Tested with Apache Spark 2.1.0, Python 2.7.13 and Java 1.8.0_112
For older versions of Spark and ipython, please, see also previous version of text.
/** | |
* Retrieves all the rows in the active spreadsheet that contain data and logs the | |
* values for each row. | |
* For more information on using the Spreadsheet API, see | |
* https://developers.google.com/apps-script/service_spreadsheet | |
*/ | |
function readRows() { | |
var sheet = SpreadsheetApp.getActiveSheet(); | |
var rows = sheet.getDataRange(); | |
var numRows = rows.getNumRows(); |
#!/usr/bin/env bash | |
# Check we've got command line arguments | |
if [ -z "$*" ] ; then | |
echo "Need to specify ssh options" | |
exit 1 | |
fi | |
# Start trying and retrying | |
((count = 100)) |
var useOldDownloadWay = false; | |
var Nightmare = require('nightmare'); | |
new Nightmare() | |
.goto('http://eprint.iacr.org/2004/152') | |
.evaluate(function ev(old){ | |
var el = document.querySelector("[href*='.pdf']"); | |
var xhr = new XMLHttpRequest(); | |
xhr.open("GET", el.href, false); | |
if (old) { |
import mechanize | |
import cookielib | |
import urlparse | |
import re | |
import time | |
import random | |
import csv | |
import pandas as pd | |
import pickle | |
import random |
Tested with Apache Spark 2.1.0, Python 2.7.13 and Java 1.8.0_112
For older versions of Spark and ipython, please, see also previous version of text.
const flattenTco = ([first, ...rest], accumulator) => | |
(first === undefined) | |
? accumulator | |
: (Array.isArray(first)) | |
? flattenTco([...first, ...rest]) | |
: flattenTco(rest, accumulator.concat(first)) | |
const flatten = (n) => flattenTco(n, []); | |
console.log(flatten([[1,[2,[[3]]]],4,[5,[[[6]]]]])) |
"use strict"; | |
var fs= require('fs'); | |
var Promise = require('bluebird'); | |
var parse= Promise.promisify(require('csv-parse')); | |
var file = fs.readFileSync('test.csv', 'utf8'); | |
var headerKeys; | |
var options ={ | |
trim: true, |
var a = ["sdfdf", "http://oooooolol"], | |
handleNetErr = function(e) { return e }; | |
Promise.all(fetch('sdfdsf').catch(handleNetErr), fetch('http://invalidurl').catch(handleNetErr)) | |
.then(function(sdf, invalid) { | |
console.log(sdf, invalid) // [Response, TypeError] | |
}) | |
.catch(function(err) { | |
console.log(err); | |
}) |
// These window.navigator contain language information | |
// 1. languages -> Array of preferred languages (eg ["en-US", "zh-CN", "ja-JP"]) Firefox^32, Chrome^32 | |
// 2. language -> Preferred language as String (eg "en-US") Firefox^5, IE^11, Safari, | |
// Chrome sends Browser UI language | |
// 3. browserLanguage -> UI Language of IE | |
// 4. userLanguage -> Language of Windows Regional Options | |
// 5. systemLanguage -> UI Language of Windows | |
var browserLanguagePropertyKeys = ['languages', 'language', 'browserLanguage', 'userLanguage', 'systemLanguage']; |
/* | |
A script to generate a Google BigQuery-complient JSON-schema from a JSON object. | |
Make sure the JSON object is complete before generating, null values will be skipped. | |
References: | |
https://cloud.google.com/bigquery/docs/data | |
https://cloud.google.com/bigquery/docs/personsDataSchema.json | |
https://gist.github.com/igrigorik/83334277835625916cd6 | |
... and a couple of visits to StackOverflow |