo1W4UQPPLIIyiKQn5+\nPv3797eO9z1ixAjrfHfeeSdLliwhLi6OoUOHAhUPiTpgwAC2bNnCH3/8gZubG+7u7kycOJEvv/yS\n++67zy71lKSmLrPQxLydF3m6bwta6MsfUqApanLhUdOdvr0oisLy5cvp378/e/bs4amnniI9PR29\nXs/q1atZtmwZFy5cACzDr149El55Q6KmpKSQlJSE0WgkIiLC+pqqqgQFBdVNpSSpkTOpgrd3JDEk\nzJvIIE9HF6deaXLhUR/07duXmJgYZs2axRtvvMHzzz/PqlWriIyMRFEUhg4dajMyXHlDog4bNoyW\nLVvi4uLC4cOH0WhkU1qS7G1FXCruzhru6epX9cxNjNzjOMijjz7K9u3bycrKQqPRYDAYUFWVlStX\ncuzYMZt5KxoS1d/fn4EDB/Laa6+Rl5eHqqqcOXOGPXv2OKhWktR4bD+TQ+yFPJ7t1xKNPEBehgwP\nBzEYDIwdO5aFCxfy2GOPceedd9KjRw+OHj1Kr169bOatbFjY9957D6PRyKBBgwgPD+fxxx8nNTXV\nEVWSpEbjbFYxy/an8MLNQXi6Np075dZEtcbzUFWV6dOnYzAYmD59OqmpqSxcuJC8vDzatm3LpEmT\ncHJywmg0smTJEk6fPo1er2fKlCk0b94cgDVr1rBlyxY0Gg0TJkyge/fugOVMohUrVqCqKtHR0Ywe\nPbrahW8K43nU5rCwUtMkx/OwqKi++SVmpq0/w9+6+BHd1tsBJas9dT6ex88//0xwcLD13OYvvviC\nESNGsGjRInQ6HZs3bwZg8+bN6PV6Fi1axB133MGXX34JwIULF9i9ezcLFixgxowZfPzxxwghUFWV\nTz75hBkzZrBgwQJ27dplPWgsSZJU11QheO9/l+geqGt0wWFvVYZHeno6cXFxREdHWw/iJiQk0Ldv\nXwAGDhxIbGwsAPv372fgwIGA5XYchw4dAiA2NpaoqCicnJzw9/cnMDCQEydOkJiYSGBgIP7+/jg5\nOREVFcX+/ftrpaINlT2HhZUkqXLfJaSTVWTmkRsDHF2Ueq/K8Pj000+57777rGfz5ObmotPprM8N\nBgMZGRkAZGRk4OvrC4BWq8XDw4Pc3FwyMzOt0wF8fX3JyMiwmf/adUkWMTExfP/9944uhiQ1enGX\n8ll3PIsXbm6Js1Z+YatKpafqHjhwAC8vL0JDQ6230nDUkOcJCQnWMoBlp6rX68vMp9XKg1uSVBmt\nVlvu/46Li0u50xurq+ubnFPMe/9L5NUh7QgJaNwDO61atcr6ODw8nPDw8OtaT6XhcezYMQ4cOEBc\nXBxGo5HCwkJWrFhBfn4+qqqi0WhsWg8Gg4G0tDQMBgNms5mCggL0ej0Gg4H09HTretPT0/H19UUI\nUWa6wWAotyzlVbKig36SJFXMbDbLA+b8Wd8Ss8orG85x1w0G2uqVRv0e6PV6YmJi7LKuSrutxo8f\nz/vvv8/SpUuZMmUK4eHhPP3004SHh1uvJdi6dSuRkZEAREZGsm3bNgD27NlD165drdN37dqFyWQi\nNTWV5ORkwsLCaNeuHcnJyaSmpmIymdi9e7d1XZIkSXXhw9gUAj2dubNTM0cXpUGp0RXmpQdu77vv\nPhYuXMg333xDaGgo0dHRAERHR7N48WKefvpp9Ho9//znPwEIDg7mpptu4plnnkGr1Vrv8aTVann4\n4YeZPXu29VTd4ODgv1yp2mx9aLVazGZzra2/PpJ1lhqrDYlZHEsrZN6wEHliSg1V6zqP+qq86zxq\nW1Nr2oOsc1PR1Op8oUBhxs/HeXNoa4K9XB1dnDphz+s85L2tJElqctIKjLy+8TxP9AlsMsFhb/L2\nJJIkNSnpBUZe2XSO0V38uamVPMHmesnwkCSpycgoNPHK/53nlrY+/L1HC0cXp0Fr0OEhzp9GFOQ7\nuhiSJDUAWYUmXtl0jkEhXozt4lv1AlKlGvQxD/WTBZCWAlon8PMHX38U3wDwC0C58hw/fxQ3D0cX\nVZIkB8ouMvHK/52jfxs9MXJsDrto0OGhfW2x5Yr3vFxIT4H0VERaCiRfQE34zRIs6Sng4gq+AZYg\nKf3tF2AJF19/FFc3R1dFkqRaklNk6arqE6zn7zI47KZBhwdcufZE72X5CWnPtWdqCyEgNxvSUhDp\nqZCWChfOov6+D9JTIf0yuLlbWiu+/nAlVBS/K48NzVFc5NkYktQQ5RabeXXzeW5sqePe7n7yWg47\navDhURVFUcDLB7x8UNp2LPO6UFXIyfqz1ZKWAudOov622xIuGWmg87SGi/HWkRBadj2SJNUvecVm\nZm4+R/dAHQ/0aC6Dw84afXhURdFowMcAPgaUdp3KvC5UFbIyLOGSfIGCpW/CqHvR3DzUAaWVJKk6\n8krMzNx8ns7+HjzUUwZHbWjy4VEVRaMBgx8Y/FDad8ajR29y5zyPmpGGcuc4+UcpSfVMgdHM65vP\n09HPjUci/OX/aC1p0KfqOoK2ZSs00+ciDu1HfLoIYTI5ukiSJF1hCY4LtDO48WhkgAyOWiTD4zoo\nXs3QPPcmIicbdcksRFGBo4skSU1eoVFl1pYLtPFx5bFeMjhqmwyP66S4uqF56iUUQ3PUeTMQWXIE\nRElylCKTyqyt52np5cI/egegkcFR62R4/AWKVoty/1MoEf1Q33oecem8o4skSU1OsUnlX1svEODp\nzFN9AmVw1BEZHn+Roiho7ohBuXOcpQVyPKHqhSRJsotik8rsbRfwdXdiUp8WMjjqkAwPO9H0uwXN\nxGdRP3gLsX+no4sjSY1eiVllzvYkvF2dePqmFmg1MjjqkgwPO1I690TzzBuoq5ajbvzB0cWRpEbL\naFZ5a3sSHs4apvSTweEIMjzsTGkViuaFuYgdG1C/WYZQ5VCmkmRPRrNg7o6LuGgVno1qKYPDQWR4\n1ALFt7klQM6fRv1wHqKk2NFFkqRGwaQK5u1MQqPA1KggnGRwOIwMj1qi6DzRTHkdRatFffdVRF6O\no4skSQ2aSRW8s/MiqhA81z8IZ60MDkeS4VGLFGdnlIlTUdp1Qp37AuJysqOLJEkNklkVLNh1kRKz\nygs3y+CoD2R41DJFo0EzdgLKoDtQ356OOJvo6CJJUoNiVgULd18i36gyfUAQzlq526oP5KdQRzS3\njEAz7nHUha8hDh1wdHEkqUEwq4JFey6RVWxixoAgXGRw1BuV3lW3pKSE1157DaPRiKqq9OnTh5iY\nGJYuXcqRI0fw8LAM7/rkk08SEhICwPLly4mPj8fV1ZUnn3yS0NBQALZu3cqaNWsAuPvuuxk4cCAA\np06dYunSpRiNRnr27MmECRNqq64Op0TchMbLB/X9OSij75O3dZekSqhCsGRvMukFJl4ZFIyrkwyO\n+qTS8HBxcWHmzJm4urpiNpt59dVX6dmzJ4qicP/999OnTx+b+X/77TdSUlJYtGgRJ06c4OOPP2b2\n7Nnk5eXx3Xff8dZbbwEwffp0evXqhYeHB8uWLeOJJ54gLCyMOXPmEB8fT48ePWqvxg6mhN2A5rk3\nUd97HTUzDWWkvK27JF1LFYJ/700mJa+EVwe3ksFRD1X5ibi6WoZgNZlMmEwm645OCFFm3v3791tb\nFO3btyc/P5+srCzi4+Pp1q0bOp0OnU5H165diYuLIzMzk6KiIsLCwgAYMGAA+/bts1vl6islMBjN\ni28jDsrbukvStVQh+GBfChdySnhlUCvcGllwCFVFGI3X/2O6/h97qnIwKFVVeeGFF0hJSWH48OGE\nhYWxYcMGvvnmG7777ju6dOnCvffei5OTExkZGfj6+lqX9fX1JSMjg8zMzAqnGwwG63SDwUBGRtO4\nO63i1QzNtNmoH81DLJmF5h8voLh5OLpYkuRQQgg+ik3hTFYxr0UH4+7c8INDqCpcOIM4dghx7BCc\nSIDrvfar7Hf2mi38496/sgIbVYaHRqNh3rx5FBQUMG/ePM6fP8/48ePx8fHBZDLx4YcfsnbtWsaO\nHWspXjktEntISEggIeHPmw7GxMSg1+trZVuVcXFxsd929XrE9Lco/ORdzPNfQffCHDTNfKterpYJ\n1Yx6/jSmY4cxnfiDQo0GJ69maAx+KAY/NM38LI99DChOzo4ubq2w6+fcQDi6zkIIlu46x+lsI/NG\ndsLTtXYHOq2t+gohUC+cwZQQhykhHtOR31H03jiH98Bp4DCcnngBjY+h6hXVklWrVlkfh4eHEx4e\nfl3rqfan4+HhQXh4OPHx8YwcOdKysJMTgwYN4qeffgIsLYf09HTrMunp6RgMBgwGg82OPz09nS5d\nupRpaZTOX57yKpmbm1vd4tuNXq+3+3bF3x9DrFtFzstPovnnTJQWrey6/iq3X1QAp44hEo8iTh6B\n08fBuxlKuxugXSfcdToKLyXBuVOI3/dDdgZkpkNuNnjooJkveBtQmvmCj69lPPgrv/HxBU99gzuu\nUxufc33nyDoLIVj+Wyp/pBby+i2tECWF5JbU7jbtVV8hBKQkIY4egtLWhasbSqdu0K0Xyt8eRmnm\nixkwA8UADnqf9Xo9MTExdllXpeGRk5ODVqtFp9NRUlLCoUOHGDVqFJmZmTRr1gwhBLGxsbRu3RqA\nyMhIfv31V6Kiojh+/Dg6nQ4fHx+6d+/O119/TX5+PkIIDh48yL333otOp8Pd3Z0TJ04QFhbGjh07\nuO222+xSsYZEURSUEfegNvNDnTcDzRMvorTvXCvbEkJAxmVE4hFIPGIJi9RL0LotSrsb0ESPgLad\nUPRe1mVc9HqKy/ljF6oZcrIhKx2yMhBZ6ZCZASePoGZm/BkyJcXg3Qya+aJ4GyxhU07IKFeOr0lN\nixCCT+MuczilgFm3tMbTRevoIlVKCAFpKYijB/8MC40GpWNX6HIjmrEPofj6O7qYta7S8MjKymLp\n0qWoqoqqqvTr14+IiAjeeOMNcnJyEEIQGhrKo48+CkBERARxcXFMnjwZNzc3nnjiCQA8PT0ZM2YM\nL774IgBjx45Fp9MBMHHiRJYuXUpJSQk9e/Zs1GdaVUUTdQvCx4D6/hw09/4D5caov7xOYTLB+dOW\nkCgNC1WFsBssYdF3ELRpd13dT4pGe2XHb2ktVtS2EMXFliDJSreMuFgaMmcTUTPTr7yWAc7OcCVc\nFG8DGPzA1x/FLwD8AqCZH4pT7XZlSHVLCMHn8ZeJT87njVta4+laP4NDpF9GHDsIR6+EhdlkCYuO\nXdHcOQ6at2hwreu/ShG1dZCiDly8eLHOt1kXTXtx7hTq4lkoQ0ejGTKqZsvm58Gpo4jEI4iTR+FM\nIvj5W7qgwm5ACbsB/Go2vnOd1FkIKMiztFRKQyYjzfINLz0V0lIgJ9MSLn4BKH7+4Btw5fGVcPFu\nhqKxzwFW2W1V+0yqYMVvqRxMKeBft7TCy61uvxhUVl+RlWEJiWOHLC2MwgLo2AWlUzeUjt0gMKhB\nhkXLli3tti75Na4eUlq3RTN9ruVakIzLlj7TcnaKQghIvfRnqyLxiGWHG9recj3J8LuhbUcUD08H\n1KJmFEUBnd7yExxSbitGmIxlA+XwAdS0FEhPhfw8MDS/KlD8bcPF06tB/sM3RhmFJubtSMLdWcPs\nW1ujd3CLQ+RmW7ugxNFDkJMFHbqgdOpq6cpt2dpuX0waC9nyqKG6/HYm8vNQ/z0b9N5oHnkWUOBs\nIuLkEUTiUTh5BJycLa2JdldaFcEhKFr7/iM2lG/horgYMiyhItJSIC31yu8rP2YT+NoGinLlOX4B\nKB4667oaSp3tqa7qnJBawPydFxna3oeYLr51PnSsMJshPQW39BQK42MtLYyMyxDWGaVTV0vLolWI\npVu2kbFny0OGRw3V9U5FGEsQyxdaWhUFeRAYjNKuk7ULSjE0r/UyNJYdqSjIt7RQrOFyVQsmLQW0\nTtbWioufP0YXd9B7WVosnl6g9wbPK8+dG8cpykJVoagAiorQtwwir6j2xp4RQvDj0Uy+/yOdf97U\ngoiWtdsiFkWFlrOgLl2A5AuI5Atw6QJcTgYvH5xah2IO7Wg5K6p1O7t/6aqPZHhc0RTCA678g587\naQkON/c63TY0nvCojBAC8nKsrRW3kiKK0lIt0/JyLN0aVx6TlwPOLpYguRIolnDx+jNc9F7geSVs\n9F7grquVbg/Lzr8QCvOh4MpPYZ4lKK0/eVCQj7CZ58rvokJwcwMXV8jLBU89GJpbvpT4+lse+za3\ndAf6+oOH7rq6/gqMZpbsSSY5z8gLN7ckwNPFPvUXwnLCxaULiOQk25DIzwH/IJQWwRAYZPn/CQyG\ngCAUV9cm8Xd9LRkeVzSV8HA0WWdbQgjLAdS8bMi9Ei6loXIlZETuVUGTmwMlReDhadt6KQ2bqwPI\nyRkK86/s/PNsdvTC+viq6YWF4Opqud7GXWf57eGJYn3853Tlymt/TvMEd3dr94ynzoPc8+csp3Kn\np1qOL2WkItIvW7p10lMtVzhfCRNLwFx5fCVo8DGU+QZ/PruYt7Yn0dnfnUcjA67rzrjCZLS0GC5d\nCYfkP8MCJ2fLAewWrf4MiMAg8G1eaddTU/y7lgfMJcmBFEX5c8fsb/lnrOq7uDAZLd/srS2Zq8Il\n5SKcPIqalwNGI+iu2fk384OgNmiu3umXvubmYbfuFkWjRTH4gcHPcvysvHoU5F0JkjRERiqkX4YL\nZ1AzLlse52ZbrunxtYTLLu+OfGQK5cEgE7e0cgJjMWgrbj2LgryyrYjkC5CWajl1OzDY0pLo0AXN\ngOGW0PD0qnB9Uu2R4SFJdUBxcq7WNTH1neLhaQmv4NCKz4jLTMeUdplPE4vZl+vMTNN+Qg+cRN14\npQXj7PrnNTyG5mA2/dmKKCq80nqwdDNp+g6GwGDwb9FojjM1FjI8JEmyG8XJmQxPP+bFFePuqWHB\n0JZ4una3vm49tnSlG0ykXwaNBk3ETRDYynKBqDydukGQ4SFJkt0kpBTwzq6LDG/vw9/KOQ1XURTL\nMR69N7QJa7AtMEmGhyRJdiCE4IejGaz5I6NOTsOVHE+GhyRJf0mB0cziPcmk5hmZNywEf095bKIp\nkNfbS5J03c5lFzNt/Vn0LlrmDG0tg6MJkS0PSZKuy44zOXy0P4WHejbnlnY+ji6OVMdkeEiSVCOl\nd8ONTcrj9ehWtDW4ObpIkgPI8JAkqdrSC4zM23kRnbOG+cND6u34G1Ltk+EhSVK1HE4pYP6ui9zW\n3oexDrgbrlS/yPCQJKlSQgjWHslg7ZEMpvRrSc8WuqoXkho9GR6SJFWowGhm0f+SSSsw8s7wEJrr\n5NlUkoUMD0mSynUuq5g525PoGuDB1KgWOF/H3XClxkuGhyRJZWw/k8Oy/SlMiPAnuq23o4sj2UFu\njhnsd0d2GR6SJP3JaBasiEtlf1Ieb9zSitBm8jTchi4zzcSJo0Vkppnp2Ml+65XhIUkSAJfzSpi5\n6Rx6Vy3zbwvB00WehttQCSG4nGwi8WgxBXlm2nVyI6KvfU90kOEhSRKHUvJ5d/dJbmvvzZhweRpu\nQ6WqgksXjCQeKUYIQVgnN1q2dkajsf/nWWV4lJSU8Nprr2E0GlFVlT59+hATE0NqaioLFy4kLy+P\ntm3bMmnSJJycnDAajSxZsoTTp0+j1+uZMmUKzZs3B2DNmjVs2bIFjUbDhAkT6N7dcp//+Ph4VqxY\ngaqqREdHM3r0aLtXVJKkspJzS/jy9zQOpRbwYnRbOvrIg+INkdksOH+6hJPHinF1VejU1Q3/Fk61\nOjZKleHh4uLCzJkzcXV1xWw28+qrr9KzZ09++uknRowYQb9+/Vi2bBmbN29m6NChbN68Gb1ez6JF\ni9i9ezdffvklU6ZM4cKFC+zevZsFCxaQkZHBrFmzWLRoEUIIPvnkE1555RUMBgMvvvgikZGRBAcH\n11qlJampyyoysepQGtvP5jKyYzOe7BOIv8G7yY3p3dAZSwRnTxZz6ngx3s209OjtgW/zuulQqtbX\nDFdXVwBMJhMmkwlFUUhISKBv374ADBw4kNjYWAD279/PwIEDAejTpw+HDh0CIDY2lqioKJycnPD3\n9ycwMJATJ06QmJhIYGAg/v7+ODk5ERUVxf79++1eUUmSLNdtfH3wMpN+OoVGUVg6IpR7uvrh7ixb\nHA1JUaHKkYOF/N+6HHKyzfQd6EmfAZ51FhxQzWMeqqrywgsvkJKSwvDhwwkICECn06HRWP7gDAYD\nGRkZAGRkZODr6wuAVqvFw8OD3NxcMjMzad++vXWdvr6+1mVK5y9dV2Jion1qJ0kSYDmLakNiFqsO\np9EjUMf820II8HRxdLGkGsrPM3PyaDEXzxsJau3MgCGeeHg65sSGaoWHRqNh3rx5FBQUMG/ePJKS\nkmq7XGUkJCSQkJBgfR4TE4Ner6/zcri4uDhku44k69xwqUKwJTGD5bFJtPJ24+0RnQjz8yh33sZS\n5+pqSPXNTC/hj4O5JF8oIqyTjpF/88PN/fpCY9WqVdbH4eHhhIeHX9d6atTG8fDwIDw8nOPHj5Of\nn4+qqmg0GpvWhsFgIC0tDYPBgNlspqCgAL1ej8FgID093bqu9PR0fH19EUKUmW4wGMpsu7xKOqJ/\nVq/XN7l+YVnnhkcIQXxyAZ/FpaLVKDzZy59ugTrAXGG9Gnqda6q+11cIQcZlM4lHi8jONNO2oyuD\n79Dj7KxgNBVgvI6i6/V6YmJi7FK+Kjs6c3JyyM/PByxnXh06dIjg4GDCw8PZs2cPAFu3biUyMhKA\nyMhItm3bBsCePXvo2rWrdfquXbswmUykpqaSnJxMWFgY7dq1Izk5mdTUVEwmE7t377auS5KkmjuR\nXsir/3eej2JT+FsXX+YNa3MlOKSGQAhBcpKRXf+Xx++xBQQGOXPLCC/COrnh7Fx/TqGusuWRlZXF\n0qVLUVUVVVXp168fERERBAcHs3DhQr755htCQ0OJjo4GIDo6msWLF/P000+j1+v55z//CUBwcDA3\n3XQTzzzzDFqtlkceeQRFUdBqtTz88MPMnj3beqquPNNKkmruYk4JX/x+mSOXC/l7Vz9uaeeNUy2c\n3y/VDlUVJJ01kni0CK1WIewGV1oEOaPU089QEUIIRxfiel28eLHOt1nfm7q1Qda5fsssNLHyUBo7\nz+UyupOBkZ2a4epU87OnGlKd7aG+1NdkEpw7VcKpY0XoPLWE3eCKX0DtXKPRsqX9bm4lrzCXpAaq\nwGhmzR8Z/HI8k+i23vx7ZFu85Mh+DUZJscqZxBJOnyjG0NyJG/vpaObbcHbJDaekkiQBYDSr/HIi\ni28T0rmxpY4Ft4Xi7ynH2WgoCgtUTh0r5vyZEgKDnOkX7Yneq+GFvgwPSWogzKpg+5kcvjqYRhsf\nF96IbkWIvOttg2A2Ww6Cnz9dQlaGmeAQFwYO0+Pu0XAvzpThIUn1nBCCAxfz+Tz+Mq5OGqb0a0G4\nf/nXakj1hxCCrAwz50+XcPG8Ee9mWlqFutAryhmtU/08CF4TMjwkqR47llbIZ3GpZBWZub9Hc/oE\ne9bqze6kv66oUCXpbAnnTpegqtAqxIUBQ/V46BpuK6M8MjwkqR66kF3MF79f5nh6EeO6+hHd1htt\nPT1lUwLVLEi5ZOmWyrhsJjDYmW43emBorm20YS/DQ5LqkfQCI98cSmPP+TzuusHAM/1aXtdpt1Ld\nyM40cf50CUnnjHh6aWgd6kJEXx1O9ehivtoiw0OS6gEhBP89lsnKQ2kMCfPh/ZFt8ZSn3dZLxcUq\nSWctrQxjiUpwiAv9b/VE56AbFDqKDA9JcrBCo8rSvZdIyinhneEhBOrl3W7rG1W1DOt67nQJaSlG\nAlo607m7W61dzNcQyPCQJAdKyinhre0XaO/rzltD28guqnomN8dyttSFMyV46DS0CnWhRy8PnF2a\nZmBcTYaHJDnI3vO5LN2bzL3dmzM0zLvJfoOtb4wlKknnLN1ShQUqrUJcuGlww7yQrzbJ8JCkOmZW\nBV8dTGPr6WxeHhRMBz93RxepyROq4HKq5eB36iUjzQOd6RDuRvNAJzTyLLdyyfCQpDqUU2TinV0X\nEQIW3BaCt5v8F3Sk/Fwz58+UcP5MCa6ulm6prhHuuLjK7sOqyL9cSaojJ9ILmbs9iZtDvLive3N5\n3YYDqKogO8NMWqqJ9NQCsrOMBLdxoc/Nnnj5yG6pmpDhIUl1YENiFl/EX+aJ3oHc1LphDH3aGAgh\nyMmyhEVaiomMNBMeHhp8A5zp3N0LTy8jGq0M8eshw0OSalGJWeWj2BSOXC7kzSGtCfZ2dXSRGjUh\nBHm5KukpJktgpJpwcVXw83eynCnV2wNXN0uXlF7vTm6uycElbrhkeEhSLUnNMzJ3RxIBns7MG94G\nD2fZLVIbCvLNpJWGRYoJjQb8ApwJDHImvKd7g75zbX0mw0OSakH8pXze3X2RuzobGNXJIE/DtaOi\nQvXPsEg1oZoFfv5O+Po70bGLGx46jXy/64AMD0myI1UIvk/I4L/HM5nWvyVdA3SOLlKDV1KsXjnA\nbWlZFBcLfJs74RfgRLuOrnh6ybBwBBkekmQn+SVm3vvfJbKKTLwzvA1+HnJ0v+thNAoyLpusrYuC\nfDMGPyf8/J2IuMkDL28tijxTzeFkeEiSHZzNKuat7Rfo0ULHc/2DcJZn8FSb2STISLeERXqqiZxs\nM80MTvgGONH1Rnd8DFp5oV49JMNDkv6i7WdyWLY/hQkR/kS39XZ0ceotIQRFhYLcHDO52WZys1XL\n7xwzXt5a/AKc6NTVjWZ+Tmhl+NZ7Mjwk6TqZVMGKuFRiL+TxenQr2hrkeOJgCYmSYmENiJwrAZGX\nraJowMtbi95bg49BS+tQF7x8tE1i/IvGptLwSEtLY+nSpWRnZ6MoCrfccgu33347q1atYvPmzXh5\neQEwbtw4evbsCcCaNWvYsmULGo2GCRMm0L17dwDi4+NZsWIFqqoSHR3N6NGjAUhNTWXhwoXk5eXR\ntqXzrwAAAB4/SURBVG1bJk2ahJOTzDSpfsssNPH2jiTcnTXMHx7SZMfeKClWLS0Ia2vCTG6OihCg\n99ag99Li5aMlqI0zei+t9RoLqeGrdC/t5OTEgw8+SEhICEVFRbzwwgt069YNRVEYMWIEI0aMsJn/\nwoUL7N69mwULFpCRkcGsWbNYtGgRQgg++eQTXnnlFQwGAy+++CKRkZEEBwfzxRdfMGLECPr168ey\nZcvYvHkzQ4cOrdVKS9JfcSS1gHk7LzI0zIeYrr5o/uKZPqoqSEsxcem8kbxcM84uypUfDS6lj50V\nnF2VP59fmVZXxwKMJaJMQORmmzGbBXovLXpvy09gkDN6by2uboo8A6qRqzQ8fHx88PHxAcDNzY2g\noCAyMjIAS9P0WrGxsURFReHk5IS/vz+BgYGcOHECgMDAQPz9/QGIiopi//79BAUFkZCQwJQpUwAY\nOHAgq1evluEh1UtCCNYdz2TV4XSe7tuCyCDP616X2fxnYCRfNOKp19CilTNBIc6YjJbbgpeUCIwl\ngrwcFWOJsD4vfWwyCrROWILl6qBxuSZkbJ5b5tM6Ue7O3WQS5GWbr3Q1qdawMBoFnnqttcupeQtn\nvLy1uLnLkGiqqt0/lJqaypkzZ+jQoQPHjh1j/fr1bN++nbZt2/LAAw+g0+nIzMykffv21mV8fX2t\nYePr62udbjAYSExMJC8vD51Oh0ajsU4vnV+S6pMik8q/9yZzLruYt4e2ua7R/sxmy2h0l86XkHLJ\nhN5LQ4tWLnTs6nZdV0ELYQmQ8oKl9Hd+rkqJsfS1PwNJNWMTLFonhcKCXAoLzHjqLQGh99YSEuaK\n3lsjL7yTyqhWeBQVFbFgwQIeeugh3NzcGDp0KGPHjgVg5cqVfPbZZzzxxBO1WtCEhAQSEhKsz2Ni\nYtDr6/4Gcy4uLg7ZriM19TonZRcxc2Mi7fw8WHp3GG41uM2IyaRy6UIR504XcvF8Ic0MLrQK1RHZ\nzwMPneOOk5jNgpJilZISlZJiFaNRpZnBHVc30WROi22Kf9cAq1atsj4ODw8nPDz8utZTZXiYTCbm\nz5/PzTff/P/t3XtwU/fd5/G3LpZky5KFjA3YYGxsJ7gOBlpzSWhwQjZtHkifJMxTptCGAsmQJQ3Z\nJtNOG3qhMzu5kA2XJiGlLSSdJDtts03Dkz6dbbPTYLuBhkuDSzCYa0xiwBaWZNmSLFnS+e0fxgoG\nGywQtrG+rxnG8pF0dD7G0sfn9jvMnDkTgKyszw9HnDdvHuvWrQO61xzcbnf8PrfbTXZ2NkqpS6Y7\nnU5sNhuBQABN09Dr9Xg8HpxOZ5/L0VfIjo6OBKImh81mG5LXHUqpnHlPUwcvf9jMNypG82+lDiKh\nIJHQ5Z8bjSpcZyOc/SyCqzmCY5SRcRPSuKnchiW9ew0jpgUZDj9SvQEsGWAB0jOgo8M/1Is0aFL1\n93rRokVJmddl15WVUmzZsoX8/HwWLFgQn+71euO39+zZQ0FBAQCVlZXs3LmTaDSKy+WiubmZkpIS\niouLaW5uxuVyEY1G2bVrF5WVlUB3KXz44YcAVFdXM2PGjKQEE+JaxDTF//7XObbsbWFN1Xjm3zTq\nspttohHF6U+72LczwP9718epE12MHmNk3nw7t96ZSWGJOV4cQowEOtXXnu/zGhoaWLt2LQUFBfE3\nzuLFi9m5cyeNjY3odDpycnJYuXJlfMf6H//4R3bs2IHBYGDZsmVMmzYNgP379/c6VPeBBx4Aeh+q\nW1RUxOrVqwd8qO6ZM2euKfzVSNW/VlIpc3s4xou7W+gMR/j+l/NxpPf9+xiJKFpORzjbFKHVFcE5\n2si48d2jud6IV6JLtf/nVMsLkJeXl7R5XbY8hjspj8Ex0jPHNMUn3jD1rmD8379NzmFxueOSq/1F\nujSaT0c529SF2xUlO9fIuPEmxuQbMZluvMK40Ej/f75YquWF5JaHnI0nUk4kpjju6aTe1Ul9S5CG\n1k6yM4yU52bw5Yl2Vs4YQ9EYZ/yDpSus0Xx+DcNzLkr2GCN5E0xMn2UlzZQaO5eFuJiUhxjxwlGN\nI62d59cqOjnm7iTPZqI8N4OvlDj47m3jyLL0fiuEQjFOnQhztimC1x1l9Jg0xhea+NKtVhlKQwik\nPMQIFIzEOOz6vCw+8YYoHGWmPDeD+8ucTM5JJ9NkIBZTdAY1Ots0Pg2GCQY0OoMaAb+G3+dj9Fgj\nBZNMVN4mhSHExaQ8xA2vPRTl0LnPy+J0e5iS7HTKs9P5j5JsxprSiIUgGNToPKWx/1CQzmD3WduW\ndD3pVj0ZGXrSrTqyc4xMKNQzodBBZ2dgqKMJMWxJeYgbjjsY6d5X0dxJoytMJARFVjPjzCYWmCwY\nHDpCHQqtTeG3apzOiJBh1ZOeoceen3a+KPRYLLp+LypkNN7YO7+FuN6kPES/wlGN33/cyrlQCwYV\nw2TQYzbq4l/NBj0mgw6zUY/Z0D3ddNH0C+9PM+gGPIhgz7UfgoEYzZ4In53rwuOL0hnUMGt6bDoD\nY/VmCtPTceQZusvhfEH0FIXJLOMuCXG9SHmIPh1p7WTTrrOUZlu4oyQHXyBIOKrRFVOEoxrhqKIj\nHCEcVXTFNMIxRVf0/NeY9vn0C+6PxBRpBl13oZwvmgy9niyM2HVGMjU96ZoBS0xPWlSHpoN2FSVA\njIwMPaMdadxSmk5BjhlrpoE02Q8hxJC5ocuj+hMfEx1mxttNpBlkM0MyRDXF7z9u5b3jbaycMYY5\nBfbzx8Nf/fW4NU0RDHRf86FntFZ/R4xOv0YsDKYMHYZ00FtAmSFmUkSMCpNJx8ycLPJsabIGIcQw\nc0OXx97Tft6ud9Psj5BrTaPAYWZilpkCh4mJDgtjM9MuOclL9O9TX5hNu84wymJk4/winP2cWd2X\nnqvH+Ts0/O0xAh3dBeHv0OgMaFjS9VhtejJtekZnG5lYZCLTJkN6C3GjuqHL4/tfzge6T/o609HF\nqbYwp9rC7PiknU/bzuHpjDLebrqgVMxMdJgZnWGUD6wLaErxpwYvf6h38+C0HO4uzur35xOLqu5D\nWc8XQ6D9/NcODXSQaespCQPjC7sLwmrTyzWphRhhbujy6JFm0DHxfDFcqDOi0dQejpfKvxoCnPJ1\nEY5qTMgyU+joXkspyOp+7sUniqUClz/Czz88i6Yp/tdXe1+nQmmKs00ROnxevJ4Q/vYY4ZAiw6rH\nau8uiOxcIxOLuwtCdlALkTpG9Kdlepqe0ux0SrPTe01vD8f4rC1MY1uYT31hdp7q4JQvjFGv67WG\nUnB+E1hGAtdvuFEopXj/pI/f7D/HA2VO7itzxjfxKaVoPh3hyMchjGk6CktsOLLNZNq6j2hKles9\nCCH6N6LLoz92s4HyMRmUj8mIT1NK4emMxtdSDp8L8pdjbTT5wmRZDOeLxMztJYqizL4v4XmjaAtF\neWV3My3+CP/zrgkUjrIA3T+D1pYoDR+H0DRF2dR0cscZsdtTbwA5IcTlpWR59EWn05GdkUZ2Rhpf\nzPv82tQxTeEKRDh1fk1lfU0jZoOO+8uczCmw3XA75Hd/1sEv9jRzV7GD7385L36Umqe1uzRCQY2b\np1jImyBHOAkh+idDsifImpnJ+w1n2X7Iw7lAhK9NdnJ3Sdaw37QV6Iqx9Z8uDrmCfPfWcZTldq91\n+bwxjhzsxNcW4+ZyC+MLTZdslkrFoasl88iXanlBhmQfUnqdjlnjbcwab+OYu5Pthz38n4Ot/Ldi\nB/dOHsXojKs/H+J6OdAc4KUPzzJ9XCab5heRnqbH3xHjyMEQbleUkjILX7rNKkdECSEGTMrjGpRm\np/P9L+fT4u/iT0e8/I8/f8KX8jK5v8zJJKdlqBePcFTjzX+d44NTHTw2ayxfys+kM6jxr7ogzacj\nTLrJzNTKDBkxVgiRMNlslaDLrer6u2K8d6yN/zriJd9u4v4yJ1/Msw7JvoPj7hCb/nGGgiwz/33m\nWMxKx7FDIZpORZhYbKJ4snnAV75LxdV7yTzypVpekMvQxg1WeXSFNTraNTp8MWz2DDLtEcyW/j94\nIzHFB6fa+c8GD1FNcX+Zk6pC+6AMoRLTFH+od/PnI14erhzD7HGZnDwapvF4F+MnplFSZsGSnthy\npOKbTDKPfKmWF6Q84pJdHuGwht/XPQZTR88YTO0xYjGFzW4g025Ai+lpORsiPUPP6Fwjo8ekkZ1j\n7PNypEopDrQE2X7IwyfeEPNvHsU9paOwm6/PzvWm9jCbdp3FajLwncox+E5rnDwSZkxeGjeVW8iw\nXl15peKbTDKPfKmWF6Q84q62PMKhnoLoLoeetQpN6y4JW5aBTLseW5YBm733+Es2mw2frx2fN0Zr\nS5RWVxSvO4rNbmD0GCOjxxhxZhsxGHuXyam2MP952MPupg5un2jnvjIn4y44m/taaErxf4+28buP\nW/nGLaMp06dz/HCY7BwjN99iIdN+bWWVim8yyTzypVpekPKIu1x59AzU17MG0f01hr9dQymw2fVk\nni8K2/miMFuuPLxGX79wsZjC29pdJK0tUdp9MRzO7iIZnWvE4TTED3/1dEb58xEv7x1v4wu56dxf\n5qQsJ6OvlxqQc4EIL314ls4ujQcn5uI6EcGWZWDyFAtZo5JzPEQqvskk88iXanlByiPuzJkzKKUI\nh1SvzUw9twFsWfrutQm7gczztwdSEv0ZyC9cJKLwnOsuktaWCMGgRnaOkexcIzlj0rBl6QnHFH87\n4ePdBg9ZFgP3lTmZPX7gJx0qpahpbOfVfS7+Pc+J05eG2aKjbEo6zpzkHkSXim8yyTzypVpeGOTz\nPFpbW9m8eTM+nw+dTsddd93F/Pnz8fv9bNy4kdbWVnJycnjiiSewWq0AvPrqq9TV1WE2m3n00Ucp\nKioCoLq6mnfeeQeAhQsXUlVVBcDJkyfZvHkzkUiE6dOns3z58gEt/Ad/68Dv09Dpe69J5E1Iw5Zl\nGLKB+tLSdIzJS2NMXhqQTjik4XZFOdcS5dTxAJGIYnSukVvGZHD7nTYOeoNsP+zl9f3n+NrkUdw1\nyUF6Wv/7J9pDUX6xp4VOj8aD1lzMAT2Tv2ghZ4yMFiyEGBxXLA+j0ci3v/1tCgsLCYVC/OAHP6Ci\nooLq6moqKiq477772L59O9u3b+eb3/wmH330ES0tLbz44oscO3aMrVu38vTTT+P3+3n77bd57rnn\nAPjhD3/IjBkzyMjI4Ne//jWrVq2ipKSEZ599lrq6OqZNm3bFhZ88JR2bXX/ZI5+GA7NFT16BibyC\n7n0cwYBGa0uEVleUIwdD6PWwZEwOXekatWfa+f3HJ/hKiYMFN4+65Joa+077+d0/WrktzY7DbKRs\nioWx+TKUiBBicF3xU9fhcFBYWAiAxWIhPz8fj8fDvn374msOd9xxB3v37gXoNb20tJRAIEBbWxt1\ndXVUVFRgtVqxWq1MmTKF/fv34/V6CYVClJSUADB37lz27NkzoIUfnWsc9sXRlwyrnoJJZr4428rd\n/25nVlUmWaMM6Hw6bmmzsjQ9l7SzOp77UxMv7TzLqbYwwUiMX9U286+dQe5KczBjaiZ3ftXGuPEm\nKQ4hxKBLaOO4y+WisbGR0tJSfD4fDocDgKysLHw+HwAej4fs7Oz4c7Kzs/F4PHi93n6nO53O+HSn\n04nH47mmUDcSnU4X3ydTVGpGaQpfW/eRXOObzXjORKlpaieERo7BTPlUCyUlFvQylIgQYggNuDxC\noRDr169n2bJlpKf3vj7GxX/5Xo998PX19dTX18e/X7RoETabLemvcyUmk+m6v649CyZM7L4diyma\nm0OcdoX44pQsjMbBX9MajMzDjWQe+VItb4+33norfru8vJzy8vKrms+AyiMajbJ+/Xrmzp3LzJkz\nge61jba2NhwOB16vl6ysLKB7zcHtdsef63a7cTqdOJ3OXh/+brebW2655ZI1jZ7HX6yvkENxpMRQ\nHKFht4PdbqSzMzCor9sjFY9KkcwjX6rlhe7MixYtSsq8rvhnrFKKLVu2kJ+fz4IFC+LTKysrqa6u\nBqCmpoYZM2bEp9fW1gJw9OhRrFYrDoeDqVOncuDAAQKBAH6/nwMHDjB16lQcDgfp6ekcO3YMpRR/\n//vf4wUlhBBieLrieR4NDQ2sXbuWgoKC+OapJUuWUFJS0u+hutu2baOurg6LxcKqVauYNGkSADt2\n7Oh1qO4dd9wBfH6obldXF9OnT2fFihUDWvjhNjDiSCWZU0OqZU61vCAnCcZJeQwOyZwaUi1zquWF\n5JbHjXecqxBCiCEn5SGEECJhUh5CCCESJuUhhBAiYVIeQgghEiblIYQQImFSHkIIIRIm5SGEECJh\nUh5CCCESJuUhhBAiYVIeQgghEiblIYQQImFSHkIIIRIm5SGEECJhUh5CCCESJuUhhBAiYVIeQggh\nEiblIYQQImFSHkIIIRIm5SGEECJhUh5CCCESJuUhhBAiYcYrPeCVV15h//792O121q9fD8Bbb73F\n+++/j91uB2Dx4sVMnz4dgHfeeYcdO3ag1+tZvnw5U6dOBaCuro7f/OY3aJrGvHnzuP/++wFwuVxs\n2rQJv9/PpEmTeOyxxzAar7hYQgghhtAV1zzuvPNO1qxZ02uaTqfj3nvv5fnnn+f555+PF0dTUxO7\ndu1iw4YNrFmzhq1bt6KUQtM0tm3bxpo1a9iwYQM7d+6kqakJgDfffJN7772XF198EavVyvvvv38d\nYgohhEimK5ZHWVkZVqv1kulKqUum7d27lzlz5mA0GsnNzWXs2LEcO3aM48ePM3bsWHJzczEajcyZ\nM4d9+/ahlKK+vp7Zs2cDUFVVxd69e5MQSwghxPV01duH/vKXv1BbW8ukSZNYunQpVqsVr9dLaWlp\n/DHZ2dl4PJ747R5Op5Pjx4/j9/uxWq3o9fr49J7HCyGEGL6uaof5V77yFV5++WWef/55Ro0axeuv\nv57s5RJCCDGMXdWaR1ZWVvz2vHnzWLduHdC95uB2u+P3ud1usrOzUUpdMt3pdGKz2QgEAmiahl6v\nx+Px4HQ6+3zN+vp66uvr498vWrSIvLy8q1n8a2az2YbkdYeSZE4NqZY51fJC9wFPPcrLyykvL7+q\n+VzVmofX643f3rNnDwUFBQBUVlayc+dOotEoLpeL5uZmSkpKKC4uprm5GZfLRTQaZdeuXVRWVsYX\n/sMPPwSgurqaGTNm9Pma5eXlLFq0KP7vwh/AYFq7du2QvO5Q5QXJPJgk8+AZqrwwtJkv/By92uKA\nAax5bNq0icOHD9Pe3s6qVav4+te/zqFDh2hsbESn05GTk8PKlSsBGD9+PLfeeitPPPEEBoOBhx56\nCJ1Oh8FgYMWKFTz99NPxQ3XHjx8PwLe+9S02bdrE7373O4qKipg3b96AFvxaQl+LnJycIXndocoL\nknkwSebBM1R5YWRkvmJ5fPe7371k2uU+4BcuXMjChQsvmT59+vT4Ib0Xys3N5ZlnnrnSYlxiqH74\nubm5Q/K6Q/mhIpkHj2QePEOVF0ZGZjnDPEFD+eYeKpI5NaRa5lTLC8nNrFN9nbAhhBBCXIaseQgh\nhEiYlIcQQoiEpfwIhK2trWzevBmfz4dOp+Ouu+5i/vz5+P1+Nm7cSGtrKzk5OTzxxBPxYVpeffVV\n6urqMJvNPProoxQVFdHY2MjWrVvp7OxEr9fzwAMPcNtttw1xur4lK3OPYDDIk08+ycyZM1mxYsVQ\nxbqsZGZubW1ly5YtuN1udDodTz311JAeudOfZGZ+88032b9/P5qmUVFRwfLly4cyWr8SzXz69Gle\neeUVGhsb+cY3vsHXvva1+Lz6G8x1uElW5v7m0y+V4rxer/rkk0+UUkp1dnaqxx9/XH322WfqjTfe\nUNu3b1dKKfXOO++oN998Uyml1D//+U/1zDPPKKWUOnr0qFqzZo1SSqkzZ86os2fPKqWU8ng8auXK\nlSoQCAxymoFJVuYer776qvr5z3+utm3bNnghEpTMzGvXrlUHDhxQSikVCoVUOBwexCQDl6zMDQ0N\n6sc//rHSNE3FYjH1ox/9SNXX1w9+oAFINLPP51PHjx9Xv/3tb9W7774bn08sFlOPPfaYamlpUZFI\nRH3ve99Tn3322aDnGYhkZe5vPv1J+c1WDoeDwsJCACwWC/n5+Xg8Hvbt20dVVRUAd9xxR3zAxgun\nl5aWEggEaGtrY9y4cYwdOxaAUaNGYbfbaW9vH/xAA5CszAAnT57E5/NRUVEx+EESkKzMTU1NaJrG\nlClTADCbzZhMpsEPNADJyqzT6YhEIkQiEbq6uojFYjgcjiHJdCWJZrbb7RQXF2MwGHrNp7/BXIej\nZGXuaz4XnhB+sZTfbHUhl8tFY2MjpaWl+Hy++BskKysLn88HgMfj6TXIY8/gjxe+mY4fP04sFouX\nyXB2LZntdjtvvPEGq1ev5sCBA0Oy/FfjWjK73W4yMjJ44YUXOHfuHFOmTGHJkiXxwT2Hq2vJfNNN\nN/GFL3yBRx55BKUU99xzz5ANDZSIgWTuz8U/i57BXIe7a8nc33z6M7x/4wdRKBRi/fr1LFu2jPT0\n9F736XS6Xt+ryxzd7PV6efnll3n00Uevy3Im07Vmfu+995g+fXq/45ENR9eaORaL0dDQwNKlS3n2\n2WdpaWmhurr6ei7yNbvWzM3NzZw5c4YtW7awZcsWDh48SENDw3Vd5muVSOaRIlmZQ6EQGzZsYNmy\nZVgsln4fJ2seQDQaZf369cydO5eZM2cC3U3d1taGw+HA6/XGB4Psa/DHng/PYDDIc889x+LFiykp\nKRn8IAlIRuajR4/S0NDAX//6V0KhENFoFIvFwpIlS4Yk05UkI3MsFqOwsDB+pu6MGTM4duzY4IcZ\noGRkrq2tpbS0FLPZDMC0adM4evQokydPHvxAA5BI5v5c7n0+HCUj84Xzuf322+Pz6U/Kr3kopdiy\nZQv5+fksWLAgPr2ysjL+F2VNTU18wMbKykpqa2sBOHr0KFarFYfDQTQa5YUXXqCqqopZs2YNeo5E\nJCvz448/ziuvvMLmzZt58MEHqaqqGrbFkazMxcXFBAKB+P6sgwcPMmHChMENM0DJyjx69GgOHTqE\npmlEo1EOHz4cH5tuuEk084XPu9DlBnMdbpKVub/59CflzzBvaGhg7dq1FBQUxFftlixZQklJSb+H\nM27bto26ujosFgurVq1i0qRJ1NbW8otf/KLXB8l3vvMdJk6cOCS5LidZmS9UXV3NyZMnh+2husnM\nfODAAd544w2UUkyaNIlHHnnkkp2Pw0GyMmuaxtatWzl8+DA6nY5p06axdOnSoYzWr0Qzt7W18dRT\nTxEMBtHr9VgsFjZu3IjFYmH//v29DtV94IEHhjhd35KVubGxsc/5TJs2rc/XTfnyEEIIkbiU32wl\nhBAicVIeQgghEiblIYQQImFSHkIIIRIm5SGEECJhUh5CCCESJuUhhBAiYTI8iRAXefHFFzEajb3G\nJzt06BDr169n1qxZ7Nixg7S0tPh9BoOB1157Lf69UorVq1djMpnYsGFDr3n/7Gc/49ixYxgMBtLS\n0igrK+Phhx8etqPUCtEfKQ8hLrJixQqefPJJDhw4QEVFBV1dXfzyl79k6dKluFwu5syZw2OPPdbv\n8w8fPkx7ezuapnHixAmKi4vj9+l0Oh566CHmzZtHMBhk48aNvP766zz++OODEU2IpJHNVkJcJDMz\nkxUrVvCrX/2KcDjMH/7wB8aOHUtVVRVKqcuOqgzdQ7VUVlYybdo0ampq+n1cRkYGlZWVnDp1KtkR\nhLjupDyE6MPs2bMpKipi06ZN/O1vf+ORRx4Z0PPC4TC7d+9m7ty53H777ezcuZNoNNrnYzs6Otiz\nZ88Ncd0XIS4mm62E6MfDDz/M6tWrWbx4ca/huP/xj3/w0Ucfxb8vKiripz/9KQC7d+/GZDJRUVFB\nLBYjFovx0UcfxYe3Vkrx2muv8frrr9PZ2cnEiRNviGu/CHExKQ8h+pGVlYXNZrtkyPXbbrut330e\nNTU1zJ49G71ej16vZ+bMmdTU1MTLQ6fTsXz5cubNm8enn37KunXrcLvdva5aJ8SNQMpDiATodLp+\n93m43W4OHjzIiRMn2L17N9C9GSsSieD3+8nMzOz1+IKCAhYuXMi2bdtYt27ddV92IZJJykOIBFxu\nZ3ltbS35+fmsXbu21+N/8pOf8MEHH3DPPfdc8pyqqireeust9u3bN2wvNiREX6Q8hEiATqdj165d\n7N27t9e0l156idraWr761a9ecrnPu+++m5qamj7Lw2g0Mn/+fN5++20pD3FDkYtBCSGESJgcqiuE\nECJhUh5CCCESJuUhhBAiYVIeQgghEiblIYQQImFSHkIIIRIm5SGEECJhUh5CCCESJuUhhBAiYf8f\nC/+4e17w2TsAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa05877b080>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"india_violentcrime.plot(kind='line', title='Violent Crime in India')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"This was pretty much expected. It's interesting how the number of murders show a downward trend, but the number of kidnappings and rapes show a dramatic rise." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 26, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa0586cca20>" | |
] | |
}, | |
"execution_count": 26, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZsAAAEhCAYAAACpyQ3rAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4U1XewPHvTdI1hJaUFqQdBAQKlEUERAQFZFEEtAIi\noo6yiILAgL7jjDjCjO8L4woC6sALKCpuLILoqIjDIosgSytYxYKALwKldKV7m+S8f6S5JG3a0tK0\ntPw+z5Mnuedu59yb3N89957coymlFEIIIYQPGWo7A0IIIeo/CTZCCCF8ToKNEEIIn5NgI4QQwuck\n2AghhPA5CTZCCCF8ToKN8JmTJ09iMBjYvXv3Jc+zbds2DAYDZ86c8WHOfMtgMPDBBx/Uyrr//ve/\n06ZNG58suyr7UwgXCTai0u6++2569uzpdVx+fj5Wq5XZs2fTvHlzkpKSuPHGG2s4h6Xt3LkTg8HA\n//3f/13S9AkJCTz00ENERUURGBhIixYtGDFiBNu2batw3qSkJEaOHHmZOa6aP//5z+zdu/eylzNw\n4EDGjRtXDTm6NOUFyRYtWjB37lx9+LfffuPhhx+mefPmBAYGcs011zBo0CC++eabmsquqAIJNqLS\nHnvsMfbt28ehQ4dKjVu3bh0XLlxg4sSJGAwGIiIiMJlMtZBL7y7lP8ybNm2ie/fuJCUlsWLFCn7+\n+Wc+//xzbrrpJh5//PEy5yssLAQgIiKCgICAastzZZjNZqxWa62s+3JpmlZmumtcUVERAwcO5PTp\n03z44YccPXqUjRs3MnjwYNLS0moyu6KylBCV5HA41LXXXqumTp1aalzfvn3VnXfeqZRS6sSJE0rT\nNLVr1y59/JEjR9Sdd96pGjRooBo0aKCGDx+ujh07po/funWr0jRNnT59Wk87evSoGjFihAoNDVWN\nGjVSgwcPVocPH9bHv/3228pkMqldu3aprl27quDgYNWtWze1b98+j3y4v/r37++1bDk5OSoiIkIv\nQ0kZGRn6Z03T1KJFi9T999+vQkJC1JgxY/T0VatWeUy3ePFiNXr0aGU2m1Xz5s3V2rVrVUZGhho7\ndqyyWCyqVatWat26dR7rSkpKUg8//LAKDw9XFotF9e7dW3377bde8+UyZ84c1bp161LDn376qYqO\njlZms1n169dPHT16tMxlPPzww6W21/bt2/XtuHr1ajV06FAVHBysWrVqpVauXOkxf1ZWlpo+fbqK\njIxUwcHBqmvXruqTTz6pVL7dtWjRQs2dO1cppVRcXJzSNE0lJCSUuzxx5ZGajag0TdOYMGEC77//\nPvn5+Xr60aNH+fbbb5k0aZLX+fLy8hg8eDCFhYV8++23bN++nezsbO644w6Kioq8znPu3Dn69OlD\n06ZN2blzJ3v37iU6Opp+/fqRkpKiT+dwOJg1axaLFy/m4MGDREREMHr0aOx2O82bN+fTTz8FYN++\nfSQlJfHJJ594Xd/XX3/N+fPnefbZZ72ODwkJ8Rj+xz/+QZ8+fYiLi+N//ud/PLaRu7lz5zJs2DAO\nHTrEsGHDeOihh7j//vu5/fbbiY+PZ+jQofzxj3/Uz87z8vLo378/OTk5fPXVV8THx3PnnXcyaNAg\njhw54jVvZTl79ixLlizhww8/ZPfu3WRlZTF+/Pgyp1+0aBG33HIL9913H0lJSSQlJdGrVy99/F//\n+lceeeQRDh8+zJgxY5g4cSJHjx4FnDXH4cOHc/jwYVavXk1CQgKTJ09mzJgxbNmypVL59iYiIgKD\nwcCaNWv0mqSoI2o72om66fTp08pkMql3331XT3v66adVZGSkstvtSqnSNZvly5er4OBglZqaqs9z\n7tw5FRQUpC+nZM1mzpw56qabbvJYt8PhUNddd5167bXXlFLOmo2maSouLk6fZu/evUrTNJWYmKiU\nUmrHjh1K0zT122+/lVuuF198UWmaptLT0yvcBpqmqYkTJ3pNf//99z2GZ86cqQ+fP39eaZqmpk+f\nrqelp6crTdPUv//9b71MUVFRymazeSz7tttuUzNmzCgzT95qNiaTSaWkpOhpH3/8sTIYDKqgoKDM\n5QwcOFCNGzfOI821PxcsWKCn2e12ZbFY1P/+7/8qpZz7LzAwUGVmZnrMO27cOBUbG3vJ+XbnXrNR\nSqklS5aoBg0aqKCgINW7d2/1l7/8Ra/FiiuX1GxElTRr1oyhQ4eybNkywHktfeXKlYwfPx6DwfvX\nKiEhgZiYGI97ChEREURHR/PTTz95nWffvn0cOHAAi8Wivxo2bMhvv/3GsWPH9Ok0TaNLly768DXX\nXAM4a0aVoSr5XNpLbfzgnrfGjRtjNBrp3LmznhYaGoq/vz/JycnAxRpYaGioR9l37NjhUe5L0axZ\nM8LCwvTha665BqWUvq7Kuv766/XPrvtyru28b98+CgsLiYyM9Mj3+++/X+l8l+Wxxx4jKSmJdevW\nMWjQILZv307Pnj156aWXqmX5wjeunDu3os6ZNGkSw4YN48iRIyQkJJCamsrEiRPLncfbwby8A7xS\nioEDB/L666+XGud+SctgMHhcunJ9djgcFZbDXbt27QBnYOzdu3eF05vN5ktarp+fX4Vpmqbp+XU4\nHLRv354NGzaUmi84OPiS1uni7+9faj2udVSFt+W55zskJIT9+/dXOJ+7kJAQMjMzvY7LyMggMDDQ\nI81sNjNkyBCGDBnCnDlzePTRR5k9ezZPPvnkFdUgRVwke0VU2ZAhQ2jevDnLli3jp59+4vbbb6d5\n8+ZlTt+xY0eWLl1KamqqfqZ97tw5EhMT+fOf/+x1nu7du7Ny5UoiIyMvq4WX60Bnt9vLnW7w4MFE\nREQwd+5cvvjii1Lj09PTadSoUZXzcal69OjBe++9h8ViITw83OfrK8nf3x+bzVbp+bp3705GRgZ5\neXnExMRc8nzt2rUjJSWFEydO0LJlSz09MTGRzMxM/SSgvPkLCwvJzMz0qMWJK4dcRhNV5moosGLF\nCjZv3lxmwwCXsWPHEh4ezn333UdcXBwHDhxgzJgxREVFcd9993mdZ+rUqdjtdu6++2527tzJyZMn\n2blzJ88++yzffffdJef12muvxWAw8O9//5vk5OQyz6KDgoJYuXIlW7duZdCgQXz11VccP36cw4cP\n88orr3jcKPelBx54gJYtWzJ06FA2b97MyZMn2bt3L//85z/1xg6+1LJlSw4cOMDx48dJSUkpN/C4\n10wHDBjAwIEDGTFiBJ9++inHjx/nwIEDLF68mOXLl5e5jNtvv50uXbowZswYtm7dyokTJ9iyZQtj\nx46lQ4cO3H777QDExcUxfPhw1qxZw48//sjx48f5+OOPeemll+jTp48EmiuYBBtxWSZMmEBOTg5N\nmzZl+PDhpca7X9oKDAzk66+/JiAggFtvvZV+/fphsVj46quvPC59uM8TERHBd999R+PGjRkxYgTt\n2rXjwQcf5NSpUzRr1szrPN7SmjRpwj//+U9eeOEFmjVrxj333FNmme644w727dtHkyZNmDBhAu3b\nt2fYsGHs2bOn3ANmdQoICGD79u10796dcePGER0dzciRI9m/fz8tWrQocz73/6R4G3ZPL89TTz1F\n48aN6dKlC02aNNGfGnApy9q4cSMjRoxg5syZ+rb78ssvad26dZnrMxgMfP3119xwww08+uijxMTE\nMGnSJG666Sa+/fZbjEYjAM2bN6dNmzbMmzePPn360LlzZ2bPns24cePYuHFjuWUStUtT5Vwwf/PN\nN4mLi6Nhw4a8+uqrAGRnZ7NgwQJSUlIIDw9n5syZ+nXrt956i/j4eAICApgyZYpeHd62bRvr168H\nYMSIEfTt2xeA48eP88Ybb1BUVETXrl31fyxXZR1CCCGuXOXWbPr378+sWbM80jZs2EDnzp1ZuHAh\nHTt21G9gHjx4kHPnzrFo0SImTZqknwFmZ2ezbt065s2bx7x581i7di25ubkALFu2jMmTJ7No0SKS\nkpKIj4+v0joqkpCQUIlNUvdI+eo2KV/dVZ/LBtVbvnKDTfv27Uu1ttm/f79eM+nXrx/79u0rld6m\nTRtycnLIyMggPj6ezp07YzabMZvNdOrUibi4ONLT08nPz9er1rfeeivff/99ldZREflC1G1Svrqt\nPpevPpcNajDYeJOZmUloaCjg2VwxLS3N4+ZcWFgYaWlppKenl5nu/n8Lq9Wq/3u6suuoSFX/T1BV\nNf0FlPJVLylf9arJ8tXnskHdLt9lNRAoeWOwsn+Iq6l1nD9/vrqyc0lq+gsh5ateUr7qVZPlq89l\ng7pdvkr/zyYkJISMjAxCQ0NJT0/X/1hntVpJTU3Vp0tNTcVqtWK1Wj02UGpqKh07dvSoybjSXbWW\nyq6jpISEBI91/uMf/6hsMS/L6NGja3R9Ur7qJeWrXjVZvvpcNqid8q1evVofjomJqdT/p9xVOth0\n796dbdu2ERsby/bt2+nRo4eevmnTJnr37k1iYiJms5nQ0FC6dOnChx9+SE5ODkopDh06xAMPPIDZ\nbCYoKIijR4/SunVrduzYwZAhQ6q0jpK8bZC63BlXRSwWC1lZWbWdDZ+R8tVt9bl89bls4HzUUXUF\nuHKbPr/22mv8/PPPXLhwgdDQUEaPHk2PHj3KbJa8YsUK4uPjCQwMZPLkybRq1QqArVu3ejR97tev\nH3Cx6XNhYSFdu3bVn0RbXtPnstZREQk2dZeUr26rz+Wrz2UDPP7LdrnKDTb1iQSbukvKV7fV5/LV\n57JB9QYbeYKAEEIIn5NgI4QQwuck2AghhPA5CTZCCCF8ToKNEEIIn5NgI4QQwuck2AghhPA5CTZC\nCCF8ToKNEEIIn5NgI4QQwuck2AghhPA5CTZCCCF8ToKNEEIIn5NgI4QQwucq3XlaXXUhw47BCAYN\nNIOGwQAGw8XPmla6C2ohhBDV46oJNge+y0E5wOFQOByglNvn4mHN4AxGBoPm/OwWjMoKUvpn7eJn\nk5+GuYFBfwWZDRgMEsiEEFevqybY9B/SsNzxSl0MPA6HKg5GngHJ4VDF7+BQbp8dnp9tRYqsTDtJ\np4vIyXZQkOcgMPhi8DFbjPrnYLMBg1ECkRCifrtqgk1FNE3DaASMANV78LfbFXk5DnKyi19ZdpLP\nOgNRfq6DgCCDR03IFYyCGxgwSiASQtQDEmxqgNGo0aChkQYNjaXGORylA1FKso2cbAd5OQ78AzXM\nDYxugciAuYGR4AYGTCYJREKIukGCTS0zGDRnTcZSOhAphyIvz0FO1sVglJZaSG6Wg5wcB35+GmaL\ngbDGNho2ctA4woR/gDQwFEJceSTYXME0g0aw2Uiw2Uh4iXFKKfLzFDlZdvJzjZw6kc8P+3IJNhtp\n3MRE4yYmwhqbMPlJ7UcIUfsk2NRRmqYRFKwRFGzAYrEQ1VLD4VBkpNlJOWfj1yMFHEjLoWHIxeDT\nKMwk94CEELVCgk09YjBoWBubsDY20TYG7DZFWqqNlHM2fv4hn6wLdhqFmWgc4Qw+IY2M0iRbCFEj\nJNjUY0aTRngTP8Kb+AFQVKhIPW8jJdnGoX255OY6CAt3BR8/LCEG+WNrNbPbFQX5ioJ8BwX5ivw8\nhz6cn++gMF/h55eHZrDj56/h56fh5+/8r5brs59f8bDbZzlJEHWNBJuriJ+/RtNIP5pG+gFBFOQ7\nSE12Bp+Tx3IoKlI0jjARVlzzMTeQ4OONUoqiQmcQyc93UJDnCh7FQSWvOD1fYbMpAgI0AgINBAY5\n3wMCNRqGGAlvaiIgwEBgYBCZmTnYiqCoyLnsvFxFVqHDOVycZnN9LlIYjXgEo4oClJ+fhsnfOezv\nr8l+FTVOgs1VLCDQQLPm/jRr7g9Abo4r+BRx9Kd80HDWeiL8aNzERFBw/W7p5nAovfbhUQPJc6uZ\nFNdGjEaNgECNgCADgYFuQSTU7+Jw0KUd2C2WQIItRZecT6UUNhueAajQ+W4rfs/PV9gueAaroiJF\nUYECDRqGGp2vEAMNQ41YQoxyP0/4lAQboQs2Gwhu6c8fWvqjlCIn20HKORvnzhbx0w95+Plp+r0e\n18HV9V4XDlS2IkVeroPcXOd/mPJy3V45zpqJv79GYJBnLcRZXhOBxQEkIMCAsRb/46RpGn5+zppN\nZSnlDKgXMuxcyHT+p+t4YgE52Q6CzYbiAGTUg1FgkNSCRPWQYCO80jSNBhYjDSxGWrQOQCnFhQwH\nKclFZKTayc8vungvokBhMmkewScg0POM33UZyd9fQ/PB/QbXQTTPLZDk6gHFmW63K4KCDQQFOx8T\nFBRsILyJH0FmZ6u+oKD6/+ggTdMIDHIG1Ihr/PR0h12RdcHBhUw7FzLsHE8s4EKGHaXwqAE1DDVi\naWis1WAr6iYJNuKSaJrzDD+kkZc/n5ZxD6MgX3Ehs8jjBnlRocI/wDMwBQYa8C9+d12aCgh03mdw\nnVXbbc4/uLrXSJzBxBlI8nMdmPyKg4bZQHDxs+hcl/+Cgg34B8hZelkMRu/7tyDfQWaGnawMZy3o\nRGIB2dkOgoMvBh+pBYlLIcFGXDZN0/AP0PAPAEtI6WDkzuFQFBZ4tsoqyHc+ssdZY7qY7rCDf6AG\njgsUFjofZhoU7AwkQWaNsHCTHlyCgmr30lZ9FRBoIKKpgYimnrWg7KyLQejEUWctyOHA4x5QSKiR\nBhV8H8TVQ4KNqFEGw8XLOBWx2RSF+Q4ahlgosuXIWfMVwmDU9NqMu4J8h/NeUIadtPM2Th4rIDvL\nQSNrHqFhGmERzv+AVeVek6j7JNiIK5bJpGFqYCQo2IgtSw5QV7qAQAPhTQ2Eu9WC7DZFQZ4/p367\noD/VwtLQSFiEibBwE9ZwCT5XCwk2QgifMZo0mjS72LTbblekp9pJTbbx6y8FHPiuRPBpbMLPX4JP\nfSTBRghRY4xGrfi/W85Dj92uyEi1k3r+YvBpYDHqfy6W4FN/SLARQtQao9F5Lycsovh5fm7B57hb\n8AkrDlASfOouCTZCiCuGe/DBFXzSnJfdSgafsHATYeFG/Pzr95Mt6osqB5vPP/+crVu3AtC8eXOm\nTJlCeno6r732GtnZ2bRq1YqpU6diMpkoKiri9ddf58SJE1gsFmbMmEF4uLOHlvXr17N161YMBgPj\nxo2jS5cuAMTHx7Ny5UocDge33XYbsbGxACQnJ3tdhxCi/jEateKgUjr4nDhawME9NmfwCTcVByAJ\nPleqKu2VtLQ0vvrqK1544QVeffVVHA4Hu3btYtWqVQwbNoxFixZhNpvZsmULAFu2bMFisbBo0SKG\nDh3K+++/D8Dvv//O7t27mT9/PrNmzWL58uUopXA4HKxYsYJZs2Yxf/58du3axe+//w5Q5jqEEPWf\nK/i0jQmkV78G3B4bQkzXIPwCNE4cLWDzZxfYvimLHw/mcvb3QgoKHLWdZVGsyqcAdrudgoIC/b1R\no0YkJCRw0003AdC3b1/27dsHwP79++nbty8APXv25PDhwwDs27eP3r17YzKZiIiIoGnTphw9epRj\nx47RtGlTIiIiMJlM9O7dm/3796OUKnMdQoirjx58OjiDzx2xIXTqFkRAoIHffi1ky+cX2PblBQ4f\nyOXM/xWSnyfBp7ZU6fqT1Wpl+PDhTJkyBX9/f7p06UKrVq0wm80YDAZ9mrS0NMBZEwoLCwPAaDQS\nHBxMVlYW6enptGnTRl9uWFiYPo9reteyjh07RnZ2dpnrEEIIg/FiB4JtcD6x4kK6s8HB778Vcmh/\nHv6BFy/NhUXU/6eZXymqFGyys7PZv38/b7zxBsHBwcyfP5+4uLjqzluVJSQkkJCQoA+PHj0ai8VS\niznyLX9/fylfHSbl862QEPhDC+dnh0ORmV7EubMFJJ8t4Kf4bPz8NSKuCSSiaQAR1wRgbmC85KdV\n1HbZasLq1av1zzExMcTExFRpOVUKNocPHyYiIkLfyD179uSXX34hJycHh8OBwWDwqM1YrVZSUlKw\nWq3Y7XZyc3OxWCxYrVZSU1P15aamphIWFoZSqlS61WrFYrGUWofVai2VP28bJCsrqypFrRMsFouU\nrw6T8tUskz9EXguR1waglD9ZmQ7Sztv4vxNZxH2fjmbAo+ZTXieCV1rZqpvFYmH06NHVsqwq1R/D\nw8M5evQohYWFKKU4dOgQf/jDH4iJiWHPnj0AbNu2je7duwPQvXt3tm/fDsCePXvo1KmTnr5r1y5s\nNhvJyckkJSXRunVrrrvuOpKSkkhOTsZms7F79259WSXX0aNHj8vbAkKIq5amOZ/z1qJNAN1uNjPo\nrob06tuAsHATqedtfLc1m80bL3Bgdw4njxWQlWlHKVXb2a6TNFXFLbd69Wq+++47DAYDLVu25PHH\nHyctLU1vltyyZUumTZumN31evHgxJ0+exGKx8Kc//YmIiAgAPvnkE7Zu3YrRaOSRRx7h+uuvByAu\nLs6j6fM999wDeDZ9dl9HRc6cOVOVYtYJV8PZlZSv7qrL5VNK6T3Ypp63kXbejs2msBbXfJq3aIjR\nlO+TPpquBM2aNau2ZVU52NQ1EmzqLilf3VbfypeXezH4pKc6yMu16Y0SrI1NhFrrT+dy1Rls5N+Q\nQghRCUHBBqJa+BPVwtk4IOV8JmkpzlrPTz/kkXXBTsMQI9ZwVwAy4h8gLd4k2AghxGUICDRwTZQ/\n10Q5h202RUaqjbQUZ8dycXtsBAUbLgafcBNBwVdfr6YSbIQQohqZTBqNm/jRuImzXx+HQ+kdyiWd\nLuKnH/LQNPTgExZuwtLQUG/v+7hIsBFCCB8yGDRCrSZCrSZaRRc3Osh2OBscFNd+CvIdF+/7hBff\n9zH6PvgopbAVQVGRg6JCRVGhorD4vahIUY23bCTYCCFETdI0DbPFiNlipHkrZ1pBvuPifZ/4PLIy\n7TQMNeqt3hqFlX3fxxkw3AJF8ecit6DhLZAUFTrnMxrBz18rfhnw89P04eokwUYIIWpZqfs+RYr0\nNGfwOZ5YQEaq875Pg4ZGz2BSVDJgGPRA4e8WNIKCi9Pd0lzDhhq6fCfBRgghrjAmP43wJn6El7jv\nk5PtqNWAcTkk2AghxBXu4n2f2s5J1UnjbyGEED4nwUYIIYTPSbARQgjhcxJshBBC+JwEGyGEED4n\nwUYIIYTPSbARQgjhcxJshBBC+JwEGyGEED4nwUYIIYTPSbARQgjhcxJshBBC+JwEGyGEED4nwUYI\nIYTPSbARQgjhcxJshBBC+JwEGyGEED4nwUYIIYTPSbARQgjhcxJshBBC+JwEGyGEED4nwUYIIYTP\nSbARQgjhcxJshBBC+JyptjMgymexWCqcxmg0XtJ0dZWUr26rz+WrT2XLysry6fIl2NQBvv4SCCGu\nbjURMOUymhBCCJ+rcs0mJyeHJUuW8PvvvwMwZcoUrrnmGhYsWEBKSgrh4eHMnDkTs9kMwFtvvUV8\nfDwBAQFMmTKFli1bArBt2zbWr18PwIgRI+jbty8Ax48f54033qCoqIiuXbsybtw4ALKzs8tchxBC\niCtTlWs2b7/9Nl27dmXBggW88sorREZGsmHDBjp37szChQvp2LEjGzZsAODgwYOcO3eORYsWMWnS\nJJYvXw44A8e6deuYN28e8+bNY+3ateTm5gKwbNkyJk+ezKJFi0hKSiI+Ph6gzHUIIYS4clUp2OTm\n5nLkyBFuu+02wHmTLDg4mP379+s1k379+rFv3z4Aj/Q2bdqQk5NDRkYG8fHxdO7cGbPZjNlsplOn\nTsTFxZGenk5+fj6tW7cG4NZbb+X7778vtSz3dYj6LSoqit9++622s+HVlZy3qpgxYwYvvfQSAHv3\n7uXWW2+t5RxdGXr27MmOHTt8vp5Ro0bx4Ycf+nw9Na1KwSY5OZmGDRvy5ptv8pe//IUlS5aQn59P\nZmYmoaGhAISEhJCZmQlAWloaYWFh+vxhYWGkpaWRnp5eZrrVatXTrVYraWlpAGWuQ9S8nj170rJl\nS33fuAwePJioqChOnz5dSzkTl0PTNDRNA5z7+Ntvv/X5Onfv3k337t3LnWbGjBlERUXx9ddfe6TP\nmTOHqKgoVq9e7cssemwXXytrPadOnSIqKgqHw1Ej+ahOVQo2drudEydOMHjwYF588UUCAwNLXc4q\nubGUUlXPZRlqascL7zRNo3nz5nz66ad62s8//0x+fn6V943NZquu7PlkeVcLX/xeL5emabRq1Yo1\na9boaTabjc8//5wWLVpcVceDqu6f2vw9VCnYhIWFYbVa9ctcN910EydOnCA0NJSMjAwA0tPTCQkJ\nAZw1k9TUVH3+1NRUrFYrVquVlJQUj3TXst3Pll3p4KzNeFuHu4SEBFavXq2/wNm0ry6+jEZjVXZR\njRkxYgRr167Vh9esWcOoUaM8fgwlLwt8/PHH3HPPPfpwVFQUK1eupHfv3volm3/961/ccMMNdOvW\njY8++shjnQUFBTz//PPceOONXH/99fz1r38lPz8fcJ4hd+vWjTfffJOuXbvy1FNPlcrzyZMnuffe\ne+nYsSOdOnVi2rRpXLhwQR/fs2dPlixZwsCBA2nfvj2TJ0+moKBAH19e3koaNWoUL7/8MrGxsURH\nRzN27FiP7/bXX39N//796dChA6NGjeLYsWOXlA9XOZcuXUqXLl244YYb+Pjjjy9pGwG8+eabehk+\n+OCDMi8FlqxxHD58mMGDBxMdHc1jjz3G448/rl9yA9i8eTODBg2iQ4cO3H333fz8888Vlic3N5eH\nHnqIc+fO0bZtW6Kjo0lOTva6PQcNGsS+ffv0Kxpbt26lQ4cOhIeH69+5y9m/aWlp/PGPf6RDhw7E\nxMQwYsQIr/mIi4tj+PDhdOjQgRtuuIG//e1vFBUVAd5rH+6/Abvdzj/+8Q86depEr169ePvtt0tN\nf+rUKa/fGVd+2rdvT9u2bTl48CAAH330Ef369SMmJoYHHnjA46qCt99XSa7/C5V8AR7H0oSEBK/z\nX4oqBZvQ0FAaN27MmTNnADh06BB/+MMf6NatG9u2bQNg+/bt9OjRA4Du3bvrVfHExETMZjOhoaF0\n6dKFQ4cOkZOTQ3Z2NocOHaJLly6EhoYSFBTE0aNHUUqxY8cOj2V5W4e7mJgYRo8erb/A+V+Vuviy\n2+1V2UUngZZJAAAgAElEQVQ15oYbbiArK4tjx45ht9vZuHEjI0eOLDVdRWedX3/9NV988QVbt25l\n69atLF26lI8++oidO3eWuk4+b948Tp48yebNm9m1axdJSUksWLBAH5+SkkJmZibff/89L774otf1\nTZ8+nbi4OLZv386ZM2d49dVXPfL6+eef88EHH/Ddd9/x888/6yctFeXNmw0bNrBgwQJ++OEHCgsL\nWbp0KQC//vorTzzxBM8//zyHDx9mwIABPPzww/rZZ3n5cJUzOzubgwcP8sorr/Dss8/qB9XyttHW\nrVtZtmwZH3/8MTt37uS7776rsAwAhYWFTJgwgTFjxvDTTz8RGxvLpk2b9H37448/8l//9V+8/PLL\nJCQk8OCDDzJu3Dj9IFxWeYKDg1m1ahVNmjQhMTGRX375hYiICK95CAgIYPDgwXpteu3atYwaNUpf\nvktV9+/SpUtp1qwZhw8f5tChQzzzzDNe82EymXj++ef58ccf2bhxIzt37uSdd94pd/u58vf++++z\nbds2Nm/ezFdffcVXX31V6vdR1nfG1XL3yJEjJCYmcsMNN7Bp0yYWL17M8uXLOXz4MDfeeCNTpkzx\nWJ7778sbu93u9fgDeBxLY2Jiyi1jearc9HncuHEsXrwYm81GkyZNmDJlCg6HgwULFrB161a9WTI4\nD0hxcXFMmzaNwMBAJk+eDECDBg0YOXKkvkNHjRqlN2OeOHEib7zxBoWFhXTt2pXrr78egNjYWK/r\nuFrZH72rWpZjXLaxyvOOHDmSNWvWcNNNN9G2bVuaNm1a6WVMnTpVr6V+9tln3HfffbRt2xaAp556\nSj+4KKX44IMP+Oabb/Tpp06dyrRp0/TvkcFg4KmnnsLPzw8/P79S62rRogUtWrQAnLXuRx991CNY\nAUyYMEE/4A0aNEg/oysvb2W577779Kb+w4cPZ/PmzQBs3LiRgQMHcssttwDw+OOPs3z5cvbv389N\nN91Ubj7AecCbOXMmBoOB2267DbPZzK+//sr1119f7jZylaFNmzZ6GVwHsfIcPHgQu93O+PHjARgy\nZIj+uwRYtWoVDz74oJ527733snjxYg4ePEjPnj3LLU9lLgvde++9/Pd//zexsbHs3buXhQsXsnLl\nSn385exfPz8/kpOTOXXqFC1atPB6MgvQqVMn/XNUVBQPPPAAe/bsYeLEiRXm/7PPPmPixIn672Tq\n1Kns2rXLY5qyvjPettN7773HtGnT9CtN06ZNY/HixZw+fZrIyEh9Hd6uAtWkKgebFi1a8M9//rNU\n+nPPPed1+gkTJnhN79+/P/379y+V3qpVK4+zEZcGDRqUuY6r0eUEieqgaRqjRo3innvu4dSpU6Uu\noV2qZs2a6Z+Tk5Pp0qWLPuz6wYDzkmpeXh5DhgzR05RSHpcgrFYr/v7+Za7r/PnzzJ49m++//56c\nnBwcDofe6MQlPDxc/xwYGMi5c+cqzFtZ3M/SAwMDycnJAeDcuXMe82uaRrNmzUhKSiozH+7jGjVq\nhMFw8eJEUFAQOTk5FW6j5ORkjyBxzTXXVFgGV35LTuu+306fPs3atWt5++239bSioqJLLs+l0DSN\nHj16kJqaysKFCxk0aBCBgYEe01Rl/7ryMXnyZF599VXGjh0LwAMPPMATTzxRKh+//vor//jHPzh8\n+DB5eXnYbDaP70V5kpOTPbabt+1f1nfGm99//53Zs2fz/PPPe6QnJSXp3y/39dUWeVyNuGyRkZE0\nb96crVu3ej1BCA4O1v8/Bc6DQUnulxEiIiL0S7SAx/Vnq9VKYGAgW7dupUmTJl7zU9EluxdeeAGj\n0ciWLVsICQnhq6++4m9/+1u581xK3iqradOmHDlyRB9WSnHmzJkq1QzdVbSNSpbB/bOLt20YERHB\n2bNnPdJOnz6t1yKaNWvG9OnTmT59eqXzXNmb+yNHjmTBggUe9wtdKrt/3ddtNpuZPXs2s2fP5pdf\nfmH06NFcf/319O7d22OeZ555hs6dO7NkyRKCg4NZtmwZX3zxBeD8vgPk5eXpV2rcv/OXsv0vJa8u\nkZGRzJgxg9jY2ErNV9PkcTWiWrz66qusXr2aoKCgUuNiYmL44osvyMvL48SJExX+h2D48OGsXr2a\no0ePkpeX53EJxGAwMHbsWObMmaM3Ojl79izbt2+/5Lzm5OQQHByMxWLh7Nmz/Otf/6pwHldtrby8\nVTRvScOGDeM///kPO3fupKioiKVLlxIYGFhhE+CKVLSNXGU4duwYeXl5vPbaa6Xy6y3P3bp1w2g0\n8vbbb2Oz2di0aRM//PCDPv6BBx7gvffeIy4uDqUUubm5fPPNN+WelbuEh4eTnp5e7nMA3fM1fvx4\nPvroI/3ynLvK7l/3sm7evJkTJ06glKJBgwYYjUaP2qNLbm4uZrOZoKAgjh07xrvvvquPCwsLo2nT\npqxduxa73c5HH33k0fhi+PDhrFixgqSkJDIzM3nzzTcvufVuWFgYBoOBkydP6mkPPfQQixcvJjEx\nEYALFy7w2WeflVvm2iDBRlSLa6+91uM6tvuP59FHH8Xf35/rr7+eJ598kpEjR3qML/lD69+/PxMn\nTmT06NH06dOHPn36eEzz7LPP0qJFC4YPH067du24//77OX78eJnLK+nJJ5/k8OHDtGvXjkceeYQ7\n77yz3Hnc/19RUd7Kmt/bslq3bs3ixYt57rnn6Ny5M9988w0rV67EZPJ+waHk/zzKW29526h///6M\nHz+ee++9lz59+tCtWzcA/dJjWevx9/dn+fLlfPjhh3To0IFPPvmEgQMH6vfFOnfuzMsvv8zf/vY3\nYmJi6NOnD2vXri0znyW3RWxsLL169SImJsZrazT36UNDQ0vVNlwuZ/+ePHmS+++/n7Zt23L33Xfz\n8MMP06tXr1LzPPfcc2zYsIHo6Giefvpp7r77bo91vPzyyyxZsoROnTqRmJjocQLxwAMPcOuttzJw\n4ECGDBnCgAEDSgW1sr4zQUFBTJ8+ndjYWDp06EBcXBx33HEHU6ZMYcqUKbRr144BAwZ4nHxdCbUa\nAE1diQ3qfaAyVdUricVikac+C586evQoAwYM4OTJk17P4sszbNgw/vjHP+qtPkXlbdmyhWeeeYa9\ne/fWWh7KOs5U570eqdkIcRX68ssvKSgoICMjg7lz5zJ48OBLCjR79uwhOTkZm83G6tWrOXLkiNcG\nPqJs+fn5/Oc//8Fms3H27Fnmz5/v0ZijvpJgI8RV6P3339dvfPv5+XltWerNr7/+yuDBg+nQoQPL\nli3jf//3fz1adomKKaWYP38+MTEx3HHHHURHR/PnP/+5trPlc3IZ7Qonl9GEEL4ml9GEEELUCxJs\nhBBC+JwEGyGEED4nwUYIIYTPSbARQgjhcxJsxBWtbdu2nDp1CvDsrtib+tY9sxD1iTyIU1RZz549\nSUlJ0Tt40zSNHTt2lNkXSVW4nvfkWv6V8ugNIUTlSLARVaZpGu+88w59+vSp8jJsNluZzwLzpib+\nFma326/4HlKFqGvkMpqodgUFBcyePZtu3brRrVs35syZQ2FhIeC922aHw8GiRYvo3bs30dHRDBky\nRH+UfclLY2lpadx///1ER0czatSoMh/xX1G3yO4+/vhj7r77bv7+97/TsWNH5s+fz2+//VZh18Kv\nv/46/fv3JyYmhieffNKj6+jyukcW4mokwUZcFm81jUWLFhEfH8/mzZvZvHkz8fHxLFy4UB9fstvm\npUuXsnHjRt577z1++eUXXn311VIdYrnWtX79embOnMnhw4fp0KEDU6dO9ZqvirqOLik+Pp4WLVpw\n6NAhpk2bhlKq3K6Fwdl17wcffMCuXbs4fvy4Xsayukd2BVwhrkYSbESVKaWYMGECHTp0oEOHDnqX\nuK6AYLVasVqtPPnkk6xbt06fz73b5sDAQD788EOefvppWrVqBUCHDh1o1KiR13UOHDiQG2+8EX9/\nf/76179y4MCBUh16ubqOnjNnDiEhIZjNZqZOncrGjWX3atqkSRMeeeQRDAYDgYGBtGjRgltuuQU/\nPz+9a+E9e/bo02uaxiOPPMI111xDaGgo06dP17uHdu8eWdM07r33Xvz9/Tl48GDVNrQQ9YDcs6nj\n7n7/SMUTXYJPH2hX6Xk0TeOtt94qdc/m3LlzREVF6cORkZF6t8pQutvmM2fO6L09VrQ+9y50g4OD\nCQ0NLdVd8aV0HV1SyWdAXUrXwu7zREZG6l0Ll9U9svs2EOJqI8GmjqtKkPC1pk2bcurUKdq0aQM4\nD77u3ROXbFHWrFkzTp48Sdu2bctdrqvbZJecnBwyMjJKdX18KV1Hl1QyT5fStbD7/aLTp0/r3Tlf\nTvfIQtRXchlNVLu7776bhQsXkpaWRlpaGgsWLGDkyJFlTj927FheeuklvTven376ifT0dK/Tbtmy\nhX379lFYWMhLL71Et27dPGo1UDNdRyuleOeddzh79izp6eksWrSIu+66C7i87pGFqK8k2Ihq96c/\n/YkuXbowcOBABg4cSOfOnfnTn/6kjy9Zi5g0aRLDhw9n7NixtGvXjqefflpv2VWye9x77rmH+fPn\n07FjRxISEli8eLHX5VbUdbQ7b//fqahrYVdexo4dS+/evWnZsqVexrK6Rxbiaib92VzhpD+bK9NN\nN93EK6+8cln/MRLiSiH92QghhKgXJNgIIYTwOWmNJkQVuP/nRghRManZCCGE8DkJNkIIIXxOgo0Q\nQgifk2AjhBDC5yTYCCGE8DkJNkJUg549e7Jjx47azkaFdu/eTffu3Ws7G+IqJMFGXLZRo0YRExNT\nZ/trqY4DcF3tsrpnz57s3LmztrMhrgISbMRlOXXqFHv37kXTNL7++mufrcdut/ts2VczTdNqpKtt\nISTYiMuydu1aunXrxr333suaNWs8xqWlpfHwww/Trl07hg4dyosvvsg999yjj9++fTu33HIL7du3\nZ9asWYwcOZIPP/wQqHxXzW+88QaTJk3yWP/s2bOZPXu2vrx+/foRHR3NzTffzKpVqwDIzc3loYce\n4ty5c7Rt25bo6GiSk5NRSvH666/Tu3dvOnbsyOOPP05GRoZHuW+88UY6duzIokWLyt1G33zzDYMH\nD6Zdu3b06NGD+fPn6+Py8/OZNm0aHTt2pEOHDgwdOpSUlBQ9zzfffDPR0dH06tWL9evXA3Dy5Mly\nu6wu2ZX2jBkzeOmll0rla9q0aZw+fZpHHnmEtm3bsmTJknLLIcTlkGAjLsvatWsZMWIEI0aMYPv2\n7fqBEpxPXm7QoAHx8fG89tprrF27Vr/UlJaWxmOPPcazzz5LQkIC1113HQcOHPC4FFWZrppjY2PZ\nsmWL/hh/u93O559/rge3xo0b8+677/LLL78wf/58/v73v/Pjjz8SHBzMqlWraNKkCYmJifzyyy9E\nRESwYsUKvv76a9atW0dcXBwhISE8++yzACQmJjJr1ixef/11Dh48SHp6eqneQt2ZzWYWL17MkSNH\nePfdd3n33XfZtGkTAGvWrCErK4v9+/eTkJDAiy++SGBgILm5ucyZM4dVq1bxyy+/sHHjRmJiYvRl\nVtRltbuyLvEtXryYyMhI3nnnHRITE3n88cfL39lCXIbLCjYOh4Onn36aF154AYDk5GRmzZrF9OnT\nee2117DZbICzl8IFCxYwffp0nn32Wc6fP68vY/369UyfPp0ZM2bwww8/6Onx8fHMmDGD6dOns2HD\nBj29rHWImvf9999z+vRphg8fTqdOnbj22mv1s2+73c6XX37JU089RWBgIG3atOHee+/VL9n85z//\nITo6mjvuuAODwcCECRMIDw/3WH5lumqOjIykU6dOfPnllwDs2rWLoKAgunbtCsCAAQNo3rw54Hxi\nc9++fdm7dy+A18tIq1at4umnn6Zp06b4+fnx5JNP8u9//xu73c6///1vBg0apHdP/fTTT2MwlP1T\n6tWrF9HR0QC0b9+eu+66i++++w4Af39/0tPTOXHiBJqm0bFjRxo0aAA4++U5cuQIeXl5hIeH653L\nVdRltTdyqUzUtst6NtoXX3xBVFQUeXl5gPMHOmzYMG6++WaWLVvGli1bGDx4MFu2bMFisbBo0SJ2\n797N+++/z4wZM/j999/ZvXs38+fPJy0tjf/+7/9m0aJFKKVYsWIFzz33HFarlWeeeYbu3bsTFRVV\n5jquVp99nFHxRJdg+H2hFU9Uwpo1a7j11ltp1KgR4KxdrFmzhkcffZTU1FRsNpvHI8rdOzkr2ZVz\nyfFQ+a6aY2Nj+fTTTxk1ahTr16/3uGS3ZcsW5s+fr3fQlpeXR/v27css26lTp5g4caJHEDEajZw/\nf75U3oOCgvRt4M3BgweZN28eiYmJFBUVUVhYyLBhwwAYOXIkZ86cYcqUKVy4cIERI0bwl7/8heDg\nYP71r3+xZMkS/uu//ovu3bsze/ZsWrdufUldVgtxpalysElNTSUuLo577rmHzz//HICEhARmzJgB\nQN++fVmzZg2DBw9m//79jB49GnC2flmxYgUA+/bto3fv3phMJiIiImjatClHjx4FnF0LR0REANC7\nd2/2799PZGRkmeu4WlUlSFSHvLw8PvvsMxwOh157KCwsJDMzk59//pm2bdtiMpk4c+YMrVq1Ajz7\nFGrSpAmbN2/Wh5VSpS5FVbar5mHDhvH8889z9uxZNm3axMaNGwEoKCjg0UcfZfHixdx+++0YjUYm\nTJign+17u8QUGRnJ/PnzvbZSa9Kkif49dW2LsnoWBZg6dSrjx4/ngw8+wN/fnzlz5pCWlgaAyWRi\n5syZzJw5k99//52HHnqI6667jjFjxtC3b1/69u1LQUEBL774Ik8//TSffPJJhdshKChIPwEE59WA\nsvolqYst6ETdVOXLaO+88w4PPvigfuaXlZWF2WzWh61Wq/6DSktLIywsDHCeHQYHB5OVlUV6erqe\nDhAWFqZ3Jeye7lpWdnZ2mesQNWvTpk0YjUa2bdvG5s2b2bx5M9u2baNnz56sWbMGo9HIkCFDmD9/\nPnl5eRw7dox169bpB7cBAwZw5MgRNm3ahM1mY+XKlR6XV72pqKvmsLAwbr75ZmbOnEnz5s1p3bo1\n4LyMW1RUhNVqxWAwsGXLFo8uosPDw0lPT/foPOqhhx7ihRde4PTp04Dz5MrV2m7o0KF88803evfU\nL7/8Mg6Ho9x8h4SE4O/vT1xcHBs2bNC3w+7du/n555+x2+2YzWZMJhMGg4GUlBQ2bdpEbm4ufn5+\nBAcH69/7irZDTEwM69evx263s3Xr1nIvsTVu3NijMYEQvlKlYHPgwAEaNmxIy5Yt9bNDuSZ8dVm7\ndi1jxoyhWbNmNG7cmMaNGxMeHs4jjzzChg0bcDgczJ07lwsXLtC1a1dmzJhBbGwsfn5+gPNEYenS\npfzP//wPnTp14ujRo3Tu3Bl/f3+gal01g/NS2s6dO4mNjdXTGjRowPPPP8/jjz9OTEwMGzZs4Pbb\nb9fHt27dmtjYWHr16kVMTAzJyclMnDiRwYMHc//99xMdHc1dd91FXFwcAG3btmXu3Lk88cQT3HDD\nDYSGhpbbo+G8efN45ZVXiI6O5rXXXuOuu+7Sx50/f57HHnuMdu3a0b9/f3r16sWoUaNwOBwsW7aM\nbt260bFjR/bu3avfG61oOzz//PNs3ryZDh06sH79eoYMGeKRH/dpp02bxsKFC+nQoQNLly4tZ48L\ncXmq1C30Bx98wI4dOzAYDBQVFZGXl0ePHj344YcfWLZsGQaDgcTERNauXcusWbOYO3cu9957L23b\ntsVutzNp0iRWrFih3/h3HRjmzp3L6NGjUUqxZs0avfXP+vXr0TSN2NhYJkyY4LEO9+lcEhISSEhI\n0IdHjx5dZ7tWNhqNHk1u67K5c+eSkpLCggULSo1zOBz06NGD119/nV69etVC7oS4eoWGhnr9L5vF\nYmH16tX6cExMjEeryMqo0j2bsWPHMnbsWAB++uknNm7cyPTp05k/fz579uzh5ptvZtu2bfr17u7d\nu7N9+3batm3Lnj176NSpk56+cOFChg0bRlpaGklJSbRu3RqHw0FSUhLJyclYrVZ2797Nn/70J72w\n7uvo0aNHqfx52yB1NdhYLJbazkKVHTt2jMLCQtq3b098fDwfffSRRxPd7du3c/311xMYGKhfCrrh\nhhtqK7tCXLXsdrvXY6TFYtHvt1+uaump01Utf/DBB3nttdf46KOPaNmyJbfddhsAt912G4sXL2b6\n9OlYLBY9cERFRdGrVy9mzpyp37TVNA2j0cj48eOZO3cuDoeD2267jaioqHLXIa48OTk5TJkyhXPn\nzhEeHs7jjz/u0ZjjwIEDPPHEExQVFdG2bVtWrFhBQEBALeZYCOErVbqMVhe5t4SqSywWS52tlQkh\n6oayjjPl3YusLHmCgBBCCJ+TYCOEEMLnJNgIIYTwOQk2QgghfK5aWqMJ36qo+bPRaKzX/b1I+eq2\n+ly++ly26ibB5gp3KS3R6nuLNSlf3Vafy1efy1bd5DKaEEIIn5NgI4QQwuck2AghhPA5CTZCCCF8\nToKNEEIIn5NgI4QQwuck2AghhPA5CTZCCCF8ToKNEEIIn5NgI4QQwuck2AghhPA5CTZCCCF8ToKN\nEEIIn5NgI4QQwuck2AghhPA5CTZCCCF8ToKNEEIIn5NgI4QQwuck2AghhPA5CTZCCCF8ToKNEEII\nn5NgI4QQwuck2AghhPA5CTZCCCF8ToKNEEIIn5NgI4QQwuck2AghhPA5CTZCCCF8ToKNEEIIn5Ng\nI4QQwudMVZkpJSWFN954g8zMTDRNY8CAAdx5551kZ2ezYMECUlJSCA8PZ+bMmZjNZgDeeust4uPj\nCQgIYMqUKbRs2RKAbdu2sX79egBGjBhB3759ATh+/DhvvPEGRUVFdO3alXHjxgGUuw4hhBBXpirV\nbEwmEw8//DDz589n7ty5bNq0id9//50NGzbQuXNnFi5cSMeOHdmwYQMABw8e5Ny5cyxatIhJkyax\nfPlywBk41q1bx7x585g3bx5r164lNzcXgGXLljF58mQWLVpEUlIS8fHxAGWuQwghxJWrSsEmNDSU\nFi1aABAYGEhkZCRpaWns379fr5n069ePffv2AXikt2nThpycHDIyMoiPj6dz586YzWbMZjOdOnUi\nLi6O9PR08vPzad26NQC33nor33//fallua9DCCHEleuy79kkJydz8uRJ2rRpQ2ZmJqGhoQCEhISQ\nmZkJQFpaGmFhYfo8YWFhpKWlkZ6eXma61WrV061WK2lpaQBlrkMIIcSVq0r3bFzy8/N59dVXeeSR\nRwgKCvIYp2max7BS6nJW5VXJdbgkJCSQkJCgD48ePRqLxVLt679S+Pv7S/nqMClf3VWfy+ayevVq\n/XNMTAwxMTFVWk6Vg43NZuPVV1/l1ltv5cYbbwScNY2MjAxCQ0NJT08nJCQEcNZMUlNT9XlTU1Ox\nWq1YrVaPoJCamkrHjh09ajKudFcNqKx1uPO2QbKysqpa1CuexWKR8tVhUr66qz6XDZzlGz16dLUs\nq0qX0ZRSLFmyhMjISIYOHaqnd+/enW3btgGwfft2evTooad/++23ACQmJmI2mwkNDaVLly4cOnSI\nnJwcsrOzOXToEF26dCE0NJSgoCCOHj2KUoodO3Z4LMvbOoQQQly5NFWF61tHjhxhzpw5NG/eXL+U\nNXbsWFq3bl1ms+QVK1YQHx9PYGAgkydPplWrVgBs3brVo+lzv379gItNnwsLC+natSvjx48Hqt70\n+cyZM5UtZp1xNZxdSfnqrvpcvvpcNoBmzZpV27KqFGzqIgk2dZeUr26rz+Wrz2WD6g028gQBIYQQ\nPifBRgghhM9JsBFCCOFzEmyEEEL4nAQbIYQQPifBRgghhM9JsBFCCOFzEmyEEEL4nAQbIYQQPifB\nRgghhM9JsBFCCOFzEmyEEEL4nAQbIYQQPifBRgghhM9JsBFCCOFzEmyEEEL4nAQbIYQQPifBRggh\nhM+ZajsD9ZFSiiKHotBe/LI5KLQrCuwOj7QCu6JQT3NQaFOl0gps6uL4EmlFxWl2BRpgMDjPHgya\nhkFzvmua57Dz3fs0xuJxWgXTAzgUOJRCAQ6H892unGV3uL17TKePu/jZoUBxcR6723jXu1a8Tg3Q\nNNe7VmrY4Jys+N1zWMNZzvLm1/R53fZlqX1b/viSKRVPD34mI5pyYNQ0jAYNk8G5nU2GMoY1MBo0\njMVpBgOY9Hmd5b44r3O/6p+Lx2uA0bVPDZ772/ldcn42lvoulPxOlZ7Gtb+EcHfVBJsnPjsOOA9u\nFB/cnJ+cBzmlwFGc4HxXxePcptGnd6Urt/EXp3MoMBrA32jA36jp7wEmrcK0AKOGJcBUKs3f5Bp2\nn14jwGggNMRC5oUsj4O4XQ8E7gd2hQNncCh5oNfTcAsSehC5OL+r7M7A5jq4eDsYuY+/OJ2xeLx+\nQKPEPJrnPAagQYMGZGVn69vYUXwEd+1D9+FS+6uMYb0slNiXCmfm3JQ8dJY6lJaa3jOhomNvYGAQ\nWTm52BwKu0NhVwq7A+ewcqXhMd7mALtDYXMoimyQ43CUntd92uLl2ByqxPekxPfD40Th4rvd9X3x\nMs7z3Vkm931p1PdzcZoeyLydCLnNU4XxRk3Dz1j8Mjh/I34Gg0ea67N/iXR/o4ZJ/2zwmNYgAfSy\nXTXB5i+3RJZzVlv6zBeKD4Ju06E5fzRoF8+AXdM4PztHun4MNSXIz4jN31hj66tpliA/DLb6+1W1\nWCxkZdV2LqpPyQAUbG7AhQtZHidCDkXpYbeTIGda6UB2cRrlthy3ZTmcVxWK7MUvh4OcIjtFBW5p\nxelFdkWhQ2ErvtrgnM97uskAJoOhOHhdDEIBJhNKOfSA57o6UCpIGlw15xI1RoP3gKpp3mqVbrVG\ntyqyKh5wrzWXrFG7p3mrXSu3GdzHP9OsWVW+Al7V319wCc1DA2o7C0JcFVwHR9dpm9nfiCOg7p4M\nqYkfa10AAAzRSURBVOLaoR6g7M4aYqFd4R8YRHZOjkcgLBlMS14+9labdH9XHgG3xDSOi6HAvbKl\n6S/NMwHPirdW6oPro+ZZI/fBufJVE2yEEKIqNE3Dzwh+RiP4eY6zWMxkBTpqJ2N1jLRGE0II4XMS\nbIQQQvicBBshhBA+J8FGCCGEz0mwEUII4XMSbIQQQvicBBshhBA+J8FGCCGEz0mwEUII4XMSbIQQ\nQvicBBshhBA+J8FGCCGEz9XJB3HGx8ezcuVKHA4Ht912G7GxsRXOo06dKH7GdnEnJrh1fqJ/dj2D\n2206r/O4T0cZ0xan6x+9Pd+75HLc09yTyh9fGBiIysstMam3fHrJc1lp7nnz9rxyF1e/DM4BV18M\nF9NKDnvMo+mD+rD7Y2mL+3YoDAxC5ea65U+hHK5t7b5PSu6HkvvLUXo/udJwW4ZDeazrYsc3jrK/\nIx7rrMTygFx/fxyFhRe3zcUNVfpjReNLpXt59C8aaAa3/jWKt73BtQ+0MtJxm89QOq2MZRQGB+Mo\nKCiezrluzVCcB9e75ho2XJzX9dlgKDGN5j3d1SmSZrhYdvf8lsrjJW4DrXRafeogTnk9PlS/Ohds\nHA4HK1as4LnnnsNqtfLMM8/QvXt3oqKiyp9vxXzPA5r7Fwg8D5olP1/KPF6nBa8/fHce6yljXKnl\neI4vMplw2Ox6+sXHjHvLn9sCvOVTc/9cTlrJwFoyKLvSPA68btMWD7s6LfMMjp7DhSYTDrudkgc3\nzduBseTBQ3Ofp8Q+dT+Ilrcsj3Fu05Y62LoOhJVbniEgEAryK3WC4fVEpqxpvB1MSgVpB9hKpLkH\nyZJBWSnPtLKCv0NRZDJCYeHFdIcDh3IU98bmcEu3e0xz8d1RcbpyXBzn7VUyb+WVUTm8p5X8nmoa\nGR4nSOW4pOBU2QBWie9AyWnKzYZbPj7fV8k8la3OBZtjx47RtGlTIiIiAOjduzf79++vMNgY/764\nJrJXK8wWC1n1qfetEhrU8/IFWiwU1ePy1cfvpyoOcJYGl1C2SzrIX2IgUJSISWWczF7CNDVdO6tz\nwSYtLY2wsDB92Gq1cuzYsVrMkRDiaqNpGmhGNKPzJSomDQSEEEL4XJ2r2VitVlJTU/Xh1NRUrFar\nxzQJCQkkJCTow6NHj6ZZNfalfSWyWCy1nQWfkvLVbfW5fPW5bACrV6/WP8fExBATE1Ol5dS5ms11\n111HUlISycnJ2Gw2du/eTffu3T2miYmJYfTo0fprzpw5NZpH951TE6R81UvKV71qsnz1uWxQO+Vz\nP5ZWNdBAHazZGI1Gxo8fz9y5c/WmzxU1DggPD6+h3Dldzg6pCilf9ZLyVa+aLF99LhvU7fLVuWAD\n0LVrV7p27XrJ07tartWUmv5CSPmql5SvetVk+epz2aBul6/OXUaripreQTVNyle3SfnqrvpcNqje\n8mlKXeo/fYQQQoiquSpqNkIIIWqXBBshhBA+VycbCKSkpPDGG2+QmZmJpmkMGDCAO++8k+zsbBYs\nWEBKSgrh4eHMnDkTs9kMwFtvvUV8fDwBAQFMmTKFli1bArBt2zbWr18PwIgRI+jbt2+tlculusp3\n8uRJli9fTl5eHgaDgXvuuYebb765lktXvfsPIDc3lyeffJIbb7yR8ePH11axdNVZvpSUFJYsWUJq\naiqapvHMM8/UeAuokqqzfKtWrSIuLg6Hw0Hnzp0ZN25cbRat0mU7ffo0b775JidPnmTMmDEMHz5c\nX1ZVHhjsa9VVvrKWUy5VB6Wnp6sTJ04opZTKy8tT06dPV6dOnVLvvfee2rBhg1JKqfXr16tVq1Yp\npZQ6cOCAmjdvnlJKqcTERDVr1iyllFJZWVlq6tSpKjs7W2VnZ+ufa1t1le/MmTPq7NmzSiml0tLS\n1KRJk1ROTk4Nl6a06iqfy1tvvaUWLlyoVqxYUXOFKEd1lm/OnDn/397dhTTVx3EA/26P5EzcVo4o\n7EV8iZCcs1p148tFF0UXEUiQkGgvSOW6ikIKurTIpb2ZQV2EQjd1I3RRN5kUFU/mGm6OJWL0auHm\nosV05+w8F9FhmrN05+yl5/u5PGf+d7545m/nnL+/v+R0OiVJkqRQKCRNTk4mMMnslMrn8Xik06dP\nS5FIRBJFUTp16pTkcrkSHyjKfLMFAgFpeHhYun37ttTT0yOPI4qi1NTUJI2NjUnhcFg6fvy49Pbt\n24TnmUmpfLHGmUta3kYzGo3Iz88HAOh0OuTl5cHn8+HFixfylUl1dTX+/fdHx9Lo7cXFxQgGg5iY\nmIDD4YDZbEZ2djays7NRWloKh8ORlEzRlMq3YsUKLF++HACwZMkS6PV6fP36NfGBZlAqHwCMjIwg\nEAjAbDYnPkgMSuV79+4dIpEISktLAQCZmZlYtGhR4gPNoFQ+jUaDcDiMcDiMqakpiKIIo9GYlEw/\nzTebXq9HYWEh/pnRHy26YXBGRobcMDjZlMo32zh+v3/O907L22jRPn/+jNHRURQXFyMQCMgnq8Fg\nQCAQAPBr887c3Fz4fD74/f5Zt6eSePJFf3CHh4chiqJcfFJFPPn0ej26urpgs9ngdDqTcvy/E0++\n8fFxLF68GK2trfjy5QtKS0tRW1sLrTZ1viPGk2/t2rUoKSlBY2MjJEnC9u3bU6qt1J9kiyUdGgbH\nky/WOHNJnbN2AUKhEOx2O+rr65GVlTVt38z22VIazvBWKp/f78eVK1dw5MgRVY5zoeLN9+DBA5SX\nl//SGy9VxJtPFEV4PB7U1dWhpaUFY2Nj6O3tVfOQ5yXefJ8+fcKHDx/Q2dmJzs5ODA4OwuPxqHrM\nf2o+2dKRUvlCoRAuXLiA+vp66HS6OV+btlc2giDAbrejsrISmzdvBvCjIk9MTMBoNMLv98NgMACI\n3bxz6dKl0xp2jo+PY/369YkNEoMS+YAfD8/Pnj2LvXv3oqioKPFBYlAin9frhcfjwf379xEKhSAI\nAnQ6HWpra5OSKZoS+URRRH5+vvxf3FarFa9fv058mFkoka+vrw/FxcXIzMwEAFgsFni9Xqxbty7x\ngaLMJ1ssf9IwOFmUyBc9TkVFhTzOXNLyykaSJHR2diIvLw87d+6Ut2/atEn+5vfo0SNYrVZ5e19f\nHwDA6/UiOzsbRqMRZWVlcDqdCAaD+PbtG5xOJ8rKyhKeZyal8gmCgNbWVlRVVWHLli0JzxGLUvmO\nHTuGjo4OXL16Ffv27UNVVVVKFBql8hUWFiIYDMrP2QYHB7Fq1arEhpmFUvlMJhPcbjcikQgEQcDQ\n0NBv+xyqbb7Zon8u2p80DE4GpfLFGmcuadlBwOPx4MyZM1i9erV8yVdbW4uioqKYUy9v3rwJh8MB\nnU6Hw4cPo6CgAADw8OHDaVOfq6urk5IpmlL5+vr6cO3atWl/oI4ePYo1a9YkJddPSv7+furt7cXI\nyEhKTH1WMp/T6URXVxckSUJBQQEaGxt/eVibaErli0QiuHHjBoaGhqDRaGCxWFBXV5fMaPPONjEx\ngebmZnz//h1arRY6nQ5tbW3Q6XQYGBiYNvV59+7dSc0GKJdvdHR01nEsFkvM907LYkNEROklLW+j\nERFRemGxISIi1bHYEBGR6lhsiIhIdSw2RESkOhYbIiJSHYsNERGpjsWGSEGXLl1CR0fHtG1utxsH\nDhyQO1UT/R+x2BApaP/+/XA4HHIX6qmpKVy/fh11dXWKtM8XRTHuMYiSgR0EiBT27NkzdHd3w263\n4+7du3jz5g1qampw69YtvH//HiaTCQ0NDSgpKQHwo2VST0+PvGzCrl27sG3bNgCAy+XC5cuXsWPH\nDty7dw9msxlNTU3JjEe0IGnb9ZkoVW3duhVPnjxBe3s7vF4vzp07h5MnT8Jms8FiscDpdMJut6O9\nvR05OTkwGAxobm7GsmXL4Ha70dLSgsLCQnnp5EAggGAwiI6ODkQikSSnI1oY3kYjUsHBgwfhcrlQ\nU1ODx48fo7y8XG5SaDabUVBQgJcvXwIANmzYIC8jUFJSArPZjKGhIXksjUaDPXv2ICMjIyVW6iRa\nCF7ZEKnAYDAgJycHK1euxPPnz/H06VP09/fL+0VRlNdOGhgYwJ07d/Dx40dIkoTJyclpnbn1ej0y\nMvhRpfTGM5hIZSaTCZWVlWhsbPxlXzgcht1uh81mg9VqhVarxfnz56etH/I3rAxJxNtoRCrSaDSo\nqKhAf38/Xr16hUgkgqmpKbhcLvh8PgiCAEEQkJOTA41Gg4GBAXkmG9HfhFc2RCrLzc3FiRMn0N3d\njYsXL0Kr1aKoqAiHDh1CVlYWGhoa0NbWBkEQsHHjxpRY0ZFIaZz6TEREquNtNCIiUh2LDRERqY7F\nhoiIVMdiQ0REqmOxISIi1bHYEBGR6lhsiIhIdSw2RESkOhYbIiJS3X8CPZYfk8BfbwAAAABJRU5E\nrkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa0586d5710>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"us_violentcrime.plot(kind='line', title='Violent Crime in the US')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Looking at the number of aggravated assaults, the Americans seem to be an angry race." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 27, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa0586266d8>" | |
] | |
}, | |
"execution_count": 27, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEhCAYAAACKklw+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVOX+B/DPmRnWERiGRQPCDUUBQRSXriZoarmgpkZq\nZVqmuXWz3aWsTG0zldSfN5drWpmouVQ3U1PUNBUVQkEEUsoNgWFAGbZZnt8fyHGGmcM6DMPwfb9e\nMGd5zjnP98zM852zc4wxBkIIIcQEUVNXgBBCiPWiJEEIIUQQJQlCCCGCKEkQQggRREmCEEKIIEoS\nhBBCBFGSIA2WlZUFkUiEU6dO1Xqa+Ph4iEQi3Lp1qxFr1rhEIhG+++67Jln2+++/j06dOjXJsknL\nQkmCCBo9ejT69OljclxpaSnkcjnee+89+Pv7Izs7G71797ZwDY39/vvvEIlE+Oeff2pVPiUlBc89\n9xz8/Pzg6OiIdu3aYezYsYiPj69x2uzsbIwbN66BNa6fN998E2fOnGnwfKZMmQKRSGT0FxcXZ4Za\nEltASYIImjFjBhISEpCcnGw0bvfu3bh79y6mTZsGkUgEb29vSCSSJqilabW5RvTXX39FREQEsrOz\nsWnTJly+fBk//fQT+vbti5dffllwuvLycgCAt7c3HBwczFbnupBKpZDL5WaZ14ABA5CdnW3wN3r0\naKNyarXaLMsjzQwjRIBOp2Nt27Zlc+bMMRoXGRnJhg8fzhhj7Nq1a4zjOHby5El+fFpaGhs+fDhr\n1aoVa9WqFYuOjmaZmZn8+KNHjzKO49jNmzf5YRkZGWzs2LFMJpMxd3d3NnToUHbx4kV+/H//+18m\nkUjYyZMnWXh4OHN2dmY9e/ZkCQkJBvXQ/xs4cKDJ2FQqFfP29uZjqKqgoIDv5jiOxcbGsokTJzI3\nNzc2YcIEfvg333xjUO7LL79kMTExTCqVMn9/f7Zr1y5WUFDAJk2axFxcXFiHDh3Y7t27DZaVnZ3N\nnn/+eebl5cVcXFxYv3792PHjx03Wq9LixYtZQECAUf++fftYYGAgk0qlLCoqimVkZFQ7n+eff54N\nGTJEcNzgwYNZbGwsa9u2LROLxay0tJQdPHiQRUZGMrlcztzc3FhkZCQ7e/aswbQcx7F169axZ599\nlrm4uDA/Pz+2fPlygzJqtZq9//77rEOHDszBwYH5+vqyuXPn8uPv3bvHXnnlFebr68ucnZ1ZeHg4\n++GHH6qNh5gfbUkQQRzH4cUXX8S3336L0tJSfnhGRgaOHz+O6dOnm5yupKQEQ4cORXl5OY4fP45j\nx46hqKgITzzxhOCv0Tt37qB///5o06YNfv/9d5w5cwaBgYGIiopCXl4eX06n02HBggX48ssvceHC\nBXh7eyMmJgZarRb+/v7Yt28fACAhIQHZ2dn44YcfTC7v4MGDyM3NxcKFC02Od3NzM+j/4IMP0L9/\nfyQmJuKjjz4yWEf6li5dipEjRyI5ORkjR47Ec889h4kTJ+Lxxx9HUlISRowYgcmTJyM/P59fVwMH\nDoRKpcKBAweQlJSE4cOHY8iQIUhLSzNZNyG3b9/G+vXrsX37dpw6dQr37t3DCy+8UON0rJqtrrNn\nzyI+Ph4//vgj/vzzT9jZ2UGlUmHOnDk4ffo0/vjjD3Tq1AlPPPEEH1OlDz74AFFRUfjzzz8xf/58\nLFiwAEeOHOHHv/jii1i3bh0+/PBDXL58Gbt370bHjh35OkVHR+PixYuIi4tDSkoKZs6ciQkTJhjM\ng1hAU2cpYt1u3rzJJBIJ27p1Kz/srbfeYr6+vkyr1TLGjLckNm7cyJydnZlCoeCnuXPnDnNycuLn\nU3VLYvHixaxv374Gy9bpdKxjx45s1apVjLGKLQmO41hiYiJf5syZM4zjOJaens4YY+zEiROM4zj2\n999/VxvXJ598wjiOY0qlssZ1wHEcmzZtmsnh3377rUH/vHnz+P7c3FzGcRx75ZVX+GFKpZJxHMd+\n/vlnPiY/Pz+m0WgM5j1o0CD26quvCtbJ1JaERCJheXl5/LAdO3YwkUjEysrKBOfz/PPPM4lEwm/x\ntWrVinXp0oUf5+7uzlQqleD0jDGm1WqZu7u70br497//bVCua9eubP78+Yyxiq1GjuOMtqoqHT16\nlDk6OrLCwkKD4VOnTmVjxoyptj7EvKxnJzKxSj4+PhgxYgQ2bNiA5557Dmq1Glu2bMGMGTMgEpne\nEE1JSUFwcLDBPnNvb28EBgYiNTXV5DQJCQk4f/48XFxcDIaXlpYiMzOT7+c4DmFhYXz/Qw89BKBi\nS6QuZ/uwOt7XsrYH5fXr5unpCbFYjNDQUH6YTCaDvb09cnJyADzY4pHJZAbzKSsrg7Ozc53q6OPj\nAw8PD77/oYceAmMMOTk58PPzE5yub9+++Prrr/l+/WNLXbt2NarHtWvX8N577+H06dPIycmBTqdD\ncXGx0ckC3bt3N6pfZdwXLlwAAAwdOtRknRISElBeXg5fX1+D4eXl5ejcubNgLMT8KEmQGk2fPh0j\nR45EWloaUlJSoFAoMG3atGqnMdUIV9cwM8YwePBgrFmzxmic/q4fkUhksIunslun09UYh74uXboA\nqEho/fr1q7G8VCqt1Xzt7OxqHMZxHF9fnU6Hrl27Yu/evUbT1TVJ2NvbGy2nchnVcXR0RIcOHUyO\nM1WHkSNHwtvbG+vWrcPDDz8MOzs79O/fnz+gL1Sf2tRFv5ybmxvOnTtnNM7UfEnjoSRBajRs2DD4\n+/tjw4YNSE1NxeOPPw5/f3/B8iEhIfjPf/4DhULB/7K9c+cO0tPT8eabb5qcJiIiAlu2bIGvr2+D\nzhiqbEC0Wm215YYOHQpvb28sXboU//vf/4zGK5VKuLu717setdWrVy9s27YNLi4u8PLyavTlmVL1\nuEp1FAoFLl++jC+++AJDhgwBANy4cYPfQqjtcnr06AGg4gwzU6cR9+rVCwUFBSgpKUFwcHCt60fM\njw5ckxpVHsDetGkTDh06JHjAutKkSZPg5eWFp59+GomJiTh//jwmTJgAPz8/PP300yanmTNnDrRa\nLUaPHo3ff/8dWVlZ+P3337Fw4UL88ccfta5r27ZtIRKJ8PPPPyMnJweFhYUmyzk5OWHLli04evQo\nhgwZggMHDuDq1au4ePEiPv/8czzyyCO1XmZDPPPMM2jfvj1GjBiBQ4cOISsrC2fOnMHy5cv5g/CN\nrS673tzd3eHl5YWvvvoKGRkZ+OOPPzBx4kQ4OTnVajmVywoICMAzzzyDWbNm4dtvv8Vff/2FhIQE\nxMbGAgAGDRqEwYMHY+zYsdi3bx+uXr2K8+fP48svv8TGjRvrFyipF0oSpFZefPFFqFQqtGnTBtHR\n0Ubj9X8lOjo64uDBg3BwcMCAAQMQFRUFFxcXHDhwwGB/t/403t7e+OOPP+Dp6YmxY8eiS5cuePbZ\nZ3H9+nX4+PiYnMbUsNatW2P58uX4+OOP4ePjgyeffFIwpieeeAIJCQlo3bo1XnzxRXTt2hUjR47E\n6dOnLdYQOTg44NixY4iIiMDUqVMRGBiIcePG4dy5c2jXrp3gdBzHGe12q2nd1GY+NY0TiUTYuXMn\n/vrrL4SGhuKFF17AvHnz+GNDdVnWf//7X8yYMQOLFi1CUFAQxo4di6ysLH78/v37MXbsWMybN49/\nb3755RcEBATUuCxiPhyr5mdEXl4e1q5di8LCQnAch8ceewzDhw9HUVERVq5ciby8PHh5eWHevHn8\nPtvNmzcjKSkJDg4OmDVrFtq3bw+g4jYMe/bsAQCMHTsWkZGRAICrV69i7dq1UKvVCA8Px9SpUwGg\n2mUQQgixkOpOfVIqlezatWuMMcZKSkrYK6+8wq5fv862bdvG9u7dyxhjbM+ePfwFRefPn2fLli1j\njDGWnp7OFixYwBiruChmzpw5rKioiBUVFbE5c+bwp9W98847/AU/y5Yt409vFFpGdS5dulSLE7qa\nD1uKx5ZiYcy24rGlWBizrXisIZZqdzfJZDJ+k9fR0RG+vr7Iz8/HuXPn+C2BqKgoJCQkAIDB8E6d\nOkGlUqGgoABJSUkIDQ2FVCqFVCpFt27dkJiYCKVSidLSUn7zccCAATh79qzRvPSXUZ2UlJR6pEnr\nZUvx2FIsgG3FY0uxALYVjzXEUutjEjk5OcjKykKnTp1QWFjIn9ft5ubGHxzMz883OE/bw8MD+fn5\nUCqVgsP1z6WXy+X8VZtCy6ipjpZgqTfOluKxpVgA24rHlmIBbCsea4ilVkmitLQUK1aswJQpU4zO\nYqh6YIvV8SKl2qjtKXq5ublmX7Yplvqw21I8thQLYFvx2FIsgG3FYw2x1HidhEajwYoVKzBgwAD+\nqlM3NzcUFBRAJpNBqVTyFzvJ5XIoFAp+WoVCAblcDrlcblAJhUKBkJAQgy2HyuGVWxxCy6gamP58\nP/jgg5rCMYuYmBiLLMeW4rGlWADbiseWYgFsKx5LxqJ/e/jg4GD++pRqkwRjDOvXr4evry9GjBjB\nD4+IiEB8fDzGjBmDY8eOoVevXvzwX3/9Ff369UN6ejqkUilkMhnCwsKwfft2qFQqMMaQnJyMZ555\nBlKpFE5OTsjIyEBAQABOnDiBYcOGVbsMffqBVGrOD7GpysXFBffu3WvqapiFLcUC2FY8thQLYFvx\nWCoWHx8fwaRX7SmwaWlpWLx4Mfz9/fldPpMmTUJAQIDg6ambNm1CUlISHB0dMXPmTP5y/6NHjxqc\nAhsVFQXgwSmw5eXlCA8P5+9aWd9TYClJWCdbigWwrXhsKRbAtuKxZJIQUm2SaI4oSVgnW4oFsK14\nbCkWwLbisYYkQVdcE0IIEURJghBCiCC6CywhpNEwxnDrnhqXc4tx8245xBwHiZiDhOMgEaOiX/Tg\nTyziYCfiIBZBYHjlMPDDDcrV/oa2VkfHGMq1DOUaHcq0Fd325cUoKSmDhHuwTsRcRdxV+xsLJQlC\niNlodQzXlGVIzS1Gak4JLucWQyziEOzlDH+ZPRgD1DqGcp0OmjIGjY5BowM0OgatjkGtY9AyBo2W\nQcMeDNfo/T3oh8FwjY5BxwC7+wnDTlyRWOzEFf324gfDJGIRP074VVTxWmWc5P6rVgeUaysbdN39\nBp6h7H53meb+sMr++wnAaJhWhzJNRVx2Yg4OYg72YhHsJRwcJBJotFo+bi2rWMcaVrkeKvoBVCQO\n7kHyFIs4SDjwiVR8P9Hw/Xrj1z8jfEyCkgQhpN7KNDqkK0qQmlOC1JxiXMkrhadUgiAvZ/R9uBVe\n6OEN71bGD2JqLDrG4OTcCvmFd6HWMai1FclDff+XuVqnMximNnrV8f0qtRbqsoqEVa5XRnO/jFhU\n0Zg7iDnYS+437GIODmIR3BxFcBDbwV5ckZzsJaIHjf/9YQ6Sym4RHCQViafqhcO1PXCt1THo2IOk\n8SCJMGh1gFY/qTDDZKut4TlQlCQIIbV2t0yLy7nFuJxTgtTcYmQpy9BW5oAgb2cMD3TH6/2c4OrY\ndM2KiKtokKX24iarQ1MQiziIwcGuEcKmJEEIEZSrUiMlp2LXUWpuMfJUGgR6OqKrtzOeDfNCoKcT\nHCR0/ostoyRBCAFQsavmemE5UnOKkZpbsftIrWUI8nZCkLczhgS4oYO7Y6MeJCXWh5IEIS1YUbkW\nB/7Mxrl/8nE5twSt7MUI8nZCaGtnTOjmCR8Xuzo9A5vYHkoShLRApRodfkpTYl9aPvq0lSGqvRtm\n9m4DD2fLHWQmzQMlCUJaELVWh18zC7DrkgJB3s5YPsQfXf08beY2FsT8KEkQ0gJodQxHrxXi++Q8\ntJU54L2BD6OD3LGpq0WaAUoShNgwHWM4+fc9fJecB7mTGK/390FXL+emrhZpRihJEGKDGGM4f0uF\nb/7MhZjjMKNXa4S1caaD0KTOKEkQYmMu3lFhW1IeStRaTArzQl+/VpQcSL1RkiDERmQoSvBNUi6y\ni9SYGOqJR9u60jUNpMEoSRDSzP1dUIZv/8xFpqIUMd08MLijDBJKDsRMKEkQ0kzdvleO75PzkJit\nwtggOV7v50O3yCBmR0mCkGZGUazGjosKnLp+DyMD3TGjd2s4N8ad3QgBJQlCmo3CUg12pyhw5Goh\nhgTIsC66A1wdKDmQxkVJghArpyrXYl9aPv53RYn+bV2xekR7un0GsRhKEoRYqTKNDj9fUWLv5Xz0\n9JVixbB2aN3KvqmrRVoYShKEWJkyTcX9lX5IzUcXTyd8NMQf/m4OTV0t0kJRkiDESugnh0BPR7wX\n5Uf3VyJNjpIEIU2MkgOxZpQkCGkilBxIc0BJghALK9PocCCjAHtSFQj0cqLkQKwaJQlCLEQ/OXTx\ncsLiQQ+jvTslB2LdKEkQ0sgoOZDmjJIEIY2EkgOxBZQkCDEzSg7EllCSIMRMDJODM94f9DDaUXIg\nzRwlCUIaiJIDsWWUJAipJ0oOpCWgJEFIHZVpdDjwZza+T7xFyYHYPEoShNRByp1ixJ6+jQAvKSUH\n0iJQkiCkFso0Onz7Zy6O/30PM3u3xuCuPrh3715TV4uQRkdJgpAaZChKsOrUbbSVOSB2eDu4OtLX\nhrQc9GknRIBayxB3KQ+/ZhbgpZ6t8Wg716auEiEWR0mCEBOylKVY9cdteDhJsGp4e8id6KtCWib6\n5BOiR6tj2HM5H/su5+P5cC881sENHMc1dbUIaTKUJAi57+bdcqz+4xbsxSJ8/kRbep40IaAkQQh0\njOF/6Up8f1GBCd08MLyzO0S09UAIAEoSpIXLKVLjy9O3UabV4ZOhbeHrSlsPhOijJEFaJMYYfrta\niK8TczG6qxxPdpVDLKKtB0KqoiRBWpz8Eg3WnbmNvGINljxGV00TUh1KEqRFOZF1FxvO38HjATK8\n/agn7MS09UBIdapNEuvWrUNiYiJcXV2xYsUKAEBcXByOHDkCV9eKC4smTpyI8PBwAMCePXtw9OhR\niEQiTJ06FWFhYQCApKQkbNmyBTqdDoMGDcKYMWMAADk5OVi1ahWKiorQoUMHzJkzBxKJBGq1GmvW\nrMG1a9fg4uKCV199FV5eXo22Eojtu1uqwfqEO/i7oAyLIv3Q2dOpqatESLMgqm7kwIEDsWDBAoNh\nHMdh5MiR+PTTT/Hpp5/yCeLGjRs4deoUvvjiCyxYsAAbN24EYww6nQ6bNm3CggUL8MUXX+DkyZO4\nceMGAOCbb77ByJEjERsbC6lUiiNHjgAAjhw5AhcXF8TGxmLEiBH49ttvGyN20kKcvXEPr/wvC57O\nEnwxrB0lCELqoNok0bVrV0ilUqPhjDGjYQkJCejXrx8kEgm8vb3Rpk0bZGRkIDMzE23atIG3tzck\nEgn69euHc+fOgTGGlJQU9O3bFwAQGRmJhIQEAMC5c+cQGRkJAOjTpw8uXrzY4EBJy6Mq12L1H7ex\n8XwO3ujngxd6toaDpNqPPCGkinodkzhw4ACOHz+ODh06YPLkyZBKpVAqlejUqRNfxsPDA/n5+Xx3\nJblcjszMTBQVFUEqlUIkEvHDK8vn5+fz04jFYjg7O6OoqAitWrWqX5SkxfkzW4Uv/7iNHj6tsGp4\nOzjbiZu6SoQ0S3VOEkOHDsX48eMBADt27MDWrVsxc+ZMs1esNlJSUpCSksL3x8TEwMXFpUnq0hjs\n7e1tJh5LxVKi1uKr0zdwKkuJ16M6oLe/W6Msh94b62VL8Vgylri4OL47ODgYwcHBAOqRJNzcHnzp\nBg0ahE8++QRAxZaAQqHgxykUCnh4eIAxZjRcLpfDxcUFKpUKOp0OIpHIYOtBLpcjLy8PcrkcWq0W\nxcXFJrci9AOpZEv3+HdxcbGZeBo7Fh1jOHujCFsScxDo4YRVw9qhlYOo0ZZJ7431sqV4LBWLi4sL\nYmJiTI6r8w5apVLJd589exb+/v4AgIiICJw8eRIajQY5OTnIzs5GQEAAOnbsiOzsbOTk5ECj0eDU\nqVOIiIgAUNHInz59GgAQHx/PD4+IiMCxY8cAAKdPn0a3bt3qWk3SQmh1DPHXCvHKz9cQd0mBF3u0\nxrx+PmjlQLuXCDEHjpk6Cn3fqlWrcPnyZdy9excymQxPPfUUUlNTkZWVBY7j4OXlhenTp0MmkwEA\nfvjhBxw9ehRisRhTpkxB9+7dAQCJiYkGp8A++eSTAAxPgW3fvj3mzp3LnwL75ZdfIisrCy4uLvj3\nv/8Nb2/vWgV069athq4Tq0G/iISVa3X47a9C/JCaD2+pBONDPNG9jbPF7thK7431sqV4LBWLj4+P\n4Lhqk0RzREnCOpkrlmK1FgcyCrA/TYkAuQPGBXugq5ezGWpYN/TeWC9biscakgRdcU2ahbulGvx4\nRYkDGQXo3kaK9wf60e00CLEAShLEqimK1dh7OR9HrhbiX/4u+PTxtnjIhe7USoilUJIgVun2vXLs\nTlHgj+v38FgHN8SOaA8PZ7umrhYhLQ4lCWJVrilLsTtFgT+zizGsswz/F90Bro70MSWkqdC3j1iF\ny7nF2HVJgb+UZRjdxR2z+rShq6QJsQKUJEiTYYwh8bYKu1MUyC3W4Mmucrw9wBf2Yrq/EiHWgpIE\nsTgdYzh9/R52pSig1jKMC/bAo21d6clwhFghShLEYjQ6hmPXCrE7NR/OdiI8HeKJXn6tILLQBXCE\nkLqjJEEajVrLkF+iRp5Kg+tXVdj152085GqPl3u1RrfWlrs6mhBSf5QkSL0wxnC3TItclQa5xWrk\nqdTIK9YgV6VGXrEauSoN7pZpIHOUwEtqB3+5FG896ksP/CGkmaEkQUwq1egMGv7c+w1/nl5CcBBz\n8JTawUtqB09nCbyc7dBR7ggvZwk8pXaQO0n44wy2dKsEQloSShIt3LmbRfinoKzi1z+/JaBBmUYH\nz/uNvaezHbykEgR5OcFT6sonAUcre8qbJZ8hIBaLbeaZBbYUC2Bb8TRGLHX9sUZJooXLUJSgVMPw\nkIs9urWRwut+QnB1EDfLYwa0tUKIsPokHEoSLdzEUK+mrgIhxIpZ1/4CQgghVoWSBCGEEEGUJAgh\nhAiiJEGIjRk0aBD/7PjqdO7cGdevXzc5bseOHfxjhknLRkmCEAvo06cPTpw4YTCssRriI0eOoG/f\nvjWWS09Px8MPP2z25RPbQkmCEAvgOK5ZnlJMCCUJQpqIftLIyMjA+PHjERQUhEGDBuHgwYP8uFdf\nfRXz58/Hc889h86dO2PMmDHIzc3Fe++9h+DgYERGRuLSpUt8ef2tFq1Wi9jYWPTr1w+BgYEYNmwY\nbt++DQDw8/PD33//DQDIz8/HlClT0KVLF4wcOZIfXikzMxMTJkxAcHAwBgwYgB9//LHR1guxLpQk\nCLEQxpjJfo1GgylTpiAqKgrJyclYsmQJ5s6di7/++osv+9NPP+Htt9/GxYsXYW9vj1GjRiEsLAyX\nLl3CiBEj8MEHH/Bl9bdavvrqK+zfvx/btm3DlStXsGLFCjg6OhrVbeHChXByckJiYiJWrFiBHTt2\n8PMoLi7GhAkTMHbsWFy8eBHr1q3DggULkJGRYfZ1RKwPXUxHWhTtS6MaPA/xhv11noYxhhdffBES\nyYOvXHl5OUJDQ3HhwgUUFxdjzpw5AIB+/fph8ODB2LdvH1577TUAwLBhwxASEsJ3b926FePGjQMA\nREdHY8uWLSaX+9133+Hdd99Fhw4dAABBQUFGZbRaLX755Rf89ttvcHJyQmBgIJ566imcOXMGAHDo\n0CH4+/sjJiYGABASEoJhw4bhp59+wrx58+q8LkjzQkmCtCj1aeDNgeM4bN68Gf379+eHxcXFYfv2\n7cjOzoaPj49BeT8/P2RnZ/PTenp68uMcHBzg4eHB9zs6OkKlUplc7u3bt9GuXbtq66ZQKKDRaAzq\n4Ovry3ffvHkTiYmJBglGo9Fg/Pjx1c6X2AZKEoQ0kcrdTW3atMGtW7fAGON38dy4cQMBAQENXoaP\njw+ysrLQuXNnwTIeHh6QSCS4efMmv8ybN2/y4319fdG3b19s3769wfUhzQ8dkyCkiYWHh8PJyQnr\n1q2DWq3GqVOncPjwYYwaVbFrrOqxjLqYNGkSPv30U1y7dg2MMaSmpkKpVBqUEYvFGDZsGL744guU\nlJQgPT0dO3fu5BPWY489hqtXr2L37t1Qq9VQq9VISkpCZmZm/YMmzQYlCUKaSOUBZjs7O2zZsgVH\njx5FaGgoFi1ahNjYWHTs2NGgXNXpqs7LlOnTpyM6OhqTJk1Cly5d8NZbb6GsrMxomqVLl0KlUiE8\nPByvvfYaJkyYwI9r1aoVvvvuO+zbtw89e/ZEeHg4li9fjvLycrOtC2K9ONaQnylW6NatW01dBbOx\npQf1WCIWW1pfhDQGoe9I1WNi+mhLghBCiCBKEoQQQgRRkiCEECKIkgQhhBBBlCQIIYQIoiRBCCFE\nECUJQgghgihJEEIIEURJgpAWaPz48XQvJlIrlCQIsbDx48cjODi4yW9rUXlbDnqeNakOJQlCLOj6\n9es4c+YMOI4zePocIdaKkgQhFrRr1y707NkTTz31FHbu3MkP/+233zBw4EAEBgaiZ8+eWL9+PYCK\nx4pOnjwZQUFBCA4OxtixY/lp1qxZwz+WdODAgThw4AA/bsWKFZg7dy7ff/36dfj5+UGn0xnUJzMz\nE/Pnz8f58+fRuXNnBAcHN1bopJmi50kQYkG7du3CjBkzEB4ejujoaCgUCnh4eOCNN97AV199hV69\neuHu3bv4559/AAD/+c9/4OPjg4sXLwIALly4wM+rXbt22LNnD7y9vbF//37MnTsXp06dgpeXl+Bd\nYasKCAjAxx9/jO3bt2PPnj3mD5g0e5QkSIsy+tu0Bs9j3zNd6jXd2bNncfPmTURHR8Pd3R1t27bF\nDz/8gJdeegl2dna4cuUKunTpAldXV/5RpXZ2dsjJycH169fRrl079OrVi5/fyJEj+e5Ro0ZhzZo1\nSExMxNChQ+v0DAobuxE0MTNKEqRFqW8Dbw47d+7EgAED4O7uDgAYM2YMdu7ciZdeegkbNmzA6tWr\nsXz5cnTt2hXz589Hz549MXPmTKxYsQKTJk0CADzzzDOYPXs2P78NGzbgxo0bAACVSmX0QCFCGoqS\nBCEWUFK/7QUnAAAgAElEQVRSgh9//BE6nQ7h4eEAgPLychQWFiI1NRVhYWHYvHkztFotNm/ejJdf\nfhkJCQmQSqV477338N577+HKlSuIiYlB9+7d0bZtW7z99tvYsWMHIiIiwHGcwRaEVCpFaWkpv/yc\nnBzButV21xRpmShJEGIBv/76K8RiMY4cOQJ7e3sAFbt5Xn75ZcTFxSEsLAyPPfYYXF1d0apVK4jF\nYgDAoUOHEBAQgHbt2vHDRSIRiouLwXEc5HI5dDoddu3ahStXrvDLCwoKwtq1a3Hz5k24uLhgzZo1\ngnXz8vLC7du3oVarYWdn17grgjQ7lCQIsYBdu3ZhwoQJRk8AmzJlCt555x2kpaVh0aJF0Gq1CAgI\nwJdffgkAyMrKwrvvvguFQgE3Nzc8//zzeOSRRwBUPJp01KhREIlEGD9+vMHxigEDBmDUqFEYMmQI\n5HI5Zs2ahcOHD5usW//+/dG5c2d0794dYrEYycnJjbQWSHNEjy+1Yrb0OE56fCkhTa8+jy+tcUti\n3bp1SExMhKurK1asWAEAKCoqwsqVK5GXlwcvLy/MmzcPUqkUALB582YkJSXBwcEBs2bNQvv27QEA\n8fHx/Cl2Y8eORWRkJADg6tWrWLt2LdRqNcLDwzF16tQal0EIIcQyaryYbuDAgViwYIHBsL179yI0\nNBSrV69GSEgI9u7dC6DiHO47d+4gNjYW06dPx8aNGwFUNPi7d+/GsmXLsGzZMuzatQvFxcUAgA0b\nNmDmzJmIjY1FdnY2kpKSql0GIYQQy6kxSXTt2tXoF/y5c+f4LYGoqCgkJCQYDe/UqRNUKhUKCgqQ\nlJSE0NBQSKVSSKVSdOvWDYmJiVAqlSgtLUVAQACAiv2oZ8+erXYZhBBCLKdet+UoLCyETCYDALi5\nuaGwsBBAxS0EPDw8+HIeHh7Iz8+HUqkUHC6Xy/nhcrkc+fn51S6DEEKI5TT47Kaq51g3xnFwofO4\nU1JSkJKSwvfHxMTAxcXF7MtvKvb29jYTjyViqTxtlBBimlgsFvwexsXF8d3BwcH8fbzqlSTc3NxQ\nUFAAmUwGpVIJNzc3ABVbAgqFgi+nUCggl8shl8sNGnOFQoGQkBCDLYfK4ZVbHELL0KcfSCVbOrvF\nls7WsdTZTYQQYVqt1uT30MXFBTExMSanqdfupoiICMTHxwMAjh07xp+fHRERgePHjwMA0tPTIZVK\nIZPJEBYWhuTkZKhUKhQVFSE5ORlhYWGQyWRwcnJCRkYGGGM4ceKEwbxMLYMQQojl1HidxKpVq3D5\n8mXcvXsXMpkMMTEx6NWrl+DpqZs2bUJSUhIcHR0xc+ZMdOjQAQBw9OhRg1Ngo6KiADw4Bba8vBzh\n4eF44YUXANT/FFi6TsI60XUShDS9+lwnQRfTWTFbavQoSVTv5s2bGDhwIK5cuWLyGNyKFSuQlZXF\nX4ndVJ577jmMHj0a48ePb9J61KRPnz74/PPP8eijj9Z52h07duD777+v9a3TG+u9OXPmDN58801+\n74w51CdJ0EOHCLGQPn364MSJE3z/vn37EBwcjDNnzsDX1xfp6emCJ2lYy034tm3bZvUJAqhYXzWt\nsxUrVsDPzw+JiYkNXpY5+Pn54e+//+b7+/TpY9YEUV+UJAixEP2GKy4uDgsXLsTWrVvRp0+fJq5Z\ny8MYw65du+Du7o5du3Y1dXV41rhjh5IEIRbEGMO2bduwZMkSbN++HT179gRg/HjRf/75B+PGjUNg\nYCAmTpxocBZgZdmdO3eid+/e6NatG2JjY/nxiYmJiI6ORlBQEHr06IFFixZBrVbz4/38/LB582b8\n61//Qrdu3fDRRx/xjdOOHTswevRoLFq0CF27dkVkZCR+//13ftrx48dj+/btfNkxY8ZgyZIlCA4O\nxiOPPIKjR4/yZf/55x+MHTsWgYGBmDBhAhYsWGDwSFV9hYWFmDx5MkJDQxEcHIznn38et2/fNlju\nZ599hjFjxiAwMBCTJk0yWCe7du1C7969ERISYrAuhJw5cwY5OTn48MMPsW/fPoP1U/k+Ca2D6t6b\nU6dOISIiwmBe+luQWq0WsbGx/GNnhw8fjlu3bvGPpR0yZAg6d+6MH3/80WheGRkZGD9+PIKCgjBo\n0CCDZ6S/+uqrWLBgASZPnozAwECMHDnSYKukIShJEGJBW7duxYoVKxAXF4du3boJlps9ezbCwsJw\n6dIlvPrqq9i5c6fRbo2EhAScOHECO3bswKpVq5CZmQkAkEgk+PDDD3Hp0iXs378fv//+O77++muD\naQ8cOIBffvkFBw4cwK+//orvv/+eH5eUlIR27drh0qVLeP311/HSSy8ZXMyqX4+kpCQEBATg0qVL\nmDlzJt544w2DGHr06IGUlBS8/vrr+OGHHwR3zeh0OkycOBFnz57F2bNn4ejoiEWLFhmU2bt3L1au\nXIk///wT5eXl+M9//gOg4kzKBQsWYM2aNbhw4QKUSqVBgjFl586dGDp0KKKjowFU3JJdX2JiouA6\nqM17o09/C/Krr77C/v37sW3bNly5cgWff/45nJyc8MMPPwAADh8+jPT0dL5eldRqNaZMmYKoqCgk\nJydjyZIlmDt3Lv766y++zP79+/H6668jNTUV7du3xyeffFLtOqgtulU4aVF+3FHQ4HlEPy2r13SV\np3n369cPXboIPyHv5s2bSE5ORlxcHOzs7NCnTx8MGTLEaFfEa6+9BgcHBwQFBSEoKAgpKSkICAgw\nSD5+fn545plncPr0aUybNo0fPnv2bLi5ucHNzQ3Tpk3D3r17MXHiRACAp6cnX3bUqFH46quvcPjw\nYYwbN86orr6+vvx0Tz31FBYsWIC8vDyUlZUhOTkZO3fuhEQiQa9evUzGUMnd3R3Dhg3j++fOnYun\nn37aoMzTTz/N3zA0Ojqab9h//vlnDBkyBL179wYAvPXWW9iyZYvg+i0pKcHPP/+M2NhYSCQSjBgx\nArt27cLw4cP5MkLroG/fvibfm9r67rvv8O677/JnfQYFBdVqugsXLqC4uBhz5swBAPTr1w+DBw/G\nvn378NprrwEAhg8fjrCwMADAk08+iQ8++KDW9aoOJQnSotS3gTcHjuPw8ccfY9WqVXjjjTf4uypX\nlZ2dDTc3Nzg5OfHDfH19jc7c8/b25rsdHR1RUlICAPjrr7/wwQcf4OLFiygpKYFGo+Ebj0r6Z7P4\n+vrizp07fH+bNm0Myvr6+go+2U6/DpX1ValUyMvLg0wmg6Ojo8Eyhc4+LCkpweLFi3Hs2DH+F7tK\npQJjjP8VXjVelUoFoGJ9PfTQQwb1qHxErCm//PILxGIxBg4cCKCiQa3cbVR5myChdXDnzp1avTdC\nbt++jXbt2tWqrL7s7GyjM5D8/PyQnZ0NoOKz5enpyY/TXz8NRbubCLEgT09P7NixA2fOnMH8+fNN\nlmndujUKCwv5Rh+o2Lqo7Vk08+fPR+fOnXHy5EmkpaXh7bff5o916M9Pv1u/UaxsePTHt27dulbL\n1o+hoKDAIIbqGtL169fj6tWr+Pnnn5GWloZdu3aBMVarA7lt2rQxmHdJSUm1z/reuXMniouL0bt3\nb4SHh+Pll1+GWq02OOVVaB3U9N44OzsbjNNqtQZ3ofDx8UFWVlaNMQnFqL8+bty4YZAcGwslCUIs\nrHXr1tixYwfi4+Px/vvvG4338/NDaGgoPv/8c6jVapw9e1bwqXKmFBcXQyqVwsnJCZmZmdi6datR\nmfXr16OwsBA3b97E5s2bMWrUKH5cXl4eNm3aBLVajR9//BGZmZkYNGhQnWKsjOGLL76AWq3GuXPn\ncPjwYcFEV1xcDCcnJ7i4uECpVGLlypVGZYQSxvDhw3H48GEkJCSgvLwcn332mVFSrHT79m2cPHkS\nX3/9NQ4dOsT/zZ492+AsJ6F14OvrW+1706FDB5SVleG3336DWq3G6tWrUV5ezo+fNGkSPv30U1y7\ndg2MMaSmpvIJzcvLS/Bgc3h4OJycnLBu3Tqo1WqcOnUKhw8f5t+3xjwripIEIU3A19cXcXFx+Pnn\nn/Hxxx8bnde/du1aJCYmIjg4GCtXrsRTTz1lMH11WxXvvvsu9u7di8DAQLz11lsYPXq0UfnHH38c\nw4YNw+OPP47BgwfzxxWAigbp2rVrCA0NxWeffYavvvqKvyNz1TpUna9+/5o1a3D+/HmEhITgs88+\nQ3R0NP9876qmTZuGkpISdOvWDaNHj8bAgQOrnbf+sgMDA7F06VL+QLlMJhO8OGz37t0ICQnBgAED\n4OnpCU9PT3h5eWHq1KlIS0vjr1Xp0aOH4Dqo7r1xdXXFsmXL8OabbyIiIgLOzs4GdZk+fTqio6Mx\nadIkdOnSBW+99RbKysoAVBxjevXVVxEUFISffvrJIEZ7e3ts2bIFR48eRWhoKBYtWoTY2Fh07Nix\nVu9FQ9AV11asOV9BXBVdcW09/Pz8cPLkSbRt29ZoXF2vNq6Ll19+GZ07d+YPtBLLoyuuCSFW488/\n/0RWVhZ0Oh2OHDmCQ4cO4fHHH2/qapE6orObCGlhantOf0Pl5ORg2rRpUCqV8PHxwfLly41u7U+s\nH+1usmK2tPuEdjcR0vRodxMhhBCzoiRBCCFEECUJQgghgihJEEIIEURJghBCiCBKEoQQQgTRdRKE\nWECfPn2Ql5cHsVgMqVSKqKgoLF26FM7Ozk1dNUKqRVsShFgAx3H4+uuvkZ6ejoMHD+LSpUv48ssv\nm7pahNSIkgQhFubl5YXIyEikpKQAqLgRXuXjLAcOHIgDBw7wZWt6nOjdu3fx+uuvo0ePHujZsyc+\n/fRTwTugElIflCQIsZDKmxvcunUL8fHx/FPW2rVrhz179uDKlSuYN28e5s6di9zcXH666h4nOm/e\nPNjZ2eHkyZM4ePAgjh8/ju+++87ywRGbRcckSIsSGxvb4Hm88sordZ6GMYYXX3wRHMdBpVKhf//+\n/POgR44cyZcbNWoU1qxZg8TERAwdOhSA8KM0BwwYgKNHjyI1NRWOjo5wcnLCtGnT8O233+LZZ59t\ncJyEAJQkSAtTnwbeHDiOw+bNm9G/f3+cPn0as2fPhkKhgIuLC3bu3IkNGzbgxo0bACoe26n/ZDVT\nj9K8c+cObt68CbVajR49evDjdDodfH19LRMUaREoSRBiYX379kVMTAyWLFmCDz/8EG+99Rbi4uIQ\nEREBjuMwdOhQgyeNmXqU5uOPPw4fHx/Y29vj0qVLEIlozzFpHPTJIqQJvPTSSzh+/DgKCgogEokg\nl8uh0+mwY8cOXLlyxaCs0KM0vb29ERkZiffffx9FRUXQ6XTIysrC6dOnmygqYotoS4KQJiCXyzF+\n/HisWrUK06dPx6hRoyASiTB+/Hj06tXLoKz+40S9vLwMHqW5evVqLFu2DFFRUVCpVPD398fs2bOb\nIiRio+h5ElbMlp6PQM+TqJ/GfJwoaXnoeRKEEELMipIEIVbMnI8TJaQ+aHeTFbOl3Se0u4mQpke7\nmwghhJgVJQlCCCGCKEkQQggRRNdJEJvi4uJikeWIxWJotVqLLKux2VIsgG3FYw2xUJIgNsOSB61t\n6SC5LcUC2FY81hAL7W4ihBAiiJIEIYQQQZQkCCGECKIkQQghRBAlCUIIIYIoSRBCCBFESYIQQogg\nShKEEEIEUZIghBAiiJIEIYQQQQ26Lcfs2bPh5OQEkUgEsViM5cuXo6ioCCtXrkReXh68vLwwb948\nSKVSAMDmzZuRlJQEBwcHzJo1C+3btwcAxMfH849nHDt2LCIjIwEAV69exdq1a6FWqxEeHo6pU6c2\npLqEEELqqMH3bnr//ffRqlUrvn/v3r0IDQ3F6NGjsXfvXuzduxfPPPMMLly4gDt37iA2NhYZGRnY\nuHEjli5diqKiIuzevRsff/wxAOCdd95Br1694OzsjA0bNmDmzJkICAjA8uXLkZSUhO7duze0yoQQ\nQmqpwbubqj7Y7ty5c/yWQFRUFBISEoyGd+rUCSqVCgUFBUhKSkJoaCikUimkUim6deuGxMREKJVK\nlJaWIiAgAAAwYMAAnD17tqHVJYQQUgcN2pLgOA4fffQROI7D4MGDMXjwYBQWFkImkwEA3NzcUFhY\nCADIz8+Hh4cHP62Hhwfy8/OhVCoFh8vlcn64XC5Hfn5+Q6pLCCGkjhqUJJYsWQJ3d3fcvXsXS5Ys\nga+vr8H4qg9wN/fjtFNSUpCSksL3x8TEWOx5ApZgb29vM/HYUiyAbcVjS7EAthWPJWOJi4vju4OD\ngxEcHAyggUnC3d0dAODq6orevXsjMzMTbm5uKCgogEwmg1KphJubG4CKLQGFQsFPq1AoIJfLIZfL\nDRp6hUKBkJAQoy2HyvL69AOp1NT3Xjcna7iXvLnYUiyAbcVjS7EAthWPpWJxcXFBTEyMyXH1PiZR\nVlaGkpISAEBpaSmSk5Ph7++PiIgIxMfHAwCOHTuGXr16AQAiIiJw/PhxAEB6ejqkUilkMhnCwsKQ\nnJwMlUqFoqIiJCcnIywsDDKZDE5OTsjIyABjDCdOnEDv3r3rW11CCCH1UO8ticLCQnz22WcAAJ1O\nh/79+yMsLAwdO3bEypUrcfToUf4UWADo0aMHEhMTMXfuXDg6OmLmzJkAgFatWmHcuHGYP38+AGD8\n+PH8KbPTpk3D2rVrUV5ejvDwcDqziRBCLIxj5j5Q0MRu3brV1FUwG9pstl62FI8txQLYVjyWisXH\nx0dwHF1xTQghRBAlCUIIIYIoSRBCCBFESYIQQoggShKEEEIEUZIghBAiiJIEIYQQQZQkCCGECKIk\nQQghRBAlCUIIIYIoSRBCCBFESYIQQoggShKEEEIEUZIghBAiiJIEIYQQQZQkCCGECKIkQQghRBAl\nCUIIIYIoSRBCCBFESYIQQoggShKEEEIEUZIghBAiiJIEIYQQQZQkCCGECKIkQQghRBAlCUIIIYIo\nSRBCCBFESYIQQoggShKEEEIEUZIghBAiiJIEIYQQQZQkCCGECKIkQQghRBAlCUIIIYIoSRBCCBFE\nSYIQQoggShKEEEIESZq6AoQQQsyDMcb/6XS6arv1h/n4+AjOk5JEC3fjxg2UlpYCePABq1TZXdvX\nqsP0hzs4OECtVkMkEkEsFhu8VnZX7a+uLMdxjbVKrIb+F97Ueq2pW2hc1TKlpaUoKSnh16/QX3Na\n50INYm0bztqM0+l00Ol00Gq1JrvNMQ4ANBpNrRv7yve38v2qfK38MzVcJBIhJCREcF1SkmjhsrKy\nUFBQwDcA9X2tOqzqcDs7O5SVlfFfgKpfEFNfmKqv+t36jVfVRKL/pWisP4lEgvLycr5e+o2Gubqr\nrsu6dAuNM1VGLBZDo9EYNFJV1ztjjG9Qqq5r/QReU5Ix1dgJDRNq0GszTj9OoYaxpnG1KWfqh41+\nv0QiqbacqWn0u1u1aoWSkhLBOggNNydKEi1c//79LbIcFxcX3Lt3zyzz0m9ITSWZqo1PY/w5Ojqi\nvLzc4Ata225TDY9QGUuozXtTdZ3X5q/qr2P9RGOqkatNf23Gubq6oqioqFlt+Qgx5/emvihJkGan\n8terWCxusjpYw5fXkqxhnddWc9s1Zu3o7CZCCCGCKEkQQggRREmCEEKIIEoShBBCBFn1geukpCRs\n2bIFOp0OgwYNwpgxY5q6SoQQ0qJYbZLQ6XTYtGkT3n33XcjlcsyfPx8RERHw8/Nr6qq1GPzFcAxg\n+q9VhvEvDGB6hfTHS8RalJVWnr9+fx4cwFX8A8f3G77ql6/PGSuMVdSHGf2xaoehunI6huJ7pSgp\n0RjWuUo3wFUM4yBQjtOLDQbd+uumksnoTQzkajv+fodOx6DTMeOCBiuyQaPrr44zZgA0ah00amb0\nmTT4vJp8ZaaHGw0zrJThNUF48Lm9/8/4s8zpdRu/6neX2+tQXqYzqnvVelf9jvJVZIb1Nhiu91rN\nBdfWmyQyMzPRpk0beHt7AwD69euHc+fOUZIws99/u4fCfO2DDxL/z5Bhww6jL4J+Gf3GrXKYiCuC\nzuhDWnn1LwxejZJSlfqYqot+PfQb9MppKxth/k/EGfRXNN6ccTmB4WKxBhqtxqgRMWxc2IMvrH5M\nfLdho1S1YTK4kt3oHTEcWNN4o0EG4wpNTW2shhzdaCed1nHGHO4CXEWAVX9gCDbM+onboL/6HzCm\nfkDpf471+/n33MQ4g3L603MPTrM2Wfe61Fvvh0vV+YSEQpDVJon8/Hx4eHjw/XK5HJmZmTVOp31n\nWmNWy5BBC6HXb/Bz2yjtPyhTdXqDFgQo4GD4SeBED14BQCTCg5+mAn/gABFnuhw49BZXfAQ4vU8u\nV1E5s37pxSIxtDqtwNhqlqT380q/dgAHpvcNr6htZUPA+Ff9X+0P1qPe+qgcV/Unv1AZAOBEkEjE\n0KjV9ytWJSvp+Fa+Yvz9K4BNjq/6+TCaj2H0D3pNpgXTrU4N5UQiEXSMVXyeKuMUifW6RRWfORF3\n/zPI6ZUVmSjDgdOfnhPdHw8YvddVtw5rs7VoVMaw387eDuryctPrw+iXCGDye8iXh175atan0WcH\nD/oNPkd6/UabDsbT29nbQ135OauLOm91vy84xmqTRH2JXv/IcgvTb1iAKh8AvpBeP2f8Aapmehdp\nq4oLtpiJRsXUH5heg6S7n4hMvOo1VCLGgKpf3EbgJHVGsarYxJjaNWS1ncS48a2SkFmVMtAbpzNV\nRq+bn5cO9k7O0JWW6iXtKom8alIG9BrV++P1kzegl/SrzKeSUYMq0GNQrppp7peTOjtDVaS6/xm5\n/xmq2q2rXB+6+8OYYBmmP71++crPphCT73fV5FjTNAxiRyeoS0uNG+aq68agoTbxna1pWqOEbCLx\nGCWdKp+5ytECPzDFDg5Ql5ahbqr9gpgoXn15q00ScrkcCoWC71coFJDL5QZlUlJSkJKSwvfHxMTA\nN6yHxepoCa6t2zR1FczGvakrQATJmroCpMnFxcXx3cHBwQgODq7oYVZKo9GwOXPmsDt37jC1Ws3e\neOMNdv369Wqnee+99yxStx07dlhkObYUjy3FwphtxWNLsTBmW/FYQyxWuyUhFovxwgsvYOnSpfwp\nsDUdtPby8rJI3fgM28hsKR5bigWwrXhsKRbAtuKxhlisNkkAQHh4OMLDw2tdvvJMqMZmqQ+7LcVj\nS7EAthWPLcUC2FY81hCLTV1xbakPoaXYUjy2FAtgW/HYUiyAbcVjDbFwjNVwaJsQQkiLZVNbEoQQ\nQsyLkgQhhBBBVn3gGgDy8vKwdu1aFBYWguM4PPbYYxg+fDiKioqwcuVK5OXlwcvLC/PmzYNUKgUA\nbN68GUlJSXBwcMCsWbPQvn17AEB8fDz27NkDABg7diwiIyObZSxZWVnYuHEj//D6J598Ev/6178s\nGos546lUXFyM1157Db1798YLL7zQbGPJy8vD+vXroVAowHEc5s+fb7GzVBojnm+++QaJiYnQ6XQI\nDQ3F1KlTrTqWmzdvYt26dcjKysKECRMQHR3Nz8sabhpqrniE5mN2FjkJtwGUSiW7du0aY4yxkpIS\n9sorr7Dr16+zbdu2sb179zLGGNuzZw/75ptvGGOMnT9/ni1btowxxlh6ejpbsGABY4yxe/fusTlz\n5rCioiJWVFTEdzfHWG7dusVu377NGGMsPz+fTZ8+nalUKovGwpj54qm0efNmtnr1arZp0ybLBXGf\nOWNZvHgxS05OZowxVlpaysrKyiwYSQVzxZOWlsYWLVrEdDod02q1bOHChSwlJcWqYyksLGSZmZls\n+/btbP/+/fx8tFptna+9suZ4hOZjbla/u0kmk6Fdu3YAAEdHR/j6+iI/Px/nzp3jtwSioqKQkJAA\nAAbDO3XqBJVKhYKCAiQlJSE0NBRSqRRSqRTdunVDUlJSs4zloYceQps2FVdiu7u7w9XVFXfv3rVo\nLOaMBwCuXr2KwsJChIZWc6exRmSuWG7cuAGdTodu3boBABwcHGBvb99s4+E4Dmq1Gmq1GuXl5dBq\ntZDJLHt9dl1jcXV1RceOHY2ex61/01CJRMLfNNTSzBWPqfkolUqz19fqdzfpy8nJQVZWFjp16oTC\nwkL+w+rm5obCwoo7WVa9MaCHhwfy8/OhVCpNDm8qDYlF/0uamZkJrVbLJ42m0pB4XF1dsW3bNsyd\nOxfJyclNUn99DYlFoVDA2dkZn3/+OXJzc9GtWzdMmjQJIlHT/R5rSDydO3dGUFAQZsyYAcYYnnji\nCfhUd1/pRlabWITU96ahjakh8QjNx9ysfkuiUmlpKVasWIEpU6bAycnJYFzV5wwwKz+r11yxKJVK\nrFmzBrNmzWqUetZWQ+M5ePAgwsPDje7N1RQaGotWq0VaWhomT56M5cuX486dO4iPj2/MKlerofFk\nZ2fj1q1bWL9+PdavX49Lly4hLS2tUesspC6xNAfmiqe0tBRffPEFpkyZAkdHR3NXs3lsSWg0GqxY\nsQIDBgxA7969AVRk2oKCAshkMiiVSri5uQEQvjGgXC43uBmgQqFASEiIZQOBeWIBKg7yfvzxx5g4\ncSICAgIsHkclc8STnp6OtLQ0/PrrrygtLYVGo4GjoyMmTZrU7GLRarVo164df6Vsr169kJGRYdE4\nKpkjnuPHj6NTp05wcHAAAHTv3h3p6eno0qWL1cYipDY3DbUUc8SjP59HH32Un4+5Wf2WBGMM69ev\nh6+vL0aMGMEPj4iI4H+hHTt2DL169eKHHz9+HACQnp4OqVQKmUyGsLAwJCcnQ6VSoaioCMnJyQgL\nC2uWsWg0Gnz++eeIjIxEnz59LBqDPnPF88orr2DdunVYu3YtnnvuOURGRlo8QZgrlo4dO0KlUvHH\niC5duoSHH37YorEA5ovH09MTqamp0Ol00Gg0uHz5ssUf/FXXWPSn09exY0dkZ2cjJycHGo0Gp06d\nQkRERKPXvypzxSM0H3Oz+iuu09LSsHjxYvj7+/ObYJMmTUJAQIDgqXybNm1CUlISHB0dMXPmTHTo\n0KCt4tsAAANpSURBVAEAcPToUYNTYKOiopplLMePH8f//d//GTQ+s2fPRtu2bZtlPPri4+Nx9epV\ni58Ca85YkpOTsW3bNjDG0KFDB8yYMcPooGNziUen02Hjxo24fPkyOI5D9+7dMXnyZKuOpaCgAPPn\nz0dxcTFEIhEcHR2xcuVKODo6IjEx0eAU2CeffNKisZgznqysLJPz6d69u1nra/VJghBCSNOx+t1N\nhBBCmg4lCUIIIYIoSRBCCBFESYIQQoggShKEEEIEUZIghBAiiJIEIYQQQc3ithyEWJPZs2ejsLAQ\nYrEYIpEIfn5+GDBgAAYPHlzjPXdycnIwd+5cbN++vUlv+kdIbVGSIKQe3nnnHYSEhKCkpAQpKSnY\nsmULMjIymvxmi4SYGyUJQhrAyckJERERkMlkWLhwIaKjo5Gbm4vvv/8ed+7cgbOzMwYNGoSnnnoK\nALB48WIAwJQpUwAA7777Ljp16oQjR47gxx9/REFBAQICAjBjxgx4eno2VViE8Gh7lxAzCAgIgIeH\nBy5fvgxHR0fMnTsXX3/9NebPn4+DBw/yD5D58MMPAQBbtmzB1q1b0alTJyQkJGDv3r148803sWnT\nJnTt2hWrV69uynAI4VGSIMRM3N3doVKpEBQUxN980d/fH/369UNqaioA089sOHToEMaMGQMfHx+I\nRCKMGTMGWVlZyMvLs2j9CTGFdjcRYib5+flo1aoVMjIy8N133+H69evQaDRQq9V45JFHBKfLzc3F\nli1bsG3bNqP50S4n0tQoSRBiBpmZmcjPz0dgYCA+++wzDBs2DAsXLoREIsGWLVtw7949AKafOObp\n6Ylx48ahf//+lq42ITWi3U2E1EPlbqPi4mKcP38eq1evxoABA+Dv74/S0lJIpVJIJBJkZmbi5MmT\nfHJwdXUFx3G4c+cOP68hQ4Zgz549uHHjBj/PP/74w/JBEWICPU+CkDrSv06C4zg8/PDDePTRRzFk\nyBBwHIfTp09j27ZtKCoqQteuXeHt7Y3i4mLMmTMHABAXF4eDBw9Cq9Vi4cKFCAgIwPHjx7F//37k\n5ubC2dkZYWFhePnll5s4UkIoSRBCCKkG7W4ihBAiiJIEIYQQQZQkCCGECKIkQQghRBAlCUIIIYIo\nSRBCCBFESYIQQoggShKEEEIEUZIghBAi6P8BRXPfrddw2+oAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa05866fe48>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"france_violentcrime.plot(kind='line', title='Violent Crime in France')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 28, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa058628b00>" | |
] | |
}, | |
"execution_count": 28, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEhCAYAAACdsMz3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVPX++PHXLKzjAA6rQAqIKwiiuBRdUNPMXK8aedVK\nyyw1S1usbNPbtbwaaqj9yi21xdzSrG6WpqhpKiiEYgoulKKArMo+zJzfH8T5MrJqrOPn+Xj4kDnr\n531m5rzP+cznfD4KSZIkBEEQhLuasqkLIAiCIDQ9kQwEQRAEkQwEQRAEkQwEQRAERDIQBEEQEMlA\nEARBQCSDFiE5ORmlUsmRI0fqvE5UVBRKpZKrV682YMkallKp5Msvv2ySfc+bN48OHTo0yLbv5P1s\nTtavX4+FhUWL3X5F5vA9qS8iGTShkSNH0qdPnyrnFRUVodPpePvtt2nbti2pqan07t27kUtY2S+/\n/IJSqeTPP/+s0/IJCQk89thjeHp6Ym1tjZeXF6NHjyYqKqrWdVNTUxkzZszfLPGdeeWVVzh27Njf\n3s7AgQOZPHlyPZSobtavX49SqaRv376V5vn6+jJ//vzb2p5arWbjxo31VTyhGRPJoAk988wzREdH\nEx8fX2ne9u3buXHjBlOmTEGpVOLi4oJarW6CUlatLs8q/vjjjwQHB5OamsratWv5/fff+e677+jb\nty/PPvtsteuVlJQA4OLigpWVVb2V+XZoNBp0Ol2T7PvvUigUxMfHs3nz5krTFQrFbW+rsZ5LlSSJ\n0tLSRtmXUJlIBk1oyJAhtG3bltWrV1eat3r1agYPHkzbtm2rrFY4d+4cQ4cORavVotVqGTFiBBcu\nXKhxf+fPn2fMmDG0bt0anU7H4MGDOX36tDy//Pb8yJEj9OjRA41GQ3BwMDExMUBZ9UZoaCgA3t7e\nKJVKBgwYUOW+CgoKePzxxxkwYAB79uxh8ODBeHt74+/vz5w5c0yuupVKJcuXL2f8+PE4ODjwxBNP\nyNO/+OILk+VWrFjBo48+SqtWrWjXrh3bt28nNzeXCRMmYGdnR/v27fn6669NypKWlsakSZNwcXHB\nzs6O+++/n0OHDtV4rG6tJip/vWvXLjp37kyrVq3o378/58+fr3YbkyZNYt++fWzYsAGlUolSqeTg\nwYPy/JSUFIYNG4ZGo6F9+/Zs2LDBZP28vDxeeOEFPD090Wg09OjRgx07dtRY7vLjNHPmTObOnYte\nr692Ob1ez7x58/Dx8cHGxgZ/f39WrVolz/fy8sJgMDB58mSUSiUqlcpk/eo+J+Xq+nmLiooiKCgI\na2tr9u7dW6mcOTk5TJw4kXbt2mFra0vnzp1ZsmSJyTKTJk1i0KBBrFq1inbt2mFvb8/IkSNJT083\nWW758uXy8XzooYcq3eHeuHGDyZMn06ZNG6ytrWnbti0vvfRStcfQrEhCk/r3v/8ttW7dWiosLJSn\nJSYmSgqFQtq5c6ckSZJ06dIlSaFQSIcPH5YkSZIKCgqktm3bSgMHDpROnjwpnThxQurfv7/k6+sr\nlZSUSJIkSfv375cUCoWUkpIiSZIkpaamSq6urtL06dOl06dPS4mJidLMmTMlR0dH6fr165IkSdKn\nn34qKZVKKSwsTPrll1+ks2fPSkOGDJG8vb2l0tJSyWAwSLt27ZIUCoUUExMjpaWlSdnZ2VXGtWPH\nDpMy10ShUEiOjo7SypUrpYsXL0rnz5+Xp3/xxRcmy7m5uUkbN26ULly4IE2fPl2ysbGRhgwZIm3Y\nsEG6cOGCNHPmTEmj0UiZmZnyserSpYs0duxY6cSJE9KFCxekBQsWSFZWVtLvv/9ebZneeecdydfX\n1+S1RqORhgwZIp08eVL67bffpJ49e0r/+Mc/qt1Gbm6uFBoaKo0bN05KS0uT0tLSpJKSEvn99PHx\nkbZu3SpduHBBmjt3rqRWq6XExERJkiTJaDRK/fr1k/r37y8dPnxYunTpkrRq1SrJ0tJS+vnnn6vd\n56effiqp1WopJydHcnJykiIiIuR5vr6+0vz58+XXTzzxhBQYGCjt2bNHSk5OljZv3iw5ODhIa9eu\nlSRJkq5fvy6p1WopMjJSLn/5Pmr6nEjS7X3e+vTpI0VFRUmXLl2Srl+/LsdQLjU1VVq4cKEUGxsr\nJScnS59//rnUqlUr6dNPPzWJxd7eXho/fryUkJAg/frrr5K3t7f02GOPycvs3LlTUqvV0tKlS6Wk\npCRp7dq1kouLi6RUKuXvycyZM6XAwEDp+PHj0uXLl6UjR45Ia9asqfZ4mxORDJpYSkqKpFarpY0b\nN8rT5syZI3l4eEgGg0GSpMrJYM2aNZKtra18wpMkSUpLS5NsbGzk7dyaDN555x2pb9++Jvs2Go1S\n+/btpWXLlkmSVPblVCgUUmxsrLzMsWPHJIVCIZ+kDh06JCkUCumPP/6oMa7//ve/kkKhqDZZVKRQ\nKKQpU6ZUOf3WZDB79mz59fXr1yWFQiE9//zz8rTs7GxJoVBI33//vRyTp6enfJIqN2DAAGnWrFnV\nlqmqZKBWq6WMjAx52ubNmyWlUikVFxdXu52BAwdKkydPNplW/n4uXbpUnmYwGCStViutWrVKkqSy\n98/a2lrKzc01WXfy5MnSqFGjqt1fxRPphx9+KOl0Ovk9qJgMLl68KCmVSuncuXMm68+fP1/q3r27\n/FqtVksbNmyotI/aPie383n75Zdfqo2hOs8//7w0aNAg+fUTTzwhubq6yhdDklT2GWzTpo38OiQk\nRJo4caLJdl5++WWT78nIkSOlSZMm1bhvc9V8KqHvUu7u7gwdOpTVq1fz2GOPodfrWb9+Pc888wxK\nZdW1eAkJCfj5+ZnUabu4uNCpUyfOnDlT5TrR0dGcOHECrVZrMr2oqMikqkOhUBAYGCi/btOmDVBW\n1XI7rWuk26xnruuP4xXL5uTkhEqlIiAgQJ7m4OCApaWlXD0QHR1NamoqDg4OJtspLi7G1tb2tsro\n7u6Oo6Oj/LpNmzZIkkR6ejqenp63tS2A7t27y3+X/y6UlpYml7ukpAQPDw+TdUpKSujYsWOdtj9t\n2jSWL1/Ou+++S0REhMm8mJgYJEmiZ8+eJtNLS0vr9NtUbZ+Tun7eAHr16lXjvoxGI4sWLeKrr74i\nJSWFoqIi9Ho9Xl5eJst17tzZpBVSmzZt5OMJ8PvvvzNhwgSTdUJCQkyOzfTp0xkzZgwxMTE88MAD\nPPTQQwwePPi2f2tpiUQyaAamTp3KsGHDOHv2LAkJCWRmZjJlypQa16nqZFvTCViSJAYOHMiKFSsq\nzbO3t5f/ViqVJh/88r+NRmOtcVTUuXNnoCxxhYSE1Lq8RqOp03aranJ46zSFQiGX12g00qVLF3bu\n3FlpvdtNBpaWlpX2U76PO1HV9iqW297evlI9fFXrVcfCwoKFCxcyYcIEnnvuOZN55fv59ddfKx2H\nupz4avuc1PXzplKpao0nIiKChQsXsmzZMoKCgtBqtSxZsoTvv//eZLmqPge3e1Hy4IMP8ueff/Lj\njz8SFRXFxIkT6datGz///HO1F2fmQiSDZqDiD8lnzpyRfziujr+/P5988gmZmZnylWpaWhqJiYm8\n8sorVa4THBzM+vXr8fDw+FstdMq/uAaDocblHnzwQVxcXFiwYAH/+9//Ks3Pzs6mdevWd1yOuurV\nqxefffYZWq0WZ2fnBt/frSwtLe+ohUxwcDA5OTkUFhbi5+d3x/sfM2YMS5Ys4dVXXzWZXn5H8Mcf\nfzB06NBq17e0tKz1va5KfX3eAA4ePMiQIUOYNGmSPC0xMbFS0qotiXXt2pXDhw8zbdo0edrhw4cr\nLde6dWvGjRvHuHHjmDx5Mvfeey+///7733ofWgLzTnUthEKh4KmnnmLt2rXs2bOHqVOn1rj8+PHj\ncXZ25tFHHyU2NpYTJ04wbtw4PD09efTRR6tc57nnnsNgMDBy5Eh++eUXkpOT+eWXX3jjjTf49ddf\n61zWdu3aoVQq+f7770lPTyc3N7fK5WxsbFi/fj379+9n0KBB7N69m4sXL3Lq1Ck++OAD7r333jrv\n8++YMGEC3t7eDB06lD179pCcnMyxY8d4//33+eabbxp8/97e3pw4cYKLFy+SkZFRY2KoeBX7wAMP\nMHDgQEaPHs0333zDxYsXOXHiBMuXL2fNmjW3VYaIiAi2bdtGSkqKvA9fX1+efPJJnn76aT7//HPO\nnz/Pb7/9xrp161i0aJFJ+fft28e1a9fIyMio8z7r6/MGZXeZ+/fvJyoqisTERN58802OHz9e6aq/\ntruAl156ic2bNxMZGUlSUhKffvopn3/+uckyb7zxBjt27ODcuXMkJSXx+eefo9Vqa7w4MxciGTQT\nTz31FPn5+bi5uTF8+PBK8yte9VhbW/PTTz9hZWVFaGgo/fr1Q6vVsnv3bpP63orruLi48Ouvv+Lk\n5MTo0aPp3LkzEydO5PLly7i7u1e5TlXTXF1def/991m4cCHu7u7885//rDamhx56iOjoaFxdXXnq\nqafo0qULw4YN4+jRo7d9QrtTVlZWHDhwgODgYCZPnkynTp3kOuFb65wrurVNfnVt9Gu7Gn3ppZdw\ncnIiMDAQV1dXuXlwXba1a9cuRo8ezezZs+Vj98MPP+Dr61vjPm/dTt++fRk7dizFxcUm81atWsXs\n2bNZsGABfn5+DBw4kM8++4z27dvLy0RERHDixAm8vLxwdXWtMe76+rzdOv2tt94iLCyMkSNHct99\n95Gbm8vzzz9/2+/PqFGjiIiIYNGiRQQGBrJp0yb++9//mixjY2PD22+/TXBwML169eL06dP88MMP\nlX77MEcKqZZ0+t1337F//34A2rZty/Tp08nOzmbZsmXk5eXh4+PDc889h1qtRq/Xs2LFCi5duoRW\nq2XWrFnyrfmOHTvYv38/SqWSyZMnyz8+xcXFsX79eoxGIwMGDGDUqFENHLIgCIJwqxrvDLKysti9\nezcLFy4kIiICo9HI4cOH+fzzzxk2bBiRkZFoNBr27dsHwL59+9BqtURGRjJ06FD5gaErV65w5MgR\nlixZwty5c1mzZg2SJGE0Glm7di1z585lyZIlHD58mCtXrtRa6ISEhHoIvfkwp3jMKRYwr3jMKRYw\nr3iaQyy1VhMZDAaKi4vl/1u3bk1CQoLc90lYWBjR0dFAWXO1sLAwAPr06cOpU6eAsmZyISEhqNVq\nXFxccHNzIykpifPnz+Pm5iZ3tRASElJl64lbNYcDV5/MKR5zigXMKx5zigXMK57mEEuNyUCn0zF8\n+HCmT5/OM888g0ajwcfHB41GIzez0ul0ZGVlAWV3EuWtW1QqFba2tty8eZPs7GyT9tmOjo5kZWWZ\nLH/rtmpy6yPmDaWx3iBzisecYgHzisecYgHziqc5xFJjMsjLyyMmJoaVK1fyySefUFRURGxsbL0X\n8HZdv369UfbTWB9qc4rHnGIB84rHnGIB84qnOcRS43MGp06dwsXFRf4lvU+fPpw7d478/HyMRiNK\npdLk6l6n05GRkYFOp8NgMFBQUIBWq0Wn05GZmSlvt7x9vCRJlaZX1VNkQkKCSRC32w3vnQoPD2+U\n/ZhTPOYUC5hXPOYUC5hXPI0Zy5YtW+TXfn5+8vMTNSYDZ2dnkpKSKCkpwcLCgvj4eHx9fbl58yZH\njx7lvvvuIyoqiuDgYKDsQZMDBw7QsWNHjh49Srdu3eTpH374IcOGDSMrK4vU1FR8fX0xGo2kpqaS\nnp6OTqfjyJEjvPDCC5XKUbHA5cxpMAqtVsvNmzebuhj1wpxiAfOKx5xiAfOKp7FicXd3rza51dq0\ndMuWLfz6668olUq8vb159tlnycrKkpuWent7M3PmTLlp6fLly0lOTkar1fLCCy/g4uICwNdff83+\n/ftRqVRMmjRJ7pclNjbWpGlpTe3WKxLJoHkyp1jAvOIxp1jAvOJpzGRQnVqTQXMlkkHzZE6xgHnF\nY06xgHnF0xySgXgCWRAEQRDJQBAEQRDJQBAEQUAkA0EQBAGRDARBEAREMhAEQRAQyUAQBEFAJANB\nEAQBkQwEQRAERDIQBEEQEMlAEARBQCQDQRAEAZEMBEEQBEQyEARBEBDJQBAEQUAkA0EQBAGRDARB\nEAREMhAEQRAQyUAQmlRmgZ4jf97gj5xiWugItIKZUNc08+rVqyxbtkx+nZaWxqOPPkpoaChLly4l\nIyMDZ2dnZs+ejUajAWDdunXExcVhZWXF9OnT8fb2BiAqKoodO3YAMHr0aMLCwgC4ePEiK1euRK/X\nExQUxOTJkxskUEFoDm4UG0hIK+C31HxOpRWQW1RKRycbLueWYDBKBLlrCGqjIdBNg9ZK1dTFFe4i\nNSYDd3d3Fi1aBIDRaOTZZ5+ld+/e7Ny5k4CAAEaOHMnOnTvZuXMnEyZM4OTJk6SlpREZGUlSUhJr\n1qxhwYIF5OXlsX37dhYuXAjAa6+9Rq9evbC1tWX16tVMmzYNX19f3n//feLi4ujevXvDRy4IjaBA\nb+BMeiGn0gqIT80nNU9PF2cbAtxsedDXHa/WVigVCiRJ4upNPbHX8th/MZcVR1O5x95STg4dHW1Q\nKRVNHY5gxmpMBhWdOnUKNzc3nJyciImJYd68eQD069ePefPmMWHCBGJiYuQr/g4dOpCfn09OTg6n\nT58mICBAvnvo1q0bsbGxdO3alaKiInx9fQEIDQ3l+PHjIhkILVaJwcjZ64XEpxYQn1bAHznFdHC0\nJsDVlqm9XOngaIO6ipO6QqHAw84SDzsdwzrp0BuMnLleSOzVfD4+nkZGgZ4At7LEENRGg7PGogmi\nE8xZnZPB4cOHCQkJASA3NxcHBwcA7O3tyc3NBSArKwtHR0d5HUdHR7KyssjOzq52uk6nk6frdDqy\nsrL+XkSC0IhKjRLnM4uIT8vnVGoBiZlFtHOwIsDVlomBTnRyssFKffs/zVmolAS6lVUXTQKyCkuJ\nu5ZP7NV8NsZdx95KRZC7hh5tNPi52N7RPgShojolg9LSUk6cOMHEiRMrzVMoTK9yxI9ggjkzShLJ\n2cWc+qve//frhbi2siDA1ZaRXXR0dbHB1qL+6/p1NmoG+NgzwMceg1HiYnYRsVfz2Xo6k/9mX6Wz\nsw09/rpruMfestL3UhBqU6dkEBsbi4+PD3Z2dkDZ3UBOTg4ODg5kZ2djb28PlF3ZZ2ZmyutlZmai\n0+nQ6XQkJCSYTPf39690J1C+/K0SEhJM1g8PD0er1d5mqM2XpaWl2cRjTrEAWFhYkF2qJjblJrFX\nbxB39Sb21mp6eNgx3N+NN9tosbdp/CqbHvZ29PAq+zuvuJTYqzeJ/jOX/xxIwShJBN9jT6977Onp\naYfWquxrbm7vjTnF05ixbNmyRf7bz88PPz8/oI7JoGIVEUBwcDBRUVGMGjWKAwcO0KtXL3n6jz/+\nSEhICImJiWg0GhwcHAgMDGTTpk3k5+cjSRLx8fFMmDABjUaDjY0NSUlJ+Pr6cujQIYYMGVJp/xUL\nXO7mzZu3fxSaKa1WazbxtPRYDEaJP3KK+f16IWevF5JwvRAlEgFuGnq62TIpUIejbYWTf2kRN28W\nNV2B/9LdSU13J0emBOlIuVlC7NV8vk9IZfH+S7R1sCSojYZ/+LrgYWM0m7uGlv5Zq6ixYtFqtYSH\nh1c5TyHVUq9TVFTEjBkzWLFiBTY2NgDk5eVV27R07dq1xMXFYW1tzbRp0/Dx8QFg//79Jk1L+/Xr\nB/xf09KSkhKCgoJ48skn6xTU1atX67RcSyA+1E2nQG8gMaOIs9cL+f16WZ2/zkZNZ2cbujjb0Nvb\nGa2ipMWeQMt/iD55NZ8T1wrQlxoI9bIjzNsOTzurpi7e39LSPms1aaxY3N3dq51XazJorkQyaJ6a\neyzX8/X8/teJ//frhVy7WYJPa2v55N/Z2Ra7Cu37m3s8t6NVq1b89mcGUZdyOZR8AyeNBWFedvyj\nnR0ONnVuS9JsmNN70xySQcv7BAhCHRmMEsk5xfKJ//frhZQaJbr8deLv522PT2trLFQt86r/dikU\nCtrrrGmvs2ZSkAvxaQVEXcplU3wGnZ1tCPOyo889WqxFy6S7kkgGgtko0Bs4l1Ekn/yTMopw0qjp\n4mxDT/dWTAx0xq2VRYut8qlPKqVCfmahqNTIscs3OZB8g0+i0+jl2YowLzsC3TTiQbe7iEgGQosk\nSRLpf1X5nP3rqj81r4T2Omu6ONsysrOOTk42okuHOrBWKwnztifM256colJ++eMGX8ZnEPnrNe73\nsqOflz3tdVYiiZo5kQyEFufY5Zt8Ep2GQSqv8rGlv8/dVeXTUBys1QzrVPYUdMqNEg4k57L4lxTU\nSgVh3naEednh2sqyqYspNACRDIQW5XJuMSuOpfJaqAddnW3E1WoD8rCzZHyAM//q5sS5jCKiLuXy\n8u4/8LSzJMzbjpC2duLOy4yIZCC0GAV6A+8fTOGJIGf8XGybujh3DYVCQWdnGzo72/BUT1dir+UR\ndekGG2Kv083Vln7edgR7tMJSJX54bslEMhBaBEmSiPz1Gv4utgxs79DUxblrWagU9PbU0ttTS36J\ngV8v3+SHxBxWHkul7z1a+nnb4edii1LcsbU4IhkILcLXZ7LIKCjlpZDq20kLjUtjqWJgewcGtncg\no0DPoeQbrIlJp9Qo8VRPF3q4t2rqIgq3QSQDodn7LTWfb89msfghLyxEVUSz5GRrwT+7OjKqi46Y\nlHw+iU6jrUMOT/ZwoY1W/ODcEohvltCsXc/Xs+TwVV4McRd9+LcACoWCXp6tWDHMm05ONrzy4x98\nFnedQr2xqYsm1EIkA6HZKjEYWXgwhZFddAS4aZq6OMJtsFApGevnyIcPe3E9X8+M7y5yMPmG6OK+\nGRPVREKztSo6DZdWFvyzS+VuzYWWwdHWghdD3DmTXsDqmDR+SMzm6WBXfHTWTV004RbizkBoln46\nn8Pv1wuZ2ddNPEtgBrq62PLBQ17087Zn3v7LfHw8lRvFhqYullCBSAZCs5OUWcjncdd5PdSjQUYN\nE5qGSqlgcAcHPhrmg1Kp4LlvL/L9uWwMRlF11ByIZCA0KzeKSll0KIVpvd3wtG/Z/e0LVWtlpWJq\nsCv/fuAejly+yYs/JHM6raCpi3XXE78ZCM2GwSjxweGr3N/OjnvbmsdwhkL1vFpb85+/EsKyI1fp\n5GzDpCAX0WqsiYg7A6HZ+OK360jAxEDnpi6K0EgUCgUhbe1YOdwHTztLZv+QzJZTGZQYRFPUxiaS\ngdAs/Hr5JgeTb/ByiLvoQ/8uZKVW8q8AZyIeasfF7GKe++4SRy/fFE1RG5FIBkKTu5JbzP87lsqr\noR7YW4uay7uZaytLXgv1YHpvNz7/7Trz9l3mcm5xUxfrrlDrNy8/P5+PP/6YK1euADB9+nTatGnD\n0qVLycjIwNnZmdmzZ6PRlD0UtG7dOuLi4rCysmL69Ol4e3sDEBUVxY4dOwAYPXo0YWFhAFy8eJGV\nK1ei1+sJCgpi8uTJDRKo0DyV90Q6sbszHRxtmro4QjPRvY2GZQ9780NiNnP3/Ek/bzvGdXNCYyla\nlzWUWu8MPv30U4KCgli6dCkffPABHh4e7Ny5k4CAAD788EP8/f3ZuXMnACdPniQtLY3IyEimTp3K\nmjVrAMjLy2P79u289957vPfee2zbto2CgrLWA6tXr2batGlERkaSmppKXFxcA4YrNCeSJLH8aCpd\nnG140Ff0RCqYUisVDO+sY/kwbwr1RmZ8e5G9F3IwiqqjBlFjMigoKODs2bMMGDAAAJVKha2tLTEx\nMfKVfb9+/YiOjgYwmd6hQwfy8/PJyckhLi6OgIAANBoNGo2Gbt26ERsbS3Z2NkVFRfj6+gIQGhrK\n8ePHGyxYoXnZ+XsW6Xl6pvZybeqiCM2Yg7Wa5/q24Y1+nvx0Ppc5P/7BuYzCpi6W2amxmig9PR07\nOzs++ugj/vjjD7y9vZk0aRK5ubk4OJRdydnb25ObmwtAVlYWjo6O8vqOjo5kZWWRnZ1d7XSd7v+6\nGtDpdGRlZdVrgELzFJ+az87fs/jgIS8xKIpQJx0cbVj4YFsOXLrBwoMpaI+nYW+pxMFGjYO1itbW\nahxs1LSu8FprpRINEuqoxmRgMBi4dOkSTz75JL6+vqxfv16uEip3a1cBDfHrf0JCAgkJCfLr8PBw\ntFrzaYduaWlpNvHUJZb0vGKW/nqBNwa2x8fNvpFKdmfutvemJRgRaMdgP3euFxpIyy0gq0BPdmEp\nWQV6UjJKyC7IJ7tQT1aBnpslBuysVOhsLdDZWtDa5pb/bS3Q/fW31krVZF2fNOZ7s2XLFvlvPz8/\n/Pz8gFqSgaOjIzqdTq7G6du3Lzt27MDBwYGcnBwcHBzIzs7G3r7sC63T6cjMzJTXz8zMRKfTodPp\nTE7mmZmZ+Pv7V7oTKF/+VhULXO7mzZt1Dr6502q1ZhNPbbHoDUbe2vMnQzs60NFe2ezjvpvem5bG\nU6vFHiXYWwFVP61uMErkFhvIKSwlu7CUnKJSsosMXMkq5tTVUnKK/ppXVEpxqYT9X3cUrW1U2Fur\n0dmo6epii7+LTYOOpdFY741WqyU8PLzKeTUmAwcHB5ycnLh69Sru7u7Ex8dzzz33cM899xAVFcWo\nUaM4cOAAvXr1AiA4OJgff/yRkJAQEhMT0Wg0ODg4EBgYyKZNm8jPz0eSJOLj45kwYQIajQYbGxuS\nkpLw9fXl0KFDDBkypP6PgNBsrDmRjqOtmjFdRU+kQsNTKRXobMpO6rUpMRjJLTLISSOnyMD1fD2b\n4jO4kltMgJuG3p6t6OmuMcsm0Aqplnqd5ORkPvnkE0pLS3F1dWX69OkYjcZqm5auXbuWuLg4rK2t\nmTZtGj4+PgDs37/fpGlpv379gP9rWlpSUkJQUBBPPvlknQp+9erVO4252TGnK7aaYvn5Qg7bz2Tx\nwUPtWkwHdHfLe9MSNWY8OUWlnEjJIzolj/jUAu6xt6KXZyt6e7TiHnvLv1291FixuLtXP2xsrcmg\nuRLJoHmqLpYLWUXM23eZBYPa0rYFdUB3N7w3LVVTxaM3GDmVVkB0Sh7RV/JQKhX08mhFL49W+LnY\nYqG6/cR+JD6nAAAgAElEQVTQHJKB+d3rCM3OjWIDCw+m8Gwv1xaVCAShKhYqJT3cW9HDvRVTgyX+\nyCnmeEoeX/x2nZSbJXR309DLoxU9PVphZ9Uy7oBBJAOhgRmMEhGHr3JfWy0h7eyaujiCUK8UCgVe\nra3xam1NuL8TOYWlxFzN49fLN1kVk4aXgxW9PFoR7NmKe+z+fnVSQxLJQGhQm+IzMBglHu8ueiIV\nzJ+DjZqB7R0Y2N6BEoOR02kFHL+Sx/x9l1GXVyd5llUnqZvZ8w8iGQgN5tjlm+y/lEvEEC/x4I9w\n17GsUJ30jCRxKbuY6JQ8Pou7ztW/qpN6e5bNbw6Pf4hkIDSIlBslrDyWyhv9PHEww2Z4gnA7FAoF\nPjprfHTWPNrNiezCUmJS8jjy500+iU6jo7OG4R3t6emuabKqJPEtFepdod7IwoNXGB/oRCcn0ROp\nINyqtY2aQb4ODPJ1oLjUSHxmKRujU/gyPoNwf0d6e7ZC2chJQSQDoV5JksSKY9fo4GjDYNETqSDU\nykqtZICvIz1dLDh2JY/NpzLkpHDvPdpGq2IVyUCoV9vi07h2s4T3B7Vr1i0nBKG5USoU3HuPlr6e\nrThxNZ+vTmWwKT6DR/wd+Uc7uwZPCiIZCHesQG/gUnYxF7OKuJhdxIWsYm6WGFk46B6s1KInUkG4\nEwqFgmCPsm4v4lIL2HIqg69OZTDWz5F+3vYN1gpJJAOhTm4WG/464RdxMavsxJ9ZoKedgxXtddZ0\ncbZlWCcdXT0dKS7Ib+riCkKLp1AoCGqjobubLafTC9hyKpPNpzIZ6+fIAB+7eu84TyQDoZLswtKy\nE372/534bxYb8G5dduLv4d6KR/yd8LSzrHTraqlSIkasFYT6o1Ao6OaqoZurht/TC9h8OpMtpzMY\n3dWRQb729TYeiOibqBloqj5WJEkio6CUC1kVrviziyk1GPHRWdNeZ41P67LmcG20FnVq3dAYsTRm\nn/wqlQqDwdBo+2tI5hQLmFc8txtLgd7A9fxSCvVGnGzV6GzVlb6fVX0PRd9EAkZJIi1PX+nEr1JA\n+79O/AN9HXimtTXOGnWz//HXnDpcE4Q7oVMBKsBYSn6e6bw7uWASyeAuMft/yRToDWVX/K2tGd5Z\nh4/Ouk79vAuC0LIYjLdf4SPOBHeJRYPbiRY+gnCXSMws5MC564zorENbx55TxdnhLiESgSDcPXxa\nW5NVWMq0XRfYEJtOTlFpreuIM4QgCIKZsVIrmdm3DUuGeFOoNzLj24usO5FW4zoiGQhCCzRgwACO\nHj1a63IdO3bk8uXLVc7bvHkz//znP+u7aEIz4tLKgmd7uxE51BtDLT8jiGQgCPWkT58+HDp0yGRa\nQ51w9+3bR9++fWtdLjExkXvuuafe9y+0LI62Fjwd7FrjMrX+gDxjxgxsbGxQKpWoVCref/998vLy\nWLp0KRkZGTg7OzN79mw0Gg0A69atIy4uDisrK6ZPn463tzcAUVFR7NixA4DRo0cTFhYGwMWLF1m5\nciV6vZ6goCAmT578t4IWhKaiUCiafZNcQahOne4M5s2bx6JFi3j//fcB2LlzJwEBAXz44Yf4+/uz\nc+dOAE6ePElaWhqRkZFMnTqVNWvWAJCXl8f27dt57733eO+999i2bRsFBQUArF69mmnTphEZGUlq\naipxcXENEacgNImKySEpKYmxY8fStWtXBgwYwE8//STPmzVrFq+//jqPPfYYHTt2ZNSoUVy/fp23\n334bPz8/wsLCOH36tLx8xbsQg8FAZGQkISEhdOrUiSFDhnDt2jUAPD09+eOPPwDIyspi0qRJdO7c\nmWHDhsnTy50/f55x48bh5+dHaGgo3377bYMdF6H5qVMyuPUh5ZiYGPnKvl+/fkRHR1ea3qFDB/Lz\n88nJySEuLo6AgAA0Gg0ajYZu3boRGxtLdnY2RUVF+Pr6AhAaGsrx48frLThBaGy3flfKX5eWljJp\n0iT69etHfHw87777LjNnzuTChQvyst999x2vvvoqp06dwtLSkhEjRhAYGMjp06cZOnQo8+fPl5et\neBeyatUqdu3axWeffca5c+eIiIjA2tq6UtneeOMNbGxsiI2NJSIigs2bN8vbKCgoYNy4cYwePZpT\np07x0UcfMXfuXJKSkur9GAnNU63VRAqFgv/85z8oFAoGDhzIwIEDyc3NxcGhrK96e3t7cnNzgbIr\nD0dHR3ldR0dHsrKyyM7Orna6TqeTp+t0OrKysuotOOHuZHh6RL1sR7V6120tL0kSTz31FGr1/32t\nSkpKCAgI4OTJkxQUFPDcc88BEBISwsCBA/nmm2948cUXARgyZAj+/v7y3xs3bmTMmDEADB8+nPXr\n11e53y+//JK33noLHx8fALp27VppGYPBwA8//MDPP/+MjY0NnTp14pFHHuHYsWMA7Nmzh7Zt2xIe\nHg6Av78/Q4YM4bvvvmP27Nm3dRyElqnWZPDuu+/SunVrbty4wbvvvouHh4fJ/FvrSBuiq6OEhAQS\nEhLk1+Hh4Y3aP01Ds7S0NJt4GiMWlarmh2hu9yReXxQKBevWreP++++Xp23ZsoVNmzaRmppaqV8Y\nT09PUlNT5XWdnJzkeVZWViYXUNbW1uTnV90b7LVr1/Dy8qqxbJmZmZSWlpqUoeJ3OSUlhdjYWJNE\nUlpaytixY2vcrtA8qVSqar+HW7Zskf/28/PDz88PqEMyaN26NQB2dnb07t2b8+fPY29vT05ODg4O\nDmRnZ2Nvbw+UXdlnZmbK62ZmZqLT6dDpdCYn88zMTPz9/SvdCZQvf6uKBS5nTn3TNFVHdQ3B3Dqq\n+7vKL47c3Ny4evUqkiTJF1BXrlyRq0j/Dnd3d5KTk+nYsWO1yzg6OqJWq0lJSZH3mZKSIs/38PCg\nb9++bNq06W+XR2h6BoOhyu+hVquV7/5uVeNvBsXFxRQWFgJQVFREfHw8bdu2JTg4mKioKAAOHDhA\nr169AAgODubgwYNAWZM2jUaDg4MDgYGBxMfHk5+fT15eHvHx8QQGBuLg4ICNjQ1JSUlIksShQ4fo\n3bv3HR8AQWiugoKCsLGx4aOPPkKv13PkyBH27t3LiBFlVVp/5456/PjxLFq0iEuXLiFJEmfOnCE7\nO9tkGZVKxZAhQ1iyZAmFhYUkJiaydetWOTE98MADXLx4ke3bt6PX69Hr9cTFxXH+/Pk7D1poUWq8\nM8jNzWXx4sUAGI1G7r//fgIDA2nfvj1Lly5l//79ctNSgB49ehAbG8vMmTOxtrZm2rRpALRq1Yox\nY8bw+uuvAzB27Fi5KeqUKVNYuXIlJSUlBAUF0b179wYLVhAaW/kPvRYWFqxfv565c+eyYsUK2rRp\nQ2RkJO3btzdZ7tb1bt1WVaZOnUpxcTHjx48nKyuLDh06yC35Kq6zYMECZs+eTVBQEL6+vowbN45f\nf/0VKPuOfvnll8yfP5/58+djNBrx8/PjnXfeqdfjITRfYjyDZkBUEzW/fQhCS1bdd6Sm8QzEE8iC\nIAiCSAaCIAiCSAaCIAgCIhkIgiAIiGQgCIIgIJKBIAiCgEgGgiAIAiIZCIIgCIhkIAhma+zYsaKv\nIaHORDIQhAYwduxY/Pz8KCkpadJylHdHIcY7FmojkoEg1LPLly9z7NgxFAqFyWhmgtCciWQgCPVs\n27Zt9OzZk0ceeYStW7fK03/++Wf69+9Pp06d6NmzJx9//DFQNijU448/TteuXfHz82P06NHyOitW\nrJCHs+zfvz+7d++W50VERDBz5kz59eXLl/H09MRoNJqU5/z587z++uucOHGCjh07VuoOXhCgDuMZ\nCIJwe7Zt28YzzzxDUFAQw4cPJzMzE0dHR15++WVWrVpFr169uHHjBn/++ScAn3zyCe7u7pw6dQoo\nG0u8nJeXFzt27MDFxYVdu3Yxc+ZMjhw5grOzc7W9mN7K19eXhQsXsmnTJnbs2FH/AQtmQSQDweyM\n/OJsvWznmwmdb3ud48ePk5KSwvDhw2ndujXt2rXj66+/5umnn8bCwoJz587RuXNn7Ozs5CEuLSws\nSE9P5/Lly3h5ecnjgwAMGzZM/nvEiBGsWLGC2NhYHnzwwdsaA6GFdk4sNCKRDASzcycn8fqydetW\nQkND5RECR40axdatW3n66adZvXo1H374Ie+//z5dunTh9ddfp2fPnkybNo2IiAjGjx8PwIQJE5gx\nY4a8vdWrV3PlyhUA8vPzKw1cIwj1QSQDQagnhYWFfPvttxiNRoKCggAoKSkhNzeXM2fOEBgYyLp1\n6zAYDKxbt45nn32W6OhoNBoNb7/9Nm+//Tbnzp0jPDyc7t27065dO1599VU2b95McHAwCoXC5I5A\no9FQVFQk7z89Pb3astW1Skm4e4lkIAj15Mcff0SlUrFv3z4sLS2BsuqZZ599li1bthAYGMgDDzyA\nnZ0drVq1QqVSAbBnzx58fX3x8vKSpyuVSgoKClAoFOh0OoxGI9u2bePcuXPy/rp27crKlStJSUlB\nq9WyYsWKasvm7OzMtWvX0Ov1WFhYNOyBEFokkQwEoZ5s27aNcePGVRpNatKkSbz22mucPXuWN998\nE4PBgK+vL8uXLwcgOTmZt956i8zMTOzt7XniiSe49957gbIhLUeMGIFSqWTs2LEmvyeEhoYyYsQI\nBg0ahE6nY/r06ezdu7fKst1///107NiR7t27o1KpiI+Pb6CjILRUYtjLZsCchnEUw14KQtO7k2Ev\n63RnYDQaee2119DpdLz22mukp6ezbNky8vLy8PHx4bnnnkOtVqPX61mxYgWXLl1Cq9Uya9YsnJ2d\nAdixYwf79+9HqVQyefJkAgMDAYiLi2P9+vUYjUYGDBjAqFGj7iR2QRAE4W+o00Nn//vf//D09JR/\nhPr8888ZNmwYkZGRaDQa9u3bB8C+ffvQarVERkYydOhQvvjiCwCuXLnCkSNHWLJkCXPnzmXNmjVI\nkoTRaGTt2rXMnTuXJUuWcPjwYbnVhCAIgtB4ak0GmZmZxMbGMmDAALkVQ0JCAn379gUgLCyM6Oho\nAGJiYggLCwOgT58+8kM00dHRhISEoFarcXFxwc3NjaSkJM6fP4+bmxsuLi6o1WpCQkKIiYlpkEAF\nQRCE6tWaDDZs2MDEiRNRKssWvXnzJhqNRn6t0+nIysoCyh6rd3R0BEClUmFra8vNmzfJzs6WpwM4\nOjqSlZVlsvyt2xIEQRAaT42/GZw4cQI7Ozu8vb1JSEgAmuZJxoSEBHn/AOHh4Wi12kYvR0OxtLQ0\nm3gaI5byJpmCIFRNpVJV+z3csmWL/Lefn5/cV1WNyeDcuXOcOHGC2NhY9Ho9hYWFrF+/nvz8fIxG\nI0ql0uTqXqfTkZGRgU6nw2AwUFBQgFarRafTkZmZKW+3vK8WSZIqTdfpdJXKUbHA5cypNYk5tY5p\nrNZEgiBUz2AwVPk91Gq1hIeHV7lOjdVE48eP5//9v//HypUrmTVrFn5+fjz//PP4+flx9OhRAKKi\noggODgYgODiYAwcOAHD06FG6desmTz98+DClpaWkp6eTmpqKr68v7du3JzU1lfT0dEpLSzly5Ii8\nLUEQBKHx3NZDZ+WtiSZOnMiyZcv46quv8Pb2ZsCAAQAMGDCA5cuX8/zzz6PVannhhRcA8PT05N57\n72X27NmoVCqeeuopFAoFKpWKJ598kgULFshNSz09Pes5REEQBKE24qGzZkBUEzW/fTSElJQU+vfv\nz7lz56rsKygiIoLk5GT5yeSm8thjjzFy5EjGjh3bpOWoTZ8+ffjggw/4xz/+cdvrbt68ma+++qrO\nXXo31Htz7NgxXnnlFQ4ePFiv272Th87E4DaCUI/69OnDoUOH5NfffPMNfn5+HDt2DA8PDxITE6vt\nNK65dCb32WefNftEAGXHq7ZjFhERgaenJ7GxsX97X/XB09OTP/74Q37dp0+fek8Ed0okA0GoRxVP\nUFu2bOGNN95g48aN9OnTp4lLdveRJIlt27bRunVrtm3b1tTFkTXXyhiRDAShnkmSxGeffca7777L\npk2b6NmzJ1B5WMo///yTMWPG0KlTJ/71r3+ZPGNTvuzWrVvp3bs33bp1IzIyUp4fGxvL8OHD6dq1\nKz169ODNN99Er9fL8z09PVm3bh333Xcf3bp14z//+Y98Etq8eTMjR47kzTffpEuXLoSFhfHLL7/I\n644dO5ZNmzbJy44aNYp3330XPz8/7r33Xvbv3y8v++effzJ69Gg6derEuHHjmDt3rslQnBXl5uby\n+OOPExAQgJ+fH0888QTXrl0z2e/ixYsZNWoUnTp1Yvz48SbHZNu2bfTu3Rt/f3+TY1GdY8eOkZ6e\nzr///W+++eYbk+NT/j5Vdwxqem+qauhS8Y7QYDAQGRkpD1f68MMPc/XqVXk400GDBtGxY0e+/fbb\nSttKSkpi7NixdO3alQEDBpiMoT1r1izmzp3L448/TqdOnRg2bJjJXcbfJZKBINSzjRs3EhERwZYt\nW+QWdVWZMWMGgYGBnD59mlmzZrF169ZK1RHR0dEcOnSIzZs3s2zZMs6fPw+AWq3m3//+N6dPn2bX\nrl388ssvbNiwwWTd3bt388MPP7B7925+/PFHvvrqK3leXFwcXl5enD59mpdeeomnn36a3NxceX7F\ncsTFxeHr68vp06eZNm0aL7/8skkMPXr0ICEhgZdeeomvv/662ioVo9HIv/71L44fP87x48extrbm\nzTffNFlm586dLF26lN9++42SkhI++eQTABITE5k7dy4rVqzg5MmTZGdnmySSqmzdupUHH3yQ4cOH\nA2VdhVcUGxtb7TGoy3tTUcU7wlWrVrFr1y4+++wzzp07xwcffICNjQ1ff/01AHv37iUxMVEuVzm9\nXs+kSZPo168f8fHxvPvuu8ycOZMLFy7Iy+zatYuXXnqJM2fO4O3tzX//+98aj8HtEF1YC2bn2805\n9bKd4Y863PY6kiRx6NAhQkJC6Ny5+hHXUlJSiI+PZ8uWLVhYWNCnTx8GDRpUqQrhxRdfxMrKiq5d\nu9K1a1cSEhLw9fU1STKenp5MmDCBo0ePMmXKFHn6jBkzsLe3x97enilTprBz507+9a9/AeDk5CQv\nO2LECFatWsXevXsZM2ZMpbJ6eHjI6z3yyCPMnTuXjIwMiouLiY+PZ+vWrajVanr16lVlDOVat27N\nkCFD5NczZ87k0UcfNVnm0UcfxdvbG4Dhw4fLJ/Dvv/+eQYMG0bt3bwDmzJnD+vXrqz2+hYWFfP/9\n90RGRqJWqxk6dCjbtm3j4Ycflpep7hj07du3yvemrr788kveeustfHx8gLJxJ+ri5MmTFBQU8Nxz\nzwEQEhLCwIED+eabb3jxxRcBePjhh+VOPv/5z38yf/78OperNiIZCGbnTk7i9UWhULBw4UKWLVvG\nyy+/TERERJXLpaamYm9vj42NjTzNw8OjUis5FxcX+W9ra2sKCwsBuHDhAvPnz+fUqVMUFhZSWloq\nnyTKVWw54uHhQVpamvzazc3NZFkPD49qR0qrWIby8ubn55ORkYGDgwPW1tYm+6yupV9hYSHvvPMO\nBw4ckK/A8/PzkSRJvqq+Nd78/Hyg7Hi1adPGpBzlQ4tW5YcffkClUtG/f3+g7MRZXt1T/mBrdccg\nLS2tTu9Nda5du4aXl1edlq0oNTW1UmsfT09PUlNTgbLPlpOTkzyv4vGpD6KaSBDqmZOTE5s3b+bY\nsWO8/vrrVS7j6upKbm6ufHKHsruFurZaef311+nYsSOHDx/m7NmzvPrqq/JvERW3V/Hviie/8hNM\nxfmurq512nfFGHJyckxiqOmE+fHHH3Px4kW+//57zp49y7Zt25AkqU4/qLq5uZlsu7CwsMaxoLdu\n3UpBQQG9e/cmKCiIZ599Fr1eb9KUtLpjUNt7Y2trazLPYDCY9KTg7u5OcnJyrTFVF2PF43HlyhWT\nJNiQRDIQhAbg6urK5s2biYqKYt68eZXme3p6EhAQwAcffIBer+f48ePVjlJWlYKCAjQaDTY2Npw/\nf56NGzdWWubjjz8mNzeXlJQU1q1bx4gRI+R5GRkZrF27Fr1ez7fffsv58+flh0frqjyGJUuWoNfr\niYmJYe/evdUmtIKCAmxsbNBqtWRnZ7N06dJKy1SXGB5++GH27t1LdHQ0JSUlLF68uFLyK3ft2jUO\nHz7Mhg0b2LNnj/xvxowZJq2KqjsGHh4eNb43Pj4+FBcX8/PPP6PX6/nwww8pKSmR548fP55FixZx\n6dIlJEnizJkzcuJydnau9kffoKAgbGxs+Oijj9Dr9Rw5coS9e/fK71tDt0ISyUAQGoiHhwdbtmzh\n+++/Z+HChZXaxa9cuZLY2Fj8/PxYunQpjzzyiMn6Nd0lvPXWW+zcuZNOnToxZ84cRo4cWWn5wYMH\nM2TIEAYPHszAgQPlen8oO/FcunSJgIAAFi9ezKpVq3BwqFy9VlVb/oqvV6xYwYkTJ/D392fx4sUM\nHz5cHv/5VlOmTKGwsJBu3boxcuRI+vfvX+O2K+67U6dOLFiwQP7B2sHBodoHqLZv346/vz+hoaE4\nOTnh5OSEs7MzkydP5uzZs/KzHj169Kj2GNT03tjZ2fHee+/xyiuvEBwcjK2trUlZpk6dyvDhwxk/\nfjydO3dmzpw5FBcXA2W/Ac2aNYuuXbvy3XffmcRoaWnJ+vXr2b9/PwEBAbz55ptERkbSvn37Or0X\nf5d4ArkZaKlP1FZFPIHcPHh6enL48GHatWtXad7tPn17O5599lk6duwo/+ApNA3xBLIgCI3qt99+\nIzk5GaPRyL59+9izZw+DBw9u6mIJd0C0JhIEM1TXNvF/V3p6OlOmTCE7Oxt3d3fef//9St3NCy2D\nqCZqBsyp2kNUEwlC0xPVRIIgCMIdEclAEARBEMlAEARBEMlAEARBQCQDQRAEAZEMBEEQBGp5zqCk\npIR58+ah1+sxGo306dOH8PBw0tPTWbZsGXl5efj4+PDcc8+hVqvR6/WsWLGCS5cuodVqmTVrFs7O\nzgDs2LGD/fv3o1QqmTx5stzDYlxcHOvXr8doNDJgwABGjRrV8FELQgPo06cPGRkZqFQqNBoN/fr1\nY8GCBdja2jZ10QShVjXeGVhaWvLOO++wePFiFi1axG+//UZSUhKff/45w4YNIzIyEo1Gw759+wDY\nt28fWq2WyMhIhg4dyhdffAGU9bx35MgRlixZwty5c1mzZg2SJGE0Glm7di1z585lyZIlHD58mCtX\nrjR81ILQABQKBRs2bCAxMZGffvqJ06dPN/ng9oJQV7VWE1lZWQFQWlpKaWkpCoWChIQE+vbtC0BY\nWBjR0dEAxMTEEBYWBpRdJZ06dQooG60pJCQEtVqNi4sLbm5uJCUlcf78edzc3HBxcUGtVhMSEkJM\nTEyDBCoIjcnZ2ZmwsDASEhKAsg7dyodB7N+/P7t375aXrW0Yyhs3bvDSSy/Ro0cPevbsyaJFi6rt\nsVMQ7lStycBoNPLKK6/w9NNPExgYiKurKxqNBqWybFWdTiePD5qVlYWjoyMAKpUKW1tbbt68SXZ2\ntjwdwNHRkaysLJPlb92WILRE5Q/0X716laioKHnULi8vL3bs2MG5c+eYPXs2M2fO5Pr16/J6NQ1D\nOXv2bCwsLDh8+DA//fQTBw8e5Msvv2z84ASzVmvfREqlksWLF1NQUMDixYtNBsxoLAkJCfIVFkB4\neDharbbRy9FQLC0tzSaexohFpVLVOL8ug6XXxfPPP39by0uSxFNPPYVCoSA/P5/7779fHi942LBh\n8nIjRoxgxYoVxMbG8uCDDwLVD8EYGhrK/v37OXPmDNbW1tjY2DBlyhS++OILJk6cWC9xCuZHpVJV\n+z3csmWL/Lefn5/cl1SdO6qztbXFz8+PxMRE8vPzMRqNKJVKk6t7nU5HRkYGOp0Og8FAQUEBWq0W\nnU5nMhJQZmYmjo6OSJJUaXr5kHQVVSxwOXPqm8ac+tpprL6JanK7J/H6olAoWLduHffffz9Hjx5l\nxowZZGZmotVq2bp1K6tXr5Z/E8vPzzcZqauqIRjT0tJISUlBr9fTo0cPeZ7RaMTDw6NxghJaJIPB\nUOX3UKvVEh4eXuU6NVYT3bhxQx5js6SkhFOnTuHp6Ymfnx9Hjx4FICoqiuDgYACCg4M5cOAAAEeP\nHpUH7Q4ODubw4cOUlpaSnp5Oamoqvr6+tG/fntTUVNLT0yktLeXIkSPytgShJevbty/h4eG8++67\npKSkMGfOHBYsWEBCQgJnzpyhU6dOJiNXVTUEo5ubG+7u7lhaWnL69GnOnDnDmTNnOHv2LD///HNj\nhySYuRrvDHJycli5ciVGoxGj0ch9991Hjx498PT0ZNmyZXz11Vd4e3vLw+UNGDCA5cuX8/zzz6PV\nannhhReAsoE27r33XmbPno1KpZJvpVUqFU8++SQLFiyQm5Z6eno2fNSC0Aiefvpp+vTpQ05ODkql\nEp1Oh9FoZNu2bZw7d85k2fIhGB9//HF2794tD8Ho4OBAWFgY8+bNY86cOdja2vLnn3+SmpoqN+IQ\nhPogurBuBkQ1UfPbx53o27cvH3zwAffff7887fXXXycjIwNfX182btyIUqlk7NixnDp1irFjxzJu\n3Dg2b97Mpk2b8Pf3Z/v27Tg7O/Of//yH0NBQoKxK9L333mPPnj3k5+fTtm1bZsyYYTKmsSBUdCdd\nWItk0Aw015Pbnbibk8GdashhKIW7kxjPQBAEQbgjIhkIQhOrz2EoBeFOiWqiZsCcqj1ENZEgND1R\nTSQIgiDcEZEMBEEQBJEMBEEQhNvojkIQmpPG6stJpVJhMBgaZV8NzZxiAfOKpznEIpKB0OI05o/H\n5vRjtTnFAuYVT3OIRVQTCYIgCCIZCIIgCCIZCIIgCIhkIAiCICCSgSAIgoBIBoIgCAIiGQiCIAiI\nZCAIgiAgkoEgCIKASAaCIAgCtXRHkZGRwcqVK8nNzUWhUPDAAw/w8MMPk5eXx9KlS8nIyMDZ2ZnZ\nsy/70ygAABS3SURBVGej0WgAWLduHXFxcVhZWTF9+nS8vb0BiIqKkof1Gz16NGFhYQBcvHiRlStX\notfrCQoKYvLkyQ0ZryAIglCFGu8M1Go1TzzxBEuWLGHBggX8+OOPXLlyhZ07dxIQEMCHH36Iv78/\nO3fuBODkyZOkpaURGRnJ1KlTWbNmDQB5eXls376d9957j/fee49t27ZRUFAAwOrVq5k2bRqRkZGk\npqYSFxfXwCELgiAIt6oxGTg4OODl5QWAtbU1Hh4eZGVlERMTI1/Z9+vXj+joaACT6R06dCA/P5+c\nnBzi4uIICAhAo9Gg0Wjo1q0bsbGxZGdnU1RUhK+vLwChoaEcP368oWIVBEEQqlHn3wzS09NJTk6m\nQ4cO5Obm4uDgAIC9vT25ubkAZGVl4ejoKK/j6OhIVlYW2dnZ1U7X6XTydJ1OR1ZW1t8OShAEQbg9\nderCuqioiIiICCZNmoSNjY3JvFsH8m6IIZUTEhJISEiQX4eHhzdaf/aNwdLS0mziMadYwLziMadY\nwLziacxYtmzZIv/t5+eHn58fUIdkUFpaSkREBKGhofTu3RsouxvIycnBwcGB7Oxs7O3tgbIr+8zM\nTHndzMxMdDodOp3O5GSemZmJv79/pTuB8uVvVbHA5Zq67+/61Bz6Mq8v5hQLmFc85hQLmFc8jRWL\nVqslPDy8ynk1VhNJksTHH3+Mh4cHQ4cOlacHBwcTFRUFwIEDB+jVq5c8/eDBgwAkJiai0WhwcHAg\nMDCQ+Ph48vPzycvLIz4+nsDAQBwcHLCxsSEpKQlJkjh06JCccARBEITGU+Odwblz5zh06BBt27Zl\nzpw58P/bu//YJu77j+PPc1ziYEhcB1BHC2shaUeBhEyBaesKrFul/VAl2m5oQ1pF0b5lUKjUaZOW\nsg5p0tiklTGqwSKNoGzpd+3QJlD315g00lT7oUGXKGogChGNRMcI5CexEzf+8fn+EXzxzyQEx3b8\nfT2kyHefO58/r+R87/P5cgfs2LGDbdu2ceTIEc6dO2efWgrwyU9+ktbWVvbv34/L5WLPnj0ALFq0\niGeffZa6ujoAvvrVr9qnon7rW9/i2LFjjI+PU1NTw4YNG+YsrIiIpGaZuTjInwXXrl3LdRcyRh93\n81ch5SmkLFBYebKVZfny5Wmn6T+QRURExUBERFQMREQEFQMREUHFQEREUDEQERFUDEREBBUDERFB\nxUBERFAxEBERVAxERAQVAxERQcVARERQMRAREVQMREQEFQMREUHFQEREUDEQERFUDEREBHBON8Px\n48dpbW2ltLSUw4cPA+Dz+Thy5Ah9fX0sXbqUl19+2b7B/cmTJ2lra6O4uJi9e/fy0EMPAdDc3Mzp\n06cBeOaZZ9iyZQsAV65c4dixYwSDQWpqanj++efnJKiIiKQ37SeDz33uc7zyyitxbWfOnKGqqoqj\nR4+ybt06zpw5A8C///1vent7ef3113nhhRc4ceIEMFE8/vjHP3Lo0CEOHTrEH/7wB0ZHRwH49a9/\nzZ49e3j99de5fv06bW1tmc4oIiLTmLYYrFmzxt7rj7pw4YK9Z79161bOnz+f1F5ZWYnf72doaIi2\ntjaqqqpwu9243W7Wr19Pa2srg4ODBAIBKioqANi8eTP/+te/MhpQRESmN6vvDIaHh/F4PACUlZUx\nPDwMwMDAAOXl5fZ85eXlDAwMMDg4mLbd6/Xa7V6vl4GBgVkFERGR2Zv2O4PpWJYVN26MudtFJuno\n6KCjo8Me3759O4sXL8746+TKggULCiZPIWWBwspTSFmgsPJkM8upU6fs4bVr17J27VpglsWgrKyM\noaEhPB4Pg4ODlJWVARN79v39/fZ8/f39eL1evF5v3Ma8v7+fdevWJX0SiM6fKLbDUSMjI7Ppel5a\nvHhxweQppCxQWHkKKQsUVp5sZVm8eDHbt29POW1Wh4lqa2tpbm4G4J133mHjxo12e0tLCwBdXV24\n3W48Hg/V1dW0t7fj9/vx+Xy0t7dTXV2Nx+OhpKSEy5cvY4zh3XffZdOmTbPpkoiI3AXLTHNc5xe/\n+AWXLl3i1q1beDwetm/fzsaNG9OeWtrQ0EBbWxsul4s9e/awatUqAM6dOxd3aunWrVuByVNLx8fH\nqampYdeuXTPq+LVr12abOe9oDyd/FVKeQsoChZUnW1mWL1+edtq0xSBfqRjkp0LKAoWVp5CyQGHl\nyYdioP9AFhERFQMREVExEBERVAxERAQVAxERQcVARERQMRAREVQMREQEFQMREUHFQEREUDEQERFU\nDEREBBUDERFBxUBERFAxEBERMnAPZJFMC4VCjI2NEQgECAQCKYeDwSCWZdk/DocjbnyqNmDG87vd\nboLBIEVFRRQVFeF0Ou3hqcajryMyX6gYyJwKBoNpN+iJj9HhSCRCSUkJLpcLl8tFSUmJPV5aWsqy\nZcu45557MMak/IlEInfUFg6H004bHh5mbGyMcDhs/4RCobjxVO1AymIxVSFxOBz2z1Tjs50WDofx\n+/3238ayrKS/V2xbuuGZzOd0Ou3iKvODisH/ExcvXmRsbGxGG0ggblq6tlQbYsuy8Pl89oYdSNqg\nR8c9Ho89HPt4zz335M1GZLZ3oIpEIklFY6rxSCRiP0Z/YsfHx8fTTpvqebHj0X4BxN7gMNXNDtNN\nT5w31bRogY1EImkL4XSFcibzuN1uAoEAMFmEYj/VpWq/k+HoY+Inxuh44mOqtvkkL4pBW1sbjY2N\nRCIRnnjiCbZt25brLhUcv99PIBBIOkwS3WuMbZvt4RfLsli0aFHcnr3T6Zx3b4pMcDgcLFiwINfd\niJPt20RGi8J0n6hmMs/4+HjSPEVFRQSDwbgilG44ti1de7rhVDtA0eHEx8QdqHRFIrGtqKgIIO5T\n3Z38FBUVxS0r3fBUt73MeTGIRCI0NDTw6quv4vV6qauro7a2lgceeCDXXSsoGzduzMrrZGOD81Eg\ngm8k+mYDCyDm0W639+7ip8c/Wlgxz0l8HF8QIThu4p+XMDwx7/+/gjcdy7JwOp04nXOzmcn3eyBP\nV0Bih0tKShgZGYk7dBn76W42P6FQKKltKjkvBt3d3dx3330sW7YMgMcee4wLFy6oGEhat4bCdHUE\niB6hSP1oJh4N3B5NfrT3AKdazsjtN266ZUz2K6noxA3HFCaixYq4ttiRpNJipW5LOWqlbity+ImY\nCJYFDsdkHyyHNTl8e9xhTT3dspiYx17O7Xkc8d0ySQPp29PNazcnzFBcPHH4LPZ3bf8Nov2J/u4S\nCrc9nmZa3N8vY/2OnlRQlHy4LVTC+NjkeuKI/o0cpN6BIaE95Q5Nwo7ONPsrOS8GAwMDlJeX2+Ne\nr5fu7u5pn2c+6Lo9kPAOjhs2kw+p2qIDqZZxp1LtGabcW0xuCy0swYyOJbSm6Euq/t1NnxPF9jep\n7+m2PPEjoYULMbe/K0jaOiUuM2lraMU9pGtfgsWSh1O80xO3xo6YdzVMvLvSTbeIf+fdXt6iRYvx\n+UYS/hzx64sxJmY1MpOrUyS2zdht0afaz0tYJ03MsP2KcetwIpM8ySSvQSWuEkZHA7dfGyIGezjV\nT+R2AYybLzKZa3I+a2IeJtvSrB4To0nrQcxD0qT0610kHCYyPo6JeW0S+kGq4aR5rbjnRf+W0fFU\nRTZpdKppcdlTNYKzKEAoNHHiQcqdl2jfsCazpJxO8vSY8Uc+kaZj5EExmK3I/9an3rVKubsVHZ9i\nY5NuQ5VophvflPOl3piPOZ1Ebp+BktCJFE3TlPeZzjdVjlRblnTTEyaNFTkmsiQuI13Bna6dVGs4\niVvVybakd3SKrULcliAyxXTDLcuafM1U7/64dS/6YE2OTreTkFjwUrzEDBrTvE7iLA4Wz2T9nctD\nXlOtW0mTpp7XcliYSAZ3hlIyTLtLncodPsWyHJjo+ht93Rm/N9K0xY3fXt//5920fch5MfB6vfT3\n99vj/f39eL3euHk6Ojro6Oiwx7dv386K429lrY8iIoXi1KlT9vDatWtZu3btxIjJsVAoZPbt22d6\ne3tNMBg03/3ud83Vq1enfM4Pf/jDrPTt97//fVZep5DyFFIWYworTyFlMaaw8uRDlpx/MigqKmLX\nrl38+Mc/tk8tne7L46VLl2alb3bFnGOFlKeQskBh5SmkLFBYefIhS86LAUBNTQ01NTUznj965tFc\ny9ZKXUh5CikLFFaeQsoChZUnH7LMywuoZGtly5ZCylNIWaCw8hRSFiisPPmQxTImk+cmiojIfDQv\nPxmIiEhmqRiIiEh+fIEM0NfXx7FjxxgeHsayLD7/+c/z5S9/GZ/Px5EjR+jr62Pp0qW8/PLLuN1u\nAE6ePElbWxvFxcXs3buXhx56CIDm5mZOnz4NwDPPPMOWLVvmZZaenh5OnDjB2NgYDoeDp59+ms98\n5jPzMkvU6Ogo3/nOd9i0aRO7du3KapZM5+nr66O+vp7+/n4sy6Kuri5rZ4XMRZ433niD1tZWIpEI\nVVVVPP/883md5T//+Q/Hjx+np6eHr3/96zz11FP2svLh4peZypNuORmXlZNbZ2BwcNB88MEHxhhj\nxsbGzEsvvWSuXr1qmpqazJkzZ4wxxpw+fdq88cYbxhhj3nvvPXPo0CFjjDFdXV3mlVdeMcYYMzIy\nYvbt22d8Pp/x+Xz28HzMcu3aNfPf//7XGGPMwMCAeeGFF4zf75+XWaJOnjxpjh49ahoaGrIXIkYm\n8xw8eNC0t7cbY4wJBALmo48+ymKSCZnK09nZaX7wgx+YSCRiwuGwOXDggOno6MjrLMPDw6a7u9u8\n+eab5u2337aXEw6H7/h/l/I5T7rlZFreHCbyeDw8+OCDwMT17++//34GBga4cOGCvWe/detWzp8/\nDxDXXllZid/vZ2hoiLa2NqqqqnC73bjdbtavX09bW9u8zPKxj32M++67D4B7772X0tJSbt26NS+z\nAFy5coXh4WGqqqqymiFWpvJ8+OGHRCIR1q9fD0BxcXFOLlmdqTyWZREMBgkGg/bloj0eT15nKS0t\nZfXq1fbln6NiL37pdDrti19mW6bypFrO4OBgxvubN4eJYt24cYOenh4qKysZHh62V8qysjKGh4eB\n5AvclZeXMzAwwODgYMr2XLmbLLFvxu7ubsLhsF0ccuFuspSWltLU1MT+/ftpb2/PSf8T3U2e/v5+\nFi5cyGuvvcbNmzdZv349O3bsyOntLu8mz8MPP8yjjz7K7t27McbwxS9+ccpr38+1mWRJZ7YXv5xL\nd5Mn3XIyLW8+GUQFAgEOHz7Mzp07KSkpiZuWeLVDk+dnxWYqy+DgIL/85S/Zu3fvnPRzJu42y9mz\nZ6mpqUm67lSu3G2ecDhMZ2cnzz33HD/5yU/o7e2lubl5Lrs8pbvNc/36da5du0Z9fT319fW8//77\ndHZ2zmmf07mTLPNBpvIEAgF+/vOfs3PnTlwuV6a7mV+fDEKhEIcPH2bz5s1s2rQJmKicQ0NDeDwe\nBgcHKSsrA9Jf4M7r9cZd1K6/v59169ZlNwiZyQITX7j+9Kc/5Rvf+AYVFRVZzwGZydLV1UVnZyd/\n/vOfCQQChEIhXC4XO3bsmJd5wuEwDz74oP2foxs3buTy5ctZzwKZydPS0kJlZSXFxcUAbNiwga6u\nLj7xiSmueZzjLOnM5OKX2ZKJPLHLefzxx+3lZFrefDIwxlBfX8/999/PV77yFbu9trbW3uN65513\n7Dt21dbW0tLSAkBXVxdutxuPx0N1dTXt7e34/X58Ph/t7e1UV1fPyyyhUIjXXnuNLVu28KlPfSqr\nGaIyleWll17i+PHjHDt2jG9+85ts2bIlJ4UgU3lWr16N3++3v8N5//33WbFiRXbDkLk8S5Ys4eLF\ni/Ydsi5dupT1G0zdaZbY58VavXo1169f58aNG4RCIf7+979TW1s75/1PlKk86ZaTaXnzH8idnZ0c\nPHiQlStX2h+dduzYQUVFRdpT5BoaGmhra8PlcrFnzx5WrVoFwLlz5+JOLd26deu8zNLS0sKvfvWr\nuI3Miy++yMc//vF5lyVWc3MzV65cycmppZnM097eTlNTE8YYVq1axe7du5O+/JsveSKRCCdOnODS\npUtYlsWGDRt47rnn8jrL0NAQdXV1jI6O4nA4cLlcHDlyBJfLRWtra9yppU8//XRWs2QyT09PT8rl\nbNiwIaP9zZtiICIiuZM3h4lERCR3VAxERETFQEREVAxERAQVAxERQcVARERQMRAREfLschQi+eTF\nF19keHiYoqIiHA4HDzzwAJs3b+YLX/jCtNeUuXHjBvv37+fNN9/M6cXrRGZKxUBkCt///vdZt24d\nY2NjdHR00NjYyOXLl3N60UCRuaBiIDIDJSUl1NbW4vF4OHDgAE899RQ3b97krbfeore3l4ULF/LE\nE0/wta99DYCDBw8CsHPnTgBeffVVKisr+etf/8qf/vQnhoaGqKioYPfu3SxZsiRXsURs+vwqcgcq\nKiooLy/n0qVLuFwu9u/fz29+8xvq6uo4e/asfaOSH/3oRwA0Njby29/+lsrKSs6fP8+ZM2f43ve+\nR0NDA2vWrOHo0aO5jCNiUzEQuUP33nsvfr+fRx991L6I4MqVK3nssce4ePEikPqeAX/5y1/Ytm0b\ny5cvx+FwsG3bNnp6eujr68tq/0VS0WEikTs0MDDAokWLuHz5Mr/73e+4evUqoVCIYDDIpz/96bTP\nu3nzJo2NjTQ1NSUtT4eKJNdUDETuQHd3NwMDAzzyyCP87Gc/40tf+hIHDhzA6XTS2NjIyMgIkPoO\nVkuWLOHZZ5/ls5/9bLa7LTItHSYSmUL0cM/o6CjvvfceR48eZfPmzaxcuZJAIIDb7cbpdNLd3c3f\n/vY3uwiUlpZiWRa9vb32sp588klOnz7Nhx9+aC/zH//4R/ZDiaSg+xmIpBH7fwaWZbFixQoef/xx\nnnzySSzL4p///CdNTU34fD7WrFnDsmXLGB0dZd++fQCcOnWKs2fPEg6HOXDgABUVFbS0tPD2229z\n8+ZNFi5cSHV1Nd/+9rdznFRExUBERNBhIhERQcVARERQMRAREVQMREQEFQMREUHFQEREUDEQERFU\nDEREBBUDEREB/g+3PMDLREo6QAAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa058580748>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"neth_violentcrime.plot(kind='line', title='Violent Crime in the Netherlands')" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 29, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa05856f128>" | |
] | |
}, | |
"execution_count": 29, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAawAAAEPCAYAAAAeQPDsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl8U1X+//HXTdK9aUtKy9Kyl7VYqIBlUYoojigoIDIo\nOIBfRekMCuOGqIjOiDojoCDKTxlFxQVEQcZxA1lEECzYChRlF1ks0BW6t8n5/ZHmknShpSsJn+ej\nfeRuubknyb3ve+5yoimlFEIIIcQlztDYCyCEEEJUhwSWEEIItyCBJYQQwi1IYAkhhHALElhCCCHc\nggSWEEIItyCBVU8GDRrE5MmTazWPpUuX4uXlVUdLVN5vv/2GwWBg69at9fYaF6tt27Y899xzen+7\ndu2YM2dOIy6RuBTUdF3YuHEjBoOBkydP1sNS1b/Zs2fTsWNHt52/s7rYntU6sCZOnIjBYMBgMGAy\nmWjVqhUTJky4pL4gR48eZcKECbRu3RpfX19atGjBkCFDWLdunT5NVFQUzzzzzEXP+5///Cft2rUr\nN3z16tXMmzevWvM4fvw4BoOB7777zmX42LFj6/V9bN26NampqVx11VW1mk9dbhQ0TUPTNL1/x44d\nTJ8+vdbzLctgMPDBBx+UG17RSvX222/Tq1cvgoODCQoKolu3bhe9M+LYOSj7361bt1qVQ5xX03W4\npmbPno3BYODPf/5zuXEmk4l333232vOqbBvQEJzXt0udqS5mMnDgQFasWIHVauXgwYP89a9/5fbb\nb2fLli11MftaKS4u5vrrr6dNmzZ8+OGH+kZ648aNZGRk6NPV9YcWEhJy0c8pew+3r68vvr6+dbVI\n5RgMBsLDw+tt/nUhNDS0UV9/6dKlJCQkMHfuXG644QYA9u7dy5o1a2o0vzVr1rjsIJhMFa+CxcXF\n9Vq79kSNseH19fXlk08+Yfv27cTFxdV6WRqqHQebzdbgr1kX6uSQoLe3N+Hh4bRo0YJrrrmGe++9\nlx9++IGcnBx9mnvvvZeoqCj8/f3p0KEDTzzxBEVFRfp4R9X0gw8+oH379vj5+XHDDTdw9OhRl9da\nu3YtAwYMwN/fn8jISO6++26X4CkrJSWFQ4cOsWDBAgYMGECrVq3o06cPjzzyCGPGjAHsh+8OHTrE\nM888o+/5/v7771Uu99KlS5k1axZHjx7Vn/fss8/q87z33nv15fj+++8ZMGAAQUFBBAUF0bNnT775\n5hvAXtMBuPbaazEYDLRv316ff9mN1s6dO7nxxhsJDg7GbDYTFxfHjz/+CNj30m677TbCwsLw8/Oj\nQ4cOvPTSS5W+N2UPCTr6P/74Y4YNG0ZAQAAdOnTgnXfeqXQeFXHUuNatW8fAgQMJCAggOjqar776\nymW6n3/+mf79++Pr60unTp1YsWJFuXmVPUT4wQcfEBcXR0hICGFhYQwbNowDBw5c1PJdjNWrVzN8\n+HASEhKIiooiKiqKW265hSVLltRofhaLhfDwcP3fYrHo7/sHH3zATTfdRGBgILNmzQKqv96sWbOG\nLl26EBgYyLXXXsvBgwddXvdC3xu4+PWqIkeOHGHUqFFEREQQEBBATEwMy5Ytc5nGsV784x//oEWL\nFoSGhjJhwgRyc3P1aZRSPPXUU4SHh2M2mxk7diyZmZkXfO2y67DRaNTXYbDvZFzou3jq1CkmTpxI\neHg4QUFBXH311WzevLnKMkdERHDbbbfx8MMPX3C6nJwcHnzwQSIjIwkICODKK69k1apV+vjKtgEO\n1fl8b7jhBsxmM+Hh4dx2220u5Xd8T1asWEGXLl3w8fFh//795ZazIT/Di91eQR0FlnNCnzx5kpUr\nV2IymTAajfr4Zs2a8eGHH/Lrr7/y8ssv8/bbb5c7N/HHH3+wePFiVq5cyebNmzl79iyjRo3Sx69f\nv54RI0Zw5513snv3blavXs1vv/3mMk1Z4eHh+kbYeUV3tmrVKtq2bcvDDz9MamoqqampREZGVrnc\nY8eO5bHHHiMyMlJ/nuOL63xoq6SkhFtuuYV+/fqRlJREUlISzzzzDP7+/gD89NNPAHz66aekpqaS\nmJhY4XKmpKQwcOBAQkND2bBhA8nJyUyfPl1//xMSEjh37hzffvst+/bt4z//+Q+tWrWq9L2pzIwZ\nM5g4cSK7d+9m7Nix3HPPPTUKhYcffpgnn3ySXbt2ERcXx5///GeysrIAyM/P56abbsJisZCYmMi7\n777LSy+9xOnTp13mUfYQYVFREbNmzSIpKYl169ZhNBq5+eabKS4uvujlq46WLVuSmJhYZ6F4ob3Z\nxx57jLvuuouUlBTuv//+i15vPvzwQ7Zu3cq5c+e4++679fGVfW8ce9k1Wa8qkpuby/XXX89XX33F\nnj17mDx5MpMmTWLjxo0u061cuZKsrCw2bdrERx99xOeff86LL76oj1+wYAHz589n7ty5JCUl0atX\nL5555pkL1lrKrsN//PEHkZGR+viqvovXXnstubm5fPXVVyQnJ3PTTTcxZMgQfv311yrL/fzzz5OY\nmMinn35a4XilFMOHD2f37t2sWLGClJQUpkyZwtixY1m/fj1w4W1AVZ/v3r17GTRoEAMGDGDnzp1s\n2LABo9HIkCFDKCws1Kc7efIkr7/+Ou+99x6//PKLy/vj0JCfYY22V6qWJkyYoEwmkwoMDFT+/v5K\n0zSlaZp65JFHLvi8efPmqY4dO+r9Tz/9tNI0TR06dEgftn//fqVpmlq/fr1SSqn4+Hj1+OOPu8zn\n6NGjStM0lZycXOlrLV68WAUGBio/Pz81YMAA9dhjj6nExESXaaKiotQzzzxTZXnLLvc//vEP1bZt\n23LTDRo0SN17771KKaUyMjKUpmlq48aNFc7z2LFjStM0tWnTJpfhb7/9tjKZTHr/+PHjVc+ePStd\nth49eqjZs2dXWQaHI0eOKE3T1JYtW1z658+fr09jtVqV2WxWb7zxRqXz2bBhg9I0TZ04ccKlf9Wq\nVfo0p06dUpqmqW+++UYppdSbb76pAgMDVVZWlj7Nnj17lKZp6rnnntOHtW3b1qW/rPT0dKVpmtq6\ndWu1y62UUpqmqffff7/c8LLveWpqqrr66quVpmmqbdu26s9//rN64403VG5u7kW9nuO99ff3V4GB\ngfr/u+++q4/75z//WeV8KlpvTCaTSktL04ctX75cGQwGVVhYqJSq+ntT0/WqOm699VZ9PXC8Vtll\nmTJliurXr5/eHxERoZ588kmXaUaPHq28vLwu+FoVrcPV+S6+/fbbKjIyUpWUlLg8d/DgwWratGmV\nvt7TTz+toqKilFJKTZ8+XXXs2FGfh8lkUu+8846+DL6+vio7O9vl+ZMmTVIjRoxQSlW+DajO5zth\nwgQ1duxYl+cVFBQof39/tXr1an0+BoNBHTt2rNIyVKYuP0Pndetit1dKKVUnNay+ffvy888/8+OP\nP/LUU0/Rv39//vGPf7hM8+abbxIXF0fz5s0xm83MnDnTpcoKEBYW5lIV7tixI02bNiUlJQWAxMRE\n5s+fj9ls1v+jo6PRNK1cFdnZfffdR2pqKp988glDhgxh06ZNxMXF8a9//avKslVnuavSpEkT7rnn\nHv70pz9x00038eKLL1ZYHa/Kzp07ue666yodP23aNObMmUPfvn2ZMWNGtQ5pVKRnz556t+M816lT\np2o1n/DwcIxGoz6fvXv30q1bN4KDg/VpoqOjXforkpyczMiRI2nfvj1BQUG0adMGoNyh47rSrFkz\nNm/ezN69e3n88ccJCAjg0UcfpXv37pw5c+ai57d06VJ+/vln/X/EiBH6uIoufqnO969ly5Yu5/pa\ntGiBUkqvrVb1vanpelVWXl4eM2bMoHv37oSGhmI2m/niiy9cllfTNHr06OHyvBYtWujfi7Nnz3Ly\n5En69+/vMs2AAQNqda7lQt/FxMREUlNTCQkJcXkPNm/eXO3yP/XUU6SlpfHaa6+VG5eYmEhRURER\nEREu83///ferNf+qPt/ExERWrVrlMu+mTZtSWFjoMv9mzZpVWKtyVt+fobOabK/q5KILX19fPWie\neeYZDh06xNSpU3njjTcA+Pjjj/nb3/7Giy++SHx8PEFBQaxYsYInnnjiol5HKcWMGTO46667yo1r\n1qzZBZ8bEBDA0KFDGTp0KE8//TT33nsvs2bN4u9//3ulJ77rarkB3njjDR588EG++eYb1q5dy1NP\nPcWrr756UVebaZp2wZV24sSJ3HjjjXz11Vds2LCBoUOHMnLkSN57772LWlZvb+9yr+t8kram84Ha\nnezNy8vjhhtuYODAgSxdupRmzZqhlCI6OrrSw72VCQoKIjs7u9zwrKysCi906dKlC126dGHy5Mk8\n9dRTdOrUiddff10/11RdERER5c5PpKenA/bvqLPqfv8q+rzg/Htd1femNuuVs0ceeYQ1a9Ywf/58\nOnfujL+/Pw899FC597muvl8X40LfRZvNRteuXVm9enW5aRyH7avSpEkTnnjiCZ599lkmTJhQ7nWC\ng4PZsWNHtZarqmnKfr5KKf7yl78wY8aMcs+1WCx6d9nvV0Ua8jOsyfaqTgKr7LHl2bNn07VrV+67\n7z569erFd999R2xsLNOmTdOnOXLkSLn5nDlzhsOHD+sr9P79+0lLS9Mv/e3duzd79uwpt8LXRJcu\nXSgqKiI7O5vQ0FC8vb2xWq0u01RnuSt6XmWio6OJjo5m+vTpTJkyhTfeeIPJkyfrH35V8+nVqxff\nfvstSqlKj+c3b96ciRMnMnHiRIYOHcqdd97J66+/TmBgYLWWsaFER0fz5ptvkp2drdeqUlJSKgwR\nh19++YW0tDSee+45OnfuDMDWrVtrtOfdpUsXtm/fzpQpU1yG//jjj3Tt2vWCz23Tpg1+fn41qmFd\njOquN1Wp6ntTV+vV5s2bGT9+PKNHjwbsG9R9+/bRokWLas8jKCiIiIgItmzZwtChQ/XhW7ZsqfLK\nu4tZF5316dOH9957D7PZTFhY2EU/32Hq1KksWrSIf/7zny7De/fuTVZWFvn5+URHR1f43OpuAyrS\nu3dvfv755zrZLjb0Z3ix26s6v+gC7PdDDB8+XN8T7NKlC7t372bNmjUcOnSIV155xeUKGQd/f38m\nTZrEzp072bFjBxMmTCA2NpbBgwcD8Oyzz/LZZ5/x0EMPkZyczKFDh/jqq6+45557KCgoqHDZkpKS\nGD58OB9//DF79uzh8OHDLF++nH/9619cffXVelW7Xbt2fP/99xw7doy0tDSUUtVa7vbt25Oamsq2\nbdtIS0sjPz9ff08c78vBgwd57LHH2LJlC0ePHuWHH35g8+bN+pe3adOmBAYG8vXXX5OamlrpFVGP\nPvooBw4cYNy4cezcuZNDhw7x8ccfs23bNgD+9re/8eWXX3Lo0CFSUlL49NNPad26da3DqjaHYipz\n5513YjabGT9+PLt27WLbtm3cfffd+Pn5Vfrabdq0wcfHhwULFnDo0CG+/fZbHnzwwRpdQvzII4/w\nwQcf8O9//5u9e/eyd+9eXnjhBT7++GOX+76mTJnCs88+y/fff8/Ro0fZuXMnEyZMICcnx+VwXn2o\n7npTlaq+NzVZryrSuXNnVq9eTWJiInv37mXy5Mn88ccfLp+h83pRmYceeohXXnmFZcuWceDAAebO\nnasH7oVUtA5Xx7hx42jXrh0333wza9eu5bfffmP79u08//zzfPbZZ9WaB9hDZ86cOSxYsMCltnHd\ndddx/fXXM2rUKD777DMOHz7Mzp07WbhwoX61aXW3ARWZOXMmv/zyC+PHjycxMZEjR46wYcMGpk2b\ndtE7OA35GdZke1XrwCp7FZfDI488wtq1a/nuu++47777uOuuu5g0aRJXXnkliYmJzJ49u9zzWrRo\nwX333cfo0aO55pprCAwMdLnyZtCgQaxfv55du3YxcOBAevTowd///neCgoIqvWeldevWdOzYkTlz\n5nD11VcTExPDrFmzmDRpksu9NM888wxZWVl07tyZZs2acezYsWot94gRI7j99tu5+eabCQ8P59//\n/ne59yUwMJCDBw8yduxYOnfuzOjRoxkwYACvvvoqYD9PtGjRIlasWEGrVq3o1auXy/vr0L17dzZu\n3MiZM2eIj48nNjaW+fPnuxzSnDZtGldccQXx8fHk5+fz5ZdfVvn5Xai/smE1mY8zPz8/vvjiC9LT\n07nqqqu46667+Pvf/17uvjDn+TRt2pRly5axdu1aunfvzqOPPsrcuXMxGFy/xoMGDeLaa6+94Ovf\ndtttLF++nFWrVnHNNddwzTXX8Pnnn7Nq1SruuOMOfbobbriBnTt3cscdd9C5c2duvvlmTp06xRdf\nfOFyXsj5lobKXOg9qWhcdb5/la1/F/O9qc565bhV4UI3ts6fP582bdpw7bXXcv3119OqVStGjx5d\n5fKWHfbggw/ywAMPMH36dGJjY9m+fTuzZs2q8jtV0Tpc2XvrzMfHh02bNtG7d28mTZpE586due22\n29ixYwdt27at9HkVlWXs2LEu58sc1qxZw6hRo5g+fTpdu3Zl2LBhfPnll0RFRQGVbwOq8/l26dKF\nrVu3kpOTw5/+9Ceio6OZPHkyBQUFNGnSpMr5OA9v6M/wordX6gJR+dprr5GUlERQUBBz584F7PcT\nzJ8/n7S0NMLCwpg+fbp+bPStt94iOTkZHx8fEhIS9BYgNm7cqO8Zjho1ivj4eAAOHz7MokWLKC4u\n5ujRo+zdu5cDBw5c8DWEqEqbNm1ISEjgsccea5DXO3z4MB07duT777+nX79+DfKaDe2tt97iiSee\nYN++fQQFBTX24ojL1AVrWNdeey0zZ850GbZ69WpiYmJ45ZVX6N69u36i8qeffuLUqVMsWLCAyZMn\n61XdnJwcPvnkE+bMmcOcOXNYuXIleXl5gP0KqClTprBgwQJycnL0ewYqe42qOK4m9BSeVJ6GKsuu\nXbvw8/PjoYceqtfXcS7P//73PyZMmOC2YVWdz+Z///sfL774oluElaw3nuuCgdW1a9dyNZsdO3bo\nNaRBgwbpN7g5D+/YsSO5ublkZWWRnJxMTEwMAQEBBAQEcMUVV5CUlERmZiYFBQV6lbht27Z6YFX2\nGlXxtA/Xk8rTUGWJiYnh119/rfTKz7riXJ6pU6fy1ltv1evr1afqfDaffPIJf/nLXxpgaWpP1hvP\nddHnsLKzs/V28oKDg/WrujIyMlzuFQgNDSUjI4PMzMxKhztfcvnwww/rJ7sre42qlG0lob401Jeo\nIcrjSWUBzyqPJ5UFPKs8nlQWcJ9grNVFF2VPoNXH1WQXcwVYfV9m7NBQH25DlMeTygKeVR5PKgt4\nVnk8qSzgPoF10cdNgoODycrKIiQkhMzMTP0eGovFot8ACfabIS0WCxaLxeXNSE9Pp3v37lgsFpfG\nNdPT0/WaWGWvUVZKSorLvBvqpwUcjebWt4YojyeVBTyrPJ5UFvCs8nhSWcBeHufGpx33jF5qLjqw\nevfuzcaNGxkxYgSbNm2iT58++vCvv/6aAQMGsH//fgICAggJCaFHjx58+OGH5ObmopRi165djBs3\njoCAAPz8/Dhw4ABRUVFs3rxZv8msstcoq6I39VL6Ha7aMpvNnDt3rrEXo054UlnAs8rjSWUBzypP\nQ5WlZcuWDRbCtXHBy9pffvllfvnlF86ePUtISAhjxoyhT58+lV5y/p///Ifk5GR8fX2ZMmWKfuf1\nhg0bXC5rHzRoEHD+svaioiJiY2P1Fohrc1m7BNalyZPKAp5VHk8qC3hWeRoysNzBBQPLHUlgXZo8\nqSzgWeXxpLKAZ5VHAstVnTTNJIQQQtQ3CSwhhBBuQQJLCCGEW5DAEkII4RYksIQQQriF+m1wTdSI\nslnh6CGsllCUjz+ar1/VTxJCCA8ngXUJUaf/QG39FvXDevDxI1cDW9opMHmDJQxCw9AsTe3dljC0\n0kdCmqAZjI233AX5kJUOmemorAzIyoCsdFTpMLIzyC4pQfn6g38A+AeilT5S5rHccD9/tHpuyFYI\n4R5kS9DIVEE+audW1NZ18MdxtLh4DFOfQotsh9ls5uzZs5BzDjLOQMYZVOkjvx3ElnEGMtIg5yyE\nWMDS9HyIWcLQQp26/fwvftmsVjib5RRG6U5hlGEPo6x0sFkhJBRCQtFCLPbusGYYOnazL1dIKIFN\nLOScOQV5uZCXgyp9JC8Xcs/CmT9Q+nCncfm54OVTGmABlQSb0zCDEZQCmw1sNpTNZl8+xzBl08e5\ndOv9qnR65+HKdToNCttGoZpHQsvWaKaKfzxUCFG3JLAagVIKDuxFbV2HStoGHaMxXHcLxPQut/HT\nNA3MQfb/Nh2oqClgVVxsD46MM6j00kD7/RC25G32QEs/DUYTlNbOXIIsIBCVXRpKWRnna0VZGZCT\nDYFBpWFkOR9Gna/AUBpQhFjAP6DKRooNZjOa8XzZqtuksVIKCvJLwysHcu2PKtepP+005B7Glpdj\nDxSDwf6vaWAw2Gufmuswl3+tgm7Ho9FUbn7YbJTs243tfx9D2ilo0QqtbRS0iUJr0wFatpFaoRD1\nQNaqBqQyzqB+2IDa+i0YTWgDrscw8i9owU1qNV/NywvCmkNY84oDTSl7jSW9TC3t2BFsuefQgppA\nEws0j8TQNUavLREU0ugbXk3TwM/f/k/Y+eGNt0gABJS2QKAKC+DYYdTRQ3AgBdvaz+w7CC1b28Or\nTRRam6jSmpisbkLUhqxB9UwVFaKSt6O2fAtHD6L1HoDhnoegbceL+umU2tA0DQLM9v/W7Rt9Y+9J\nNB9fiOqGFtVNH+YSYvvLhFjbKGjdQUJMiBqQtaUeKKXgtwOoLetQO7bYD+X1vw7trzPRvH0ae/FE\nPaswxAry4dgR1NGDriEW0cZeE2vdAa1tR/vhRQkxISoka0YdUmczUds22mtTxUVo/a/D8NTL9nNG\n4rKm+fpBx25oHSsKsQOwf0/5EGvVDq1pcwgNt59v9JKLO8TlTQKrllRJMezeiW3LOjiQgtazL4Zx\n90PH6AY75CfcU8Uhlge/H0H9fhAO78P242Z7iGWlQ0CQ/daG0gCjaXhpd7h9uNyvJzycBFYNqeNH\nUFu+RW3fBM0j0AZcj3bPQ7LRELWi+fpDp2i0Tq4/TKpsVsjKhIzTqLTT9hA7dgRb8nZ7d8YZ8PY5\nH16hzc6HW2gYhDar1tWcQlzKJLDKUFar/d6f/Lzz9wHl56Ecw3LOoXbvgLNZaP0GY5jxIlq4e/yW\njHBfmsFYeltCU5dzYw5KKTiXbQ+v9NP22xtO/4Htl5/1YcD5w4tNw0u7wylp3RblHwSBZgk0cUnz\nuMBSuTnnAyfffhOqcnQ7DXMJIedwKikG39LLqP0DwC/A3tpC6SN+ARhG3gVdYxq1dQkhnGmaBkEh\n9v92ncpdCWq/tSG3tDZWGmhpp1GH95H/zSpsp0+C1QZhzaBpM/u5s6bN0Er7CW2G5iMXDInG5XGB\nZXv83vP37ZQGjlYaNPj522+EDWsBfv4YnELIPq0/+PjKXqbwOPZbGwLt/2VubXD8qq3KzbHfCJ12\nCpWWCqnHsO1OtN+YnX7a/tymzdCaloZYWPPS7ubQxCI7cKLeeVxgGRd82NiLIIRb0hyBVkGLKspm\ns7d+kpaKSjsFZ07Br7uxpa21h1zO2dILQSqonYU1tzedJTuCopY8LrCEEHVPMxjOn0Pr1L3ceFVU\naG9JRQ+0VGxH9uk1NgA6dEWL7YvW8yp76ypCXCQJLCFErWnePtAiElpEVnz+LOcc6pdkSNqGbeVS\n+71msX3t/2HNG2ORhRuSwBJC1CtHA87aVQPhqoGo4iL45WdU8nZszz8CwU1Kw6sfRLaVQ4eiUhJY\nQogGpXl5Q0wftJg+qPFT4OCvqKRt2BY9Z29dv2ecPbw6dJYLOYQLCSwhRKPRDEb9Rmk15m57U1VJ\n27C9/zqcy0brcZU9vLrESNNUQgJLCHFp0DTNfsl96/Zw652o0ydRSdux/W85LHkJLfpKiO2HdsWV\n9hZBxGVHAksIcUnSwlui/Wkk/GkkKjuz9Gd61qLeXWhvqzO2r/3woTm4sRdVNBAJLCHEJU8LboIW\nfyPE34jKy0Xt3oFK+gH18Vv2Vu1j+6L17Gu/kVl4LAksIYRb0fwD0OLiIS7efv/XL7tQST9g+9/H\nEBJKbtsO2IKaQGhpa/alDQBrXt6NveiiliSwhBBuS/P2gR590Hr0sTdc/dsBvLLTKTlxDA7/ii2x\n9OdZMtPsv7htCbPXwpx/nqX0X/PxbeziiCpIYAkhPIJmNEKHLnibzRSeO+cyTtmskJ0F6adKG/49\nZf95lqTtkHHa3kqHj4/9Z1j0n2UpE2j+AQ1WFqUUWK2okpIGe013IIElhPB4msEITUKhSShaVPnx\n9p9nyYL0M/bfG8s4DaknsKUklf48yxkwGM4fXgy2gLKBzQpW+7+yWl367d0lYLNBScn5cc7TXOg5\nBgP5g4bCHfc1/Bt2iZLAEkJc9uw/z9IEgpqgtetUbrxSCnLP2YMr/TQqO9MeYEYjGIxgNGIwGsFo\nKu03OHU7/RtKp6lovMH1UdM0/Etb0hd2ElhCCFEFTdPsP00UGFRha/aiYRgaewGEEEKI6pDAEkII\n4RYksIQQQriFGp/D+vzzz9mwYQMArVu3JiEhgczMTF5++WVycnJo3749f/vb3zCZTBQXF/Pqq69y\n5MgRzGYz06ZNIywsDIBVq1axYcMGDAYDkyZNokePHgAkJyezdOlSbDYbgwcPZsSIEXVQXCGEEO6q\nRjWsjIwMvvrqK1544QXmzp2LzWZjy5YtLFu2jGHDhrFgwQICAgJYv349AOvXr8dsNrNgwQJuvvlm\n3n//fQCOHz/O1q1bmTdvHjNnzmTJkiUopbDZbPznP/9h5syZzJs3jy1btnD8+PG6K7UQQgi3U+ND\nglarlcLCQv2xSZMmpKSk0LdvXwDi4+NJTEwEYMeOHcTHxwMQFxfH7t27AUhMTGTAgAGYTCbCw8Np\n3rw5Bw4c4ODBgzRv3pzw8HBMJhMDBgxgx44dtS2rEEIIN1ajQ4IWi4Xhw4eTkJCAt7c3PXr0oH37\n9gQEBGC5yzY2AAAgAElEQVQwGPRpMjIyAHuNLDQ0FACj0Yi/vz/nzp0jMzOTjh076vMNDQ3Vn+OY\n3jGvgwcP1qyEQgghPEKNAisnJ4cdO3awaNEi/P39mTdvHklJSXW9bFVKSUkhJSVF7x8zZgxms7nB\nl6O+eHt7e0x5PKks4Fnl8aSygGeVpyHLsmLFCr07Ojqa6OjoBnndi1GjwNq9ezfh4eH6GxkXF8e+\nffvIzc3FZrNhMBhcalUWi4W0tDQsFgtWq5W8vDzMZjMWi4X09HR9vunp6YSGhqKUKjfcYrGUW46K\n3lRPuivc7EF3uXtSWcCzyuNJZQHPKk9DlcVsNjNmzJh6f53aqtE5rLCwMA4cOEBRURFKKXbt2kWr\nVq2Ijo5m27ZtAGzcuJHevXsD0Lt3bzZt2gTAtm3buOKKK/ThW7ZsoaSkhNOnT5OamkpUVBQdOnQg\nNTWV06dPU1JSwtatW/V5CSGEuDxpSilVkyeuWLGCH374AYPBQLt27bj//vvJyMjQL2tv164dU6dO\n1S9rX7hwIb/99htms5kHH3yQ8PBwAD799FM2bNiA0Whk4sSJ9OzZE4CkpCSXy9pHjhxZreU6efJk\nTYpzSZI9xUuXJ5XHk8oCnlWehipLy5Yt6/016kKNA+tSJYF1afKksoBnlceTygKeVR4JLFfS0oUQ\nQgi3IIElhBDCLUhgCSGEcAsSWEIIIdyCBJYQQgi3IIElhBDCLUhgCSGEcAsSWEIIIdyCBJYQQgi3\nIIElhBDCLUhgCSGEcAsSWEIIIdyCBJYQQgi3IIElhBDCLUhgCSGEcAsSWEIIIdyCBJYQQgi3IIEl\nhBDCLUhgCSGEcAsSWEIIIdyCBJYQQgi3IIElhBDCLZgaewGEEJc2s9nc2ItwUYxGo9stc2Xqoyzn\nzp2r0/k1JAksIUSV3HkjJ85z9yCXQ4JCCCHcggSWEEIItyCBJYQQwi1IYAkhhHALElhCCCHcggSW\nEMItRUZGcvToUZdhc+fOZerUqXr/ggUL6NevH506daJ3795MmTKloRdT1CG5rF0I4TE0TUPTNABW\nrFjBp59+yvLly2ndujVnzpxh7dq1jbyEojakhiWE8BhKKZRSAPz888/Ex8fTunVrAMLCwrjzzjsb\nc/FELUlgCSE8Uq9evVi5ciWLFy/m559/xmq1NvYiiVqSQ4JCiFqx3ntLnczH+OaaOpmPw6hRo9A0\njeXLlzN37lx8fHxISEggISGhTl9HNBwJLCFErdR10FT7dY1GiouLXYYVFxfj5eWl948cOZKRI0di\ntVr58ssvmTp1KtHR0cTHxzf04oo6UOPAys3NZfHixRw/fhyAhIQEWrRowfz580lLSyMsLIzp06cT\nEBAAwFtvvUVycrK+l9OuXTsANm7cyKpVqwD7HpHji3T48GEWLVpEcXExsbGxTJo0qVYFFUJ4loiI\nCI4dO0ZUVJQ+rGy/g9FoZNiwYbz22mvs27dPAstN1fgc1ttvv01sbCzz58/npZdeIiIigtWrVxMT\nE8Mrr7xC9+7dWb16NQA//fQTp06dYsGCBUyePJklS5YAkJOTwyeffMKcOXOYM2cOK1euJC8vD4A3\n33yTKVOmsGDBAlJTU0lOTq6D4gohPMXw4cN55ZVX+OOPP7DZbHz33XesW7eOm2++GbBfJfjtt9+S\nk5ODzWZj/fr17Nu3j9jY2EZeclFTNQqsvLw8fv31VwYPHgzY9178/f3ZsWOHvucyaNAgEhMTAVyG\nd+zYkdzcXLKyskhOTiYmJoaAgAACAgK44oorSEpKIjMzk4KCAn1PaeDAgfz444+1LqwQwnNMnz6d\n3r17M3LkSKKjo3n++ed59dVX6dSpE2BvmXzhwoXExcXRrVs35syZwwsvvECfPn0aeclFTdXokODp\n06cJCgritdde4+jRo7Rr146JEyeSnZ1NSEgIAMHBwWRnZwOQkZFBaGio/vzQ0FAyMjLIzMysdLjF\nYtGHWywWMjIyalRAIYRn8vX15cknn+TJJ5+scPzQoUMZOnRoAy+VqE81qmFZrVaOHDnCDTfcwIsv\nvoivr69++M/BcfOeg+PeCCGEEKImalTDCg0NxWKx6Ifs+vbty6pVqwgJCSErK4uQkBAyMzMJDg4G\n7DWk9PR0/fnp6elYLBYsFgspKSkuw7t3716uRuWYvqyUlBSX548ZM8btf6DMmbe3t8eUx5PKAp5V\nnqrKYjQaG3BpRH260C8Yr1ixQu+Ojo4mOjq6oRar2moUWCEhITRt2pSTJ0/SsmVLdu3aRatWrWjV\nqhUbN25kxIgRbNq0ST9W3Lt3b77++msGDBjA/v37CQgIICQkhB49evDhhx+Sm5uLUopdu3Yxbtw4\nAgIC8PPz48CBA0RFRbF58+YKq/YVvame9MuoZrPZY8rjSWUBzypPVWXxlGAW9qNjFX3WZrOZMWPG\nNMISXZwaX9Y+adIkFi5cSElJCc2aNSMhIQGbzcb8+fPZsGGDflk7wJVXXklSUhJTp07F19dXb4Ay\nMDCQ2267jccffxyA0aNH65fB33PPPSxatIiioiJiY2Pp2bNnbcsqhBDCjWnKw04unTx5srEXoc5c\nTnvx7saTylOdGpanlPVyV9ln2bJly0ZYmosnbQkKIYRwCxJYQggh3IIElhBCCLcggSWEuKw4/yrx\niRMn6NSpk9wn6iYksIQQbikuLo7Nmzdf9POcGzWIiIhg//795Ro6EJcmCSwhhFvSNE2C5jIjgSWE\ncFtKKZYvX86IESP4xz/+QXR0NP369WPDhg36NL///ju33XYbnTt35o477nBpRefYsWNERkZis9kA\nWL58OYMGDaJz587079+fZcuWNXiZROUksIQQbstRw0pOTiYqKoo9e/YwZcoUHn74YX2av/71r/To\n0YM9e/Ywbdo0Pv7440prZk2bNuXdd99l3759zJs3j9mzZ7Nnz54GKYuomvzisBCiVm59/9c6mc9n\n47rU+LkRERHccccdANx+++3MnDmTtLQ0CgsL2bVrFytWrMDLy4u4uDiGDBlS6UUW1113nd7dt29f\n4uPj2b59O927d6/xsom6I4ElhKiV2gRNXQkPD9e7/fz8APuvoqelpREcHKwPA3u4VdYizvr165k3\nbx5HjhxBKUV+fj5du3at34UX1SaHBIUQHqtZs2ZkZ2eTn5+vDztx4kSFhwQLCwu59957SUhIYNeu\nXezdu5fBgwfLJe+XEAksIYTbqipMIiMjiYmJ4aWXXqK4uJgff/yRdevWVThtcXExxcXFWCwWDAYD\n69evZ9OmTfWx2KKG5JCgEMJtOS5tL1tjcu5ftGgR06ZNIzo6ml69enH77bfrv4buPG1gYCDPPvss\n999/P0VFRVx//fX86U9/apiCiGqR1tovYZ7USrYnlQU8qzzSWvvlQ1prF0IIIRqABJYQQgi3IIEl\nhBDCLUhgCSGEcAsSWEIIIdyCBJYQQgi3IIElhBDCLUhgCSGEcAsSWEIIIdyCNM0khHBLcXFxpKWl\nYTQaAXsTS5s3b3ZpuV14FgksIYRb0jSNd955h6uvvrrC8SUlJZhMsonzJHJIUAjhMSIjI1m6dCkD\nBgxg4MCBAMyaNYs+ffrQpUsXhg4dyo8//qhPP3fuXO677z4efPBBOnfuzODBg9m1a5c+/sSJE9xz\nzz3ExMTQvXt3nnzySX3cRx99xKBBg4iOjmbcuHGcOHGi4Qp6mZLAEkK4rYra7v7mm2/44osv2LBh\nAwA9e/Zk7dq17N27lxEjRnDfffdRVFSkT79u3TpGjBjBr7/+ypAhQ3jiiScAsFqtTJgwgVatWrF9\n+3Z27tzJrbfeCsDXX3/NwoULWbJkCbt37+aqq64iISGhAUp8eZPW2i9hntRKtieVBTyrPLVtrf2/\ny7PqZDmG/znkoqaPi4sjMzNTP+zXr18/vv76a1asWEH//v0rfV50dDQrV66ka9euzJ07lx07dvDh\nhx8CsH//foYOHcqhQ4fYsWMHd999N8nJyRgMrvv248ePZ9iwYYwdOxYAm81Gp06d2LRpExERERdV\njobk7q21ywFeIUStXGzQ1BVN03jrrbdczmFFRkaW2/guXryYjz76iFOnTqFpGufOnSMjI0Mf37Rp\nU73bz8+PwsJCbDYbJ0+eJDIyslxYARw/fpxZs2bx7LPPugxPTU29pAPL3UlgCSE8ivOPN27fvp3X\nX3+dFStW0LlzZ8Bew6rOgaWWLVty4sQJrFarfiWiQ0REBNOmTWPEiBF1u/DiguQclhDCY+Xk5GAy\nmbBYLBQVFTF//vxqH8qNjY0lPDycOXPmkJ+fT0FBAYmJiQDcddddLFy4kP379wNw9uxZ/vvf/9Zb\nOYSdBJYQwmM4164Arr32WgYNGsQ111xD37598fX1dTlkp2lauec4+o1GI0uXLuW3336jT58+9OnT\nRw+lG2+8kYSEBBISEujSpQvXXXcdmzZtqufSCbno4hJ2OZ3YdzeeVJ7aXnQh3Ie7X3QhNSwhhBBu\nQQJLCCGEW5DAEkII4RZqdVm7zWZjxowZWCwWZsyYwenTp3n55ZfJycmhffv2/O1vf8NkMlFcXMyr\nr77KkSNHMJvNTJs2jbCwMABWrVrFhg0bMBgMTJo0iR49egCQnJzM0qVLsdlsDB48WC4fFUKIy1yt\nalhffPEFkZGR+lU1y5YtY9iwYSxYsICAgADWr18PwPr16zGbzSxYsICbb76Z999/H7DffLd161bm\nzZvHzJkzWbJkCUopbDYb//nPf5g5cybz5s1jy5YtHD9+vJZFFUII4c5qHFjp6ekkJSUxePBg/Sa8\nlJQU+vbtC0B8fLx+z8KOHTuIj48H7M2p7N69G4DExEQGDBiAyWQiPDyc5s2bc+DAAQ4ePEjz5s0J\nDw/HZDIxYMAAduzYUauCCiGEcG81Dqx33nmH8ePH682WnDt3joCAAL3fYrHozZ9kZGQQGhoK2O9t\n8Pf359y5c2RmZurDAUJDQ8nIyHCZvuy8hBBCXJ5qFFg7d+4kKCiIdu3a6bUrD7udSwghxCWmRhdd\n7Nu3j507d5KUlERxcTH5+fksXbqU3NxcbDYbBoPBpZZksVhIS0vDYrFgtVrJy8vDbDZjsVhIT0/X\n55uenk5oaChKqXLDLRZLueVISUkhJSVF7x8zZgxms7kmRbokeXt7e0x5PKks4FnlqaosZdvR81Rx\ncXG89NJLXHPNNZfk/ByOHTtGv379+P333ytsmPdCjEZjpZ/1ihUr9O7o6Giio6NrtZz1oUaBdeed\nd3LnnXcCsHfvXtasWcMDDzzAvHnz2LZtG/3792fjxo307t0bgN69e7Np0yY6derEtm3buOKKK/Th\nr7zyCsOGDSMjI4PU1FSioqKw2WykpqZy+vRpLBYLW7du5cEHHyy3HBW9qZ50R74ntTDgSWUBzypP\ndVq6uBTFxcVRUFDAtm3b8PPzA+CDDz7g008/ZeXKlRd87rRp02jZsiWPPvqoPqyiZppqo67nVxes\nVmuFn7XZbGbMmDGNsEQXp05aa3d8KOPHj+fll1/mo48+ol27dgwePBiAwYMHs3DhQh544AHMZrMe\nPpGRkfTr14/p06djNBr5v//7PzRNw2g0cvfdd/Pcc8/pl7VHRkbWxaIKITyIzWZjyZIlTJ06tbEX\nRVdSUqL/RpeoW7V+V7t160a3bt0A9JaNy/Ly8uLvf/97hc8fNWoUo0aNKjc8NjaW2NjY2i6eEMJD\naZrG/fffz2uvvcaECRMICgpyGX/w4EGefPJJdu/eTWhoKI888gjDhw9n2bJlrF69Gk3TWLJkCQMG\nDODtt98GYM+ePcyePZsTJ04waNAgXn75ZXx8fABYu3Yt//rXvzhx4gQdO3bkhRdeoGvXroC9tjdh\nwgQ+/fRTjhw5orfi7pCUlMSsWbM4dOgQvr6+3HTTTTz99NN4eXkB9p33559/nv/3//4fGRkZjBw5\nkueeew6wh/I///lPPv74Y8xmM5MnT3aZ9/Lly3nllVf0UyePPvooI0eOrPs3/BIgLV0IIdxWTEwM\n/fv3Z/HixS7D8/PzGTt2LKNGjWL37t289tprzJw5kwMHDjB+/HhGjhxJQkIC+/fv18NKKcXnn3/O\nBx98wA8//MAvv/yin9fZs2cPDz/8MP/+979JSUlh/PjxTJo0ieLiYv01P/vsM9577z327t1b7ryf\nyWTi2WefZc+ePaxZs4bvv/+ed955x2Wab7/9li+//JK1a9fy3//+l40bNwL2+1u//fZbvvnmG774\n4gs+//xz/ahWXl4eTz/9NMuWLWPfvn2sWbPmkjz3VFek3iqEqJUFCxbUyXweeOCBi36Opmk8/PDD\njBgxgnvuuUcfvnbtWlq3bq2fl+nevTtDhw7l888/Z/r06Silyl3ZrGka//d//0d4eDgAQ4YM0S/q\nWrZsGePHj6dnz54A3H777SxcuJCffvqJuLg4NE3j7rvvpkWLFhUup+O8PdhrU+PGjWPbtm0uy/zX\nv/4Vs9mM2Wymf//+7N27l0GDBvHf//6Xe++9V5/3Aw88oF9DAGAwGPj1119p0aIFYWFheitCnkgC\nSwhRKzUJmrrUuXNnrr/+el599VU6duwIwIkTJ0hKStJPV4D93NLo0aOB8r+b5eC8sff19SU1NVWf\n38qVK/XaGEBxcbE+Hi78Ex2HDh3imWeeYffu3eTn51NSUqI3Q+fgCEoAPz8/cnNzATh9+rTLvJ27\n/f39ef3111m8eDEPP/wwvXv3ZtasWURFRVW6LO5MAksI4fYeeughbrzxRu677z7AvlHv27cvH374\nYYXTV/fqPcd0LVu25IEHHrhgOF9ono8//jgxMTEsXrwYf39/3nzzTb744otqLUN4eDgnTpzQ+8v+\n5l98fDzx8fEUFhby4osv8uijj/Lpp59Wa97uRs5hCSHcXtu2bbnllltYsmQJmqZx/fXXc/jwYT75\n5BOKi4spLi4mOTmZgwcPAvaa1O+//17lfB2HDceNG8d7771HUlISSiny8vJYt26dXguqSl5eHgEB\nAfj5+XHw4EHefffdKl/X8drDhw/nrbfe4o8//iArK4tXX31Vny4tLY2vv/6avLw8vLy88Pf3v+h7\ns9yJ55ZMCHFZmTZtGgUFBQAEBATwwQcf8Nlnn9GrVy9iY2N5/vnnKSoqAmDs2LHs37+fbt26uZxH\ncuZ8H1VMTAz//ve/efLJJ4mOjubqq69m5cqV1a6pPfXUU6xevZrOnTvz6KOPcuutt7o8t+x8nF97\n3LhxxMfHM2TIEG666SZuuukmfZzNZuPNN9+kV69edO/ene3bt/PCCy9cxLvmXjTlYW0qla0uu7PL\n6eZUd+NJ5anOjcOeUtbLXWWf5YXOv11KpIYlhBDCLUhgCSGEcAsSWEIIIdyCBJYQQgi3IIElhBDC\nLUhgCSGEcAvS0oUQokqX6m9iVcRoNGK1Wht7MeqEJ5WlLkhgCSEuyN3uwfKU+8byiq0YvP3xVYWN\nvSiXDAksIYRoZGcLSjicWcjhjAIOZRZwOKOA9LwSRsc0Z0y34MZevEuGBJYQQjQQpRQZ+SUczijU\ng+lwRgG5xTbaN/GhncWX3i0D+XP3pkQEeRMSHOQRtcW6IoElhBD1QCnFqZzi0mA6X3tSCtpbfOnQ\nxIf4tkFMujKcZoFeGKrZLuHlTAJLCCFqyWpTnDhXpNeYDmUWciSjAF8vAx0svnRo4svQTiG0t/gS\n6meqdqO5wpUElhBCXITCEhvHz9rD6VBGAYczCziaVUgTPxPtm/jS3uLL6OhA2jfxIdhXNrF1Sd5N\nIYQoQylFdoGV42eLOH62kONniziRXcTxs0VkFZTQItCbdhYfOlh8uaZNEG2b+BDgbWzsxfZ4ElhC\niMtWiU2RmnM+jI6fLeJEaUAZgMhgHyKCvIkM8qZHswAig70JD/DCaJBDeo1BAksI4fFyiqycOFvE\nibNFHM8urTGdLeJUTjGh/iYig7yJDPaha5gfQzoEExnkTZAczrvkyCcihPAIxVZFRn4xv2ZlcyA1\n63yNKbuQ/BIbEUE+9mAK8ia+XRCRQT60MHvhbZQW6tyFBJYQ4pKmlCKv2EZ6fgkZeSWk5RWTkVdC\nen4J6XnFpJd25xZZCfY10bqJH839jbQK9qZfKzORwd5yZZ6HkMASQjQaq02RXWg9Hzx5JWTklw8l\ngFB/L0L9TFj8TTT196J1sA+xLQII9TcR6u9FsI8Ro0HzmKaZRHkSWEKIOmW1KXKKrJwrspJTaLN3\nF1rJzHcEUAkZ+cWk5ZWQXVBCgLeRUD976IT6mwj1MxHTzJ9Qfy8spf3+XgapIQkJLCEuNTmFVv7I\nKSIzvwSTQcPLqOFlMJQ+lvY7dxs0TAatzjfoRVYb5wqt5BTZyCksDaDS8MkpcoxzBFPpdEVWCkps\nBHobCfQ2EOhtxOxjJMDbSBNfI+EBXnQN89MDqomfCS+jBJGoHgksIRqYTSnS80pIzSki9VwxqTnF\nTt1FWG3Q3OyFxc+EVUGJ1UaxTVFkVRRbFSU2+2ORzdFvw2rDKdzKh5rJYMDbpV+z9xs1jKY0MnIK\nyCmtETmCyabA7G0g0MeI2dtIoI/RHkClw5r6++iBZH+0B5Sfl0GaGRL1QgJLiHpQZLVxKqdYD6HU\nnGJSz9kfT+cWE+BtpEWgF80CvWhu9qZPRCAtzN40D/QiyMd40bUlm7KHV7FNUVL6aA84W/lhtvPB\nV2S14efrh3eYD4E+Bj2YzN5GvI11X2sTojYksISooXOFVlJzivijNJROlYbSHznFnC2wEhZgonmg\nN80CvWhh9iammT/NS0PJx1S3l1IbNA0fk4ZPDZ4rFykIdyGBJS47NqUoLFHkl9jILy79L7Hq3QUl\nyqXfebqCEhu5xTbO5JZgU4rmgV40C/SmhdmLTqF+DGwbRPNAL5r6S2sIQtQ1CSzhNpSyh0xukY3c\nIiu5xaWPRTZyi+2PeWVDxiWU7I9FVhveRg1fkwE/LwN+ZR714V4GmviZaFlmnL+XkfbNQtCK8+WQ\nmRANSAJLNJjqBE5Vw72NBgK8DQR6GQnwtncH6N1Ggn2NNA/00gOnbBj5eRnwMRpqXfsx+3lxrqSg\njt4ZIUR1SGCJOuf44br96QXsS8tnf1o+qTnF5BRZ8TZqLgET4FX6WHoJtMXfRCuX8a7TymE2IS5f\nElii1nKLrBxIL2B/Wj770/PZn1aAyaDRqakvnUL9mBgbTpcIC6ooH5MEjhCihmoUWGlpaSxatIjs\n7Gw0TeO6667jpptuIicnh/nz55OWlkZYWBjTp08nICAAgLfeeovk5GR8fHxISEigXbt2AGzcuJFV\nq1YBMGrUKOLj4wE4fPgwixYtori4mNjYWCZNmlQX5XULRVb7uRY/f1tjL0o5VpviaFYh+9Pz2Zdm\nD6m0vGLaN/Glc1M/BrcP5v6rmtPU38vleXIITQhRWzUKLJPJxIQJE2jbti0FBQU89thjxMTEsHHj\nRmJiYrj11ltZvXo1q1evZty4cfz000+cOnWKBQsWcODAAZYsWcJzzz1HTk4On3zyCS+88AIAM2bM\noE+fPvj7+/Pmm28yZcoUoqKieP7550lOTqZnz551Wvj6ZLXZG+zMKdM6gKM/p1y/TW81wKYUfiYD\n+SUKs4+j2RqT3mZaU38TFj97e2qh/qY6v0TaWXpecelhvQL2p+dzKKOQpv4mOjX1o1OoL8M7N6FN\niI8cqhNC1LsaBVZISAghISEA+Pr6EhERQUZGBjt27GD27NkADBo0iNmzZzNu3Dh27Nih15w6duxI\nbm4uWVlZ7Nmzh5iYGL0WdsUVV5CUlES3bt0oKCggKioKgIEDB/Ljjz9eEoH1y5k8jmcXlQbN+XbS\ncousnHMKoPxiG35ehtImas43U+NoGaCJn4lWwY7WA+w3bAaUjvMpvWHTPyCQ389kljYKer5x0KOZ\nhaTnn+/3MWl6w6DOwebob+rvRYB31W2xFZTYOJRewL50+3mn/WkFFNsUnULttacx3ZsSFepLoPyy\nqhCiEdT6HNbp06f57bff6NixI9nZ2XqQBQcHk52dDUBGRgahoaH6c0JDQ8nIyCAzM7PS4RaLRR9u\nsVjIyMio7aLWiX1p+RzNKrI3T+NtJDTERw8kRxM1gd5G/OvgAgGjQaOpv1fp4TW/CqdRSnGu0Eqa\nUyvX6Xkl/Hom3x5ypY2NltiUvWbm70VTpxavvYwaB9PttaeTZ4toE+JDp6Z+9GtlZmJsOM0CveTS\nbSHEJaFWgVVQUMDcuXOZOHEifn6uG9SyGzmlVG1eqkIpKSmkpKTo/WPGjMFsNtf56zi766r6nb8z\nb2/vapUnCIioYpq8IitpuUWk5RZzJreIMzlFpOYWUVBio1OzIG65ogUdmvrX24/ZVbcs7sKTyuNJ\nZQHPKk9DlmXFihV6d3R0NNHR0Q3yuhejxoFVUlLC3LlzGThwIFdddRVgr1VlZWUREhJCZmYmwcHB\ngL2GlJ6erj83PT0di8WCxWJxCZz09HS6d+9erkblmL6sit5UT2pipq6bzGligibBGh2DfaBcIz6K\nwrxcCuvs1Vx5WvM/nlQeTyoLeFZ5GqosZrOZMWPG1Pvr1FaNdqeVUixevJiIiAhuvvlmfXjv3r3Z\nuHEjAJs2baJPnz768O+++w6A/fv3ExAQQEhICD169GDXrl3k5uaSk5PDrl276NGjByEhIfj5+XHg\nwAGUUmzevFkPRSGEEJenGtWw9u3bx+bNm2ndujWPPvooAHfeeScjRoxg/vz5bNiwQb+sHeDKK68k\nKSmJqVOn4uvry5QpUwAIDAzktttu4/HHHwdg9OjR+gUY99xzD4sWLaKoqIjY2NhL4oILIYQQjUdT\n9XFyqRGdPHmysRehzsihjUuXJ5XHk8oCnlWehipLy5Yt6/016kL93cAjhBBC1CEJLCGEEG5BAksI\nIYRbkMASQgjhFiSwhBBCuAUJLCGEEG5BAksIIYRbkMASQgjhFiSwhBBCuAUJLCGEEG5BAksIIYRb\nkF9kPtwAAAzQSURBVMASQgjhFiSwhBBCuAUJLCGEEG6hxr84LIQQon4ppbCWKGw2sNnKPFpBlR3m\n6La6DlM2hdXmNL3VdX4tRzZ2SatHAktckFIK7H8ohd6Nso9TLv2O5zimVfrzNFVCYaENo0nDaARN\n0xqnQELUIZtNYS0Bq1VRUnK+21qisFopHWbvtj8qSkrOd1tLSqexlnluabfNloXBgP3fqGEwgGbQ\nzg9zdBsrGGbQ0Mo812AAk0nD4A0GgwGD0T7MXUhgXcbOnbWyZV0OCuUUMuUDCEDT7P9ooFH6qJ0P\nHn28y7QapQ9AHsXFNn3lNRrBaNIwmTSMJkofS7uNmss4vdvoPJ2GyVRmHkb7Cnoph6FSClW612vf\nIJU+lu7xWq2ue8jKdn4HQDnvJFQ0zHbh6XAeZjs/nZd3ETZbCUZj6ftt1PTPx+DUbTQ6xjlPV7oD\nUo/vu1KutQflVKNQFdQuzmblk5tTVGFNouww5fSeKxt6LcRlmFNNxup4fSuUWO3vp8nx/pT9jurv\n2/nvqtGo4ecPRqPh/HfY6Dq9yak7ONhMTk5Ovbyv7kgC6zIWGGhg8DAzGtr5MCoTSFA3GyLnX061\nH+Zw3bN07Ik69lKd90yLixQFeTbXcVZFSfH5PVLHOKUcG0/7nqOmle6VaqV7nJp9vEE7v6eqlesG\ng6a5THd+fvZ+k7GEgoIiPVwc4WOzOjZ2pd2lj87BpGlgKN34O/Z+jU57wUajVrrnq+nhrzntIDjK\n57xjYHDeoSidzmAs+1xDhfPz8fUhL6f0syitFRQWlNYKnPf8S5dfrzFYz39+cL5MLuHmFGzgGh7K\nKWScD13ZygSSUui1g7K1C82lRmEf7+1txaZKXGoaZWsZRqOGl6OW4VwzMTpP71pbce0vDfR63kG6\nlHe+GoME1mXMvnI3/AqhaRomLzB51f1rO/bG7bUIhU2hbxgdtRulnDaYjvFlxymcNpjn5+kY5+dn\nwsfP6hQurkFjNJYPIke/Zri0NkJmcyDnzqmqJ7wAR+3QWqL00C4bdnB+g1/RYa2KwkffSbiIDXdD\n/ay8aHgSWMKjaJo9LEr76u117BvFepu923EEjVc97IQI4eBGp9uEEEJcziSwhBBCuAUJLCGEEG5B\nAksIIYRbkMASQgjhFiSwhBBCuAUJLCGEEG5BAksIIYRbkMASQgjhFiSwhBBCuAUJLCGEEG5BAksI\nIYRbkMASQgjhFqS1duG2SkpKKCwspKioiMLCQgoLC+2/kIzjd7AMendF/bX59/HxwWq1YjAY5DeL\nhGggEliiUSilKCoqcgmbyrorG6+UwsfHR//39vbGYDCU/tpu5f8ANptN77b/3pVN767Ov81mw2q1\nYrPZMBgMGI3GSh8vNK6qacv+O4K3Lof5+PhQXFysfzYVBXDZYc79lXULUdcu6cBKTk5m6dKl2Gw2\nBg8ezIgRIxp7kTxKXl4eu3fvrvZGujoBUFkgAOTm5uqhU1RUhMlkwtvb2yV0HMHj4+ODn58fISEh\nLtM4d5tMjff1dfxIYNnwcn6s7rCy4xz9jlB2DHO8p879Fxpe3WHOn5HjsWy3s+pMU5ajZuocyhcK\n77IBXll/RY++vr4UFhbq4en8WDZcK5rmYqZ11Nod4V/V/8VMbzAY/n975xLTxBrF8X+RhEoD1CIG\nxQfyMEbklQAajULixmhc4IIoiQRZSEQk0bjBR1j5WIDERLALYAOJiRuMO92ILNyIoWlAmtpgExQB\naUu1hUo7PXfhbW9BekUZpjPj+SVNO9OZb74fw8yZM3ycgSAIICK+EPgX2QasYDCI7u5u3Lp1CwaD\nAc3NzSgpKcH27dtj3TVVEToYfnUAAf8dZMDKt9z+75WUlARBEJYEndD6SibyJKxUxH5C7/IgFnkR\nExmkowXq5dO/evf7/UvWiY+Px+Li4pJtR74vD7ir/W6ldn6VhYe817Js6LvlWXLkcbtSBr3S/GjL\n1tXVibX71xXZBiybzYb09HRs2bIFAHD48GEMDQ1xwBKRxMREHDx4UJJt8WPL/x6i3T6U6gJFTb9r\nyzP5aBl35Pzl81azjlKQbcByOp1ITU0NTxsMBthsthj2iGEYJjaEMvm/HeXfk2EYhmH+CmSbYRkM\nBjgcjvC0w+GAwWBYsszo6ChGR0fD01VVVdi2bZtkfZSCpKSkWHdBNNTkAqjLR00ugLp8pHJ58uRJ\n+HNeXh7y8vIk2e7vINsMKzs7G1NTU5iZmUEgEMDr169RUlKyZJm8vDxUVVWFXy0tLZL0LXLHridS\n+KjJBVCXj5pcAHX5qMkF+OETeS6VY7ACZJxhbdiwAXV1dbh9+3Z4WPuvBlykpaVJ0jepdqYUPmpy\nAdTloyYXQF0+anIBpPNZK7INWABQXFyM4uLiVS8fGlG43ki1c6XwUZMLoC4fNbkA6vJRkwugnIAl\n21uCf4JSfuirRU0+anIB1OWjJhdAXT5qchEDDa32X9UZhmEYJoaoKsNiGIZh1AsHLIZhGEYRyHrQ\nxezsLDo6OuB2u6HRaHDs2DGcOHECHo8H7e3tmJ2dRVpaGq5cuQKdTgcA6OnpgclkQkJCAhoaGrB7\n924AwMDAAPr7+wEAp0+fRnl5uWJ97HY7urq6sLCwgLi4OFRWVuLQoUOKdAkxPz+Pq1evoqysLCZ1\nzcT0mZ2dhdFohMPhgEajQXNzs2SjvcR26evrw/DwMILBIAoKCnD+/HnJPP7U59OnT+js7ITdbseZ\nM2dw6tSpcFuxLqgtlku0dlQPyRiXy0UfPnwgIqKFhQVqamqiiYkJ6u3tpadPnxIRUX9/P/X19RER\n0du3b+nOnTtERGS1Wun69etERPTt2zdqbGwkj8dDHo8n/FmpPpOTk/T582ciInI6nXThwgXyer2K\ndAnR09NDDx48oO7ubukkIhDTp6WlhcxmMxER+Xw++v79u4Qm4rlYLBa6efMmBYNBEgSBbty4QaOj\no5K6/ImP2+0mm81Gjx8/pmfPnoXbEQSBGhsbaXp6mvx+P127do0mJiYU6RKtHbUj61uCer0emZmZ\nAACtVouMjAw4nU4MDQ2FM6SKigq8efMGAJbMz83NhdfrxdzcHEwmEwoKCqDT6aDT6ZCfnw+TyaRY\nn61btyI9PR0AsGnTJiQnJ+Pr16+KdAGA8fFxuN1uFBQUSOoQiVg+Hz9+RDAYRH5+PgCEq9Mr0UWj\n0cDv98Pv92NxcRGCIECv10vq8ic+ycnJyM7O/qn2XmRB7fj4+HBBbSW6rNSOy+WSzCNWyPqWYCQz\nMzOw2+3Izc2F2+0OHzgpKSlwu90Afi6Ym5qaCqfTCZfLteL8WLIWn8iThs1mgyAI4QAWC9bikpyc\njN7eXly+fBlmszkm/V/OWnwcDgcSExPR2tqKL1++ID8/H9XV1TF7lMpaXPbs2YN9+/ahvr4eRITj\nx4/HvPTZanyiIbeC2mtxidaO2pF1hhXC5/Ohra0NtbW12Lhx45Lvlj/KgBQwSl8sH5fLhYcPH6Kh\noWFd+rka1ury4sULFBcX/1QnMlas1UcQBFgsFtTU1ODu3buYnp7GwMDAenY5Kmt1mZqawuTkJIxG\nI4xGI0ZGRmCxWNa1z//H7/jIHbFcfD4f7t+/j9raWmi1WrG7KTtkn2EFAgG0tbXh6NGjKCsrA/Dj\nCmRubg56vR4ulwspKSkAohfMNRgMS4rkOhwO7N+/X1qRfxHDB/gxSOHevXs4e/YscnJypBeBOC5W\nqxUWiwXPnz+Hz+dDIBCAVqtFdXW1In0EQUBmZma4QkFpaSnev3+vSJfBwUHk5uYiISEBAFBUVASr\n1Yq9e/fK2icaqymoLQViuES2c+TIkXA7akfWGRYRwWg0IiMjAydPngzPLykpCV+1vnr1CqWlpeH5\ng4ODAACr1QqdTge9Xo/CwkKYzWZ4vV54PB6YzWYUFhYq1icQCKC1tRXl5eU4cOCA5B6AeC5NTU3o\n7OxER0cHzp07h/Ly8pgEK7F8srOz4fV6w39THBkZwY4dOxTpsnnzZrx79w7BYBCBQABjY2MxeYDq\n7/pErhfJagpqrzdiuURrR+3IutKFxWJBS0sLdu7cGU6Tq6urkZOTE3V4bnd3N0wmE7RaLS5evIis\nrCwAwMuXL5cMa6+oqFCsz+DgIB49erTkRHjp0iXs2rVLcS6RDAwMYHx8PCbD2sX0MZvN6O3tBREh\nKysL9fX1kj58TyyXYDCIrq4ujI2NQaPRoKioCDU1NZJ5/KnP3NwcmpubMT8/j7i4OGi1WrS3t0Or\n1WJ4eHjJsPbKykpFutjt9hXbKSoqktRHamQdsBiGYRgmhKxvCTIMwzBMCA5YDMMwjCLggMUwDMMo\nAg5YDMMwjCLggMUwDMMoAg5YDMMwjCLggMUwDMMoAg5YDMMwjCL4B/CzGpuNPdI5AAAAAElFTkSu\nQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa0584c0eb8>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"rape_stats.plot(kind='line', title='Rape Statistics in India, US, France, and the Netherlands')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Now this is interesting. Looking at the amount of attention garnered by India and its rape problem, one wouldn't have expected the United States to actually have a *considerably* higher number of rape cases reported. 'Rape cases reported' being the operative phrase of course. It's also interesting to see the steady decline in rapes in the US, and its rise in India. France and the Netherlands seem to be quite benign in this matter, considering how prostitution is legal in the Netherlands." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 30, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa0585b8e48>" | |
] | |
}, | |
"execution_count": 30, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbMAAAEPCAYAAADI5SqJAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlcVOX+B/DPmRnWYQSGQDYXkEVBBVIytQRNK20zuz+u\nqeXaLbll2l43S+tqqxumeVPUrrZomUvdSs0t0yxQcMENxRVDhAFkFWbO9/fHzBxm2ARkO8P3/dLX\nnHnO9jznDPOZ58wzMwIRERhjjDEZU7R2BRhjjLFbxWHGGGNM9jjMGGOMyR6HGWOMMdnjMGOMMSZ7\nHGaMMcZkj8MMwIQJEzBs2LDWrka9nD9/HgqFAvv377+l7cTGxuIf//hHE9WqulmzZiE4OLhZtt1U\nx4DZhq5du2LOnDkNXi82NhZPPfVUM9SoZSgUCnz55Zey3b6lxp5DS80eZpmZmXBwcICfnx8MBkNz\n765RBEGAIAjS/SlTpmDw4MH1WnfLli2466674OHhARcXFwQHB2PcuHEoLCwEAPz2229QKBS4ePFi\ng+sVFBSE2bNnW5V17twZWVlZuOOOO+q1jX//+98ICAioVr5p0ybMnz+/wXWqr5dffhl//PHHLW9n\n6NChmDhxYhPUqH7qCuGqf3AXLlzA+PHj0blzZzg6OsLHxwfDhg3DL7/80qB9TpgwAQqFotr/9evX\n31Jb2ouqf79VrV27FgpF9ae6m613KxQKBVQqFY4dO2ZVXtvfY10a8nwkV01xLpo9zBITE/HQQw/B\n3d0d33//fXPvrlGICI357PjOnTvx2GOP4b777sO+fftw9OhRLFmyBK6urrhx40a1fTRUTSdXoVDA\ny8sLKpWqwduz5ObmBhcXl1vaRl3UajW0Wm2zbb851fZHZfkHV1FRgaFDhyIzMxNfffUV0tPTsWXL\nFtx7773Q6XQN3uegQYOQlZVl9f+RRx6ptlxFRUWDt81ah4ODA15++eXWrkaDyfYxRs3IYDBQly5d\n6IcffqAPPviAhg8fXm2ZTZs2UWRkJDk7O5ObmxvdcccdlJKSQkRE5eXlNGPGDPL39ycHBwfy8fGh\n0aNHS+sePHiQ7r//fvLy8iIXFxeKjo6mn3/+2Wr7Xbp0oX//+99WZZMnT6bY2Fjp/vjx42nYsGFE\nRPT222+TIAhW/z///PMa2/f8889TdHR0re0/d+5ctW0NHjy4XnWPiYmptu6FCxekbe7bt09ads6c\nORQYGEgODg7k6elJ9913H5WWltKqVauqbWP27NnS9qdMmWJV308++YR69OhBDg4O5OXlRY899li9\nzlNN3n77bQoKCqp2f/PmzRQaGkpqtZpiY2MpPT291m2MHz++Wv337NkjHYP169fTAw88QM7OzhQY\nGEirV6+2Wr+wsJCmTZtGfn5+5OzsTFFRUfTdd9/Vur+a6m2pa9euNGfOHCIiSklJIUEQKC0trc7t\n1Yfl46+meUOHDqWEhATq0qULKZVKKisro23btlFMTAxptVpydXWlmJgY+vPPP63WFQSBli5dSuPG\njSONRkP+/v703nvvWS1TUVFBs2bNkh4/fn5+9Nxzz0nzG3MMa7Jw4UKKjIwkFxcX8vb2ptGjR9Nf\nf/0lzd+1axcJgkDbt2+nu+++m5ydnSksLIx++uknq+2kpqZS//79ycHBgYKDg2ndunVW56Uq83Yt\n/0+cOJGIiGJjY2nKlCn0zjvvkLe3N2m1WnryySepqKjIahtfffUVRUREkKOjI3Xt2pVeeOEFKi4u\nrrO9giDQq6++SkqlkrZv3y6Vv/vuu9S1a1erZbdt20YDBgwgJycn8vPzo4kTJ1Jubi4R1f18VJ/z\nW15eTm+//TYFBASQo6MjhYeH03/+859qdU1ISKDHH3+cXF1dpedYQRDoiy++kJZryXO4fPly6t69\nOzk6OpJWq6VBgwbR5cuX6zzmzRpmP/zwA3l7e5PBYKDMzEyyt7en8+fPS/P/+usvsrOzo48++ojO\nnz9PJ0+epK+++oqOHj1KRETz5s0jf39/2rNnD126dImSkpJo0aJF0vq7d++mzz//nI4fP07p6en0\n5ptvkr29PZ0+fVpapqYH+uTJk6VQIap8wiAiKioqorFjx9LAgQPp6tWrdPXqVSotLa2xfR988AG5\nublVexIxMxgMtGXLFhIEgZKTk+nq1auUl5dXr7rrdDoKCAigl19+WaqHwWCoFmYbNmygDh060A8/\n/ECXLl2i1NRUWrRoEZWWllJpaSm99tpr1KlTJ2kb5j/C2NhYeuqpp6S6vvXWW+Ti4kJLliyh9PR0\nOnToEM2dO7de56kmNYWZWq2m4cOH06FDh+jw4cPUp08fuvvuu2vdRkFBAQ0aNIhGjx4t1b+8vFw6\nBoGBgfTNN9/Q2bNn6Y033iCVSiUdP1EUKTY2lgYPHkz79u2jc+fO0WeffUb29va0Y8eOetfbkuVj\nKTMzk5RKJc2aNYtu3LhR6/bqw/LxV9O8Dh060KhRo+jIkSN07NgxMhgMtHHjRvrmm2/o9OnTdPz4\ncZoyZQpptVrpSZDI+GTUsWNHWrFiBWVkZNCSJUtIEASr9j/55JPk5eVFa9eupYyMDDpw4AAtXLiQ\niBp/DGuyaNEi2rFjB50/f55+//13GjBgAMXExEjzzU+EERERtHXrVjpz5gxNnDiROnToIP3NlJSU\nkK+vLz3wwAN05MgR+v333yk6OpqcnZ1rDbPy8nKp3ebH0PXr14nI+ILOzc2NXnjhBTp16hRt27aN\ntFotzZw5U1p/1apV5O7uTmvXrqVz587Rr7/+Sr1796YnnniizvYKgkBr166lyZMnU2RkJImiSETV\nw2zHjh3k7OxMn3zyCZ05c4aSkpJo8ODB0rGp6fmorKxM2sfNzu/48eMpIiKCtm/fTufPn6d169aR\nm5sbJSYmWtXVw8ODlixZQhkZGXTmzBmp3DLMWuocJicnk0qlojVr1tDFixfp6NGjlJiY2Lph9vDD\nD9NLL70k3b///vvpzTfflO4fOnSIBEGwCjhLzz//PA0ZMqRB+4yIiLB6YNcWZlV7ZpZPJlXn16ak\npIQefvhhEgSBfHx86JFHHqFFixZZPaHs3btX6lU1tO5BQUFST8qsapjNnz+fQkJCqKKiosZt1vRK\nkMg6zIqKisjR0ZHmzZtX4zZudp5qUlOYqVQqysnJkcrWrVtHCoWizjAYOnSo9ErazHwMFixYIJUZ\nDAbSaDT02WefEZHxD8vR0ZEKCgqs1p04cSKNHDmy3vW2VPWxtGzZMnJxcSEnJycaOHAgvfrqq5SU\nlFTrtmszfvx4UqlU5OLiIv3v3r27NM/d3f2mPQGDwUDu7u5WTz6CINDzzz9vtVyPHj3o9ddfJyKi\n9PR0EgSBNmzYUOM2G3sM68P8mLpy5Yq0L0EQaOPGjdIyV69eJUEQaNu2bURkfLXu4uJC+fn50jLH\njh0jQRBqDTMiojVr1pAgCNXKY2JiKDIy0qps6tSp1L9/f+l+ly5dqvVk9uzZQ4IgWNWjKnMQXLly\nhdRqNa1atYqIqv89xsTESOfD7MKFCyQIAh0+fJiIan8+utn5zcjIIIVCQadOnbJaZvbs2VbtFgSh\n2lUayzbUprnO4XfffUeurq7Si476arb3zDIzM/Hjjz9i/PjxUtmTTz6JlStXSgNBIiIicN9996Fn\nz54YNWoUEhIScPnyZWn5iRMn4ujRowgKCsLUqVPx3XffWV3PvXbtGuLj49GjRw+4u7tDo9EgLS2t\nUYMtGsPJyQmbN2/GuXPn8N5778HPzw/vvfceQkNDcfLkyTrXbaq6//3vf0dFRQW6dOmCiRMnYu3a\ntSgqKmrQNtLS0nDjxg3ce++9Nc6/2XmqL19fX3h4eEj3fXx8QETIzs5u8LYAIDIyUpo2v5d49epV\nAEBSUhLKy8vh5+cHjUYj/f/iiy9w5syZRu2vqqeffhpZWVnYsGEDhg0bhj179qBfv3748MMPG7yt\nO++8E4cPH5b+b926VZrXo0cPODs7Wy1/7tw5PPHEEwgODoarqytcXV1RUFBQ7fFjeYwA4zkwH+9D\nhw4BQK3nvSmP4e7du3Hfffehc+fO6NChA+6++24AxkE0tdXXy8sLSqVSOqfHjx9HWFgYXF1dpWXC\nw8Ot7jeEIAiIiIiwKvPx8ZH2d+3aNVy8eBEzZsywav+IESMgCEK9joGPjw9efPFFzJw5E2VlZdXm\nJyUlYcGCBVbbDw8PhyAISE9Pv+n26zq/ycnJICL06dPHavvvvfdetbrXZ0BZS53De++9F4GBgQgI\nCMDjjz+O5cuXIzc396b1a7YwS0xMhMFgQFRUFOzs7GBnZ4cnn3wSWVlZ0kAQhUKBn376CTt37kR0\ndDQ2bNiAkJAQ/O9//wNgfBI9d+4cPv74Y9jb2+P5559HZGSkNFJwwoQJ2LdvHz766CP89ttvSE1N\nRWRkJMrLyysbqFBUG3zR1G9wdunSBePHj8eSJUtw4sQJCIJw0ye0+tS9Pnx9fXHy5EmsXLkSXl5e\nePfddxEaGtqosKnNzc5Tfdnb21vdNw+mEEWxUfWqaXvmbYmiCFdXV6uAOHz4ME6cOIGffvqp1m2a\nQ6Em+fn5cHR0tCpTq9UYPnw43n77bfz++++YNGkS3nrrLej1+ga1xdHREYGBgdL/zp07S/OqBhkA\nPPjgg7h8+TKWLl2KP/74A6mpqfDy8qr2+Kl6jID6H+/GHsOqLl68iBEjRiAwMBDr1q3DwYMHsWXL\nFgBocH2r/i3fqps9hgAgISHBqv1HjhxBeno6evbsWa99vPLKKzAYDJg3b161wUVEhNdee63aMU5P\nT8f999/f4Ppb1tt8+/vvv1ttOy0tDUeOHLFaR61W17mfljyHarUaycnJ2LhxI0JCQrBs2TIEBQVJ\nL75q0yxhJooiEhMT8a9//cvqIKampmL06NH47LPPrJaPjo7G66+/jj179iAmJgarVq2yatjIkSOx\naNEiJCcn48SJE/j1118BAHv37kV8fDwefPBBhIeHw9vbG2fPnrXatpeXFzIzM63KUlJS6hwGam9v\n3+iPEbi5uaFjx464du2atC0A1bZXn7rXtx729va477778MEHH+Do0aMoKSnB5s2b672NsLAwODo6\nWvUGalLXeWou9vb2DQ4GAOjbty/y8/NRWlpqFRKBgYHw9/evdb3u3bsjJycH586dsyo/ffo0CgoK\n0L179zr32717d5SXl9caiLVpyLDk3NxcnDhxAq+99hqGDRuG7t27w8HBoV49XMv93H777QBQ63mP\njo5u1DGsKikpCWVlZVi4cCH69++P4OBgZGVl1Xt9s/DwcJw4ccLq2Kalpd30WJv/BhsahB07dkSn\nTp1w8uTJau0PDAyEg4NDvbajVqsxe/ZsfPjhh1IPxaxv3744duxYjds3B0xDno8sz2+fPn0AGHtO\nVbfd0I8HtPQ5VCgUuPvuuzF79mwcPHgQPj4+N/3MW7OE2U8//YTLly/j6aefRlhYmPQ/PDwcEyZM\nwLZt23DhwgXs378f7777Lv78809cvHgRO3bswJEjRxAeHg4A+Oijj/Dll18iLS0N586dQ2JiIlQq\nFUJCQgAAoaGhWLt2LY4dO4bU1FQ8/vjj1V51Dh06FOvWrcP27dtx6tQpzJgxAxcvXqzzgR0YGIiT\nJ0/i+PHjyMnJqbW3NGvWLLz88svYvXs3zp07h6NHj+Kll15CWloaHn30UQDGXptCocD//vc/ZGdn\n4/r163XW3bJeAQEB+O2333Dp0iXk5OTUWOfExESsWLEChw8fxoULF7B27VoUFhYiLCxM2kZWVhYO\nHDiAnJwclJaWArD+OIKLiwtefPFFzJo1C0uXLsXp06dx+PBhvP/++wBw0/PUnAICAnDw4EFkZGQg\nJyenzmCzPD733HMPhg4dilGjRmHz5s3IyMjAwYMHsXjxYqxYsaLWbdx3332IiIjA6NGjsWvXLpw7\ndw47d+7EmDFjEBYWhvvuuw+A8QXRQw89hG+++QbHjh1DRkYG1q1bhw8//FD63GFDNOSJ1t3dHZ6e\nnvjss8+Qnp6O33//HY8//jicnJzqtR/zvoKCgjB27FjEx8fjiy++wNmzZ5GUlISEhAQAwJAhQxp1\nDKsKCQmBIAj4+OOPce7cOWzatAnvvvtuvdc3GzNmDDQaDcaNG4cjR47gwIEDmDRp0k3bbX7i3rx5\nM65du4bi4uJqx6I2c+bMQUJCAubOnYtjx47h1KlT2LRpE5555pkG1X3y5Mno1KkTEhMTrcrfeecd\nbN68GS+++CJSU1Nx9uxZ/Pzzz5gyZYp0WbK+z0dV2xQUFIRJkybhqaeewtq1a3HmzBkcPnwYK1eu\nbPCl8ODg4BY7h5s3b8bChQtx8OBBXLx4ERs3bsSlS5du/nzToHfY6umRRx6hAQMG1DivoqKCPD09\naebMmZSWlkYjRowgb29vcnBwoC5dutArr7wiDWb4z3/+Q3369KEOHTqQi4sL3XHHHbRlyxZpW0eP\nHpWGtAYEBNCnn35abcBAYWEhPfHEE+Tu7k5eXl40e/ZsmjJlitVoxgkTJlgNjdbpdDRixAhydXWt\nc2j+rl276O9//zt17dqVHB0d6bbbbqO77rqLvvzyS6vlPvzwQ/Lz8yOlUinttz51T05Opttvv52c\nnJxIoVBIQ/MVCoU0AOS7776jAQMGkLu7Ozk7O1OvXr1o5cqVVsd7zJgxpNVqrYbmVx3NSGQcrRQa\nGkr29vbUsWNHiouLIyK66XmqyaxZsyg4OLjW+0TGwTHmdtUmIyODBg0aRC4uLqRQKKSh+ZbHwKzq\ngBnzaM6AgACyt7cnb29vGj58OO3atavW/RERZWdn0zPPPEPdunUjJycn6tatG/3zn/+0GtiTk5ND\nM2bMoMjISHJ1dSW1Wk0hISH06quvSiO3iCqHVtel6uOvPvP27NkjDRfv3r07bdiwoVr7a3oDv+pj\nrKKigmbOnEldu3Yle3t78vf3pxkzZkjz63MMY2JibjpgasmSJdSpUydycnKiu+++m37++WfpfBIZ\n/5YUCgVlZmZaradSqaz+/lJSUqRh3UFBQfT111/XOTTfbPr06eTl5VVtaH7Vv4F///vfFBAQYFW2\nadMm6t+/Pzk7O1OHDh0oMjKS3n333Tr3V9Ox/9///keCIFTb/t69e2no0KGk0WhIrVZTjx49aMaM\nGaTX64mo9uej+pxfg8FAH374IXXv3p3s7e3ptttuo9jYWPr222/rrGtN5S11Dn/99VcaMmQIeXp6\nkqOjI4WEhNAHH3xQ5/EmIhKIan9psnTpUqSkpKBDhw6YN28eAKCoqAgLFixATk4OPD09MWPGDKk7\nvHLlSqSmpsLBwQHx8fHSK6Ldu3dj48aNAIBRo0YhJiYGAJCRkYElS5agoqICUVFR0jc9NGYfjLVF\nTz75JK5du9ag95jkpkuXLoiPj8err77a2lVh7VldSXf8+HHKyMigF154QSpbs2YNbdq0iYiINm7c\nSGvXriUi44eAzZ9LOn36NL3xxhtEZOwZPfvss1RUVERFRUX07LPPSsOMX3vtNelDs3PnzpU+hNvQ\nfdzMsWPH6rWcXNhSe2ypLUTW7TEYDOTn51fnB8Pbsvqcm8OHD1NoaGidvfS2wpYea7bUlqZS53tm\nPXr0qDbKJTk5WepZxcbGIikpqVp5cHAwiouLkZ+fj9TUVPTu3RtqtRpqtRq9evVCSkoK8vLyUFZW\nhqCgIADGr/P5888/G7WPm0lLS6tfssuELbXHltoCWLdHoVDg8uXL0mNcbupzbnr37o2TJ0/e8ter\ntQRbeqzZUluaSoMHgBQUFMDNzQ2A9TBmnU5n9aa3h4cHdDod8vLyai23/O4+rVYrfaddQ/dxM439\nHFNDtdQDzJbaY0ttAWyrPbbUFsC22mNLbWkqtzSasabPTDS1ptiHeZh8c2upE29L7bGltgC21R5b\nagtgW+2xpbY0lQZfG3B1dUV+fj7c3NyQl5cnfXJbq9VafUo7NzcXWq0WWq3W6oDk5uaiZ8+eVj0x\nc7m519XQfVSVlpZmtc+qP6PSXOLi4lpkP7bUHltqC2Bb7bGltgC21Z6WbIvlTxGFh4e3yEdyGqPB\nYda3b1/s3r0bI0eOxJ49exAdHS2Vb926FQMHDsTp06ehVqvh5uaGiIgIfPXVVyguLgYR4ciRIxg7\ndizUajWcnJyQnp6OoKAg7N27F8OHD2/UPqqq6YBfuXKlwQenrdJoNNK3oMidLbUFsK322FJbANtq\nT0u1xdfXt8VebNyqOofmL1y4ECdOnMD169fh5uaGuLg4REdH1zpsPjExEampqXB0dMTUqVMRGBgI\nANi1a5fV0PzY2FgAlUPzy8vLERUVhUmTJgGoe2h+bfu4GQ6ztsmW2gLYVntsqS2AbbWnJcNMLuoM\nM1vCYdY22VJbANtqjy21BbCt9nCYVdfsvzTNGGOMNTcOM8YYY7LHYcYYY0z2OMwYY4zJHocZY4wx\n2eMwY4wxJnscZowxxmSPw4wxxpjscZgxxhiTPQ4zxhhjssdhxhhjTPY4zBhjjMkehxljjDHZ4zBj\njDEmew3+cU65osyLgEpl/K9UWUzbAUolBAXnOmOMyVW7CTPxPx8ABj2g11fe6vWAocJ4q1RWhpxS\nBajsrIOvlltBZVdZpnYBOvpB8PYHvP0Alw4QBKG1m84YYzav3YSZ8p0ltc4jIsBgsAi7CouwqyH4\nzOUGPcjy/vV8ID0N4t5twNVMAALg7Qeho5/x1tsP8PYHPH0g2Nm1XOMZY8zGtZswq4sgCJWXHR0a\nuG4t5UQEFOYDWZmgrEzgaibEfTuArExAdw1w9wC8/a2DrqMf4OrOvTnGGGsgDrNmIggC0MEd6OAO\nIaSn1TzSVwDXrgJXLxuD7txpiAd2AVmXjT1EL18IPv6mS5bGsIOXLwT7BiYtY4y1ExxmrUBQ2QE+\n/oCPf7WeHRVdN/bmrmYCWZkQ//jVeMnyWhbg6g509ENZWAQoOBzoGgRBoWyVNjDGWFvCYdbGCC4d\ngKAOEIJ6WJWTwQDkXgX+ugw6nw7xv58A+ToIYZFA+O0QwqMguGlbqdaMMda6OMxkQlAqAS9fwMsX\nTnfdA/0jY0G6HFDaIdDRJND6REDrCaGnMdgQ1MPYA2SMsXaAw0zGBO1tEO6+F7j7XmPP7dxpUNoh\niBs+N16aDOlpCrfbIXh6t3Z1GWOs2XCY2QhBqTT2xoJ6AI+MBRUWgI6nAmmHIH7/NeCkNl6K7Hk7\nENILggMPJmkMKisF8nOBfB0oX2cxnQsU5KFQZQeDgyMEZxfj5w4tbgXzfWcXQK02lnHvmbEmIRAR\ntXYlWsKVK1dauwpNRqPRoLCwsN7LkygCl8+Bjh0CpR0CLmQA3UKNPbaetwM+nVrt4wANbUtzIX0F\nUJAH5OUCBaagspw2hRZEA+DmAbhpIZhu4aoF3D0guLrD2ckJJTnXQCVFQHEhUFwMlBQBJUWmMtP/\nkiKgtNj44XxnF8BZXRl6NQWhtIwGcNEAak2zn7O2cm6aii21p6Xa4uvr2+z7aCrcM2sHBIUC6NwN\nQuduwIj/A5WWACePgI4dgrjje4BIuhyJHr2NT5w2goiAokLjZ/vMPah8nTGk8iqnUVIMuLoZg8ky\nqHw7QWGedtMae7h1hIhKo4FQWFjr5w+r1e1GaWXgFRcaQ6+4yFifkiLgykWguAiiOQBLioDC64Cd\nnXROhS7dgC7djO+Z8mcUWTvFPTMZaspXZURk/ChA2kHQsUPAmZNApwDjKEkvH+OTuqu78Qne0alJ\n9mmpKdpCZSVAzlUg5yoo5yqQk226NU5DqQS0nsbekzmU3LQQXD0Ad9N9F9cm+X7OlnjFTERAXg5w\n4Szo4lnQhbPAxbPGb6Exv2gxh5ynd6MDzpZ6MoBttYd7ZtVxmMlQcz6QqfwGcDoNdPIwkHsNVKCr\n7L0olNJlNcF8eU0KBm3lvAa8H1eftlBFOZCbbQqrbOvgyr0KlJcDHl7AbR0h3NbR6ha3dYTgrL7V\nw1JvrfmESfk64GKVgCstBToHGoPNHHQdfesV3Lb05A/YVns4zKrjMJOh1vijJCLjezz5OqAgz/Q+\nkulynXTpLs94a2dfPeTczAHoXnkpz84eGo0G1/Pzje9JST2rq9bTRdcB99sqQ8oyuDw7Ahq3NnN5\nra09YVJhQWUP7uJZ4GIGcL3A2PvuYtGD8/Y3DiKy0NbacqtsqT0cZtVxmMlQW/6jJCLj+zqmsCNz\nry5fV9nLy9cB1/MABycITs7GMHRxrd6jMk+7a2XzTSdt+dyYUXGRqQeXAVw4Y7zNzwX8upguUQZC\n6BIETWgYikrLWru6TUYO56a+OMyq4wEgrEkJgmAccafWGJ8ca1mORBEoLoJaKaDYzpF/RaAFCWoX\noEcEhB4RUhmVlgCXzoEungFOp0H8ZQsKdNeAwO4QwiON76H6dW0zPWDGquIwY61CUCgATQcoTaP/\nWOsSnJyBkHAIIeFSmVohoCh5P+hEKsRP3wfKSo0BGGYMN8HNoxVrzJg1DjPGWI0UahcIt/eHcHt/\nAABdywKdSAUdSQKtX2n8uSJTsCGkJwQHx1auMWvPOMwYY/UieHpD8LwfGHQ/SDQAFzJAx1Mgbt0I\n/OcjoEu3ynDr0k0273My28BhxhhrMEGhBAKCIQQEAw/EGb/mKz0NdDwV4uoE48jW7r2M4dYjkr8b\nlDU7DjPG2C0THJ2AXn0h9OoLAKD8XNDxw8DxFIibvwQcHE29tihjyNnQt8ywtqHRYfbDDz9g165d\nAIDOnTsjPj4eeXl5WLhwIYqKihAYGIhnn30WKpUKFRUV+OSTT3Du3DloNBpMnz4dnp6eAICNGzdi\n165dUCgUmDhxIiIijCOsUlNTsXr1aoiiiCFDhmDkyJEAgOzs7Br3wRhrOwQ3DwgDhgADhhg/rpF5\n3thr+/VnYNVCwLez1GtDYCgE/htmt6hR39+j0+nw888/4/3338e8efMgiiL27duHtWvX4sEHH0RC\nQgLUajV27twJANi5cyc0Gg0SEhLwwAMP4IsvvgAAXL58Gfv378f8+fPxxhtvYMWKFSAiiKKIxMRE\nvPHGG5hZZscKAAAgAElEQVQ/fz727duHy5cvA0Ct+2CMtU2CIEDwD4Di3kehnD4bivlroBg5DtDr\nIa5bAfGFcTAsfhfiL5tBmRfQTj76yppYo7+MzmAw4MaNG9Ktu7s70tLScOeddwIAYmJikJSUBABI\nTk5GTEwMAKBfv344evQoACApKQkDBw6ESqWCl5cXvL29kZ6ejjNnzsDb2xteXl5QqVQYOHAgkpOT\nQUS17oMxJg+CnT2EHhFQPDYeypkLoJjzGRT9BwN/XYa4ZA7ElydATJwPcf8OkC6ntavLZKJRfXut\nVouHHnoI8fHxsLe3R0REBAIDA6FWq6EwfeebVquFTqcDYOzJeXgYP5OiVCrh7OyMwsJC5OXlITg4\nWNquh4eHtI55efO2zpw5g6Kiolr3wRiTJ0HTAeh7F4S+dwEwfwTgMHD0IMRvVhq/BLpHBISwCONv\n8bXgd20y+WhUmBUVFSE5ORlLliyBs7Mz5s+fj5SUlKauW6OlpaUhLS1Nuh8XFweNRtOKNWpa9vb2\nNtMeW2oLYFvtabW2aDRAYDDwwN9AogjDhTPQHz0I/a/boE9cAGWnAKh69oFdr9uhDA6DYGdfr83y\nuWmc9evXS9Ph4eEIDw+vY+nW06gwO3r0KLy8vKSD2a9fP5w6dQrFxcUQRREKhcKqN6bVapGTkwOt\nVguDwYCSkhJoNBpotVrk5uZK283NzYWHhweIqFq5VquFRqOptg+tVlutfjUdcFv5TjaAv2OuLbOl\n9rSZttzmAwx+EBj8IBQV5aAzJ1B+4jBu/HcpkHXZ+AvrPSKMg0n8utT6iwBtpj1NoKXaotFoEBcX\n1+z7aQqNes/M09MT6enpKC8vBxHhyJEj6NSpE8LDw3HgwAEAwO7du9G3r3GYbt++fbFnzx4AwIED\nB9CrVy+pfN++fdDr9cjOzkZWVhaCgoLQrVs3ZGVlITs7G3q9Hvv375e2VXUf0dHRt3YEGGOyIb3f\nNupJKP81D4r3V0Bx973AtSyIyz6A+NJ4iJ99BHHvNlBudmtXl7WgRn9r/vr16/H7779DoVAgICAA\nzzzzDHQ6nTRsPiAgAM8995w0NH/x4sU4f/48NBoNnn/+eXh5eQEAvvvuO+zatQtKpRITJkxAZGQk\nACAlJcVqaP6jjz4KwHpovuU+boa/Nb9tsqW2ALbVHjm2hXKzje+3nThsvHVylnptLn3uRHHjx7y1\nKfyt+dXxT8DIkByfZGpjS20BbKs9cm8LiSJw5QLo+GHQiVTg7EnjTwuF9obQvRcQHC7bwSQcZtXx\nJxUZYzZJUCgA/wAI/gHAvSPh4uSEwqOHQKeOQvxlC7B8HuDjDyG0F4TuvY3vvTk6tXa1WSNxmDHG\n2gVBpYIQ1ANCUA/j90lWlAMZp0GnjkD8cb3xV7j9u1b23Lp1h2Dv0NrVZvXEYcYYa5cEO3sgtCeE\n0J7Aw2NAN24AZ08Ye26b1gKZF4AuQZU9t8AQCCr+Edm2isOMMcYACA4O0g+PAgCVlQDpJ0Anj0Bc\nnwhkZRoDrXtvCKG9gK7BEJTN9zM3JBqA4mKguFD6T0WFQEkhbjg6AXfd22z7liMOM8YYq4Hg6Az0\n6gOhVx8AAJUUAafTjOG2dimQmw1062EMt+69gE4BNf6GG4kiUFoCFF8HiouAokKQRUChqBAoLgKZ\n55vLy0oBJzWgdgHUGkCtgeBivCVf/5Y+HG0ehxljjNWD4OwCRPaDENkPAECF14HTx4zhlvgLUKAD\nuvUwLlxkEUylxYCDE+CiAZxdABcNBFM4Qa0BOvoCahco1B2MwWUKLDg51/oDp44aDSpkPNK0OXCY\nMcZYIwiaDkCfARD6DAAAUEGecfi/UmUdSs4uzXo5khlxmDHGWBMQXN2B2/u3djXaLdv4ODxjjLF2\njcOMMcaY7HGYMcYYkz0OM8YYY7LHYcYYY0z2OMwYY4zJHocZY4wx2eMwY4wxJnscZowxxmSPw4wx\nxpjscZgxxhiTPQ4zxhhjssdhxhhjTPY4zBhjjMkehxljjDHZ4zBjjDEmexxmjDHGZI/DjDHGmOxx\nmDHGGJM9DjPGGGOyx2HGGGNM9jjMGGOMyR6HGWOMMdnjMGOMMSZ7qtauAGNMnjQaTWtXoUGUSqXs\n6lyb5mhLYWFhk26vpXGYMcYaTe5PgMzIFkKeLzMyxhiTvUb3zIqLi7Fs2TJcvnwZABAfHw8fHx8s\nWLAAOTk58PT0xIwZM6BWqwEAK1euRGpqKhwcHBAfH4+AgAAAwO7du7Fx40YAwKhRoxATEwMAyMjI\nwJIlS1BRUYGoqChMnDgRAFBUVFTrPhhjjLVPje6ZrVq1ClFRUViwYAE+/vhj+Pn5YdOmTejduzcW\nLVqEnj17YtOmTQCAQ4cO4erVq0hISMA//vEPrFixAoAxmDZs2IC5c+di7ty5+Pbbb1FSUgIAWL58\nOaZOnYqEhARkZWUhNTUVAGrdB2OMsfarUWFWUlKCkydPYsiQIQCMb0Y6OzsjOTlZ6lnFxsYiKSkJ\nAKzKg4ODUVxcjPz8fKSmpqJ3795Qq9VQq9Xo1asXUlJSkJeXh7KyMgQFBQEABg0ahD///LPatiz3\nwRhjrP1qVJhlZ2ejQ4cOWLp0KV599VUsW7YMZWVlKCgogJubGwDA1dUVBQUFAACdTgcPDw9pfQ8P\nD+h0OuTl5dVartVqpXKtVgudTgcAte6DMcbM/P39ceHCBauyefPm4bnnnpPuJyQkoH///ggJCUHf\nvn0xderUlq4ma0KNes/MYDDg3LlzmDRpEoKCgrB69epql/sEQbC6T0SNr2Utqu6DMcZqIwiC9Jyx\nfv16fPfdd1i3bh06d+6Ma9euYfv27a1cQ3YrGhVmHh4e0Gq10mXAO++8Exs3boSbmxvy8/Ph5uaG\nvLw8uLq6AjD2rHJzc6X1c3NzodVqodVqkZaWZlXes2dPq56Yudzcg3N1da1xH5bS0tKsthsXF2cT\nQ0/N7O3tbaY9ttQWwLbac7O2KJXKFqzNrSMi6UX14cOHERMTg86dOwMAPD09MWbMmNasXquq63Nr\n69evl6bDw8MRHh7eUtVqkEaFmZubG2677TZcuXIFvr6+OHLkCDp16oROnTph9+7dGDlyJPbs2YPo\n6GgAQN++fbF161YMHDgQp0+fhlqthpubGyIiIvDVV1+huLgYRIQjR45g7NixUKvVcHJyQnp6OoKC\ngrB3714MHz5c2lZN+7BU0wG3pc/DaDQam2mPLbUFsK323Kwtcg7tPn36YObMmfDx8UH//v3Rs2dP\n2YVzUzIYDDWea41Gg7i4uFaoUcM1emj+xIkTsXjxYuj1enTs2BHx8fEQRRELFizArl27pGHzAHD7\n7bcjJSUFzz33HBwdHaVr0y4uLnjsscfw+uuvAwD+9re/ScPsp0yZgiVLlqC8vBxRUVGIjIwEAIwc\nObLGfTDG2h7DUw/f8jaUy7c0QU2sjRo1CoIgYN26dZg3b570kaH4+Pgm3xdrGQI1x5tZbdCVK1da\nuwpNpj29+pcbW2pPfXpmbbWtXbp0wY4dO6S3QgDg/fffR3Z2NubPn2+1rMFgwE8//YTnnnsOq1ev\nlkZLtye1nUtfX99WqE3j8DeAMMZsjp+fHy5dumRVdunSJXTq1KnaskqlEg8++CB69OiBU6dOtVQV\nWRPjMGOM2ZyHHnoIixYtwl9//QVRFPHrr7/il19+wQMPPADAOKhhx44dKCoqgiiK2LlzJ06dOoWo\nqKhWrjlrLP6iYcaYzZkxYwY+/vhjPProoygoKEDXrl3xySefICQkBIDxstrixYsxbdo0GAwG+Pv7\n4/33369xQBmTB37PTIba8nsVDWVLbQFsqz1yfs+MNQy/Z8YYY4y1ARxmjDHGZI/DjDHGmOxxmDHG\nGJM9DjPGGGOyx2HGGGNM9jjMGGOMyR6HGWOMMdnjMGOMMSZ7/HVWjDGb069fP+Tk5Ei/USYIAvbu\n3QsvL69WrhlrLhxmjDGbIwgCPv/8c9x11101ztfr9VCp+OnPlvBlRsZYu+Dv74/Vq1dj4MCBGDRo\nEADgrbfeQnR0NLp3747hw4fjzz//lJafN28enn76aTz//PMIDQ3FkCFDcOTIEWl+ZmYmpkyZgt69\ne6Nnz5548803pXlff/01YmNjER4ejrFjxyIzM7PlGtpOcZgxxmxSTd+hvm3bNvz444/YtWsXACAy\nMhLbt2/H8ePHMXLkSDz99NMoLy+Xlv/ll18wcuRInDx5EsOGDcO//vUvAMYf9Bw/fjw6deqEP/74\nAwcPHsQjjzwCANi6dSsWL16MFStW4OjRo7jjjjv4F6xbAIcZY8zmEBEmT56MsLAwhIWFYfLkyQCA\nZ599Fq6urnBwcAAAjBo1Cm5ublAoFFKQnT17VtrOHXfcgcGDB0MQBDz22GM4fvw4ACAlJQXZ2dmY\nOXMmnJyc4ODgIP18zJo1a/Dcc88hKCgICoUCzz33HNLS0rh31sz4ojFjrNk88sXJW97G5rHdG7yO\nIAhYuXKl1Xtm/v7+1X7SZNmyZfj6669x9epVCIKAwsJC6HQ6af5tt90mTTs5OeHGjRsQRRFXrlyB\nv78/FIrq/YHLly/jrbfewjvvvGNVnpWVBT8/vwa3hdUPhxljrNk0JoiakyAI0vQff/yBTz/9FOvX\nr0doaCgAIDw8vMbLk1X5+voiMzMTBoNBGjFp5ufnh+nTp2PkyJFNW3lWJ77MyBhrl4qKiqBSqaDV\nalFeXo4FCxbU+8dGo6Ki4OXlhblz56K0tBRlZWVISkoCADzxxBNYvHgxTp8+DQC4fv06vv/++2Zr\nBzPiMGOMtQuWvTIAGDx4MGJjY3H33XfjzjvvhKOjo9VlQEEQqq1jvq9UKrF69WqcP38e0dHRiI6O\nlgLr/vvvR3x8POLj49G9e3fcc8892LNnTzO3jglUnz61Dbhy5UprV6HJ2NLP1dtSWwDbas/N2mJL\nbW3vajuXVd9jbMu4Z8YYY0z2OMwYY4zJHocZY4wx2eMwY4wxJnscZowxxmSPw4wxxpjscZgxxhiT\nPQ4zxhhjssdhxhhjN9GvXz/s3bu3zW7P7NKlS/D394coik2+7baOw4wxZnP69euHiIgIlJaWSmVf\nfvkl/va3v9103enTp+PDDz+0Kqvpq61uRVNvj3GYMcZslCiKWLFiRWtXw4per2/tKtgsDjPGmM0R\nBAHPPPMMli1bhuvXr1ebf+bMGYwePRrh4eEYNGiQ9CXBa9euxaZNm/Dpp58iJCQEEydOlNY5duwY\nhg4dih49emDq1Km4ceOGNG/79u0YNmwYwsLC8Mgjj+DEiRPSvH79+mHp0qUYOnQoQkNDYTAYrOqS\nkpKChx56CGFhYbj99tvx5ptvoqKiQprv7++PNWvW4K677kJYWJj0a9eAMbDfeecd9OrVCwMGDMCO\nHTustr1u3ToMGDAAoaGh6N+/PzZu3NjII9r2cZgxxmxS7969MWDAACxbtsyqvLS0FKNHj8aoUaNw\n9OhRLF26FG+88QbS09Mxbtw4PProo4iPj8fp06exatUqAMZfrv7hhx/w5Zdf4vfff8eJEyewfv16\nAMaQe+mll/DRRx8hLS0N48aNw8SJE60CafPmzVizZg2OHz9e7ffPVCoV3nnnHRw7dgxbtmzBb7/9\nhs8//9xqmR07duCnn37C9u3b8f3332P37t0AjOG7Y8cObNu2DT/++CN++OEH6fJlSUkJ3n77baxd\nuxanTp3Cli1bEB4e3qTHuC25pTATRRGvvPIK3n//fQBAdnY23njjDUybNg0LFy6UutQVFRVYsGAB\npk2bhn/961+4du2atI2NGzdi2rRpmD59Og4fPiyVp6amYvr06Zg2bRo2bdoklde2D8YYsyQIAl56\n6SWsWrXK6tejt2/fjs6dOyMuLg4KhQI9e/bE8OHD8cMPPwAwBlfVHxMRBAGTJ0+Gl5cX3NzcMGzY\nMKSlpQEwBsq4ceMQGRkJQRDwf//3f7C3t8ehQ4ekdSdNmgQfHx84ODhUq2evXr0QFRUFhUIBf39/\njB07FgcOHLBa5p///Cc0Gg38/PwwYMAAHD9+HADw/fff46mnnoKPjw/c3Nwwbdo0q7orFAqcPHkS\npaWl8PT0REhISBMc2bbpln5p+scff4S/v7/0JuvatWvx4IMPYsCAAVi+fDl27tyJe++9Fzt37oRG\no0FCQgL279+PL774AtOnT8fly5exf/9+zJ8/HzqdDu+++y4SEhJAREhMTMTMmTOh1Wrx+uuvo2/f\nvvD39691H4yxtuf7dfm3vI2H/u7W6HVDQ0MxdOhQfPLJJwgODgYAZGZmIiUlBWFhYdJyer1eGhxS\n28AMT09PadrR0RFZWVnS9r799lupFwcYX8Cb5wN1/5TK2bNnMXv2bBw9ehSlpaXQ6/WIiIiwWsbL\ny0uadnJyQnFxMQDji3vLbVtOOzs749NPP8WyZcvw0ksvoW/fvnjrrbcQFBRUa13krNFhlpubi5SU\nFDz66KPSK5q0tDRMnz4dABATE4NvvvkG9957L5KTkxEXFwfAeP04MTERAJCUlISBAwdCpVLBy8sL\n3t7eSE9PBwB4e3tLJ3DgwIFITk6Gn59frftgjLU9txJETeXFF1/E/fffj6effhqA8Qn/zjvvxFdf\nfVXj8vUdZWheztfXF9OmTcO0adNuumxNXn/9dfTu3RvLli2Ds7Mzli9fjh9//LFedfDy8kJmZqZ0\nv+rvNsbExCAmJgY3btzABx98gFdeeQXfffddvbYtN42+zPj5559j3LhxUCiMmygsLIRarZbua7Va\nqWuv0+ng4eEBwPgLrc7OzigsLEReXp5UDgAeHh7Q6XRWy1tuq6ioqNZ9MMZYTbp27YqHH34YK1as\ngCAIGDp0KDIyMrBhwwZUVFSgoqICqampOHPmDABjD+zixYs33a75ct7YsWOxZs0apKSkgIhQUlKC\nX375Reo93UxJSQnUajWcnJxw5swZ/Pe//73pfs37fuihh7By5Ur89ddfyM/PxyeffCItl5OTg61b\nt6KkpAR2dnZwdnaWnjttUaNadvDgQXTo0AEBAQHSQW0nP1jNGJOh6dOno6ysDACgVqvx5ZdfYvPm\nzejTpw+ioqLw3nvvoby8HAAwevRonD59GmFhYZgyZUqN27P8nFjv3r3x0Ucf4c0330R4eDjuuusu\nfPvtt/Xu4c2cORObNm1CaGgoXnnlFTzyyCNW61bdjuW+x44di5iYGAwbNgwjRozAiBEjpHmiKGL5\n8uXo06cPevbsiT/++EMa32CLGnWZ8dSpUzh48CBSUlJQUVGB0tJSrF69GsXFxRBFEQqFwqp3pdVq\nkZOTA61WC4PBgJKSEmg0Gmi1WuTm5krbzc3NhYeHB4ioWrlWq4VGo6m2D61WW61+aWlp0puzABAX\nFweNRtOYprZJ9vb2NtMeW2oLYFvtuVlbqo7Ka0uqDqDw9fXF2bNnpfvdunWrtQcUEBCAbdu21bm9\nF154wep+bGwsYmNj61WXqmX9+vXDnj17alwXMH6rh6UFCxZI00qlErNmzcKsWbOksgkTJgAwXoL8\n9ttva92uJaVSWeu5No/aBIDw8PA2OyKyUWE2ZswYjBkzBgBw/PhxbNmyBdOmTcP8+fNx4MABDBgw\nALt370bfvn0BAH379sWePXsQEhKCAwcOoFevXlL5okWL8OCDD0Kn0yErKwtBQUEQRRFZWVnIzs6G\nVqvF/v378fzzzwMwHkzLfURHR1erX00HvLCwsDFNbZM0Go3NtMeW2gLYVntu1hZbCW0GGAyGGs+1\nRqORxju0dbc0mtHM3K0dN24cFi5ciK+//hoBAQEYMmQIAGDIkCFYvHgxpk2bBo1GIwWTv78/+vfv\njxkzZkCpVGLy5MkQBAFKpRKTJk3CnDlzIIoihgwZAn9//zr3wRhjrP0SqJ282VV1lI+ctadX/3Jj\nS+2pT8/MVtra3tV2Luv6SEFbY7tDWxhjjLUbHGaMMcZkj8OMMcaY7HGYMcYYk70mGc3IGGuf5DQ8\nX6lUVvv5FbmypbY0FQ4zxlijyG0koy2NvrSltjQVvszIGGNM9jjMGGOMyR6HGWOMMdnjMGOMMSZ7\nHGaMMcZkj8OMMcaY7HGYMcYYkz0OM8YYY7LHYcYYY0z2OMwYY4zJHocZY4wx2eMwY4wxJnscZowx\nxmSPw4wxxpjscZgxxhiTPQ4zxhhjssdhxhhjTPY4zBhjjMkehxljjDHZ4zBjjDEmexxmjDHGZI/D\njDHGmOxxmDHGGJM9DjPGGGOyx2HGGGNM9jjMGGOMyR6HGWOMMdnjMGOMMSZ7HGaMMcZkj8OMMcaY\n7Kkas1JOTg6WLFmCgoICCIKAe+65ByNGjEBRUREWLFiAnJwceHp6YsaMGVCr1QCAlStXIjU1FQ4O\nDoiPj0dAQAAAYPfu3di4cSMAYNSoUYiJiQEAZGRkYMmSJaioqEBUVBQmTpwIAHXugzHGWPvUqJ6Z\nSqXC+PHjMX/+fMyZMwdbt27F5cuXsWnTJvTu3RuLFi1Cz549sWnTJgDAoUOHcPXqVSQkJOAf//gH\nVqxYAcAYTBs2bMDcuXMxd+5cfPvttygpKQEALF++HFOnTkVCQgKysrKQmpoKALXugzHGWPvVqDBz\nc3ND165dAQCOjo7w8/ODTqdDcnKy1LOKjY1FUlISAFiVBwcHo7i4GPn5+UhNTUXv3r2hVquhVqvR\nq1cvpKSkIC8vD2VlZQgKCgIADBo0CH/++We1bVnugzHGWPt1y++ZZWdn4/z58wgODkZBQQHc3NwA\nAK6urigoKAAA6HQ6eHh4SOt4eHhAp9MhLy+v1nKtViuVa7Va6HQ6AKh1H4wxxtqvRr1nZlZWVoZ5\n8+ZhwoQJcHJysponCILVfSK6lV3VqOo+zNLS0pCWlibdj4uLg0ajafL9txZ7e3ubaY8ttQWwrfbY\nUlsA22pPS7Zl/fr10nR4eDjCw8NbZL8N1egw0+v1mDdvHgYNGoQ77rgDgLGnlJ+fDzc3N+Tl5cHV\n1RWAsWeVm5srrZubmwutVgutVmsVOrm5uejZs6dVT8xcbu7B1bYPSzUd8MLCwsY2tc3RaDQ20x5b\nagtgW+2pqy1EhHIDoUwvokwvorRCRKleRJmeUCZNi1bTpRVi5fKm5cr0IipEgvllqSDANC1YTFeW\nC+Zy0wwB5mnBYtq6XGFaV6lSggwGQKhc1nhrvK+wWlewmG+x3xrWq3qfTMeHCBBhLBBhuk8AmabN\ny4kEaVkiMpVbzINxPaByWYVSAYNBrLXNlvWyOq7mOptWqJyuLLfc3qdj+yEuLq7Ox0lb0agwIyIs\nW7YMfn5+eOCBB6Tyvn37Yvfu3Rg5ciT27NmD6OhoqXzr1q0YOHAgTp8+DbVaDTc3N0REROCrr75C\ncXExiAhHjhzB2LFjoVar4eTkhPT0dAQFBWHv3r0YPnx4nftgjDVOmV6ErkSP3NIK5JbooSvVQ1ei\nR5EhG4UlNyrDp0ogqRQCHFUKOKoUcFIp4GhnvO9kZ1GmUsDRToHbnO1MywqV8023KlOKSE/wME4Y\np1E5bbq6Q5bLmsLBcn1Yllss5+TshOKSkirrVgaP5fbIYv/WAVNDWZX7ggAoagg6hSmEFaYUUaCG\nZS2C1bysVVgKxnlqZzWKS4rrbrPlsTO1yfL4waJ9tR4/GRGoEdf/Tp48ibfffhudO3eWLvWNGTMG\nQUFBtQ6bT0xMRGpqKhwdHTF16lQEBgYCAHbt2mU1ND82NhZA5dD88vJyREVFYdKkSQAaPzT/ypUr\nDW1mm9VeXv3LUVtqj0Ek5JcZw8kcUsbbClN4GUOrQiRonVTQOqng4ayCh7MdtE4q+Li7QNCXV4aU\nKZjMIaU0d2Vkoi2dm1vVUm3x9fVt9n00lUaFmRxxmLVNttQWoGXaQ0QoqRClMDKGlEWvyhRa12/o\n4WKvhIezClonO4uwUlmElx1c7BU1vv/M56bt4jCr7pYGgDDGmg4RodR0yc8cSrpSPfJquAUEKZQ8\nnFTQOqvg72qP3t7OUs/K3UklXcJjzNZxmDHWzOobUroSPQQBUhBZ3gZpHY3TpgBztlO2drMYa1M4\nzBi7BUSEwnIRWYXlyCqqQKGhCFn5xVI45ZU1LKScVDVf8mOM1Y3DjLGbMIiE3BI9soqMgfWXKbiu\nFpUjq7ACBMDbxQ7eGnv4ujlzSDHWCjjMGANwQy/ialEF/jIFVJZ0W4FrxRXo4KBER1Ng+bjYoX8n\njRRgGosBFLY0yIAxOeEwY+0CEaHwhgF/FVVIlwQtA6vwhgFeLnbGgHKxg4/GHlE+anhr7NFRbQcH\nFf9aEmNtGYcZkzUiQnG5iLwy40CKvFI98ssM0JXqkV+ql8pzTO9bebvYS2HVw9MZgwOM01onlew+\nN8UYq8RhxtqkCoPxA795FoGUX2qoElp65JUaYK8U4OakgrujEu5OKtO0Cl3cHOBuKvdwtoPGgUcA\nMmarOMxYgxERDAToRYLeQNATVU6Lxv8VYuW0XoQ0z7qcAGURrhaUVAktPUr1IlwdjMGkdVLCzdE4\nArCLmwMivdXGkDKV8yVAxhiHGavRa9suIL9MXyWgIE0rBEClEGCnEKAy/1daTJv+2ylgNV8pmNYx\nLeviBLg6KNHFzQFaJxXcTL0rjYMSCh79xxirJw4zVqNn7/SGAlVDyhhMSkFosveXePQfY6wpcJix\nGvl3cGjtKjDGWL3xmw2MMcZkj8OMMcaY7HGYMcYYkz0OM8YYY7LHYcYYY0z2OMwYY4zJHocZY4wx\n2eMwY4wxJnscZowxxmSPw4wxxpjscZgxxhiTPf5uRsYagIggigCJFtME0y1BNFSgqNAAUSSQaCwX\nyWJaJOPyButtiSJBpMrpastblBMBggAICkChEKBQAAoFINQ4LUBRZdm61lMoBNN8QKkwoPyGCIWy\ncluMtVUcZsxmiCKh/AahrEREWRmhrFQ0/SdUlFOV8KkMBlGsEixkOc8YJuZwAUxhYAoIQbAICEGA\nSgNZ6qcAAApdSURBVFUKgiiVVwsZwTpQBKF6iCgUAgSleV1FjetK9RbJFHSW0wSD3vg7cqIoWgem\nCFNoVq5XGZ7W4UpUDIOBYDCQ1HalApXhZrpVKk3haLqtet+4jPm+xXqmZZRKAUqVAJUKUKkEKO0E\n463pPocoqw8OM9bmEZlCyhRMZaUiblQJq7JSEeU3CPYOAhydFHB0EuDgqICjkwLuHgrY2QtW4WEV\nRIJFmAjG8LFcTiFYz6uLLf2kTdW2iCJBNFSGnjnkRIOx3CBWWcZgsYxFub6cLNaFFJh6PaCvMAWx\nnmDQA3o9QRAghZ3x1jrspDK7yvlW4WgqI0MFiksMEABAMJ53wHiuzT+dJwimeeZlTPOtyqymOWjb\nCg4z1uKITL0dAm6UGVBYYLAKpbJSY8/qhmn6RhlBqRLg6GQOKmNYdXBVwtNbJZU5OPKr+OZk7mWZ\nnspbhLnHbAw4SEEnhV2Fedo4v7yMUKIXrcLQoCfoKwgQSiEaRBBVbpsAwPRYNJbBaj6M/6xvLaZh\nOhyCxW21S7cWl2mrX+at4RKv0rrMvI5S6r0LUKtLUF5RAaXK1LNVCpXTpltzb7694DBjNTqSXGK6\nNGd92Y3Ml6gIFmWmy1QW883Lmi/hkdXykF4NK1XX4WDqTTmYwkqtUcLDy7qHpVS2nz9KVkkQjJct\nlUoB9rf4E3vN0WuuFnhk/DuQLt0arC/n1nZp17LHW/U9U72+cjvmdXQKwo0bFTDoTT1bPcFg7uWa\nykSCdOyUKsFiuqYy03SVMl/fJj1czYrDjNXoto4qq9AxX6IzDzwQBMHifSPj/arvJUmDFCzmS9sw\nvWK0pctyrP0RTNccLV9qKY1zmnW/9fm7sbzUK4WdnqCvocx4qdc4XX4DMOhFGAxU5/bbGg4zViPf\nTvatXQXG2C0wX6JU2bWPqxr8OTPGGGOyx2HGGGNM9jjMGGOMyR6HGWOMMdnjMGOMMSZ7shzNmJqa\nitWrV0MURQwZMgQjR45s7SoxxhhrRbLrmYmiiMTERLzxxhuYP38+9u3bh8uXL7d2tRhjjLUi2YXZ\nmTNn4O3tDS8vL6hUKgwcOBDJycmtXS3GGGOtSHZhptPp4OHhId3XarXQ6XStWCPGGGOtTXZhxhhj\njFUluwEgWq0Wubm50v3c3FxotVqrZdLS0pCWlibdj4uLg6+cvjGzHjQaTWtXocnYUlsA22qPLbUF\nsK32tFRb1q9fL02Hh4cjPDy8RfbbULLrmXXr1g1ZWVnIzs6GXq/H/v370bdvX6tlwsPDERcXJ/1/\n++23W6Rulie9OdlSe2ypLYBttceW2gLYVntasi2Wz6VtNcgAGfbMlEolJk2ahDlz5khD8/39/etc\nx9PTs0Xq1lIn2pbaY0ttAWyrPbbUFsC22mNLbWkqsgszAIiKikJUVFS9l/fy8mrG2lRqqRNvS+2x\npbYAttUeW2oLYFvtsaW2NBXZXWZsDDmdkPqwpfbYUlsA22qPLbUFsK322FJbmopARPL6BTbGGGOs\ninbRM2OMMWbbOMwYY4zJniwHgOTk5GDJkiUoKCiAIAi45557MGLECBQVFWHBggXIycmBp6cnZsyY\nAbVaDQBYuXIlUlNT4eDggPj4eAQEBAAAdu/ejY0bNwIARo0ahZiYGNm25/z581ixYgVKS0uhUCjw\n6KOPYsCAAf/fzv3DNNHHcRz/FBM4bVLqn0FDVALUGGNLTQAnhdHEOLhpEwk6SFRkMC6gCZsygMaE\nPx2EpSSOGjddxK5qaC4ol9pgExRFba/VFirt3dfBx0v7SB956HHlR76vCY7wy70H+rtrj6+QLb8t\nLi7i2rVraGlpwYULFyxtMbvn69ev8Pv9iMVisNls6OnpseypNLNbJiYmMDU1BV3X4fF4cP78ecs6\n1trz4cMHjIyMIBqN4syZMzh16pSx1kYYXm5WT7F1Nj0SkKqq9O7dOyIiWlpaou7ubpqbm6NAIECP\nHj0iIqKHDx/SxMQEERG9evWKbt26RURE4XCYent7iYjo+/fv1NXVRalUilKplPG1qD3z8/P08eNH\nIiKKx+N08eJFSqfTQrb8Nj4+Tvfu3aOxsTHrIvKY2dPX10eyLBMRUSaToR8/flhYYl6Loih08+ZN\n0nWdNE2jGzdu0OvXry1tWUtPMpmkSCRCDx48oMePHxvraJpGXV1dtLCwQNlslq5fv05zc3PC9hRb\nZ7MT8m1Gp9OJ2tpaAIAkSaipqUE8HsfLly+NO6u2tja8ePECAAqOu1wupNNpJBIJhEIheDwe2O12\n2O12uN1uhEIhYXv27NmD3bt3AwC2b98Oh8OBb9++CdkCALOzs0gmk/B4PJY25DOr5/3799B1HW63\nGwBQVVWFyspKIVtsNhuy2Syy2SyWl5ehaRqcTqelLWvpcTgcqK+vx5YtWwrW2SjDy83qWWkdVVUt\n6ygXId9mzPf582dEo1G4XC4kk0njj6q6uhrJZBLAn8OJd+7ciXg8DlVVVzxeTqX05L+gRCIRaJpm\nbG7lUEqLw+FAIBDA1atXIctyWc7/30rpicVi2LZtGwYGBvDlyxe43W74fD5UVJTnerKUlgMHDuDQ\noUPo7OwEEeHEiRNlHxe3mp5iVhpeHolE1vV8/6aUnmLrbHZC3pn9lslkMDg4iI6ODmzdurXgZzab\nreB7EuA/EMzqUVUVQ0NDuHz58rqc52qU2vL06VMcOXLkj7mb5VJqj6ZpUBQF7e3tuH37NhYWFjA5\nObmep1xUqS2fPn3C/Pw8/H4//H4/pqenoSjKup7zf/k/PSIwqyeTyeDOnTvo6OiAJElmn+aGI+yd\nWS6Xw+DgII4fP46WlhYAv65aEokEnE4nVFVFdXU1gOLDiXfs2FEwkDgWi+Hw4cPWhvzDjB7g1wMT\n/f39OHv2LBoaGqwPgTkt4XAYiqLgyZMnyGQyyOVykCQJPp9PyB5N01BbW2tMbmhubsbbt2+FbAkG\ng3C5XKiqqgIAeL1ehMNhHDx4cEP3FLOa4eVWMaMnf51jx44Z62x2Qt6ZERH8fj9qampw8uRJ43hT\nU5Nxtfv8+XM0Nzcbx4PBIAAgHA7DbrfD6XSisbERsiwjnU4jlUpBlmU0NjYK25PL5TAwMIDW1lYc\nPXrU8g7AvJbu7m6MjIxgeHgY586dQ2tra1k2MrN66uvrkU6njc8wp6ensXfvXiFbdu3ahTdv3kDX\ndeRyOczMzPx1PupG6Mn/vXyrGV5uBbN6iq2z2Qk5AURRFPT19WHfvn3GbbfP50NDQ0PRR4zHxsYQ\nCoUgSRIuXbqEuro6AMCzZ88KHs1va2sTticYDGJ0dLTgRfLKlSvYv3+/cC35JicnMTs7W5ZH883s\nkWUZgUAARIS6ujp0dnb+8eG9CC26ruP+/fuYmZmBzWaD1+tFe3u7ZR1r7UkkEujp6cHi4iIqKiog\nSRLu3r0LSZIwNTVV8Gj+6dOnhe2JRqMrruP1ei1vspKQmxljjDGWT8i3GRljjLF8vJkxxhgTHm9m\njDHGhMebGWOMMeHxZsYYY0x4vJkxxhgTHm9mjDHGhMebGWOMMeH9BPXPpbkuPVwsAAAAAElFTkSu\nQmCC\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa05849dc50>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"assault_stats.plot(kind='line', title='Assault Statistics in the US, France, and the Netherlands')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Again, Americans, get a grip on yourselves. On a side note, it's kind of unfortunate how I couldn't find any data on assault in India, although I suspect it would give the Americans a run for their money." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 31, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa0584ed5c0>" | |
] | |
}, | |
"execution_count": 31, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAcMAAAEPCAYAAAA+rK8RAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3Xl4U2X68PHvSdp0SdMlpaVAWcqOLQW07EqhqCOCIyJW\nFBxEkZ8wOsI4C8KIjg6or7JYZMYZQNELHa0LuIzjSkGEYZUCFmRH2drSprSka5o87x9pA6EFWmza\nktyf68qVk3NOznnunOXO85xNU0ophBBCCB+ma+oCCCGEEE1NkqEQQgifJ8lQCCGEz5NkKIQQwudJ\nMhRCCOHzJBkKIYTweVdFMly7di06nY6TJ0826Pg6nY633367IYrYqFasWIG/v/8vno6n4x86dChT\npkzx2PTr6+mnn6ZLly4X/Sx815VuCx06dGDu3LkeKJHnHT16FJ1Ox8aNG6/K6V/ol+7PLpsM77//\nfm666SaPzLyuBg8eTHZ2Nq1atfLI+L+EUoqXXnqJhIQEQkJCiIiIoHfv3jz55JOucf72t78RFxdX\n72kfP34cnU7Ht99+69Z/3Lhxdf5jAHDjjTcyadKkGv2zs7O58847612uulq9ejULFiz4xdPx1A7n\nj3/8I5s3b27w6dZnm9m9ezdjxoyhdevWBAYGEhsby2233UZmZma95jl06FB0Ol2N15YtW35RLMLp\nYtuwpmlomtbg86tOJKGhoeTm5roNmzx5MsOGDavX9C62DxDn+F1uBE8t7Prw9/cnOjraY+P/En/9\n619JS0vjlVdeYeDAgZSVlbF79+4G3cleeF+EwMBAAgMDf/F0Pf0bhYeHN8h0PLUOGo1GjEZjg0+3\nruU9ffo0KSkpDB8+nE8++YTo6GiOHTvGl19+icViqfc8x48fz/z58936m83mGuNWVFRgMBjqNX3R\nNOx2O0899RT/+Mc/3Po39T75cmw2W1MXod4uWzOszw1qTp06xbhx44iIiCA4OJhhw4axfft21/Dq\n5sv//ve/DBw4kODgYJKSktizZw9ZWVlcf/31GI1G+vfvz969e2t87/za0KFDhxg7diyRkZEYjUZ6\n9erFf/7zn4uOn5GRQWJiIkFBQfTq1YuMjIwa5c/JyeH+++8nOjqa0NBQrr/+etavX3/JmFevXs3k\nyZO59957iYuLo0ePHqSmprp2SitWrGDOnDn89NNPrn/rzzzzDABvv/02/fv3Jzw8nKioKEaNGsWB\nAwdc027Xrh0Aw4YNQ6fT0bFjR9c0z28mLSoqYtKkSbRq1YrAwEDatWvH448/DjhrKWvWrOGNN95w\nzb+6pnlhLcVqtTJ9+nTatWtHYGAgcXFxPPfcc67h8+bNo1OnTgQGBhIdHc0tt9xCWVnZRX+boUOH\n8tBDD9X4/Oyzz9KqVSsiIyOZOHEixcXFl/yNL9ShQweeeuopHnvsMSIjI4mJieH3v/89drvdNU5Z\nWRlTp04lPDwcs9nMtGnTKC8vd5vOhc2kR44cYcyYMbRp0waj0UhiYiIrV66sV9nAuc3UZbvZsGED\n+fn5vPbaa1x33XW0bduWQYMG8fTTT5OSklLv+QYFBREdHe328vPzY+jQoUyePJknn3ySVq1a0aFD\nB+Dy61917eS9995j1KhRGI1GOnXqxBtvvOE238utN1eyXdVm9uzZXHPNNRiNRtq1a8fUqVMpKipy\nDa/eLjZu3Mi1116L0WgkKSmJbdu2uU2nLvuC811qGwYoLy+/5LoIsHjxYrp3705QUBBdu3Zl3rx5\nNcapzWOPPcayZcv48ccf3fpfuH6988479O7dm6CgIOLi4nj88ccpKSkBLr0PADhx4sRll+9jjz1G\nbGwsRqORa6+9llWrVrmGV68nb7/9NrfeeishISHMmTOn1oTdmMuwvvsr1GVMnDhR3XjjjbUO0zRN\nvfXWW0oppRwOh+rXr5/q06eP2rBhg9q9e7e6++67VUREhMrLy1NKKZWRkaE0TVPXXnutysjIUHv2\n7FEDBw5UiYmJasiQIWrNmjVq79696vrrr1f9+/d3zaf6eydOnFBKKXXq1CkVHR2tbrrpJrVhwwZ1\n+PBh9dFHH6nPPvus1vFPnDihgoOD1QMPPKD27t2rvvrqK9WzZ0+38peUlKgePXqosWPHqu3bt6tD\nhw6puXPnqoCAALV3796L/j4jRoxQffv2dc3rQqWlpWrmzJmqbdu2KicnR+Xk5Cir1aqUUur1119X\nn376qTp8+LDKzMxUv/71r1WXLl1URUWFUkqpHTt2KE3T1KpVq1ROTo7rd3z99deVn5+fax6PPvqo\n6tWrl9qyZYs6duyY2rhxo1q2bJlSSqnCwkI1ZMgQNW7cONf8q6d/4fJLTk5WnTp1Uh999JE6cuSI\n+vbbb13T+eCDD1RoaKj69NNP1bFjx1RmZqZ6+eWXVWlp6UV/m6FDh6qHHnrI9Tk5OVmFh4er3//+\n92rfvn3qyy+/VGazWT355JMXnYZSSnXo0EHNnTvX9bl9+/YqIiJCvfDCC+rgwYMqPT1d+fv7q+XL\nl7vGmT59uoqOjlYff/yx2rdvn/rDH/6gQkNDVZcuXVzjPPXUU6pz586uz7t371ZLlixRu3btUocP\nH1aLFy9Wfn5+KiMj45Llu1Bdt5lNmzYpTdPUsmXLlN1ur9c8LjR06FA1efLkWoclJycrk8mkpk6d\nqvbu3at++OEHpdTl178jR44oTdNUx44d1XvvvacOHTqkZs2apfz8/NT+/fuVUpdfb650u6rN3/72\nN/Xdd9+pn376SX3zzTeqe/fuauLEia7hr7/+utLpdCo5OVl999136scff1QjRoxQcXFxqrKyUilV\nt33BhWrbhouLi5VSdVsXn3rqKdW+fXu1evVqdfToUfXZZ5+pdu3aXXK9r/7tv/vuOzV8+HB12223\nuYY9+OCDaujQoW5xR0REqJUrV7p+/8TERHXfffcppS6+D6jr8h06dKgaNmyY2rBhgzpy5Ij617/+\npQwGg/rmm2/cyhobG6vefvttdfToUXX06FFX/w0bNjT6MryS/VWdkqGfn58KCQmp8Tp/5l9//bXS\nNM1tBS8vL1etWrVSzzzzjFLqXJL66KOPXOO89957StM09eGHH7r6rVq1Smma5lrhLkxuf/nLX1Sr\nVq1USUlJrWW+cPzZs2erDh06uO1wPv30U7fyv/766yo2Ntb1g1dLSUlR06dPv+jv8+OPP6qEhASl\n0+lUt27d1MSJE9Vbb73lNp1nn31WdejQ4aLTqJafn680TVMbN25USil17NgxpWmaWrdundt4FybD\n22+/Xd1///0Xne6NN96oJk2aVKN/bctv+/bttU5jwYIFqmvXrspms102jmq1JcPevXu7jTN16lQ1\ncODAS06ntmR4++23u40zYsQIdc899yillLJarSowMNC1Q66WlJR0yWRYm9tvv90thrqoazJUSqk5\nc+Yog8GgQkND1bBhw9TTTz9d7yShlPO39ff3d9s+f/WrX7mGdevW7bLTuHD9q96ZLVy40DWO3W5X\nJpNJ/etf/1JKXX69udLtqi4+/PBDFRAQ4DYvTdPUjh07XP02b96sNE1z7dzrsi+ozcW24cuti8XF\nxSo4OFh98cUXbuO88cYbKjw8/KLzOz+R7NixQ+l0OtefsguTYfv27dU///lPt++vW7dOaZqmzpw5\no5RSavjw4TX2AXVZvhkZGSowMFAVFha6fXfSpElq9OjRbtP529/+dtEYLsZTy/BK9ld1Opt0wIAB\n7Ny50+114QH+rKwsIiMj6d69u6ufwWCgf//+ZGVluY3bq1cvV3fLli0BSExMrNHvwgPH1bZv386g\nQYMICgqqS/HZs2cP/fr1Q6c7F+7gwYPdxtm6dSvZ2dmEh4djMplcr/Xr13Pw4MGLTrtbt27s3r2b\n7du388gjj1BRUcHkyZMZMGDApavkQGZmJnfccQcdO3YkNDSU9u3bA/DTTz/VKa5q06ZN4/3336dn\nz55Mnz6dzz//vF7N2+D8TSMiIrj22mtrHX733Xdjs9lo3749kyZNYuXKlVit1nrNQ9M0t2UP0KpV\nK3Jycuo9nd69e190OocOHaK8vJxBgwa5jTN48OBL/i4lJSXMnDmThIQEIiMjMZlMfPbZZ/z888/1\nKl99/PWvfyUnJ4cVK1YwYMAAPvjgAxITE/n3v/9dr+lomsaYMWPcttHXX3/dNfy6666r8Z26rn/n\n/9Y6nY7o6GjXb3259eZKt6vafPjhhwwZMoQ2bdpgMpmYMGECNpuN7Oxst9/h/HWs+iS66vLWZV9Q\nH5dbF7OysigtLWXMmDFu8T/88MMUFRWRn59/2Xn07t2bCRMm8Mc//rHGsNOnT/Pzzz8zY8YMt+nf\neuutaJpWp9/4Ust369atVFRUuH7z6tdbb71VY9r9+vW77Lwaaxleyf7qsifQgPOEjerjVfWllKrR\ndnz+8a7qYbX1czgctU5T07R67ezrMr7D4aBHjx6sXr26xrDg4ODLzqN379707t2bRx55hA0bNnDD\nDTeQnp7Ob37zm1rHLykp4eabb2bIkCGsWLGCli1bopQiPj6eioqKugVW5eabb+bnn3/miy++YO3a\ntUyYMIGePXvyzTffuK0wv0Tr1q358ccfycjIYM2aNTz77LP8+c9/ZvPmzcTGxtZ5OheeuKFp2kWX\nc2NM53x//OMf+fjjj1m4cCHdunUjODiYxx9/3O2YRl2EhYWxZ8+eGv3PnDkDUOPkp/DwcO644w7u\nuOMO5s2bx69+9Stmz57NPffcU6/5hoaG1rqdappW40Sh+qx/v+S3/qXbVbXNmzeTmprKrFmzmD9/\nPhEREfzvf/9j4sSJbuXV6XRu+5sL9yX13XfUxaV+n+r3999/n65du9b4bkRERJ3mMXfuXLp168Zb\nb73lFl/19NPS0mo9w7RNmzauMl1p+cPCwmocs6vte5c7Ga0xl+GV7K/qtKesy5lL8fHx5Ofnu534\nUl5ezubNm0lISKjLbOrsuuuuY+PGja4DxJdzzTXXsGXLFrcNeMOGDW7j9O3bl8OHD2MymejYsaPb\nKyYmpl7lq64dnz59GnCuNBceLN+7dy95eXnMnTuXIUOG0K1bNywWi9tCrl7Z6nKgPSIignHjxvHq\nq6/yn//8h3Xr1rmWhcFgoLKy8pLfv+666ygoKHA74elCBoOBX/3qV7zwwgvs3r2bkpISPvroo8uW\nrbF16tQJg8FQYxlv2LDhkuvy+vXrmTBhAmPHjqVnz57ExcWxb9++es+/R48e7Nu3r0YSrb7M4fzW\nk9p07drVte54Sl3Wv7q43HrTUNvVd999R4sWLXjmmWfo27cvnTt35tixY/UqK9RtX1Cb2rbhuoiP\njycwMJBDhw7ViL9jx451/rMaGxvL9OnTmT17tluLU8uWLWnbti0//vhjrdMPCAhwlf9y+4DaJCUl\ncebMGUpLS2tMuz5/gqHxl2F991d1WhJ12UCGDx9Ov379uPfee9m4cSM//PADv/nNb6ioqGDq1Kl1\nmU2dTZs2DYfDwe23387GjRs5cuQIn376KZ9//nmt40+dOpXTp08zZcoU9u7dyzfffMPs2bPdxhk/\nfjxxcXGMHDmSr776iqNHj7J582aee+65S/6Ad955JwsWLOB///sfP/30Exs3buS+++7DYDAwcuRI\nADp27Eh2djabNm0iLy+P0tJS2rdvT0BAAGlpaRw6dIhvvvmGxx57zG1n3aJFC0JCQvjiiy/Izs6m\noKCg1jLMnj2bVatWsW/fPg4cOMDKlSsxmUyus1Hj4uLYvn07hw8fJi8vr9aNYvjw4dxwww3cfffd\nfPzxxxw5coQNGzawfPlyAJYvX86yZcvYuXMnP/30EytXruTs2bNcc801F/1t1AVnVV74ua4u/M7l\npmE0Gnn44Yf5y1/+wieffMK+ffv405/+xP79+y/53W7durF69Wq2bt3Knj17mDJlCqdOnap3eceP\nH4/JZGLcuHFs2rSJI0eO8MknnzBt2jRuuukm12/2ySefMH78eFcZDxw4wNKlS3n99de544476jXP\nS/22tQ2ry/p3qXlVu9x6c6Xb1YW6d+/O6dOnee211zh8+DBvvvlmjcsN6qIu+4La1LYNw+XXxZCQ\nEGbNmsWsWbP4+9//zr59+8jKyuKdd95h5syZ9Sr7zJkzKS0t5cMPP3TrP3fuXNLS0pg3bx4//PAD\n+/btY/Xq1Tz88MOuceqyD6h24fK98cYbGTNmDB999BGHDx9m+/btLF68mGXLltWr/I25DK9kf3XZ\nZFifa7xWr15N9+7dGTlyJP369SM3N5evvvrK7Vqn2qZVl37nf46JieG7775ztY0nJCS4XeR+4fit\nW7fmk08+YcuWLfTp04cZM2awcOFCt/EDAgJYt24dSUlJTJo0iW7dunHnnXeybds216notRkxYgSf\nf/45d955J926dSM1NZXAwEDWrVvnqgGMHj2au+66i5EjRxIdHc2LL75IixYtWLlyJV999RUJCQn8\n6U9/Yv78+W7/FHU6HUuWLCE9PZ22bdu6Hfc5P76goCDmzJlDUlISffv25YcffuC///0vJpMJgMcf\nf5wWLVrQq1cvoqOjL3pHiP/85z/ceuutPPzww3Tv3p377rvPdUzDbDbz+uuvM2zYMK655hoWLVrE\n0qVLL3nx74XrTm3rUl3Wr0utCxebzvPPP8/o0aO577776N+/P0VFRfz2t7+9ZHkWLlxI+/btGTZs\nGDfeeCNt27Zl7NixbvNZsWIFOp3ukscRq4+JhYeHM27cONfyHTdunFtzYUJCAmFhYcycOZOkpCSu\nu+46Fi9ezOzZs1m6dKlrvPvvv/+yN2241O9Y27C6rH/V361teue71HpT1+2qQ4cOl7wofOTIkcye\nPZtZs2aRmJhIeno6L774Yp3XjWp12RfUprZt+FLzO7//X/7yFxYsWMDSpUvp3bs3N9xwAy+//HKd\nlun5TCYTTz31FKWlpW7DJkyYQHp6Op9++in9+/enX79+/PWvf3WruZ2/D2jZsqVrH1CX5fvxxx8z\nZswYZsyYQY8ePRg1ahT//e9/6dy580W/U1v/xlyGV7S/Ug3dgF7F4XAwc+ZMzGYzM2fOJDc3l0WL\nFmG1WunYsSOPPPIIfn5+2Gw2XnnlFY4cOYLJZGL69OlERUUBsGrVKjIyMtDpdEyaNMl1UDUzM5MV\nK1bgcDhISUlh9OjRnghBiBrmzJnDqlWr2LlzZ4Mdj72cIUOGEB8ff0X/oq8GJSUltGjRgtdff527\n7767qYsjfJTHtubPPvuM2NhYV0ZfuXIlo0aNIi0tDaPRyJo1awBYs2YNJpOJtLQ0Ro4cyVtvvQU4\nb0W2ceNGFixYwKxZs1i2bBlKKRwOB8uXL2fWrFksWLCADRs2cPz48TqV6cKzWq9m3hQLXD3x/Oc/\n/2HJkiWXTIQNGUtBQQEHDhxg3rx5DTbN+vL0svn6668ZMGBAoyTCq2U9qytvi6cpeSQZ5ufns2PH\nDlJSUlztz1lZWQwYMACA5ORktm7dCsC2bdtITk4GoH///uzevRtwntI7ePBg/Pz8iI6OJiYmhgMH\nDnDw4EFiYmJcd9cYPHhwrWc61cabVhxvigWunni2b9/OkCFDLjlOQ8YSERHBqVOn6nzWoSd4etn8\n+te/dv059rSrZT2rK2+Lpyl5JBm+8cYbTJgwwfXv+ezZsxiNRtdns9nsuveixWIhMjISAL1eT3Bw\nMGfPnqWgoMDVHyAyMhKLxeI2/oXTupyLXbfYkBpr5WyMWMC74vGmWMC74vGmWMC74vGVhNvgyXD7\n9u2EhoYSFxfnqhV66LBkvXn6dHVovBWnMWIB74rHm2IB74rHm2IB74rHV5Jhg59A8/bbb7N+/Xp0\nOh02m43S0lL69u3Lzp07Wbp0KTqdjv379/P+++8za9Ys5s6dy1133UXXrl2x2+1MmTKF5cuXu866\nqz45Zu7cuaSmpqKU4r333nOdSrtq1So0Tav1JJqsrCy3BZmamtqQoQohhE9IT093dcfHxxMfH9+E\npfGMOt2Bpj7uvfde7r33XsB525yPP/6Y3/3udyxYsIBNmzYxaNAg1q5dS1JSEuC8qHPdunV07dqV\nTZs20bNnT1f/l19+mVGjRmGxWMjOzqZz5844HA6ys7PJzc3FbDazceNGHnvssVrLUttCq89zAJsz\nk8nE2bNnm7oYDcab4vGmWMC74vGmWKBx4mndurVPVCQaPBleqPps0gkTJrBo0SLeeecd4uLiXI+o\nSUlJYfHixfzud7/DZDK5EltsbCwDBw5kxowZ6PV6HnzwQTRNQ6/X88ADDzB37lzXpRX1vROCEEII\ncT6PXWfYXEnNsHnypni8KRbwrni8KRZovJqhL2icq4aFEEKIZkySoRBCCJ8nybABldjsZJ4q5tTZ\nCiodPtX6LIQQVzWPn0DjSwpK7XyQlU+21YaltBJzkJ7oEAMxIf60NPoTHeJPTIiBliH+hAfq63wD\ndCGEEJ4lybABtQk18OyNzscmVToUecU2copt5Fidr60nrK7u8koH0VVJsqXJQEujvzNphjiTZrC/\nvomjEUII3yHJ0EP8dBoxJgMxJkOtw0tsdnKrEmNOsY1sq43dOcVkV/UL9NPRsio5tjT6E2MyEG10\nfo4y+jdyNEII4d0kGTaRYH89HSL0dIgIrDFMKcWZMjs5VhvZ1gpyrTZ+PF3KuqNF5ForsJTauSEu\ngml9W2DQy2FfIYT4pSQZNkOaphER5EdEkB/do4JqDC+vdPCPbXn8dc0xZiXHYjRIk6oQQvwSUq24\nCgX46Zg1vCPtwgOY/fXPFJRWNnWRhBDiqibJ8Cql12lMSWrJgLYmZn75E6fOVjR1kYQQ4qolyfAq\npmka43q2YHQPM0989TOHLWVNXSQhhLgqSTL0AiO6RvBQUjRPrznG7pzipi6OEEJcdSQZeonB7UL5\nw/WteXH9Sf53zHtuRCyEEI1BkqEXSYwxMmdYW/65NYcvD55p6uIIIcRVQ5Khl+kcGci8G9vxflY+\n7/2Qh489oUsIIa6IJEMv1DrUwHM3tWP9T2dZtj0XhyREIYS4JEmGXioy2J95N7XjsKWMhRtOYbNL\nQhRCiIuRZOjFQgx6nk5pS5ndwdx1xym1OZq6SEII0SxJMvRyAX46Zt7QBnOQH09+8zNFZXK3GiGE\nuJBH7k1aUVHB008/jc1mw+Fw0L9/f1JTU1myZAl79+4lODgYgGnTptGhQwcAXnvtNTIzMwkICGDa\ntGnExcUBsHbtWlatWgXAmDFjSE5OBuDw4cMsWbIEm81Gnz59mDRpkidC8Qp6ncajA2J4M/M0T3z1\nM0+ntJUnXwghxHk8kgwNBgNPPfUUAQEB2O125syZQ58+fdA0jfvuu4/+/fu7jf/999+Tk5NDWloa\nBw4cYNmyZcydOxer1coHH3zA888/D8DMmTPp27cvwcHBLF26lKlTp9K5c2eee+45MjMz6d27tyfC\n8QqapjGxTzThgX7M/PInnkppS7uwgKYulhBCNAseayYNCHDuaCsrK6msrHQ91b22U/23bdvmqvF1\n6dKF4uJizpw5Q2ZmJomJiRiNRoxGIz179mTHjh0UFBRQVlZG586dARgyZAhbtmzxVChe5fYeZib0\niuLJr3/mx9OlTV0cIYRoFjz2CCeHw8Gf//xncnJyuOWWW+jcuTNffvkl77zzDh988AEJCQmMHz8e\nPz8/LBYLkZGRru9GRkZisVgoKCi4aH+z2ezqbzabsVgsngrF6wzrGIYpQM/cdceZPrAV17UJaeoi\nCXHVKyitZGd2MbtzSjhbbm+Uec6+qUujzMcXeCwZ6nQ6XnzxRUpKSnjxxRc5duwY9957L+Hh4VRW\nVvLPf/6T1atXM3bsWKD2GqPwnKQ2IcxOjmXet8d54NpohsaFNXoZrBV2fjxdyiFLGWZTCUZdJZHB\n/kQG+xER6IdepzV6mYSoqxKbnR9yStiVXcLO7GIspZUktAwmsaWRyOD67VqvdO9n0Osov8LvCnce\nf7hvcHAw8fHxZGZmcttttzln6ufH0KFD+eSTTwBnzS4/P9/1nfz8fMxmM2azmaysLLf+CQkJNWqC\n1eNfKCsry+37qampmEymBo+xKRgMhl8cS1+TiQXhJp74bD/l+DE2MaaBSle709YKdmefZfcpK7uz\nz3KqqJzu0Ua6RRk5ebaCnKIy8ooryCu2UVhWSVigH1EhBloY/YkyGogyGmhhNBAV4k+Lqu4Av+Z3\nQnRDLJvmxJvi+SWxVNgd7M2xsv14Ed+fKOKIpZQe0SFcGxvKzPgYurQwNvofOIPBgKERtoH09HRX\nd3x8PPHx8R6fZ2PzSDIsKipCr9djNBqpqKhg9+7d3H777RQUFBAREYFSiq1bt9KuXTsAkpKS+OKL\nLxg8eDD79+/HaDQSHh5Or169+Pe//01xcTFKKXbt2sX48eMxGo0EBQVx4MABOnfuzPr16xkxYkSN\nctS20M6e9Y6bWJtMpgaJpYU/zLuxLU+tOUbOmWLu6x3lOr77SyilOF5Uwd7TpWTllrAnt5TSSgfX\nRAVxTXQQU5Oi6WgOxK9q53FhPJUORUFpJfklleSX2sgvqSS3qIS92YVV/ZzDgvw0V20yMtiPyKDz\nuoP9iQzyw2jQNUhMddVQy6a58KZ46hOLQymOFJSzM7uYndkl7DtdSmyYgV4xRu5JMNM9KgiDvjoR\nKUqKrZ4r+EU0xrIxmUykpqZ6dB7NgaY80D75888/s2TJEhwOBw6Hg0GDBnHnnXfyzDPPUFRUhFKK\nuLg4HnroIdeJNsuXLyczM5PAwECmTp1Kx44dAcjIyHC7tGLo0KHAuUsrKioq6NOnDw888ECdynby\n5MmGDrdJNPRGUFRWyTNrj9M+PIBp/WLq/Q+30qE4bCljz2ln4tt7upRAPx3XRAdxTVQw10QHERtq\nuGhSupJ4lFIUldudybGkkrwSG5bSSvJKKrGU2JzvpZXYHYrIYD9aBPvTMsSfmBAD0SH+xFS9TAH6\nBk2W3pQ8wLviuVQsSimyrTYyTxWzK6eE3TklhAXoSYwJpleMkYSWwYQY9I1c4ktrjGXTunVrj06/\nufBIMmxmu3ZwAAAgAElEQVTOJBleXKnNwfPrTxCg13h8cOtLNkGW2hzszy9lT1Wtb39+GS1D/Ktq\nfs7k1yK47tcyenKjLrHZsZRUcrqkkhxrBTlWG9lWm6vb7oAY07lE2TLEn5ZGf1qanO/++vo1Q3lT\n8gDviufCWApKK9mV7Ux+O08VY1fQKyaYxBgjvWKCiazHOtwUJBk2HEmGVylPbQQ2u+Ll/50kv6SS\n2UNjXf+EC8sq2XO6lL25Jew5XcrPZ8qJiwjkmugg4qOD6d4iiJCAK//X3JQ7XGu5nZxiG9nWCnLO\nnkuU2VZn7TIsUE9MiD8tQwxV7+cSZ3hgzVqlNyUP8K54dAHBbDqUw65s54kveaU2EqKdNb9eMcG0\nuUTrRXMkybDhSDK8SnlyI3AoxbJtOWTlltIlMpC9p0uxlFbSvUUQPaKDiI8KpnNkYIOevNJcd7h2\nhyK/pNKZKK3uiTLHaqO80lGVHM8lythIEwZlIyxAT2igHyEGHbqraAd7oea6bC7FZndw8qyN44Xl\nHCus4FiR8z232EaXyEB6tTSSGBNMJ3PgVX3WsiTDhiPJ8Crl6Y1AKcXXhwopq3QQHx1M+/AAj+40\nrsYdLjibYKuTZK7VWbssrIB8azlF5ZUUltspszkwBegJC/AjNFBPaICesMBzn51J89xnk0Hf4L+1\nUorSSgfFFQ6sFXbX+/ndxTYHxeV2im12rFX9ymwOzMYAIoN0RBv9Xa8oox/RIf4E+zftMbSySgfH\nCys4XpXsjlUlv7wSG9FGf2LDDLQNDSA2zEC7sAB6tImkvLS4ScvckCQZNhyPX1ohrk6apnFT5/Cm\nLkazF+yvJy5CT1xEoKvfhTsom11RVF5JUbmdwjJ71bvz89GCqqRZ3b/cTnGFnRDDuaQZGuBX9e7+\n2e5QWCscFFclNGcSOz/RVQ9zJjqDXofRoCPEoCfEoMNY/e6vJ8Sgp1WIP0Zz4HnD9AT6aVToAjiS\nW8jpYhs/F5az/aSVHKuN3GIbBr3mTJAh/kQZncdYo85Lmg11Jq+1ws7xqmR3vOhc0jtTVklrk4G2\nYQbahgWQHBdK27AAWoUY8NfXnK/BT67LE7WTZCiEh/nrqy//qNvJGHaH4mxVYqxOms5kWcnxwgqK\nykspLLfjp+FKWsaqBNYyxN+Z3ALOT3Q6gg1612Us9WUyhdA2uGYDUvXZvLnFzsSYa7Vx6mwFO7OL\nyS2uJNdqQ9M4Lzn6uZJmdFXiPP9MXqUUheV2V6I718RZQanNUZXwDMSGBnBLl3DahgUQbfS/qps5\nRfMhyVCIZkav0wgP8iM8yA9ovjdT1zSNsEA/wgL96BIZVGO4UoriCse5ZFn12pNbyumqbptdVTW3\n6jhZVAFA2zBns2bbsAD6xpqIDTXQItjvqjqxRVx9JBkKITxC0zRnDTVAT0dzYK3jlNjs5FptlNgc\ntA41ENbA13wKUVeSDIUQTSbYX0+HiOZ1IbvwTc3vxo5CCCFEI5NkKIQQwudJMhRCCOHzJBkKIYTw\neZIMhRBC+DxJhkIIIXyeJEMhhBA+T5KhEEIInyfJUAghhM+TZCiEEMLnSTIUQgjh8zxyb9KKigqe\nfvppbDYbDoeD/v37k5qaSm5uLosWLcJqtdKxY0ceeeQR/Pz8sNlsvPLKKxw5cgSTycT06dOJiooC\nYNWqVWRkZKDT6Zg0aRK9evUCIDMzkxUrVuBwOEhJSWH06NGeCEUIIYQP8EjN0GAw8NRTT/Hiiy/y\n//7f/2Pnzp0cOHCAlStXMmrUKNLS0jAajaxZswaANWvWYDKZSEtLY+TIkbz11lsAHD9+nI0bN7Jg\nwQJmzZrFsmXLUErhcDhYvnw5s2bNYsGCBWzYsIHjx497IhQhhBA+wGPNpAEBzuewVVZWUllZiaZp\nZGVlMWDAAACSk5PZunUrANu2bSM5ORmA/v37s3v3bgC2bt3K4MGD8fPzIzo6mpiYGA4cOMDBgweJ\niYkhOjoaPz8/Bg8ezLZt2zwVihBCCC/nsUc4ORwO/vznP5OTk8Mtt9xCy5YtMRqN6HTO/Gs2m7FY\nLABYLBYiIyMB0Ov1BAcHc/bsWQoKCujSpYtrmpGRka7vVI9fPa2DBw96KhQhhBBezmPJUKfT8eKL\nL1JSUsKLL77IiRMnPDWri8rKyiIrK8v1OTU1FZPJ1Ojl8ASDweA1sYB3xeNNsYB3xeNNsUDjxZOe\nnu7qjo+PJz4+3uPzbGwef7hvcHAw8fHx7N+/n+LiYhwOBzqdzq02aDabycvLw2w2Y7fbKSkpwWQy\nYTabyc/Pd00rPz+fyMhIlFI1+pvN5hrzrm2hnT171kORNi6TyeQ1sYB3xeNNsYB3xeNNsUDjxGMy\nmUhNTfXoPJoDjxwzLCoqori4GHCeWbp7925iY2OJj49n06ZNAKxdu5akpCQAkpKSWLduHQCbNm2i\nZ8+erv4bNmygsrKS3NxcsrOz6dy5M506dSI7O5vc3FwqKyvZuHGja1pCCCFEfXmkZnjmzBmWLFmC\nw+HA4XAwaNAgrr32WmJjY1m0aBHvvPMOcXFxpKSkAJCSksLixYv53e9+h8lk4rHHHgMgNjaWgQMH\nMmPGDPR6PQ8++CCapqHX63nggQeYO3eu69KK2NhYT4QihBDCB2hKKdXUhWhMJ0+ebOoiNAhp7mm+\nvCkW8K54vCkWaJx4Wrdu7dHpNxdyBxohhBA+T5KhEEIInyfJUAghhM+TZCiEEMLnSTIUQgjh8yQZ\nCiGE8HmSDIUQQvg8SYZCCCF8niRDIYQQPk+SoRBCCJ8nyVAIIYTPk2QohBDC50kyFEII4fMkGQoh\nhPB5kgyFEEL4PEmGQgghfJ4kQyGEED5PkqEQQgifJ8lQCCGEz/Nr6Anm5eWxZMkSCgsL0TSN4cOH\nc+utt5Kens6aNWsIDQ0F4J577qFPnz4ArFq1ioyMDHQ6HZMmTaJXr14AZGZmsmLFChwOBykpKYwe\nPRqA3NxcFi1ahNVqpWPHjjzyyCP4+TV4KEIIIXxEg2cQPz8/Jk6cSIcOHSgrK+PPf/4ziYmJaJrG\nqFGjGDVqlNv4x48fZ+PGjSxYsACLxcKzzz5LWloaSimWL1/Ok08+idls5oknniApKYnY2FhWrlzJ\nqFGjGDRoEEuXLmXNmjXcfPPNDR2KEEIIH9HgzaTh4eF06NABgMDAQNq0aYPFYgFAKVVj/K1btzJ4\n8GD8/PyIjo4mJiaGAwcOcPDgQWJiYoiOjsbPz4/Bgwezbds2lFJkZWUxYMAAAJKTk9m6dWtDhyGE\nEMKHePSYYW5uLkePHqVr164AfP755/zxj3/kH//4B8XFxQAUFBQQGRnp+k5kZCQWiwWLxeLW32w2\nY7FYsFqtGI1GdDqdW38hhBDiSnnsQFtZWRkLFizg/vvvJzAwkJtvvpmxY8cC8O677/Lmm28ydepU\nT80egKysLLKyslyfU1NTMZlMHp1nYzEYDF4TC3hXPN4UC3hXPN4UCzRePOnp6a7u+Ph44uPjPT7P\nxuaRZFhZWcn8+fO54YYb6NevHwBhYWGu4SkpKbzwwguAs2aXn5/vGpafn09kZCRKqRr9zWYzJpOJ\n4uJiHA4HOp0Oi8WC2WyutRy1LbSzZ882WJxNyWQyeU0s4F3xeFMs4F3xeFMs0DjxmEwmUlNTPTqP\n5qDBm0mVUrz66qu0adOGkSNHuvoXFBS4urds2UK7du0ASEpKYsOGDVRWVpKbm0t2djadO3emU6dO\nZGdnk5ubS2VlJRs3biQpKQlwJrlNmzYBsHbtWvr27dvQYQghhPAhDV4z3LdvH+vXr6ddu3b86U9/\nApyXUWzYsIGjR4+iaRpRUVFMmTIFgNjYWAYOHMiMGTPQ6/U8+OCDaJqGXq/ngQceYO7cua5LK2Jj\nYwGYMGECixYt4p133iEuLo6UlJSGDkMIIYQP0VRtp3h6sZMnTzZ1ERqENPc0X94UC3hXPN4UCzRO\nPK1bt/bo9JsLuQONEEIInyfJUAghhM+TZCiEEMLnSTIUQgjh8yQZCiGE8HmSDIUQQvg8SYZCCCF8\nniRDIYQQPk+SoRBCCJ8nyVAIIYTPk2QohBDC50kyFEII4fMkGQohhPB5kgyFEEL4PEmGQgghfJ4k\nQyGEED5PkqEQQgifJ8lQCCGEz5NkKIQQwuf5eWKieXl5LFmyhMLCQjRNY/jw4dx6661YrVYWLlxI\nXl4eUVFRzJgxA6PRCMBrr71GZmYmAQEBTJs2jbi4OADWrl3LqlWrABgzZgzJyckAHD58mCVLlmCz\n2ejTpw+TJk3yRChCCCF8gEdqhn5+fkycOJEFCxYwd+5cvvjiC44fP87q1atJTEzk5ZdfJiEhgdWr\nVwPw/fffk5OTQ1paGlOmTGHZsmUAWK1WPvjgA+bNm8e8efN4//33KSkpAWDp0qVMnTqVtLQ0srOz\nyczM9EQoQgghfIBHkmF4eDgdOnQAIDAwkDZt2mCxWNi2bZurZjd06FC2bt0K4Na/S5cuFBcXc+bM\nGTIzM0lMTMRoNGI0GunZsyc7duygoKCAsrIyOnfuDMCQIUPYsmWLJ0IRQgjhAzx+zDA3N5ejR4/S\npUsXCgsLCQ8PByAsLIzCwkIALBYLkZGRru9ERkZisVgoKCi4aH+z2ezqbzabsVgsng5FCCGEl/LI\nMcNqZWVlzJ8/n/vvv5+goCC3YZqmuX1WSjX4/LOyssjKynJ9Tk1NxWQyNfh8moLBYPCaWMC74vGm\nWMC74vGmWKDx4klPT3d1x8fHEx8f7/F5NjaPJcPKykrmz5/PkCFD6NevH+CsDZ45c4bw8HAKCgoI\nCwsDnDW7/Px813fz8/Mxm82YzWa3ZJafn09CQkKNmmD1+BeqbaGdPXu2QeNsKiaTyWtiAe+Kx5ti\nAe+Kx5tigcaJx2QykZqa6tF5NAceaSZVSvHqq6/Spk0bRo4c6eqflJTE2rVrAVi3bh19+/Z19f/2\n228B2L9/P0ajkfDwcHr16sWuXbsoLi7GarWya9cuevXqRXh4OEFBQRw4cAClFOvXr3clXCGEEKK+\nPFIz3LdvH+vXr6ddu3b86U9/AuDee+9l9OjRLFy4kIyMDNelFQDXXnstO3bs4NFHHyUwMJCpU6cC\nEBISwp133skTTzwBwNixY12XYkyePJklS5ZQUVFBnz596N27tydCEUII4QM05YmDdc3YyZMnm7oI\nDUKae5ovb4oFvCseb4oFGiee1q1be3T6zYXcgUYIIYTPk2QohBDC50kyFEII4fMkGQohhPB5kgyF\nEEL4PEmGQgghfJ4kQyGEED5PkqEQQgifJ8lQCCGEz/PoUyuE8BXK4YCiM5Cfi02noex2MATUfPkb\najyxRQjR9CQZClEHymGHMxbIP43Kz4H805Cfi8qr6rachqBgiIym3BiCo6wUysuh4oKXvRL8DbUn\nyqqXFnDxYW7DwyMhKgYtMOjyAQghLkmSoRDgrMkV5DkTXH4u5OWCJReVlwv5uXAmH4yh0CIazRwF\nLaKhXSd01w6EyGgwR6EFBAIQcon7RSqHHSoqaibJ817q/M/l5c7xi62ufo6KcqgoA0se5GVDUAi0\nbIUW3RqiW6NFt4KWrSCqtTNxCiEuS5Kh8Amq0uZMHtW1OctpyMtFWaoSX2EBhIWDORqtRTSYo6FT\nD3T9hkBkSzC3QPM3/OJyaDo9BAY5Xxcbpz5xORzORJ1zEpV7CnJP4ji0F3JPQV4OGE0Q3QqtZWvn\ne3RraNnaWaM0SKIUopokQ+EVlMMOBRbIz3Emu6qXszsXzp6BMDO0aHmuZte9J7rIaGfNLqIFmt/V\ntzloOh2Yo5w10x693IY5f5PqRHkSck/hOLgXck46fx9TWM1EGd0aomMaJPELcTW5+rZ+UW/KYYfS\nEigphhKrs8mttBhV9c5576rEWjVe1biGAAgJBVMYmsn5TkgYmELRTOFQ3c8UCgFBHjs5RCnlTGin\nqxJcfu55yS7H2cQZEgqR0WgtWkKLltA1Ad2g4c7uiBZoer1HytZcaTq9M9FHRqNd4/68T+WwO491\nnj6FyqmqUe77wVmjzM+F0HBXoizv0QsVG+f8LCf/CC8lybAZU0pBpQ3Ky847flQG5eXYNIUjP8+Z\nsKoTV4kVdX4iq34vK3M2ywUbwRgCQc53reqd4BCIiITgEHTBRufn4BDnCSG2CjhbCGeLUNZCVzen\njuGwFlV9rno5HOcSY8j5ybMqmYZWJ9KqcYKMbjtXVWKtUaNzJbv8XDAYnE2WLaoSXruOzmN2LVo6\nd/hSm6kzTaeHqBhnc+k1fdyGKbvd2YyccxKVfZzKXVtxpC8Hmw069UDr7HzRvhOan38TRSBEw5KH\n+zYQVVkJRQXORFFe5kxaFeWo8vJzyawqkTkTW9m5kyXKy84bp/pzVbdeV3UWYSAEBDoTQkAgfkYT\n9oBAZ4KrTl7BRrSqd85/Dwpy7vw8TJWXw3kJU50trPrsTJrq/ORpLXKeGBIS6ix3UQGq0u5svmzR\nsqp2d14tL7IlWlCwx2NoCN76AFmVfxp1cA8c2os6WHVcsl1HZ3LsdA107o5mNDV1cS/JW5eNJ/nK\nw30lGV6GKi+HQovzBItCC6rqnTMF57oLC5zNkNU1oYAgZwILCHCeYVidzKr64ep33vCAQOcwt8QX\ncNGmPW/YqJXN5kyMpcWEtG6LFc0rmuG8Ydmc72LxqNISOLIPdbAqOR7Z72yO7tzDVYNsbk2rvrJs\nGpKvJEOfbCZVSjmPkRUWwJnqBHcusbklOZsNwiIg3AxhEWhhEc4TMbq2RhdmrhoWASGhjVL78iaa\nvz+YWwAt0JlMaF60k/IFWlAwXNPH1cyq7HY4ftSZGLO+x/HRW85m/qpmVa2TNK2K5ssjyfDvf/87\nO3bsIDQ0lPnz5wOQnp7OmjVrCA0NBeCee+6hTx/nRrRq1SoyMjLQ6XRMmjSJXr2cZ8VlZmayYsUK\nHA4HKSkpjB49GoDc3FwWLVqE1WqlY8eOPPLII/jV8UxA+8zJzjuF6PXOpHZ+gguPcB6Hqk5yYWZn\nE14z+mcrRHOl6fXOZNe+EwwfBXCuafXgXhz/Wwunq5tWr6mqQTb/plXhGzySDIcNG8aIESN45ZVX\nXP00TWPUqFGMGjXKbdzjx4+zceNGFixYgMVi4dlnnyUtLQ2lFMuXL+fJJ5/EbDbzxBNPkJSURGxs\nLCtXrmTUqFEMGjSIpUuXsmbNGm6++eY6lU33+2cgzOy6QFoI4TlaZBRaZDL0TwaqmlYPO5tWHV9/\nDEtfcjatduwKMbFV10G2kcs7RKPzSDLs0aMHubm5NfrXdnhy69atDB48GD8/P6Kjo4mJieHAgQMA\nxMTEEB0dDcDgwYPZtm0bbdq0ISsri+nTpwOQnJzMe++9V+dkqEX7Rvu3tzCZrr5ag16vvyrLfTEN\nGc9ZgPg+aPHnN60eQR054Ly848AeyD3pvDY0LAJatnbdKEBrWXXDgMiWPneZjPC8Rj1m+Pnnn/Pt\nt9/SsWNHfvOb32A0GikoKKBLly6ucSIjI7FYLK7uamazmYMHD2K1WjEajeh0Olf/6vGFd/KmEx58\nWW0J1dm02hmtfWe3/spud15OU33DgJwTOHZvh5wTzmP5kdG1J8rwSOeNCISop0ZLhjfffDNjx44F\n4N133+XNN99k6tSpHp1nVlYWWVlZrs+pqale84/dYDB4TSxw8Xj0UgPwGvWuYYaHQ6euNXqrigoc\nuSdxZB/Hfuo4jlM/Y/9+I47s46hiK7qYNuhj2qBr1dbZXfWuhUU06+1GORxgq6i63KrqsitbOaqi\nAuW6FKvCdUmWqijHf8SYRoknPT3d1R0fH098fLzH59nYGi0ZhoWFubpTUlJ44YUXAGfNLj8/3zUs\nPz+fyMhIlFI1+pvNZkwmE8XFxTgcDnQ6HRaLBbPZXOs8a1to3lLL8JVTxJvrjkvUn91ub7h1NizS\n+ep27hZ0OkCVlUDuKSpzTjlrkbu2ob762Nn0arejC4/EAaDTOU+i03TnunU60FW/u3druksMd5uO\nDjS98+kktuobslegbOVVn6v62S54r6hwfsfP/7ynmhjOdZ/XTzvvqScBpaVY7Y6G+U0vwmQykZqa\n6tF5NAeNlgwLCgqIiIgAYMuWLbRr1w6ApKQkXn75ZUaNGoXFYiE7O5vOnTvjcDjIzs4mNzcXs9nM\nxo0beeyxxwBnktu0aRODBg1i7dq19O3bt7HCEEI0Y1pgMLTrhNauU41hqvgsRruN4rNnnXdLcjjA\nYXe+2+2gHBftVnZ7ze+4dV/QLzDQLYHp/C9IbgYD+FcluYCqdz//ejfxasFG8KI/xU3JIxfdL1q0\niL1791JUVER4eDh33XUXe/bs4ejRo2iaRlRUFFOmTCE8PByADz/8kIyMDPR6Pffffz+9ezvvo7hj\nxw63SyvuuOMOwP3Siri4OB599NE6X1rhqTvQNDZfqhl6U5y+rDksy+ZQhoYkF903HLkDzVXKVzZq\nb4vTlzWHZdkcytCQJBk2HDntSogrFBsby08//eTWb/78+Tz66KOuz2lpaQwcOJCuXbuSlJTk8ZPG\nhBBXxidvxyaEp2jaufurpqen8+GHH/Luu+/Srl07Tp8+zVdffdXEJRRC1EZqhkI0IKWU6+YSO3fu\nJDk52XWyWFRUFPfee29TFk8IcRGSDIXwkOuuu47333+fV199lZ07d2K325u6SEKIi5BmUnHVsz/0\n6waZjn7pxw0ynWpjxoxB0zTeffdd5s+fT0BAANOmTWPatGkNOh8hxC8nyVBc9Ro6idV5vno9NpvN\nrZ/NZsPf/9wjiu644w7uuOMO7HY7//3vf3n00UeJj48nOTm5sYsrhLgEaSYV4gq1adOGY8eOufU7\nduwYbdu2rTGuXq9n1KhR9OjRg3379jVWEYUQdSTJUIgrdNttt/Hyyy9z6tQpHA4H3377LV9//TUj\nR44EnGeTfvPNN1itVhwOB2vWrGHfvn2u53gKIZoPaSYV4grNmDGDl156iTvuuIPCwkI6dOjAK6+8\nQteuzptLm0wmFi9ezO9+9zvsdjuxsbE8//zzcvtAIZohuQPNVcpX7qThbXH6suawLJtDGRqS3IGm\n4UgzqRBCCJ8nyVAIIYTPk2QohBDC50kyFEII4fMkGQohhPB5kgyFEEL4PEmGQgghfJ4kQyGEED5P\nkqEQjWz+/Pk8+uijAJw4cYKuXbviY/e+EKLZ8cjt2P7+97+zY8cOQkNDmT9/PgBWq5WFCxeSl5dH\nVFQUM2bMwGg0AvDaa6+RmZnpesRNXFwcAGvXrmXVqlWA83E41Xf6P3z4MEuWLMFms9GnTx8mTZrk\niTCEuKT+/fvz0ksvccMNN9Tre5qmubrbtGnD/v37G7poQoh68kjNcNiwYcyaNcut3+rVq0lMTOTl\nl18mISGB1atXA/D999+Tk5NDWloaU6ZMYdmyZYAzeX7wwQfMmzePefPm8f7771NSUgLA0qVLmTp1\nKmlpaWRnZ5OZmemJMIS4JE3T3BKbEOLq5ZFk2KNHD1etr9q2bdtcNbuhQ4eydevWGv27dOlCcXEx\nZ86cITMzk8TERIxGI0ajkZ49e7Jjxw4KCgooKyujc+fOAAwZMoQtW7Z4IgwhLkspxbvvvsvo0aN5\n9tlniY+PZ+DAgWRkZLjG+fnnn7nzzjvp1q0b99xzDxaLxTXs2LFjxMbG4nA4AHj33XcZOnQo3bp1\nY9CgQaxcubLRYxLCFzXaMcPCwkLCw8MBCAsLo7CwEACLxUJkZKRrvMjISCwWCwUFBRftbzabXf3N\nZrPbzkWIxlRdM8zMzKRz58788MMPTJ06lT/84Q+ucX7729/Sq1cvfvjhB6ZPn85777130RplixYt\nePPNN9m3bx8LFizg6aef5ocffmiUWITwZU3yCKcLdwSeOnkgKyuLrKws1+fU1FRMJpNH5tXYDAaD\n18QCF49Hr9df9ru3v/Vjg5Tho/Hdr/i7bdq04Z577gHgrrvuYtasWeTl5VFeXs6uXbtIT0/H39+f\n/v37c9NNN110nR8+fLire8CAASQnJ7N582YSEhKuuGzNhV6vb/J11le2m4aWnp7u6o6Pjyc+Pt7j\n82xsjZYMw8LCOHPmDOHh4RQUFBAWFgY4a3b5+fmu8fLz8zGbzZjNZrdElp+fT0JCQo2aYPX4talt\noXnL41t85VE0ddnQf0kSayjR0dGu7qCgIACKi4vJy8sjLCzM1Q+cifNijxJbs2YNCxYs4MiRIyil\nKC0tpUePHp4tfCOx2+1Nvs76ynbT0PNITU316Dyag0ZrJk1KSmLt2rUArFu3zvWA06SkJL799lsA\n9u/fj9FoJDw8nF69erFr1y6Ki4uxWq3s2rWLXr16ER4eTlBQEAcOHEApxfr16+nXr19jhSFEvbRs\n2ZLCwkJKS0td/U6cOFFrM2l5eTkPPfQQ06ZNY9euXezZs4eUlBS57EKIRuCRmuGiRYvYu3cvRUVF\nTJ06ldTUVEaPHs3ChQvJyMhwXVoBcO2117Jjxw4effRRAgMDmTp1KgAhISHceeedPPHEEwCMHTvW\ndVLO5MmTWbJkCRUVFfTp04fevXt7IgwhLutyiSo2NpbExEReeuklZs6cyY4dO/j666+5+eaba4xr\ns9mw2WyYzWZ0Oh1r1qxh3bp1dO/e9DVfIbydR5Lh9OnTa+3/5JNP1tr/wQcfrLX/sGHDGDZsWI3+\nHTt2dF2/KERTqr684sKa3vmflyxZwvTp04mPj+e6667jrrvucp1Adv64ISEhPPPMMzz88MNUVFRw\n44038qtf/apxAhHCx2nKx9pgLnas5mrjK8c+vC1OX9YclmVzKENDaox4Wrdu7dHpNxdyOzYhhBA+\nT5KhEEIInyfJUAghhM+TZCiEEMLnSTIUQgjh8yQZCiGE8HmSDIUQQvg8SYZCCCF8niRDIYQQPq9J\nHuEkhDfo378/eXl5rsdMaZrG+vXr3Z5gIYS4OkgyFOIKaZrGG2+8wfXXX1/r8MrKSvz8ZBMT4mog\nzUdfQGMAABWhSURBVKRCNKDY2FhWrFjB4MGDGTJkCABz5syhb9++dO/enREjRrBlyxbX+PPnz+f/\n/u//eOyxx+jWrRspKSns2rXLNfzEiRNMnjyZxMREEhIS+Mtf/uIa9s477zB06FDi4+MZP348J06c\naLxAhfAykgyF+AVqu8/9l19+yWeffUZGRgYAvXv35quvvmLPnj2MHj2a//u//6OiosI1/tdff83o\n0aP58ccfuemmm5g9ezbgfBjuxIkTadu2LZs3b2b79u3cfvvtAHzxxRcsXryYZcuWsXv3bvr168e0\nadMaIWIhvJM8teIq5St3369LnJ+8e6ZBynDb3eH1Gr9///4UFBS4mkIHDhzIF198QXp6OoMGDbro\n9+Lj43n//ffp0aMH8+fPZ9u2bfz73/8GnA+4HjFiBIcOHWLbtm088MADZGZmotO5/2+dMGECo0aN\nYty4cQA4HA66du3KunXraNOmTb3iaCzNYZ1tDmVoSPLUioYjBzTEVa++SayhaJrGa6+95nbMMDY2\ntsbO49VXX+Wdd94hJycHTdM4e/YsFovFNbxFixau7qCgIMrLy3E4HJw8eZLY2NgaiRDg+PHjzJkz\nh2eeecatf3Z2drNNhkI0Z5IMhWhg5z/Yd/PmzfzjH/8gPT2dbt26Ac6aYV0aZFq3bs2JEyew2+2u\nM1artWnThunTpzN69OiGLbwQPkqOGQrhQVarFT8/P8xmMxUVFSxcuLDOzVp9+vQhOjqaefPmUVpa\nSllZGVu3bgXgvvvuY/Hixezfvx+AoqIiPvnkE4/FIYS3k2QoRAM6v1YIMGzYMIYOHcoNN9zAgAED\nCAwMdGvG1DStxneqP+v1elasWMHRo0fp27cvffv2dSW8W265hWnTpjFt2jS6d+/O8OHDWbdunYej\nE8J7NfoJNL/97W8JCgpCp9Oh1+t57rnnsFqtLFy4kLy8PKKiopgxYwZGoxGA1157jczMTAICApg2\nbRpxcXEArF27llWrVgEwZswYkpOT6zR/OYGmefolJ9CIq0NzWJbNoQwNSU6gaThNcszw6aefJiQk\nxPV59erVJCYmcvvtt7N69WpWr17N+PHj+f7778nJySEtLY0DBw6wbNky5s6di9Vq5YMPPuD5558H\nYObMmSQlJbkSqBBCCFEfTdJMemFldNu2ba6a3dChQ13HRc7v36VLF4qLizlz5gyZmZkkJiZiNBox\nGo307NmTzMzMxg1CCCH+f3vnHtPU+cbx72kRC5WLZRCdzJ8TkY1yEUXZmBtmw8S5OC9zhKEz6i7O\nG9GNmOBlZLrNberMNsUmortANDNu4iUu6ozIll0yN0gFYcgcmfM6SqlCC7Y97++P0kNbWqhQCqd9\nPgmc97y38357Ls/7nnPe5xA+g9dHhhzH4d133wXHccjMzERmZiZ0Oh3Cwy2vx4eFhUGn0wEAmpqa\nEBERIZSNiIhAU1MTtFqt03iCIAiC6A1eN4ZbtmzB8OHDcefOHWzZsqXLnCjHlwn68kizuroa1dXV\nwnpWVhZCQkJ6Xd9gIjAw0Ge0AK71OE4pIMSLVCod8GPWX84bT3Po0CEhrFQqoVQq+32b3sbrxnD4\n8OEAgNDQUEyZMgX19fUICwtDc3MzwsPDodVqERYWBgBQKBTQaDRCWY1GA4VCAYVCYWfkNBoNEhIS\numzL2U7zlYfn/vIigC9duPwds9k84Mesv5w3nt5GVlZWv25jMODVZ4bt7e0wGAwAgLa2NqjVaowe\nPRqpqakoKysDAJw/fx6TJ08GAKSmpqK8vByAxU2VXC5HeHg4kpOToVar0draipaWFqjVaiQnJ3tT\nCkEQBOFDeHVkqNPpsG3bNgAWX4pTp05FcnIyYmJisHPnTpw7d06YWgEAEydOREVFBVavXg2ZTIbl\ny5cDAIYNG4YXXngB+fn5AID58+fTm6QEQRBEryFH3SLFX273+JpOf2Yw7MvB0AZPQvMMPQd5oCGI\nQUJaWhp++OGHQVuflatXryI6Oho8z3u8boIYKMgYEkQvSUtLQ3JysvAcHAAOHDiA+fPn91h2zZo1\n+Oijj+zinLlm6wuero8gfBkyhgTRB3ieR1FR0UA3ww6TyTTQTSAI0UHGkCB6CcdxeOONN6BSqXDn\nzp0u6fX19cjOzoZSqcRTTz0lONkuKSlBaWkp9uzZg/Hjx2PJkiVCmaqqKmRmZuLRRx/F8uXL0d7e\nLqSdOXMG06dPR3x8PGbPno2amhohLS0tDYWFhcjMzERcXBzMZrNdWyoqKjBr1izEx8dj4sSJ2Lhx\nI4xGo5AeHR2N4uJiTJ06FfHx8diwYYOQxvM8Nm/ejMTERKSnp+Ps2bN2dX/99ddIT09HXFwcHn/8\nccFnMEGICTKGBNEHkpKSkJ6eDpVKZRdvMBiQnZ2NefPm4eLFiygsLMT69etx+fJlLFy4EHPnzsWK\nFStQV1eHzz//HIDFwcSJEydw4MAB/Pzzz6ipqREmO1dVVSEvLw/btm1DdXU1Fi5ciCVLltgZtKNH\nj6K4uBiXLl3q4qwgICAAmzdvRlVVFY4dO4Yff/wRX375pV2es2fP4rvvvsOZM2dw/PhxYbpTSUkJ\nzp49i9OnT+PkyZM4ceKEcPtVr9ejoKAAJSUl+PPPP3Hs2DGfnJBN+D70cV9C9Hz66aceqSc3N/e+\ny3Ach7y8PMyZMwevvvqqEH/mzBmMHj1amKyckJCAZ599FidOnMDatWvBGOviXYnjOLzyyiuIiooC\nAEyfPl1wLlFSUoKFCxdiwoQJAIAXX3wRn332Gf744w+kpaWB4zgsXboUI0eOdNrOxMREIRwdHY0F\nCxbgl19+sWvzypUrERISgpCQEKSnp+PSpUuYNm0ajh8/jtdee02oOzc3Fzk5OUI5iUSC2tpajBw5\nEpGRkYiMjLzv35EgBhoyhoTo6Y0R8yRxcXHIzMzErl27EBsbCwC4du0aKioqEB8fL+QzmUzCyzWu\nXmyxNSQymQw3b94U6jt8+LAwigQAo9EopAPdvwL/119/4Z133sHFixdhMBhgMpm6OKqwGmEACAoK\nQmtrKwDg9u3bdnXbhoODg7Fnzx6oVCrk5eUhNTUVb7/9NsaNG+eyLQQxGCFjSBAe4K233sKMGTOw\nbNkyABaD8dhjj+HgwYNO87v7lqc134MPPojc3NxuDX93debn5yMpKQkqlQrBwcHYu3cvTp486VYb\noqKicO3aNWHdca5uRkYGMjIy0N7ejg8//BDr1q3Dt99+61bdBDFYoGeGBOEBxowZg+effx5FRUXC\nF1muXLmCb775BkajEUajEZWVlaivrwdgGQH+888/PdZrvZW6YMECFBcXo6KiAowx6PV6fP/998Lo\nrSf0ej3kcjmCgoJQX1+Pr776qsftWrc9a9Ys7N+/Hzdu3EBzczN27dol5GtsbMSpU6eg1+sxZMgQ\nBAcHQyKhywohPuioJQgPsWbNGrS1tQEA5HI5Dhw4gKNHj2LSpElISUnB1q1bce/ePQBAdnY26urq\nEB8fb/fczhbbeYJJSUnYtm0bNm7cCKVSialTp+Lw4cNujzA3bdqE0tJSxMXFYd26dZg9e7ZdWcd6\nbLe9YMECZGRkYPr06Zg5cyZmzpwppPE8j71792LSpElISEjAr7/+Knx0myDEBLljEyn+4lbK13T6\nM4NhXw6GNngScsfmOWhkSBAEQfg9ZAwJgiAIv4eMIUEQBOH3kDEkCIIg/B4yhgRBEITf43eT7qv+\n0HeNdPJ6utsfvnHMyKxztGD54wHeus5b4njGhLAlnoG3SWcd6bxNujUvz1vSOU4HiQQdfxwk0s6l\nVMoJ8VKpbTogkdrEday7ipdK7ueH6NTfiyS06dth0JvsflMOQJDMr152JghigPA7Yxgstx8Mu32p\nvY9rMsdx4CQcOM5iZyUSaxxs4jrTuY50iRDuzC+xSbfmlXDAsGEh0OnugucZeDNgNsMS5gHebFma\nzZY0a7zZbE0HTCZrGt9ZtmNpu+5pXE2Lk0ju2X1pwTrhZ8iQYZAFBfVcMXNzF1nz2ebvCHOw/LMu\nbdvbNY6zy2u75DgOPM/sdLCOjdqvu15yjtt3sbTrOXQuuuJmutM8HXoYszRQ6MTZ/HHoPLbBdYaF\n45YDtI0mXP7TAKmUgzQACAjgIJVyCBhi6azZ/ZYd23W6T5zF2fwedr+RQxnGG9Fy19zZ6bTVwTuJ\nc9K5dV7Wfh1cx7nLoV+vBYFDzLjX7vCRZaf7smuk02PBjz9/KWpjWFlZiS+++AI8z+Ppp5/GnDlz\neiwzNk7mhZb1P4FDJZAF+c5dbtfzpdq8sn3GLB0FYSTPW0bhPO8Qto7OOzoYlnWbsjyDTCbDvXvt\nwmidkwBSieWiaD+StxmJ24Q5ycBekRw7FdZ946pVjDGhg2U2MZhNnWGTydIJs4YDAjiYTAz32i2d\nLqGM2VqXUKl9p8Whs2AbZjYZGRzrsS/PSQwA4+0MT6fh7mq8HA266zz2Rg6s484O3793iTiuxd7h\nu13QSfeQdcnmomwnr+WOcpbb5xCtMeR5Hvv27cOmTZugUCiQn5+P1NRUREdHD3TTCBHCcZbbxJAC\nfe0eh4QMw927/nN7l+MsIz1pwOAfVtCke8IVoh1a1NfXY8SIEYiKikJAQACeeOIJXLhwYaCbRRAE\nQYgQ0Y4Mm5qaEBERIawrFArBCXJ3lJaWAuh0gOzO0vY2hO26q3grrvxGdudP0lmaszipVNrla+bO\nPOv15G3P3TLd+bHsLt3dvFKpFDzPd4nvqd7e5JNIJILvTVd/VmfTPeV1li6TyQQfpY7HiGOcq/ie\nwp7ar+7UExgYKPhUdXdb95Puip58p3aX39V6T1rEhq0e22PcnXPFnXOI4zi/cccmWmPYW6wfR7U9\nYLpbOh4grg4cx3hXF4D7vSC5SgsKCoLBYOgSf7+G1lW8bZw7F2l30rtbDwoKgl6vd9tgdGcguivr\n7M9qhHmed5nHNi9jDGaz2WWegIAAGI1Gtw21bdjVBf1+OhjWdXc7Vj2ly2QySKXS+y7XE87KuHN+\n9LTeXR5Xv4sr+tN1c29+s+7qcOyou3OOuHNe+QuiNYYKhQIajUZY12g0UCgUdnmqq6uFL4UDQFZW\nFtLT073WRoIgCF/g0KFDQlipVEKpVA5ga/oH0T4zjImJwc2bN3H79m2YTCb89NNPSE1NtcujVCqR\nlZUl/BUUFPR7u2wPmv7EG1oA39LjS1oA39LjS1oA39Jz6NAhu+uoLxpCQMQjQ6lUiqVLl+K9994T\nplb09CZpZGRkv7fLWweKN7QAvqXHl7QAvqXHl7QAvqXHV42fI6I1hgCQkpKClJQUt/NHRUX1Y2ss\neOvA8YYWwLf0+JIWwLf0+JIWwLf0+IsxFO1t0t7gSzvVl7QAvqXHl7QAvqXHl7QAvqdnIPG7L90T\nBEEQhCN+NTIkCIIgCGeQMSQIgiD8HlG/QNPY2Ijdu3dDp9OB4zg888wzmDlzJlpaWrBz5040NjYi\nMjISa9euhVwuBwDs378flZWVGDp0KFasWIGHH34YAFBWVoYjR44AAObNm4eMjAxRamloaEBRUREM\nBgMkEgnmzp07IHMrPblvAECv1+PNN9/ElClTsHTpUtFqaWxshEqlgkajAcdxyM/P99objv2hp6Sk\nBBUVFeB5HklJSViyZMmg1nLt2jUUFhaioaEB2dnZmDVrllBXbxz/D1Y9ruohuoGJGK1Wy/7++2/G\nGGMGg4Hl5uayq1evsuLiYlZaWsoYY+zIkSOspKSEMcbY77//zt5//33GGGN1dXVs/fr1jDHG7t69\ny1atWsVaWlpYS0uLEBajluvXr7MbN24wxhhrampir7/+OmttbfWqFsY8p8fK/v372SeffML27dvn\nPREdeFJLQUEBU6vVjDHG2traWHt7uxeVWPCUntraWrZx40bG8zwzm81sw4YNrLq6elBr0el0rL6+\nnh08eJAdO3ZMqMdsNrNVq1axW7duMaPRyPLy8tjVq1e9qsWTelzVQ7hG1LdJw8PDMWbMGAAWl1Gj\nRo1CU1MTLly4IIzspk2bht9++w0A7OJjY2PR2tqK5uZmVFZWIikpCXK5HHK5HImJiaisrBSllpEj\nR2LEiBEAgOHDhyM0NBR37tzxqhZP6gGAK1euQKfTISkpyes6AM9p+ffff8HzPBITEwEAQ4cORWBg\noGj1cBwHo9EIo9GIe/cs36MMDw8f1FpCQ0MRExPTxb3cYHH87yk9zurRarVe0yFGRH2b1Jbbt2+j\noaEBsbGx0Ol0wkkZFhYGnU4HoKtz74iICDQ1NUGr1TqNHyj6osX2YlRfXw+z2SwYx4GiL3pCQ0NR\nXFyM1atXQ61WD0j7bemLFo1Gg+DgYGzfvh3//fcfEhMTkZOTIzgFHwj6omf8+PGIj4/HsmXLwBjD\njBkzBtSpsztaXNFbx//9SV/0uKqHcI2oR4ZW2trasGPHDixevBhBDl9Fd3SGywb5TBJPadFqtdi1\naxdWrFjRL+10l77qOX36NFJSUrr4nR0I+qrFbDajtrYWixYtwtatW3Hr1i2UlZX1Z5O7pa96bt68\nievXr0OlUkGlUqGqqgq1tbX92mZX3I8WMeApPW1tbfj444+xePFiyGS+8WHz/kL0I0OTyYQdO3bg\nqaeewpQpUwBYek7Nzc0IDw+HVqtFWFgYANfOvRUKhZ1Db41Gg4SEBO8KgWe0AJaXTT744AO89NJL\nGDdunNd1WPGEnrq6OtTW1uLUqVNoa2uDyWSCTCZDTk6O6LSYzWaMGTNG8BoyefJkXL582as6rHhC\nT3l5OWJjYzF06FAAli/C1NXV4ZFHHhm0WlzhjuN/b+EJPbb1PPnkk0I9hGtEPTJkjEGlUmHUqFF4\n7rnnhPjU1FShx33+/HlMnjxZiC8vLwcA1NXVQS6XIzw8HMnJyVCr1WhtbUVLSwvUajWSk5NFqcVk\nMmH79u3IyMhAWlqaVzXY4ik9ubm5KCwsxO7du/Hyyy8jIyPD64bQU1piYmLQ2toqPMOtqqrCQw89\n5FUtgOf0PPDAA7h06RJ4nofJZEJNTU2P/oEHWottOVvccfzvDTylx1U9hGtE7YGmtrYWBQUFGD16\ntHDrICcnB+PGjXP5ivi+fftQWVkJmUyG5cuXY+zYsQCAc+fO2U2tmDZtmii1lJeXY8+ePXYX2ZUr\nV+J///ufKPXYUlZWhitXrnh9aoUntajVahQXF4MxhrFjx2LZsmU9fitwsOrheR5FRUWoqakBx3GY\nMGECFi1aNKi1NDc3Iz8/H3q9HhKJBDKZDDt37oRMJkNFRYXd1Iq5c+d6VYsn9TQ0NDitx/o9V6Ir\nojaGBEEQBOEJRH2blCAIgiA8ARlDgiAIwu8hY0gQBEH4PWQMCYIgCL+HjCFBEATh95AxJAiCIPwe\nMoYEQRCE30PGkCAIgvB7/g+TQZkOZCyYugAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa0584424e0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"homicide_stats.plot(kind='line', title='Homicide Statistics in India, US, France, and the Netherlands')" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Interesting again. Gun violence has attracted quite a bit of attention in the US, but turns out India surpasses the US by a considerable margin in terms of the number of homicides committed." | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 32, | |
"metadata": { | |
"collapsed": false | |
}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"<matplotlib.axes._subplots.AxesSubplot at 0x7fa05834f0b8>" | |
] | |
}, | |
"execution_count": 32, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAiEAAAEPCAYAAACUWRRcAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYlFX7wPHvM6AC4yiC4kYpiqKgICaiuICmubRoZpZp\nr1tlWq9pabnlmlvmLm2aS1kuWS6ZpqZi5goKLiiC5m6oCK4oAnN+f/AyP4YdBUbw/lyXl8wz5znn\nPvMsc895Nk0ppRBCCCGEKGQ6SwcghBBCiCeTJCFCCCGEsAhJQoQQQghhEZKECCGEEMIiJAkRQggh\nhEVIEiKEEEIIi8iXJCQoKAidTsfly5ezb0yn46effsqPJvPd2bNn0el07Nmzx9KhPJL87EdAQABv\nv/12nucbN24ctWrVeuT2c8PFxYXJkycXSluFLb+WZUBAAO+8804+RZVRYS7v3Ei/P8rt/kkUrodd\nb5YsWUKJEiUKIKLC0bt3b9q2bVtk608rP7b9HJOQzDoUEhJCxYoV6datGwkJCTRr1ozo6GgqV678\nSMFY0tNPP010dDSNGze2dCiF5v79+zg4OFC6dGni4uIyvK9pGpqmPVTdDztfVt566y1atWqVYXpI\nSAhDhgzJ17aysn79epo3b46joyOlS5emVq1a9OzZk9u3bwPw999/o9PpOH/+fJ7rdnV1Zfz48WbT\n8rpOfvbZZ7i4uGSYvnbtWmbOnJnnmHJr2LBh7N+//5HrKaidZ0Htn1KTm/T/OnbsmK/tFGc57Ses\nra35/vvvCymalHVQp9PxySefmE2/ePEiOp2Ov/76K9d1ZbU/eJT9am4UdP2ZtfcockxC0nfojz/+\noFWrVrz22musWrWKUqVKUaJECZycnAq14/lNp9Ph5OSEtbW1pUMpNKtWraJGjRoEBASwdOnSfK27\nsO6B5+joiK2tbYG3s337dl555RXatWvH7t27OXr0KIGBgZQtW5aEhASzsg/T98y2nfxaJ+3t7Sld\nuvQj1ZEdvV6Pg4PDI9dTUDvPgt4/hYaGEh0dbfq3fPnyTMslJSUVSPtFWU7biqZphbYvSW3PxsaG\nuXPnPtSPicykj7+g+pOYmGiqvzA/s0dtK8ckJG0DS5cupVOnTowePZq5c+eapmc23Lljxw48PT2x\ntbXFy8uLHTt2mNWbOtT8888/88ILL6DX66lZs2aGL8M5c+bg7e2NwWCgcuXKdO/enejo6Axtb9iw\ngcaNG2Nra0v9+vXN2stNmfRD37mN78yZMzz33HPY2try9NNP8+WXX+bqMMbbb7+Nq6srdnZ21KxZ\nk1GjRvHgwQPT+6nDXOvXr6dOnTqULl2aVq1acerUKbN6Vq1ahaurK7a2tjRr1owjR45k225a3377\nLX369OE///kPCxYsyLRMcnIyw4cPp0KFCpQtW5b+/fubfenev3+fAQMGYG9vj4ODAwMHDszwpZzZ\nL9xly5ah05mvfn/++SctWrRAr9djb29PQEAA//zzD+PGjWPRokXs3LnT9Gsz9ddR9erVmTRpkqmO\n27dv079/f5ycnLCxscHHx4etW7ea3s/tck1v/fr1eHt78+mnn1KnTh1cXFx47rnnCAwMpHz58pw9\ne5aWLVsCKYeIdDodrVu3BuDQoUN06NCBihUrYjAYaNy4MZs3bzbVHRAQwOnTpxk/frypf+fPn8/0\ncMzkyZOpWbMmNjY2ODk50b59e+7fv8+SJUsYM2YM586dM9UxYcIEU/3p18fAwEDc3d2xsbGhYsWK\ndO3a1fTeunXr8Pb2Rq/XU65cOXx9fQkLC8vys0k/JJvbdTe99DvP1PXm22+/pVq1apQtW5ZOnTpx\n9epVs/nmzZuHs7Mzer2e9u3bZ/jyyGz/lNP2lxcVKlTAycnJ9K9s2bKmNjdu3Ejz5s2xtbXlu+++\n48aNG/Ts2ZNq1aphZ2dHnTp1MoxS5bbfWW0vqVasWEGDBg2wtbXFxcWFjz76iPj4+Dz1Lad1F1K2\nwbFjx/LBBx/g6OhIpUqV+PDDD0lOTjaVyc1+Ir3q1auTnJxMnz590Ol0WFlZmb2/Z88eGjZsiF6v\np1GjRoSEhJi9f+rUKV555RXKlSuHg4MD7dq149ixYzn22c/PDy8vL0aOHJltuStXrtC7d2+cnJwo\nU6YMzZs3Z9euXQDZ7g8gZV3Paflu3bqVZs2aYWdnh7OzM3379iU2Ntb0fup6Mm/ePKpXr46trS33\n79/PEGdhLsPw8HDatWtHuXLlKF26NO7u7ixbtizbzxGVg169eqk2bdqoKVOmqJIlS6rvv/8+Q5kd\nO3YoTdPUpUuXlFJKXbp0SdnZ2am+ffuqEydOqK1bt6r69esrTdPUjz/+qJRS6syZM0rTNFWjRg31\n888/q9OnT6uRI0cqa2trFRkZaap7zpw5atu2bers2bNq7969ys/PT/n7+2dou1atWur3339XERER\nql+/fkqv16t///0312VS49m9e3eu4zMajcrLy0s1adJEBQcHq7CwMNWxY0dVtmxZ9fbbb2f5mRqN\nRjVq1Ch14MABde7cObV+/XpVuXJlNXbsWFOZsWPHKr1erzp06KAOHTqkDh8+rJ555hnVokULU5lD\nhw4pKysrNXLkSBUZGal+/fVXVb16dbN+ZOXYsWOqVKlSKjY2Vt27d0+VK1dO/fXXX2Zl/P39VZky\nZdQ777yjIiIi1G+//aacnJzUkCFDTGUGDx6snJyc1Pr169XJkyfV0KFDVZkyZVStWrVMZXr37q3a\ntm1rVvcPP/ygNE0zvd66dauysrJSQ4YMUUeOHFERERFq0aJFKiIiQt25c0f16NFDNWvWTF25ckVd\nuXJF3bt3TymlVPXq1dWkSZNM9XTt2lW5uLioLVu2qIiICPXBBx+okiVLqoiIiFwv18xMmzZN2dvb\nqwMHDmT6fnJyslq/fr3SNE2FhISoK1euqLi4OKWUUkFBQWrp0qXq+PHjKioqSo0ePVqVLFnS1F5s\nbKxycXFRw4YNM/UvOTk5wzr5yy+/qDJlyqgNGzaoCxcuqLCwMDVnzhx17949de/ePTV8+HD11FNP\nmeq4e/euUkqpgIAAs/VxzJgxqnTp0iowMFBFRUWpQ4cOqcmTJyullPr3339ViRIl1PTp09XZs2dV\nRESEWr58uTp69GiWn83YsWOVq6ur2euc1t3MpO5r0r4uW7aseuONN1R4eLjau3evcnFxUW+++aap\nzNq1a5W1tbWaNWuWioqKUt99951ycnJSOp3OtD9Kv3/KzfaXG6n1Xrx4Mcv36tSpozZs2KDOnj2r\nLl68qKKjo9XUqVNVaGioOnv2rFq2bJkqXbq0Wrx4cZ76nd32opRSixcvVuXKlVPLli1TZ86cUX/9\n9Zfy9PQ0qyM3clp3lVKqWrVqqly5cmratGnq1KlTatWqVapEiRLqu+++M5XJzX4ivWvXrilra2s1\nd+5c0zqd2jedTqf8/f3V33//rSIiIlSHDh2Ui4uLSkpKUkopFR0drSpWrKgGDhyojh07piIjI9V/\n//tf5ejoqK5du5Zlm6nr4K5du5ROp1MhISFKKaUuXLigNE1TO3fuVEopFR8fr+rWrau6du2qDh48\nqE6fPq0mTZqkSpUqpU6cOJHt/iA3y3fbtm3Kzs5OzZ8/X506dUoFBwerVq1amX339erVS5UpU0Z1\n6dJFHTlyRB07dkwlJydn2I4KcxnWr19f9ejRQ504cUKdOXNGbdq0SW3YsCHLz1uplF8e2erVq5cq\nVaqU0jRNLVu2LNMy6TfyUaNGqerVq6vk5GRTmQ0bNmSahMyaNctUJjk5WRkMBvXtt99mGc+hQ4eU\npmnq8uXLZm0vWrTIVCYpKUlVq1ZNffrpp7kuk1USkl18W7ZsUZqmqdOnT5vKxMbGKjs7u2yTkMzM\nnDnTbGGOHTtWWVtbq5iYGNO0lStXKp1OpxISEpRSSvXo0UM1b97crJ758+fnKgkZNGiQ6tq1q+n1\nu+++q3r27GlWxt/fX7m4uCij0Wia9u233yobGxsVHx+v7ty5o2xsbNTChQvN5mvUqJFZX9JvFEpl\nTEKaN2+uXnzxxSzj7devnwoICMgwPW0SEhUVpTRNU5s2bTIr07BhQ9W3b1+l1MOvd/Hx8eqll15S\nmqapypUrq06dOqk5c+ao69evm8rs2rVLaZqmzp07l2U9qby8vMySJ1dXVzV+/HizMunXyZkzZ6ra\ntWurxMTETOucOHGiql69eobpaZOQ1GU2Y8aMTOtI3b7Onj2bYx9SZZaE5LTuZiazJKRixYrqwYMH\npmnTpk1TlStXNr1u1qxZhvV26NChZvuj9PunzKTf/nIjtV69Xq9Kly5t+rdz507Te1ntM9MaNGiQ\nWZKem37ntL1Uq1ZNffPNN2bTdu7cqTRNUzdu3MhLNzNIv+5Wq1ZNderUyaxMhw4dVPfu3ZVSKtf7\nicxYW1urpUuXmk1bvHix0jRNhYaGmqbt379faZpm+mIdO3asatKkidl8RqNR1axZU82ePTvL9nr1\n6mVaFi+//LJpn5M+CVm8eLFydnY2JT2pWrVqpQYPHqyUynp/kJvl6+/vr0aMGGE237lz55Smaerw\n4cOmesqVK2f6sZG2/vT72/QKahmWLVtWLVmyJNu208vV1TF16tTB3d2dyZMn8++//+ZY/vjx4zRu\n3NhsuL1Zs2aZlm3QoIHp79Rj4FeuXDFNCwoKol27djz99NOUKVOGFi1aAHDu3Dmzepo2bWr628rK\nisaNGxMeHp7nMnmJ7/jx45QvX54aNWqYypQrVw43N7ds6wRYsGABvr6+VKpUCYPBwMiRIzMMI1ep\nUgVHR0fT68qVK6OUMg3bnThxAj8/P7N5svqc07p//z7Lli2jV69epmn/+c9/WL16dYYTVBs3bmx2\nLN3Pz4+EhAROnz7N6dOnSUhIyDQGlcfjhIcOHeK5557L0zzpHT9+HMA0DJqqZcuWGZZzTutdera2\ntqxbt44zZ84wZcoUqlatypQpU3BzcyMiIiLbuK5du8bAgQOpW7cu5cqVw2AwEB4enudjzq+99hqJ\niYlUq1aNPn36sGzZMu7cuZOnOsLDw0lISMjys/by8qJdu3bUq1ePLl26MHfuXC5evJinNiDndTe3\n6tSpY3YlROXKlc2W08NuA7nZ/nJry5YtHD582PQv7YnE6U8qNhqNTJ06lQYNGlChQgUMBgPffPNN\nhrZz6nd228u1a9c4f/48Q4YMwWAwmP517NgRTdNyPCyWvq6c1l1N08y2p/Tx5ud+Im2bXl5eZu0B\npjaDg4M5ePCgWf/LlCnDuXPncnVYEGDatGns3r2b3377LUOZ4OBgoqOjsbe3N2vj77//ztXnm9Py\nDQ4OZtasWWZ1e3h4oGkaUVFRpnJ169bFzs4u27YKcxkOHTrUdBHB+PHjCQ0NzfGzyFUS4uTkRFBQ\nEKVKlaJly5Y5bqx5OZmoZMmSGeY1Go0AnD9/no4dO1KjRg1WrlzJwYMHWb9+PUCOx2+VUjmeiJab\nMtnFl/o6s3qz8/PPP/P+++/TvXt3Nm3aRFhYGGPGjMnQp8zaBszaf5iNeNWqVcTFxfHyyy9TokQJ\nSpQoQcuWLXnw4EGGcyMedieRlk6ny1BP6klUhSGzPuS0XLNSrVo1evXqRWBgICdOnEDTND7//PNs\n5+nduze7d+9m+vTp/P3334SFhdGgQYM8n4NQpUoVIiIiWLRoEU5OTkycOBE3N7eHShKyotPp2LRp\nE9u3b8fHx4dffvmF2rVr8/vvv+epntysu7mR/lLM/DhRMbfbX25Vr16dGjVqmP7Z2NiY3tPr9WZl\nZ8yYwdSpUxk8eDB//vknhw8f5q233spwbP1R+p36Gc+dO9csOTpy5AhRUVHUq1cv133L7br7sNvT\nw9LpdGb73vTrl1KKNm3amPX/8OHDnDx5knHjxuWqjVq1atG/f38++eQTs3MjUtupW7duhvojIiKy\nPL8urZyWr1KK4cOHZ6g/KiqK9u3bm8rllIBA4S7D0aNHExkZSbdu3Th27BhNmjTh008/zXaeXCUh\nSinKly/P9u3bKV++PC1atMg223N3d+fAgQNmHdi9e3cuu/H/goODuX//PrNnz6Zp06bUqlXL7KTU\ntPbu3Wv6OykpiQMHDuDu7p7nMnnh7u7OtWvXzE4Gi4uLIzIyMtv5/vrrL7y9vRk8eDDe3t7UrFmT\nM2fOPFT76e8hkZvPOfWE1PQr+IcffphhAwoODjZbjnv27KFUqVLUrFmTmjVrUrJkyQxt7t6922wH\nUbFixQz3aDh06JDZ62eeeSbDyVJplSxZMsOOID0PDw8Adu7caTb9r7/+on79+tnO+zDs7e2pWLEi\n165dM8UIZIhz165dDBw4kBdeeAEPDw8qVarE6dOnzcrkpn+p5dq1a8e0adM4evQo8fHxrFu3Ltd1\npJ6Mmt1nDeDj48OIESPYuXMn/v7+LF68OMfYCkJOPxLc3d0zXf+yk9X2VxhX9/3111906NCB3r17\n4+XlRY0aNYiMjMzQdk6xZLe9VKxYkaeeeoqIiAiz5Cj1X6lSpXIdb27W3Zzkdj+RmdxuF+k1atSI\nY8eOUbVq1Qz9TztCl5m0MY0dO5bLly/zzTffmJXx8fHhn3/+wWAwZKi/UqVKptgh4/4gfRvZxZ/Z\n8kuf2OaksJehi4sLAwYM4Oeff2b8+PF89dVX2dadp5uV2dvbs3XrVlxcXGjZsqVp+Du9AQMGcO3a\nNd555x1OnDjBtm3bGDVqVK7aSJsN1qpVC03T+OKLLzhz5gxr165l4sSJmc43bdo0Nm3axIkTJxgw\nYADXr19n4MCBeS6Tl/jatm2Ll5cXb775JiEhIRw+fJg333yTEiVKZLuS1alTh6NHj7J+/XpOnz7N\nnDlzWLNmTZ7iABgyZAh79+41ZZ9r1qzJ8X4Q4eHh7Nmzh759++Lu7m72L3V5pZ7hDXD9+nXee+89\nIiIi+P333xkzZgzvvvsutra26PV63n33XUaPHs1vv/3GyZMn+fjjj4mMjDT7nNq0aUNERARffvkl\np0+fZsGCBfz8889mcX366ads2rSJIUOGcOTIEU6ePMmSJUtMCV2NGjWIiIjg+PHjxMTEmLL4tO3U\nrFmTV199lYEDB7JlyxYiIiL44IMPOH78OMOGDcv2c8npV+a4ceMYNmwYQUFBnDlzhqNHjzJ06FDC\nw8N5+eWXgZRREp1Ox++//87Vq1e5desWAG5ubixbtoxjx44RFhZG9+7dMRqNZm26uLjw999/c+HC\nBWJiYjKN57vvvmPhwoUcPnyYc+fOsWzZMm7fvm1KpF1cXIiOjmbfvn3ExMRw7949U99S6ytdujQf\nffQR48aN48svvyQyMpLDhw8zdepUICXJnDhxIgcOHOD8+fNs27aNI0eOmBK8wpbTcvnoo49YuXIl\nc+fOJSoqisWLF+d4Nn5W219+jPrlpE6dOuzYsYOgoCAiIyMZPXo0Bw4cyPNlnDltL5MmTWLu3LlM\nnjyZY8eOcfLkSdauXcu7776bp3hzs+7mFGt2+4mcuLi4sH37dv79919iYmJyHff7779PcnIynTp1\n4u+//+bs2bP8/fffjBo1yuzHaGbS9qd8+fIMHz6c2bNnm5Xp0aMHLi4uPP/882zdupWzZ8+yf/9+\npkyZYvpRkNX+IH0bmZkwYQLr1q3jo48+IiwsjNOnT/PHH39kOmqWk4Jehqnz3rlzh/fee48dO3Zw\n5swZQkND+eOPP3Lcd+T5PiGlS5fmjz/+wMvLi1atWnH48GFTuVRVqlTht99+48CBA3h7ezNkyBBm\nzZqVad3ZTfP09GTevHl88803eHh4MHPmTGbPnp3pfF988QWffvop3t7e7N27l3Xr1pky0tyWyc2v\nkfTT1qxZg16vp0WLFrz00ks8//zzuLm5mQ3Jpte/f3/efPNN+vTpQ8OGDQkODmbcuHEZhhdzar9h\nw4b89NNPrFixAk9PTz7//HNmzZqVbQL07bffUrVq1UyPm9eqVYsGDRqYRkM0TePVV1/FYDDQvHlz\nunfvzosvvmj6wgKYOnUqnTt35s0338TX15dbt27x3nvvmcXw7LPP8tlnnzF58mQaNGhAUFAQY8aM\nMSvTtm1bNm7cyP79+2nSpAm+vr788MMPpl8T/fr1w8fHBz8/P5ycnFixYkWGzwNg4cKFtGvXjp49\ne9KgQQP27t3Lhg0bqF27dqafYXbT0goICODChQv06dMHd3d3Wrduzf79+/nxxx/p27cvkPILdMqU\nKUydOpUqVarQuXNnABYvXozRaKRx48Z06dKFjh074uPjY9bm+PHjuXHjBm5ublSsWJELFy5kiMvB\nwYHFixfTqlUr3N3dmT17NgsWLDDdxO3ll1/m1Vdf5fnnn8fJyYnp06eb6khbz8SJE01fUvXr16dd\nu3amY7f29vbs27ePTp06Ubt2bfr160fPnj2zHVJNX39u1t38qqdz587MmDGDzz//HC8vL5YvX860\nadOy3ZZzs/2lXh6d042ysutTZu99+umn+Pv706lTJ/z8/Lh58yaDBg3Kc79z2l569uzJqlWr2LBh\nA76+vjRu3Jjx48fj7OxsqmPJkiU53lwvN+tuVrGmnZ7VfiInM2bM4ODBg1SvXp2KFSvm2GYqJycn\n9u7dS/ny5enSpQt16tShZ8+eXLhwgSpVqmTZXmaf/ZAhQ6hQoYLZ9FKlSrFz504aNWpEnz59cHNz\n45VXXiEkJITq1asDWe8PcrN8AwIC2L59O0eOHKFly5Z4eXnx4YcfUqZMGdN9g7KrJ+30gl6GqWVK\nlCjBjRs36NevH+7u7rRv357KlSvneJd0TRVG+l+AgoKCaN26NRcvXsxy5cpNmVTvvfcetra2puvS\np0yZwp07d5g1axYxMTFUqFCBIUOGmIbEFi1aRFhYGKVKlWLgwIGUL18eZ2dnevfubaqzS5cu+Pv7\nA/DPP/8QGBhIYmIi3t7e9OnTJ38+CCFEvtm+fTsvvPACx48fN32pFDdjxoxhzZo1HD58OMM9e4Qo\nLLLmZWLcuHF8/vnnTJkyBUi57bWnpydz5syhXr16rF27Fkg5ryEoKIj27dvToUMHxo8fz2uvvYaV\nlRV3795l8uTJTJ48mdWrV5tuErRgwQIGDBjA3LlziY6OzvYmUJaS0xVDRZ30r2grjP79/vvvDB8+\nvNATkMJcdr///juBgYGFmoAU93VT5F2xSEJyc0JZXk46Sz84FBISYhrJCAgIIDg42DTd1dWVYcOG\n8eKLL7Jq1SoSExOZM2cOvr6+6PV69Ho99evXJzQ0lLi4OO7fv4+rqyuQcunogQMHch1XYSnuOwrp\nX9FWGP2bMWMGY8aMKfB20ivMZXfw4MEMl7MXtOK+boq8K/JJSEBAAMnJydkeZslNmVSapvHZZ58x\nfPhw/vzzTwBu3ryJvb09AGXLluXmzZsAxMbG8tprrxEeHs7du3cZMWIE33zzDfb29mZnYDs6OhIb\nG0tcXJzZMzYcHBzMbsOblcLecPN6L4dHJf3LX9K//FOc+wbSP2F5RT4JyW8TJ05k2rRpjBw5ks2b\nN3PixAmz99OPqBTGKTWFvSGlXnJaWKR/+Uv6l3+Kc99A+ics78l5ZGwulStXDoAyZcrQuHFjTp06\nRdmyZblx4wb29vbExcVRtmxZIGUk4/r166Z5r1+/joODAw4ODmYr//Xr16lXr16GkY/U8umFh4eb\nzd+tW7d872d20j9SvqBJ//KX9C//FOe+wZPRv1WrVplee3h4WOxyc5E5SULSSEhIwGg0mp5GeOTI\nEbp27UqjRo0ICgqic+fO7Ny5Ex8fHyDlhjKbN2+mWbNmREZGmp5mmXqp4N27d1FKceTIEXr06IFe\nr8fW1paoqChcXV3ZtWsXHTp0yBBHZhtK+pt9FSSDwcDt27cLrb3CJv0r2opz/4pz36Dw+1elSpVC\nT7RE3kgSksbNmzdN91YwGo00b94cLy8vatasyaxZs9ixY4fpEl1IuU9HaGgo//3vf7GxsWHAgAFA\nyr1UXnnlFUaMGAFA165dTZf0vvXWWwQGBvLgwQO8vb0z3K9fCCGEeFIU+fuEPClkJCT/SP+KtuLc\nv+LcN7DMSIh4vMmJqUIIIYSwCElChBBCCGERck5IEWYwGAqkXisrqwKr+3HwuPavOA/DCwGgkpIs\nHYJ4zEgSUsTJF1fx8DgmRULkF3U2CuOm1cSXsoG+QywdjniMSBIihBAi3ymlIDIc48af4d8LaO1e\nxq5DF+48SLR0aOIxIkmIEEKIfKOUgqMhKcnH7VtoHV5BaxKAZl0CrZQNSBIi0pAkRAghxCNTxmTU\nwT2ojasBhdbxVbRn/NB0VpYOTTzGJAkRj5UZM2Zw9uxZ5s2bx6VLl2jVqhUnT57M01OQhRCFRyUl\novbuQP3xKxjKoHu5J9RvJNusyBVJQkSB8PX15YsvvqBFixZ5mi/tjqtq1apERkbmd2hCiHygEu6j\ndm1BbVkLlZ9C95/3obaHJB8iTyQJEQVC0zTZGQlRDKn4O6gdG1HbfoNa7ugGjkCrXsvSYYkiSm5W\nJgqMUoqVK1fSuXNnJk6ciIeHB02bNmXHjh2mMufPn+eVV17Bzc2N7t27mz1l+MKFCzg7O2M0GgFY\nuXIlAQEBuLm54efnx7Jlywq9T0I8qdStGxh//R7jqP5w5RK6oZOwGiAJiHg0koSIApM6EhIWFoar\nqyvHjh1jwIABDB061FTmvffew8vLi2PHjjF48GB+/vnnLEdQypcvz/fff8/JkyeZOXMm48aN49ix\nY4XSFyGeVOr6NYzLv8X46UC4F49u1Ex0fYegVXna0qGJYkAOxxRzyW+/9Mh1WC1Y/0jzV61ale7d\nuwPw6quvMnLkSGJiYkhISODIkSOsWrWKEiVK4OvrS9u2bcnqmYrPPvus6e8mTZrg7+/P/v37qVev\n3iPFJ4TISEVfRP3xCyp0P1qLtugmBKKVLWfpsEQxI0lIMfeoCUR+cHJyMv1ta2sLwN27d4mJiaFs\n2bKmaZCSsGT1xODt27czc+ZMzpw5g1KKe/fuUbdu3YINXognjDp/GrVxNSryGFqr59FN/gZNL3f0\nFQVDkhDya/o7AAAgAElEQVRhMRUrVuTmzZvcu3fPlIhcunQJnS7jUcKEhATefvtt5s2bR7t27bCy\nsqJfv35ZjpoIIfJGRR1PucHYxTNobTuj6z0IzcY25xmFeARyTogoMDklCM7Oznh6evLFF1+QmJjI\ngQMH+PPPPzMtm5iYSGJiIg4ODuh0OrZv387OnTsLImwhnhhKKdSxgyR/Phzj4tlo3r7oJi9A91xn\nSUBEoZCREFFgUi/TTX+iadrXgYGBDB48GA8PD5555hleffVVbt68maFs6dKlmTBhAu+++y4PHjyg\nTZs2tGvXrnA6IkQxpC6fx/jdLEhKTLm7aaPmaFZyd1NRuDQl49lFQmbnSRgMBnmKbjGRn8uyuK8X\nxbl/hdU3dfEMxtnj0F56A615W7RMDoEWhMJedlWqVCm0tsTDkZEQIYR4gqhzpzHOHY/2+tvofPJ2\nR2Mh8pskIUII8YRQZyIxzpuIrudAtIZNLR2OEJKECCHEk0CdOo7xyynoeg1C8/KxdDhCAJKECCFE\nsadOHsP49VR0/T5Eq9fQ0uEIYSJJiBBCFGPqeBjGBV+ge2cYWl0vS4cjhBlJQoQQophSRw9iXDwb\n3YARaLU9LB2OEBlIEiKEEMWQCtuP8fv56N4bhVazjqXDESJTkoQIIUQxow7uwfjjV+j+OwbNpZal\nwxEiS5KECCFEMWLcvxO16jt0g8ehPV3T0uEIkS1JQkSB8PX1JSYmBqv/3QZa0zR27dpl9kRdIUT+\nMu7Zhvr1B3RDJqA5V7d0OELkSJIQUSA0TWPp0qU0b9480/eTkpKwtpbVT4j8Yty1BbV+ObqPJqJV\nfsrS4QiRK/IUXVFonJ2dWbJkCc2aNaNly5YAjBkzBh8fH+rUqUOHDh04cOCAqfyMGTPo378/H3zw\nAW5ubrRu3ZojR46Y3r906RJvvfUWnp6e1KtXj9GjR5veW7FiBQEBAXh4eNCjRw8uXbpUeB0VopAZ\nd2xEbViBbugkSUBEkSJJiCgwmT0bccuWLWzcuJEdO3YA0KBBA7Zu3crx48fp3Lkz/fv358GDB6by\nf/75J507dyYiIoK2bdsyatQoAJKTk+nVqxdPPfUU+/fv5+DBg3Tq1AmAzZs3M2/ePBYuXMjRo0dp\n3LgxAwcOLIQeC1H4jH+uQ23+Fd3QyWgV5YFtomiRp+gWEQ/7FN1OP0Y8ctvreuT98j5fX1/i4uJM\nh1yaNm3K5s2bWbVqFX5+flnO5+HhwerVq6lbty4zZswgJCSE5cuXAxAZGUmHDh04ffo0ISEh9O3b\nl7CwMHTpngDas2dPXnjhBV5//XUAjEYjtWvXZufOnVStWjXPfSkM8hTd3CvO/ctr34x//IL6azO6\njz5Dc3z8z7eSp+iK9OSgfDH3MAlEftA0jUWLFpmdE+Ls7Jxhp/D111+zYsUKrly5gqZp3L59m9jY\nWNP75cuXN/1ta2tLQkICRqORy5cv4+zsnCEBAbh48SJjxoxhwoQJZtOjo6Mf2yREiLwybliB2rcT\n3bApaOUcLR2OEA9FkhBRqDRNM/29f/9+vvrqK1atWoWbmxuQMhKSm8G5KlWqcOnSJZKTk01X4KSq\nWrUqgwcPpnPnzvkbvBCPAaUUat2PqEN7U84BsXewdEhCPDQ5J0RYzJ07d7C2tsbBwYEHDx4wa9as\nXA/Vent74+TkxOTJk7l37x73798nODgYgDfffJN58+YRGRkJwK1bt/jtt98KrB9CFBalFOqXpaiw\n/ZKAiGJBkhBRaNKOggC0atWKgIAAWrRoQZMmTbCxsTE7XKJpWoZ5Ul9bWVmxZMkSzp49i4+PDz4+\nPqZEo3379gwcOJCBAwdSp04dnn32WXbu3FnAvROiYCmlUCsXok6EpSQgZewtHZIQj0xOTM2E0Whk\n+PDhODg4MHz4cK5evcrs2bO5c+cONWrU4P3338fa2prExETmz5/PmTNnMBgMDB48mAoVKgCwZs0a\nduzYgU6no0+fPnh5pTy9MiwsjCVLlmA0GmndunWuDxk87ImpomiQE1Nzrzj3L6u+KaMRtfwb1LnT\n6D4Yh6YvbYHoHp2cmCrSk5GQTGzcuBFnZ2fTr+5ly5bxwgsvMHfuXPR6Pdu3bwdg+/btGAwG5s6d\ny/PPP8+PP/4IpJwYuWfPHmbOnMnIkSNZuHAhSimMRiPfffcdI0eOZObMmezevZuLFy9arJ9CiMef\nMiajfghEXTiTcifUIpqACJEZSULSuX79OqGhobRu3dp0gmR4eDhNmjQBwN/f33TuQUhICP7+/kDK\nJalHjx4FIDg4mGbNmmFtbY2TkxOVKlUiKiqKU6dOUalSJZycnLC2tqZZs2aEhIRYoJdCiKJAGZNR\ni+eirl5GN3g8mq2dpUMSIl9JEpLO0qVL6dmzp+nSz9u3b6PX602vHRwcTJeQxsbG4uiYcmmclZUV\ndnZ23L59m7i4ONN0AEdHR2JjY83Kp69LCCHSUklJqIUzUTdj0Q0ai2Zja+mQhMh3coluGgcPHqRM\nmTK4uLgQHh4OZH7Xz4IWHh5uah+gW7duGAyGDOXSX5oqii4rK6tMl/HDKFmyZL7V9Tgqzv1L7ZtK\nSiR+7kTUgwT0I6ahlSxl6dDyhSWW3apVq0x/e3h44OHhUajti+xJEpLGyZMnOXjwIKGhoSQmJnLv\n3j2WLFnC3bt3MRqN6HQ6s9EMBwcHYmJicHBwIDk5mfj4eAwGAw4ODly/ft1U7/Xr13F0dEQplWG6\ng0PGS+wy21AyO5mruO6In0TJyclyYmouFef+GQwGbsXGYvxmGgC6/p9wJ+EBJDzIYc6iobCXncFg\noFu3boXWnsg7ORyTxhtvvMFXX31FYGAggwcPxsPDg0GDBuHh4cG+ffsACAoKolGjRgA0atTIdOnn\nvn37qF+/vmn67t27SUpK4urVq0RHR+Pq6krNmjWJjo7m6tWrJCUlsWfPHlNdQgihHiRg/HISWFmj\ne/cTtBIlLB2SEAVKRkKykXp1TM+ePZk9ezYrVqzAxcWF1q1bA9C6dWvmzZvHoEGDMBgMfPDBB0DK\n7cmbNm3KkCFDsLKyol+/fmiahpWVFX379mXSpEmmS3SdnZ0t1j8hxOND3Yvn7pxxaLZ6tH4fosnh\nVvEEkPuEFBFyn5DiTe4TknvFsX/q0jmMX02lpOczJHXtg6YrngmI3CdEpCeHY0SR4Ovry65dux7b\n+lJduHABZ2dnjEZjvtctiifjviCMX4xC6/gqdv2GFNsERIjMSBIiCoSvry9eXl7cu3fPNO2nn36i\na9euOc47ePBgPv/8c7Npmd3C/VHkd31C5JVKSsT409eo35aj+2giOr/Wlg5JiEInSYgoMEajkYUL\nF1o6DDNJSUmWDkEIVOw1jJ+PQMVdRzdqBpqzi6VDEsIiJAkRBULTNN59912+/vprbt26leH9U6dO\n8frrr+Ph4UHLli1ND59btmwZa9eu5auvvqJ27dr06dPHNM+xY8do06YNdevWZcCAASQkJJje27p1\nK23btsXd3Z1OnTpx4sQJ03u+vr58+eWXtGnTBjc3N5KTk81iCQ0N5cUXX8Td3Z2GDRsyevRoEhMT\nTe87Ozvzww8/0Lx5c9zd3Rk1apTpPaPRyIQJE6hfvz5+fn5s27bNrO6VK1fi5+eHm5sbTZs2Zc2a\nNQ/5iYriQh0Pwzh5KJp3U3QDRqDZyW3YxZNLro4RBcbT0xM/Pz++/vprPv74Y9P0e/fu8frrr/Px\nxx/z008/cfz4cbp3706dOnXo2bMnBw8epEqVKgwbNsw0j1KKDRs28NNPP1GyZEk6d+7MqlWrePPN\nNzl27BhDhw5l6dKleHl5sXr1avr06cOuXbso8b9LHNetW8cPP/yAg4NDhpu8WVtbM2HCBLy8vLh8\n+TI9e/Zk6dKlvPXWW6Yy27ZtY9OmTdy6dYsOHTrQtm1bAgICWLZsGdu2bWPLli3Y2try1ltvmQ7z\nxMfHM3bsWDZu3EiNGjW4du0acXFxBfmRi8eYMhpRm1ajdmxE99ZHaHU8LR2SEBYnSUgx99vKG49c\nx4uvPdwjwzVNY+jQoXTu3NnsC33r1q08/fTTppsI1atXjw4dOrBhwwaGDBmS8sjydBdtaZpGv379\ncHJyAqBt27amu8ouW7aMnj170qBBAwBeffVV5s2bx6FDh/D19UXTNPr27UvlypUzjTP1/i6QMurR\no0cP9u3bZxbze++9h8FgwGAw4Ofnx/HjxwkICOC3337j7bffNtU9aNAg3njjDdN8Op2OiIgIKleu\nTIUKFUxPWRZPFnX3DsbFs+HOrZTDL+Ucc55JiCeAJCHF3MMmEPnFzc2NNm3aMH/+fGrVqgXApUuX\nCA0Nxd3d3VQuKSnJdNJqVieMpv0Ct7GxITo62lTf6tWrWbx4sen9xMRE0/uQ/aV6p0+fZvz48Rw9\nepR79+6RlJSEl5eXWZnU5AfA1taWu3fvAnD16lWzutP+bWdnx1dffcXXX3/N0KFDadSoEWPGjMHV\n1TXLWETxo87/g/HrqWiePmjvfoJmLTcgEyKVJCGiwH300Ue0b9+e/v37Aylf1E2aNGH58uWZls/t\nVSup5apUqcKgQYMYNGhQjmUzM2LECDw9Pfn666+xs7NjwYIFbNy4MVcxODk5cenSJdPr9Pdz8ff3\nx9/fn4SEBKZNm8bHH3/Mr7/+mqu6RdFn3L0NtXoxWvd30DVuaelwhHjsyImposBVr16dl156iYUL\nF6JpGm3atOGff/7hl19+ITExkcTERMLCwjh16hSQMuJx/vz5HOtNPWTTo0cPfvjhB0JDQ1FKER8f\nz59//mkarchJfHw8er0eW1tbTp06xffff59ju6ltv/jiiyxatIh///2XGzduMH/+fFO5mJgYNm/e\nTHx8PCVKlMDOzs70NGZRvKnEBxi/n4/64xd0wyZLAiJEFmSPKArF4MGDuX//PgB6vZ6ffvqJdevW\n8cwzz+Dt7c2UKVN48CDlIV2vv/46kZGRuLu7m52XkVba+3x4enoyffp0Ro8ejYeHB82bN2f16tW5\nHlH59NNPWbt2LW5ubnz88cd06tTJbN709aRtu0ePHvj7+9O2bVs6duxIx44dTe8ZjUYWLFjAM888\nQ7169di/fz9Tp07Nw6cmiiIVcwXjtOGo+DvoRn2BVuVpS4ckxGNLbtteRMht24s3uW177j3O/VNH\nD2JcPButY1e0Z1/K8w3xHue+5Qe5bbtIT84JEUKIR6SMyagNK1G7tqbc+6OWe84zCSEkCRFCiEeh\n7tzCuHAGJCaiGz0TrWw5S4ckRJEhSYgQQjwkdSYK4zfT0Bo1Q3v5P2hW8vA5IfJCkhAhhMgjpRRq\n12bU2h/R9RyA1tDP0iEJUSRJEiKEEHmgEhJQP36FOn8a3cdT0SpVtXRIQhRZcomuEELkkrp6GePU\nYWBMRjdiuiQgQjwiGQkp4gwGQ77XaWVlleFJs8VJce+fKBgqbD/G7+ejvdgdLaBDni+/FUJkJElI\nEVZQ19vLvQqE+H8qORm17kfU/iB0741Cq1nH0iEJUWxIEiKEEFlQt25gXPAFaBq60bPQDGUtHZIQ\nxYokIUIIkY5SCg7twbjyO7SmrdE6dUfTyeW3QuQ3SUKEECINdfk8xhUL4NYNdP0+RHOrZ+mQhCi2\nJAkRQghA3YtHbViB2rMd7YXXU04+lZuPCVGgJAkRQjzRlFKo/UGoX5aieTREN34+Whl7S4clxBNB\nkhAhxBNLnf8H4/JvUp77MmAEWg03S4ckxBNFkhAhxBNH3b2NWvsj6uButM490Zq3kRNPhbAASUKE\nEE8MZUxG/f0nau0ytGeaoZv4JZo+/2/4J4TIHUlChBBPBPXPSYw/fQPW1ugGj0N7uqalQxLiiSdJ\niBCiWFO3bqB+/R4VfgitSy+0JgFyy3UhHhOShAghiiWVnIwK2ojasBLNrzW6CV+i2dpZOiwhRBqS\nhAghih118ljKVS9l7NENm4xW5WlLhySEyIQkIUKIYkPFXUetXow6dRxdt37Q0E8OvQjxGJMkRAhR\n5KmkRNSf61Gbf0Vr2QHdf95HK2Vj6bCEEDmQJEQIUaSpY4dSnvXiVBndiOloTlUsHZIQIpckCRFC\nFEkq5grGld/BpbPoXnsbzcvH0iEJIfJIkpA0Hjx4wLhx40hMTMRoNOLr60u3bt24evUqs2fP5s6d\nO9SoUYP3338fa2trEhMTmT9/PmfOnMFgMDB48GAqVKgAwJo1a9ixYwc6nY4+ffrg5eUFQFhYGEuW\nLMFoNNK6dWs6d+5syS4LUeSoBwkY1y9Hbd+A1uYltHeGopUoaemwhBAPQWfpAB4nJUuWZOzYsUyf\nPp3PP/+cw4cPExUVxbJly3jhhReYO3cuer2e7du3A7B9+3YMBgNz587l+eef58cffwTg4sWL7Nmz\nh5kzZzJy5EgWLlyIUgqj0ch3333HyJEjmTlzJrt37+bixYuW7LIQRYYyGlGH9nD7o96oy+fQfTob\n3QuvSQIiRBEmSUg6pUqVAiApKYmkpCQ0TSM8PJwmTZoA4O/vT3BwMAAhISH4+/sD4Ovry9GjRwEI\nDg6mWbNmWFtb4+TkRKVKlYiKiuLUqVNUqlQJJycnrK2tadasGSEhIRbopRBFh7p9E+OmXzCO6o/x\n95+xfWcoVu8OR3OsYOnQhBCPSA7HpGM0Gvnkk0+4cuUK7du3p2LFiuj1enS6lHzNwcGB2NhYAGJj\nY3F0dATAysoKOzs7bt++TVxcHLVq1TLV6ejoaJontXxqXadOnSqsrglRZCil4NQJVNAm1NEQtAa+\n6N4eCi61KVGmDPdv37Z0iEKIfCBJSDo6nY7p06cTHx/P9OnTuXTpkqVDEuKJoe7Fo/YFoXZugsRE\nNP/26N54Rx4yJ0QxJUlIFuzs7PDw8CAyMpK7d+9iNBrR6XRmox8ODg7ExMTg4OBAcnIy8fHxGAwG\nHBwcuH79uqmu69ev4+joiFIqw3QHB4cMbYeHhxMeHm563a1bNwyGwtsJlyxZslDbK2zSv8dP8rnT\nJGxdT+Le7Vh7eFOy93+x9vBG02U8YlwU+5dbxblvYJn+rVq1yvS3h4cHHh4ehdq+yJ4kIWncunUL\nKysr9Ho9Dx484OjRo3Tq1AkPDw/27duHn58fQUFBNGrUCIBGjRqxc+dOateuzb59+6hfv75p+pw5\nc3jhhReIjY0lOjoaV1dXjEYj0dHRXL16FQcHB/bs2cMHH3yQIY7MNpTbhTj8bDAYCrW9wib9ezyo\nxAeog7tRQZvg+jW0Fs+hjZ2HsZwj9wHu3s10vqLSv4dRnPsGhd8/g8FAt27dCq09kXeShKRx48YN\nAgMDMRqNGI1G/Pz8aNiwIc7OzsyePZsVK1bg4uJC69atAWjdujXz5s1j0KBBGAwGU0Lh7OxM06ZN\nGTJkCFZWVvTr1w9N07CysqJv375MmjTJdImus7OzJbssRKFTV/9F/fUHas92eMoF3XMvg1djNCsr\nS4cmhChkmlJKWToIkbPLly8XWlvya6xoexz7p5KT4WgwxqBNcO40ml9rtJbt0Srm/e6mj2P/8ktx\n7hsUfv+qVJG75z7uZCRECFFg1M041K4tqF2bwd4Rzb8D2sCRaCVLWTo0IcRjQJIQIUS+UkrByaMp\nl9eeCENr1Bzde6PRnq5h6dCEEI8ZSUKEEPlCxd9B7dmO2vkHaBpaq44pT7O101s6NCHEY0qSECHE\nI1Fno1JGPUL3onk0RPfmQKjlgaZplg5NCPGYkyRECPFQ1JkojCsXwI1YtJbt0E38Eq1MOUuHJYQo\nQiQJEULkibp9C7Xme9SRYLQu/0FrEoCmk8trhRB5J0mIECJXlDEZ9dcW1Pqf0Bq3RDchEM2utKXD\nEkIUYZKECCFypP45ifGnb6BESXQfTkBzdrF0SEKIYkCSECFEltTtm6hfv0cdPYjWtReab4CccCqE\nyDeShAghMlDGZNTOzajflqP5BqScdGprZ+mwhBDFjCQhQggz6nQExp++BhtbdB99hla1mqVDEkIU\nU5KECCEAULduoH5Zijoeita1D1rjlnLoRQhRoCQJEeIJp5KTU242tmEFml9rdBPk0IsQonBIEiLE\nE0ydOo7xx29AXxrdsMloVZ62dEhCiCeIJCFCPIHUrTjU6iWoiKNor/ZBa9RcDr0IIQqdJCFCPEFU\ncjJqx++o31ehNXsW3YT5aDZy6EUIYRmShAjxhFCRx1JuOFbGHt3HU9AqP2XpkIQQTzhJQoQo5tSN\nWNTqxaiocHSv9oVnmsmhFyHEY0GSECGKKZWUlHLoZeMqtBbPoRsfiGZja+mwhBDCRJIQIYohdfJY\nyg3H7B3RfTINrZKzpUMSQogMJAkRohhRMVe4u3g2xoij6F7rB95N5dCLEOKxJUmIEEWQSk6G6Euo\nC//AxTOoC2fgwhlQRkq0eQndG++ilbKxdJhCCJEtSUKEeMyp+Dtw8awp0VAXz8K/56FcBTTn6vCU\nC7pnX4SnaoC9A7ZlypB0+7alwxZCiBxJEiLEY0IpBTFX/pdopBnduHMLqlZDe8oFqtdC1+K5lNdy\nkqkQooiTJEQIC1APEuDy+f8f3bhwBi6dhVK28JQL2lMu6Hz94ZXe4FQJTWdl6ZCFECLfSRIinhjq\n1g3Upl+48+95kjUdWJdAK1ECrK2hREmwLvH//0pY/+//tNOtU8rnqmzKdE1nhboZZxrdMCUcMVeg\nYhU0Z5eUwyneTcDZBc1QxtIfkxBCFBpJQooIdTYKKlQCu9JytUMeqfi7qC1rUEGb0Bq3pFSnNzDe\nvgVJiajEREhKhNT/k9K8vhdvPj0xEWNSuvKZzZf2f50ObOxMoxu4e6Nr1wUqP5WS0AghxBNMkpAi\nwvj9/JRfzwDlK0KFSmjlK0H5imgVKkL5SuDoJF9saaiEBFTQ76jNa9DqPYNu9Ey08hUpYTBw/38n\nbhZkOqeUguQksLKWxFEIITIhSUgRYTVmTsqX2t3bEHMFde0KxETDxTMYQ/emJChxMWCwhwoVTQmK\n6e8KlaCM/RPxZaiSklB/b0X9vhJquKEbOskij6jXNC3lsIwQQohMSRJShGiaBqXLQOkyaNVrZXhf\nJSenJCLXolExV1ISkyMhGFP/TrgHjv8bRalQCco7/X+CUr5ikb+vhDIaUQf+Qq3/CSpUQjdwFJpL\nxs9JCCHE40GSkGJEs7JKGf0oXzHTwwzqfnxKMpI6knI1GuPxw6Zp2NhChUrE16iN8mwMbvWKxFUZ\nSik4fADj2mVQshS6/7yPVsfT0mEJIYTIgSQhTxDNxg6cXVKuwkj3njIa4VYcxFxBd/EMxl+Wwo3r\naM80Q/NpATXc0HQ6i8SdHXXyKMY1P8D9e+g69wSvxk/EISchhCgOJAkRACkJhr0j2Dti4+1LYsDz\nqCuXUcG7Uk6KTbiP5tMczaclPF3D4l/06mwUxjXL4OpltE5voDVuWSRGbYQQQvw/SUJElrSKVdBe\neA31fDe4dC4lIflmGuis0HxaoDVugVb5qUKNSf17AePaH+GfCLTnu6E1b4smJ38KIUSRJEmIyJGm\naeBcHc25OqpzTzh7ChX8F8aZY6C0ISUh8WmRcrJrAVHXr6J+W446EoL2XGe0vkPQSpUqsPaEEEIU\nPElCRJ5omgYutdBcaqG69oFTJ1ISkinDUk6I9WmB1qg5WjnHfGlP3bqB2vgzal8Qmn8HdJ99hWZX\nOl/qFkIIYVmShKQRExNDYGAgN2/eRNM0nn32WTp27MidO3eYNWsWMTExVKhQgSFDhqDX6wFYtGgR\nYWFhlCpVioEDB+Li4gJAUFAQa9asAaBLly74+/sD8M8//xAYGEhiYiLe3t706dPHMp3NB5pOB7U9\n0Gp7oF5/ByKOpCQkG1amjJz4tEB7xg/NUDbPdav4O6jNa1E7N6E1CUA3YT5amXIF0AshhBCWIklI\nGtbW1vTq1Yvq1atz//59PvnkEzw9PQkKCsLT05NOnTqxdu1a1q5dS48ePTh06BBXrlxh7ty5REVF\nsXDhQiZNmsSdO3f45ZdfmDp1KgDDhw/Hx8cHOzs7FixYwIABA3B1dWXKlCmEhYXRoEEDC/f80WlW\nVuDhjebhjeqRCOGHUs4h+fV7qFEbzaclmrdvjqMYKiEBtWMDastaNM9G6D6dheboVEi9EEIIUZge\nv2suLcje3p7q1asDYGNjQ9WqVYmNjSUkJMQ0khEQEEBwcDCA2fRatWpx9+5dbty4QVhYGJ6enuj1\nevR6PfXr1yc0NJS4uDju37+Pq6srAC1btuTAgQOF39ECppUogdbAF93bQ9FNX4zWrA0qbD/G4W+R\nHDgJY/AuVMJ9s3lUUiLGoI0YR/dHnY1CN2wyut4fSAIihBDFmIyEZOHq1aucPXuWWrVqcfPmTezt\n7QEoW7YsN2/eBCA2NhZHx/8/98HR0ZHY2Fji4uKynO7g4GCa7uDgQGxsbCH1yDK0UjYp9xnxaZHy\nILmwfag921A/fIlWryFa4xao+/dQ65dDhcro3h+NVs3V0mELIYQoBJKEZOL+/fvMmDGD3r17Y2tr\na/Ze+vtjKKUKM7QiTbPTo/k9C37Pom7fRB3cg3HregB0vf6L5lbfwhEKIYQoTJKEpJOUlMSMGTNo\n2bIljRs3BlJGP27cuIG9vT1xcXGULZtyoqWDgwPXr183zXv9+nUcHBxwcHAgPDzcbHq9evUyjHyk\nlk8vPDzcbP5u3bphMBjyva9ZKVmyZMG3ZzBAlW7wYreCbScThdI/C5L+FV3FuW9gmf6tWrXK9LeH\nhwceHh6F2r7IniQhaSil+Prrr6latSrPP/+8aXqjRo0ICgqic+fO7Ny5Ex8fH9P0zZs306xZMyIj\nI9Hr9djb2+Pl5cXy5cu5e/cuSimOHDlCjx490Ov12NraEhUVhaurK7t27aJDhw4Z4shsQ7n9v0fP\nFwaDwVCo7RU26V/RVpz7V5z7BoXfP4PBQLduhf9DR+SeJCFpnDx5kl27dvH000/z8ccfA/DGG2/Q\nubG0/IcAABFSSURBVHNnZs2axY4dO0yX6AI0bNiQ0NBQ/vvf/2JjY8OAAQMAKF26NK+88gojRowA\noGvXrqZLet966y0CAwN58OAB3t7exeLKGCGEEOJhaEpOaigSLl++XGhtya+xok36V3QV575B4fev\nSpUqhdaWeDhyia4QQgghLEKSECGEEEJYhCQhQgghhLAISUKEEEIIYRGShAghhBDCIiQJEUIIIYRF\nSBIihBBCCIuQJEQIIYQQFiFJiBBCCCEsQpIQIYQQQliEJCFCCCGEsAhJQoQQQghhEZKECCGEEMIi\nJAkRQgghhEVIEiKEEEIIi5AkRAghhBAWIUmIEEIIISxCkhAhhBBCWIQkIUIIIYSwCElChBBCCGER\nkoQIIYQQwiIkCRFCCCGERUgSIoQQQgiLkCRECCGEEBYhSYgQQgghLEKSECGEEEJYhCQhQgghhLAI\nSUKEEEIIYRGShAghhBDCIiQJEUIIIYRFSBIihBBCCIuQJEQIIYQQFiFJiBBCCCEsQpIQIYQQQliE\nJCFCCCGEsAhJQoQQQghhEdaWDuBx8+WXXxIaGkqZMmWYMWMGAHfu3GHWrFnExMRQoUIFhgwZgl6v\nB2DRokWEhYVRqlQpBg4ciIuLCwBBQUGsWbMGgC5duuDv7w/AP//8Q2BgIImJiXh7e9OnTx8L9FII\nIYSwPBkJSadVq1aMHDnSbNratWvx9PRkzpw51KtXj7Vr1wJw6NAhrly5wty5c3nnnXdYuHAhkJK0\n/PLLL0yePJnJkyezevVq4uPjAViwYAEDBgxg7ty5REdHExYWVrgdFEIIIR4TkoSkU7duXdMoR6qQ\nkBDTSEZAQADBwcEZpteqVYu7d+9y48YNwsLC8PT0RK/Xo9frqV+/PqGhocTFxXH//n1cXV0BaNmy\nJQcOHCjE3gkh/q+9+4uJo4r3AP49swsspQvbxZra+qdC8RqxLdwAJhql0RejMbEvRElsKjfXplV7\no/EF/4Qn/zy0VhNbeSiNCU286YvGN32RYuJ9sKaEFCGUVJIqtpVdWMqfhd2Zcx9md3Z2dhfBDnNg\n+X4SsjNnzvz5bndnf7s7p0tE6weLkBWIxWIIhUIAgKqqKsRiMQBANBpFdXW11a+6uhrRaBRTU1MF\n28PhsNUeDocRjUY9SkFERLS+8JqQVRJCZM1LKV3fx9DQEIaGhqz5trY2BINB1/dTSGlpqaf78xrz\nbWzFnK+YswFq8l24cMGarq+vR319vaf7p+WxCFmBqqoqTE9PIxQKYWpqClVVVQDMTzIikYjVLxKJ\nIBwOIxwOZxURkUgEjz76aM4nH+n+TvmeKLdv33Y7VkHBYNDT/XmN+Ta2Ys5XzNkA7/MFg0G0tbV5\ntj9aPX4dswJNTU3o6+sDAFy8eBHNzc1We39/PwBgdHQUFRUVCIVC2L9/PwYHBzE3N4fZ2VkMDg5i\n//79CIVCKC8vx9WrVyGlxE8//YSWlhZVsYiIiJQSci2+T9jAPvvsMwwPD2NmZgahUAhtbW1obm4u\nOES3p6cHAwMDCAQCOHr0KGpqagAAP/74Y9YQ3QMHDgDIDNFdWlpCY2MjOjo6VnRcExMT7octgO/G\nNjbm27iKORvgfb6dO3d6ti/6d1iEbBAsQtzDfBtbMecr5mwAixDKxa9jiIiISAkWIURERKQEixAi\nIiJSgkUIERERKcEihIiIiJRgEUJERERKsAghIiIiJViEEBERkRIsQoiIiEgJFiFERESkBIsQIiIi\nUoJFCBERESnBIoSIiIiUYBFCRERESrAIISIiIiVYhBAREZESLEKIiIhICRYhREREpASLECIiIlKC\nRQgREREpwSKEiIiIlGARQkREREqwCCEiIiIlWIQQERGREixCiIiISAkWIURERKQEixAiIiJSgkUI\nERERKcEihIiIiJTwqz4Aon/DkBK6IZE0AD01rUuk2mSqDan2zHRSSmyZkViKL8CvCfg1AZ8A/D4B\nvxDwaQIlmnnr02BNa0KsSY6ELrGYNBDXDcQTBuJJc34haZjtSbMtnppezDO/kFonPa9pGvypYy/x\nCcetltNW6ku1p9ty1hEo9WnwW9Nmuz91qwkBLXX3aEJAABACEDAnNAAQyOljTpsLM8sAsUb39UpI\nKc1ba36ZvlnrFV7qXLTcNv0JHbOLOpKGRMKQ1uM5PZ+e1g1k2vTMYz6hZ/qk+9nXc/4ZEvAJmI93\nkXo+aLnz6eeGT4OtXVjr2ufT0/nWqUj4MTMbzzlO6xitduQsc66T7r9cvv/9r53/8C9OqrEIIaX+\n7/ptfPNbBEnDLCzSJ06rsDAkkhIwrOLCLCYkAL/t5KZpAn4B89ZxctSEsPr6NAGfbxqLiaTtRJ05\n6VknfWl/ATBfHP3Widl2orWdgK12kd2uG2bRsKgbWEhkFx0SQLlfQ5lfQ8AvEPBrCFjz2W0Bv4Zt\n5f6s+TK/sK1vzldUbMX0zG0s2U7SS7qBRGo6ocvsacPAUqptcSkzbS438q+TWi+hmy9kEuYLuHnr\nmE+3SUBC2pbnXy/NXpjYCxUhRKZYsK3gfNlPLytUBCxTC5j7Sd8uUxPZF+X2E3n7LbdNTaRe9FMv\n4n5f5rHktz3Glv1LFYfp4rrML1ChaVZBbe+rCRQs4DPTEou6hJ4wkJQy9Vw0n6Pp50zW+jnP2VR/\nQ0JoGjRIs4jVMvlK8uQqcWQv8wlUlGhZ90mJI7NzG7T+sQghpf7jrnK8+p93Wy/ezndOmu2dVboA\n0FL9/q1gMIjbt2+vuL+U5gut811W+kSdXbA4lhnSPIE6iol0geHXhOvv/INbSxGQpa5u00u5xUx2\n8RLcuhWzs7NWf/vd53zZTy8rVARkFxHqX7RW+9jcaIo9H60eixBSKlzuR7h8fT8Mhch8slKm+mA2\nAZH+uiarJsjMBEp8SPh5ORtRMeAzmYiIiJRgEUJERERKrO/PwYvUwMAAvvrqKxiGgaeffhovvvii\n6kOiNTI2HMfNvxKpESPmkBFh+0OqXQhklgG2eWHrZ1svPQpFg/XVRXpZWZmBpcRSVn+Rbz+27We2\nm7/d2qejTaR27rycwpp3Xq9RYD57Wfb1HM5tlpToSCQkNAFoGiB4ASLRhsUixGOGYaCnpwcffPAB\nwuEwOjs70dTUhHvvvVf1odEa2HFvCbZV+7MutoTMjBYBUhdiynzLMu1Zy1Lr2PumupsX0RqAnnRu\nM3tb0taGAu2Z47O1G3Ack8weZWIf4eIcheIcyWJfbhvmIh197YvN21kYugHDAAwD1vDfdEFi3poj\npZzthfuI1HzutHQcUNaInJyhN8h/f+Rkz7+9ktIkkoklswjUnAVfqgjUkLdQ1DSYQ6LTbVr+YlJo\njsKz0DEvl8fxj5s/Y+70zJYFxBcSjqI7tzgGso89t3jPUzzb1oFtO7S+sQjx2NjYGHbs2IG7774b\nAPDEE0/g0qVLLEKK1NagD1uD3u6z2EcgOPNJwyy8jNSwUJkqTqx2+3SqSDP7ZPoahq3d0QdwjMAR\njk9+nCNtRO41tY4PeWC+9GY2nG4uC/gRX0jmLRjTxyulmRXSLMTyFY+ZYtFRfBq5xWgmV/b9XDBj\nTl6RsyzfNoQAfD4dyWQyu4jNKcody+As0KWt6HYU6cguvv/7f3aB1jcWIR6LRqOorq625sPhMMbG\nxhQeEdHGJtLDus05xUdzZ8wCS/VRrJ1iL5Bp9XhhKhERESnBT0I8Fg6HEYlErPlIJIJwOJzVZ2ho\nCENDQ9Z8W1sbdu709r8fDgY9/g7BY8y3sRVzvmLOBnif78KFC9Z0fX096uvrPd0/LY+fhHistrYW\nN27cwK1bt5BMJvHzzz+jqakpq099fT3a2tqsP/uTyAtdXV2e7o/53MV87inmbMDmyGc/l7IAWX/4\nSYjHfD4fOjo68OGHH1pDdP/polSvnzjbt2/3dH/M5y7mc08xZwOYj9RjEaJAY2MjGhsbV9zf6ydS\neuSOV5jPXcznnmLOBjAfqcevYyhHsT9xmW9jK+Z8xZwNKP58tHpCSvtIcSIiIiJv8JMQIiIiUoJF\nCBERESnBC1M3gcnJSZw+fRqxWAxCCDzzzDN47rnnMDs7i1OnTmFychLbt2/HW2+9hYqKCgDAuXPn\nMDAwgLKyMhw7dgwPPvggxsfHcfbsWSwsLEDTNBw8eBCPP/644nTu5Uubn5/H22+/jZaWFnR0dKiK\nZXEz3+TkJLq7uxGJRCCEQGdnp+cjFpzczHf+/HlcvnwZhmFg3759ePXVV1VGW3W2P//8E2fOnMH4\n+DheeuklvPDCC9a21uMPX7qVr9B2aBOQVPSmpqbk77//LqWUcmFhQR4/flxev35d9vb2ym+//VZK\nKeU333wjz58/L6WU8tdff5UfffSRlFLK0dFR+e6770oppZyYmJB//fWXlFLKaDQqX3vtNTk3N+dx\nmlxu5Us7d+6c/Pzzz2VPT493IZbhZr6uri45ODgopZQyHo/LxcVFD5Pk51a+kZER+f7770vDMKSu\n6/K9996TQ0ND3geyWW22WCwmx8bG5Ndffy2/++47azu6rss33nhD3rx5UyYSCfnOO+/I69eve57H\nya18hbZDxY9fx2wCoVAIu3fvBgAEAgHs2rUL0WgUly5dQmtrKwDgwIED+OWXXwAgq72urg5zc3OY\nnp7GPffcgx07dgAAtm3bhsrKSszMzHgfyMGtfABw7do1xGIx7Nu3z/sgBbiV748//oBhGNi7dy8A\noKysDKWlpd4HcnArnxACiUQCiUQCS0tL0HUdoVBISaa01WarrKxEbW0tfD5f1nbsP3zp9/utH75U\nza18+bYzNTXlWQ5Sh1/HbDK3bt3C+Pg46urqEIvFrJN0VVUVYrEYgNwf2auurkY0Gs06oY+NjUHX\ndasoWS/uJF9lZSV6e3vx5ptvYnBwUMnx/5M7yReJRLBlyxacOHECf//9N/bu3Yv29nZo2vp5L3In\n+R566CE88sgjOHLkCKSUePbZZz3/uYPlrCRbIRvhhy/vJF+h7VDxWz9nH1pz8XgcJ0+exOHDh1Fe\nXp61TDh+x1suM3J7amoKX3zxBY4dO7Ymx/lv3Wm+H374AY2NjTm/5bNe3Gk+XdcxMjKCQ4cO4eOP\nP8bNmzfR19e3loe8Knea78aNG5iYmEB3dze6u7tx5coVjIyMrOkxr9Rqsm1EbuWLx+P49NNPcfjw\nYQQCAbcPk9YhfhKySSSTSZw8eRJPPfUUWlpaAJjvUKanpxEKhTA1NYWqqioAy//I3vz8PD755BO8\n/PLL2LNnj/dBCnAj3+joKEZGRvD9998jHo8jmUwiEAigvb1dSSY7N/Lpuo7du3db/2tlc3Mzrl69\n6n2YPNzI19/fj7q6OpSVlQEAGhoaMDo6iocfftj7QDaryVbISn74UhU38tm38+STT1rboeLHT0I2\nASkluru7sWvXLjz//PNWe1NTk/VO+OLFi2hubrba+/v7AQCjo6OoqKhAKBRCMpnEiRMn0Nraisce\ne8zzHIW4le/48eM4c+YMTp8+jVdeeQWtra3rogBxK19tbS3m5uas63iuXLmC++67z9swebiV7667\n7sJvv/0GwzCQTCYxPDz8j7/LtNZWm82+nt1KfvhSBbfyFdoOFT/+j6mbwMjICLq6unD//fdbH422\nt7djz549BYdA9vT0YGBgAIFAAEePHkVNTQ36+/vx5ZdfZr1wvf7663jggQeU5EpzK59dX18frl27\nti6G6LqZb3BwEL29vZBSoqamBkeOHMm5SNBrbuUzDANnz57F8PAwhBBoaGjAoUOHVEZbdbbp6Wl0\ndnZifn4emqYhEAjg1KlTCAQCuHz5ctYQ3YMHDyrNBriXb3x8PO92GhoaVMYjD7AIISIiIiX4dQwR\nEREpwSKEiIiIlGARQkREREqwCCEiIiIlWIQQERGREixCiIiISAkWIURERKQEixAiIiJS4v8BNvub\nwpGPwZ4AAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<matplotlib.figure.Figure at 0x7fa05830e4e0>" | |
] | |
}, | |
"metadata": {}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"kidnapping_stats.plot(kind='line', title='Kidnapping and Abduction Statistics in India, France, and the Netherlands')" | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.5.0" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 0 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment