Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save RenSys/14d44795a666ad3328f881ecac8bfccb to your computer and use it in GitHub Desktop.
Save RenSys/14d44795a666ad3328f881ecac8bfccb to your computer and use it in GitHub Desktop.
Matplotlib - Adjusting text parameters rcParams
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "import matplotlib.pyplot as plt\nimport matplotlib",
"execution_count": 14,
"outputs": []
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "import pandas as pd\nimport numpy as np",
"execution_count": 3,
"outputs": []
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "%matplotlib inline",
"execution_count": 45,
"outputs": []
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "import seaborn as sns\ndf = sns.load_dataset('tips')",
"execution_count": 46,
"outputs": []
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "matplotlib.rcParams['font.size'] =10",
"execution_count": 47,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "df.groupby('sex')['tip'].plot.hist()",
"execution_count": 48,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 48,
"data": {
"text/plain": "sex\nMale Axes(0.125,0.125;0.775x0.755)\nFemale Axes(0.125,0.125;0.775x0.755)\nName: tip, dtype: object"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": "<matplotlib.figure.Figure at 0x7fc955bf0470>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAD7CAYAAACMlyg3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAD91JREFUeJzt3X/MXmV9x/H3BzoHCjVFHgTnysMYDPzFjNWMICJTJ0nH\nH6BbgluXbUg3dU6WoNZqHDNI2gUWZzQzjSy4ODaJbKLWjIlb0DUVLZi4aNAplOE0UBVt/dGywnd/\n3KfjoZb2tDznPs/T6/1KSO9z7nPf17cn5P70Oue6rpOqQpLUpiPGLkCSNB5DQJIaZghIUsMMAUlq\nmCEgSQ0zBCSpYYaAJDXMEJCkhhkCktSwJWMXcCDHH398zc7Ojl2GJC0qd9xxx3erauZAxy34EJid\nnWXLli1jlyFJi0qSe/sc5+UgSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlq\n2IKfMbxYza7ZOEq7W9etHKVdSYvTYCGQ5PPAzm7z4ap6WZLjgHXA3cBpwNqqun+oGiRJ+zdkT+Bf\nqurKvfZdDdxaVTcmuRC4Blg1YA2SpP0Y8p7Ac5O8NcmVSfZco1gJbO5eb+q2JUkjGbInsL6qvpDk\nSOCzSXYAJwA7uve3A8uSLKmq3XM/mGQ1sBpg+fLlA5YoSW0brCdQVV/o/nwY+BxwPvAAcGx3yFLg\nwb0DoPvMhqpaUVUrZmYOuBy2JOkQDRICSc5IcumcXacB3wQ2Amd3+87ptiVJIxnqctB2YGWSZzD5\nF/99wA3Ap4D1SU4HTgWuGKh9SVIPg4RAVX0buHgfb30fuGyINiVJB88Zw5LUMENAkhpmCEhSwwwB\nSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaAJDXMEJCk\nhhkCktQwQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqY\nISBJDTMEJKlhhoAkNWzJ2AVofs2u2ThKu1vXrRylXUlPzKA9gSRHJ/lykmu67eOSbEiyJsl1SZ4+\nZPuSpP0b+nLQVcCX5mxfDdxaVeuAjwHXDNy+JGk/BguBJKuATcA9c3avBDZ3rzd125KkkQwSAkme\nBZxZVf+011snADu619uBZUl+5r5EktVJtiTZsm3btiFKlCQxXE/gImBnkjXAi4EXJbkceAA4tjtm\nKfBgVe3e+8NVtaGqVlTVipmZmYFKlCQNMjqoqt6953WSo4Bjquo9Sc4AzgbuA84BxhnKIkkCBh4i\nmuRVwEuAJyW5BFgLrE9yOnAqcMWQ7UuS9m/QEKiqm4Cb9tp92ZBtSpL6c8awJDXMEJCkhhkCktQw\nQ0CSGmYISFLDDAFJapghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqYISBJDTME\nJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYb1CIMlLhi5EkjR9fXsC1yZ5\na5KnDVqNJGmqlvQ87k+B/wHelORo4O+q6j+HK0uSNA19ewL3VdV/A7cBZwE3JHlfknOHK02SNLS+\nPYEPJ1kGbAXWV9VnAJK8B/jcQLVJkgbWNwR2ARdX1Tf37EjyJGBmkKokSVPR93LQ24FHAJKcnuTI\nqnqoqn5nuNIkSUPrGwJvA36xe30ScPUw5UiSpqlvCHy+qj4LUFW3AQ8OV5IkaVr63hOYTbKkqnYn\nWQIs39/BSY4APgHcDjwJOBX4Q+BoYB1wN3AasLaq7j/U4iVJT0zfELgFuCfJ94DjgDf0+MzmqroK\nIMnNwMXAucCtVXVjkguBa4BVB1+2JGk+9LocVFUfB54LvBZ4XlV94gDHPzInAJYAzwS+BqwENneH\nbeq2JUkjOZgF5AI8ACxNcmWvDySvBD4JfLKqtgAnADu6t7cDy7qQ2Ptzq5NsSbJl27ZtB1GiJOlg\n9F1A7jomk8KuBz5Ez0s4VXVLVV0AnJLk9UxC5Nju7aXAg1W1ex+f21BVK6pqxcyMUxEkaSh97wk8\ntaqes2cjyUv3d3CSZwGnVNXGbtc9wC8BG4GzgfuAc7ptSdJI+obAV5IcU1U/6raXHeD4XcClSZ4P\n/BxwJpNF6B4C1ic5ncmIoSsOoWZJ0jzpGwJ/ALw5yZ7hnEuBf368g7vlJS5+nLcv61+eJGlIfW8M\n31BVT66qU6rqFOAtQxYlSZqOvkNE1yQ5IsnxSVJV1w1dmCRpeH1HB/0Gk1m+fwtckuSPBq1KkjQV\nfS8HXQicAWyqqhuAZwxXkiRpWvqGwLeqaidQ3faugeqRJE1R39FBpydZA5yR5E+YLAMhSVrk+vYE\nLmcyLPR44EQcHSRJh4VePYGq2gGs3bOd5AzgrqGKkiRNR68QSPLOvXa9BHj5/JcjSZqmvpeDng/c\n2/1X2AuQpMNC3xvDq6vq/9d07m4OS5IWub4hcGaSM7vXS4FXAO8bpiRJ0rT0DYG/Br7E5MEyO4Cr\nBqtIkjQ1fUPgj6vq9kErkSRNXd8Q+K0k32bSE5jr9VW1Zp5rkiRNSd8QuAB4NZPRQbPAd5k8I3g5\nYAhI0iLVd4joR5g8LvI84BTgH6vqfOCNg1UmSRpc3xB4alUVQFU9QreKaFV9aqjCJEnD63s56OlJ\n3g/8F3A6k2GikqRFrm8IXAq8Fng28BXgg4NVNI9m12wcuwRJWtD6LiD3UJIbmawgurWqfJ6AJB0G\n+j5e8neBzwHvBF6W5O2DViVJmoq+N4bPqqozgTuq6mZ+dr6AJGkR6hsCP+z+3PN4ySMHqEWSNGUH\nMzroA8BJSa7h0TCQJC1iB/N4yTuB+4CvAW8drCJJ0tT07QlsYrJO0IYhi5EkTVffnsDXq+rOPRtJ\nnjZQPZKkKeobAt9IckGSk5Msx8tBknRY6Hs56HXA+XO2lwNvmf9yJEnTtN8QSPJXwK3A26rq+jn7\nXz5wXZKkKTjQ5aBdwGeAs5L8VZJfBqiqWwevTJI0uANdDtpZVbuSXAFcW1Xf6POlSU5l8hziO4Fn\nAt+rqnclOQ5YB9wNnAasrar7D718SdITcaAQ2PMMgYeTPLJnZ5JXVdVN+/nccUwePHNzd/xXk2wE\nLgNuraobk1wIXAOsekJ/A0nSITtQCLwyyTHd63OT/GX3+teAxw2BqvriXruOAH4MrATe3e3bBHzo\n4MqVJM2nA4XAQ0x+vAE+OWf///ZtIMlFwC1VdVeSE4Ad3VvbgWVJllTV7r7fJ0maPwcKgbfs41/1\nJHlBny9Pcj6ToaWXd7seAI4FfsDk6WQP7isAkqwGVgMsX768T1OSpEOw39FB+wqAbv8dB/riJCuB\nVwJvAk5McjawETi7O+Scbntf37+hqlZU1YqZmZkDNSVJOkR9J4sdlK6n8BFgC/DvwFOA9wNrgfVJ\nTgdOBa4Yon1JUj+DhEDXUzjmcd6+bIg2JUkHb5AQUHtm1+zzyt5UbF23crS2pcWu7wJykqTDkCEg\nSQ0zBCSpYd4T6GnrUa+Zl++Z3XnDvHyPJM0HewKS1DBDQJIaZghIUsMMAUlqmCEgSQ0zBCSpYYaA\nJDXMeQKL2HzNXQDnL0itsicgSQ0zBCSpYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDnCcwZfM5tl+S\nnih7ApLUMENAkhpmCEhSwwwBSWqYISBJDTMEJKlhhoAkNcwQkKSGGQKS1DBDQJIaZghIUsMO67WD\nXKenv/k6V2M8q3h2zcaptwmwdd3KUdqV5tMgPYEkJyb5YJIvztl3XJINSdYkuS7J04doW5LU31CX\ng14M3Axkzr6rgVurah3wMeCagdqWJPU0SAhU1UeBHXvtXgls7l5v6rYlSSOa5o3hE3g0GLYDy5Ls\n855EktVJtiTZsm3btqkVKEmtmWYIPAAc271eCjxYVbv3dWBVbaiqFVW1YmZmZmoFSlJrphkCG4Gz\nu9fndNuSpBENNTroPGAVcFKSdyQ5GlgLvCLJO4CLgSuGaFuS1N8g8wSq6jbgtr12/xS4bIj2JEmH\nxhnDktQwQ0CSGmYISFLDDuu1gzR987le0xjrEEmtsScgSQ0zBCSpYYaAJDXMewI67HmfQnp89gQk\nqWGGgCQ1zBCQpIYZApLUMENAkhpmCEhSwwwBSWqY8wSkQzS7ZryH421dt3K0tnV4sScgSQ0zBCSp\nYYaAJDXMEJCkhhkCktQwQ0CSGmYISFLDDAFJapiTxaRFaKyJak5SO/zYE5CkhhkCktQwQ0CSGmYI\nSFLDDAFJapghIEkNMwQkqWHOE9CCtfWo14xdwqDm6+83u/OGefmeXm2N+CCdFk1jXsbUQyDJy4GL\ngQeAqqq/mHYNkqSJqYZAkicDHwCeXVW7ktyU5GVV9Zlp1iFJmpj2PYGzgXurale3vQlwHrokjWTa\nl4NOAHbM2d7e7XuMJKuB1d3mj5J8bQq1Del44LtjF7GALOLz8Zvz9k2Z/DEP52L+aloAFvH/G/Mv\n65/Q+Ti5z0HTDoEHgGPnbC/t9j1GVW0ANkyrqKEl2VJVK8auY6HwfDzKc/FYno/Hmsb5mPbloM3A\nyUl+vts+B3C4gSSNZKo9gar6SZLXAe9Nsg34sjeFJWk8Ux8iWlWfBj497XZHdthc2ponno9HeS4e\ny/PxWIOfj1TV0G1IkhYol42QpIa5bMRAkpwKXAXcCTwT+F5VvWvcqsaX5GjgduBfq+qKsesZU5Jf\nAS4BfgqcB1xZVV8Yt6pxJHkzMMtkOORpwKVV9dNRi5qiJCcy+b04q6pe2O07DlgH3M3knKytqvvn\nvW0vBw0jyQuBZ1TVzd32V4FVVXXHuJWNK8m1TMaCb2s5BJIcCXwcuLCqHklyErC7qraNXNrUdT+A\nXwWO787FzcCNVfX3I5c2NUleDewC/nzPkNAkHwD+rapuTHIh8NtVtWq+2/Zy0ECq6ot7AqBzBPDj\nsepZCJKsYjJL/J6xa1kAXshkvtgbk7wNuJB2J0n9BHiIybwhgGOAr4xXzvRV1Ud57ERamKymsLl7\nPdjqCl4OmoIkFwG3VNVdY9cyliTPAs6sqrVJnjd2PQvAyUyWUbmkqn6Y5MNMfgivH7WqEVTV9u5y\n0EeSfAf4FvCNkctaCOausLAdWJZkSVXtns9G7AkMLMn5wPnAn41dy8guAnYmWQO8GHhRkstHrmlM\n24G7quqH3fZ/AC8dr5zxJPlV4M3Ayqr6fSY9oneOWtTCMHeFhaXAg/MdAGBPYFBJVgLnAm8CTkpy\nclVtPsDHDktV9e49r5McBRxTVe8ZsaSx3Q48LcmRVfUwk57B10euaSy/AHx/zg/cd4DlI9azUGxk\n0lu8jwFXV/DG8ECSvAC4DdjS7XoK8P6qun60ohaAJK8C3gA8icn5+IeRSxpNd5nw14FtTH703tjS\niJg9upvk7wV2Aj8AngNcXlXfGbWwKUpyHvB7wAXA3wDXAkcD64F7gVOBNY4OkiTNK+8JSFLDDAFJ\napghIEkNMwQkqWGGgCQ1zBCQpIYZApLUMENAkhr2f0TxycSDNwuwAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "matplotlib.rc('font', size=20)\nmatplotlib.rc('font', family='sans-serif')",
"execution_count": 49,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "df.groupby('sex')['tip'].plot.hist()",
"execution_count": 50,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 50,
"data": {
"text/plain": "sex\nMale Axes(0.125,0.125;0.775x0.755)\nFemale Axes(0.125,0.125;0.775x0.755)\nName: tip, dtype: object"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": "<matplotlib.figure.Figure at 0x7fc9559c8128>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEFCAYAAADew/HIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFs9JREFUeJzt3XmYZXV95/H3R5BNEBRa0QFscNTgGMeFwYiELZEobYAE\nmJAAMj4Cjk8M4s4oCDrO0GQSXHCJgASJIZhgIBgQcALaLDoEl3EcBGSaFgl2BJFN6FbgO3+cU1KU\nVd1d595Tt2/V+/U89Zyu8/vdc751uut++iy/301VIUnSsD1p1AVIkuYnA0aS1AsDRpLUCwNGktQL\nA0aS1AsDRpLUCwNGktQLA0aS1AsDRpLUiw1HXcAobbPNNrV48eJRlyFJY+Ub3/jG3VW1aG39FnTA\nLF68mBtuuGHUZUjSWEnyg3Xp5yUySVIvDBhJUi8MGElSLwwYSVIvDBhJUi8MGElSLwwYSVIvDBhJ\nUi8MGElSLxb0SP5xtPj4S0a27xVLl4xs35LGj2cwkqReGDCSpF4YMJKkXhgwkqReGDCSpF4YMJKk\nXhgwkqReGDCSpF4YMJKkXhgwkqReGDCSpF4YMJKkXhgwkqReGDCSpF4YMJKkXhgwkqReGDCSpF4Y\nMJKkXhgwkqReGDCSpF4YMJKkXhgwkqReGDCSpF4YMJKkXhgwkqReGDCSpF4YMJKkXhgwkqReGDCS\npF4YMJKkXhgwkqReGDCSpF4YMJKkXhgwkqReGDCSpF4YMJKkXhgwkqRerJcBk+TwJNV+HTVDn92S\nXJrkniQPJ/lOkuOSbDDX9UqSftV6FzBJtgc+Djy4hj4HAMuAPYAL2/4bAR8Gzp+DMiVJa7HhqAuY\nLEmAvwR+Avw98M5p+jwVOBN4FNirqm5o158IXAkcnOTQqjJohmzx8ZeMZL8rli4ZyX4lDWZ9O4M5\nFtgHeAPwsxn6HAwsAs6fCBeAqloFnNB+++Y+i5Qkrd16EzBJdgaWAh+tqmVr6LpPu7xsmrZlwEPA\nbkk2HnKJkqRZWC8CJsmGwF8BtwPvXUv3F7TLW6Y2VNUjwG00l/52GmaNkqTZWV/uwbwfeCmwe1U9\nvJa+W7bL+2Zon1i/1XSNSY4BjgHYYYcdZlmmJGldjfwMJskraM5a/ryqvtb3/qrqjKrapap2WbRo\nUd+7k6QFa6QB014aO5fmcteJ6/iyiTOULWdon1h/7wClSZIGNOozmM2B5wM7A6smDa4s4KS2z5nt\nuo+039/cLp8/dWNtYO0IPAIs77d0SdKazPoeTJIN25vpw7Aa+MwMbS+juS9zDU2oTFw+uxI4DHgN\n8DdTXrMHsBmwrKpWD6lGSVIHXW7y/zDJ2cBZVXXbIDtvb+jPNBXMyTQB89mqOmtS0wXAqcChSU6f\nNNByE+BDbZ9PDVKXJGlwXS6RbQz8F+D7Sb6U5IAkc3apraruB44GNgC+kuSsJH8KfBt4JU0AfX6u\n6pEkTa9LMDwL+E/A14HfoZnS5fYkH2jnEetdVV0E7EkzsPIg4E+AXwBvBw6tqpqLOiRJM5t1wFTV\n6qo6t6p2B15EM9HkpjRPgS1PcnGSJe28Yp1V1clVlSmXxya3X1tV+1XV06pq06r69ar6cFU9Osh+\nJUnDMdClraq6sareCjybx89qXgdcDKxIckKSZw5cpSRp7Azl3kn7xNaFNE91/QsQYHvggzRB82dJ\nNhrGviRJ42HggEmyS5IzgTuB04GnAp8EdqGZkmU58DbgtEH3JUkaH53mIkvyFJqxKG8CXkJzxvId\nmseDP1dVE1PtfzPJXwJXAH8AvGXgiiVJY6HLQMtPA4fSjML/Bc1lsU9W1XXT9a+qR5NcCew1QJ2S\npDHT5QzmaGAF8N+Bz1TV3evwmq+2/SVJC0SXgHkd8KXZjDWpqmtopnyRJC0Qsw6Yqrq0j0IkSfPL\nrJ8iS7J3kjOSPGuG9me37XsMXp4kaVx1uUR2LPDCqvrRdI1VdWcbLk+jmcpFkrQAdRkH83Lg2rX0\nuQbYtcO2JUnzRJeAeQbNoMo1Wdn2kyQtUF0C5j5gu7X02Q742Vr6SJLmsS4B88/AgTNNYplkW+DA\ntp8kaYHqEjAfp5lvbFmS/ZJsCM1HKSdZQjOocguaeckkSQtUl3EwlyU5heZTLb8IPJbkbmAbmsAK\ncIrjZSRpYes0m3JVvY9mRP8VwAM0N/QfAC4HlrTtkqQFrNNsyvDLEf2epUiSpjWUDxyTJGmqzmcw\nAEk2BrYCNpiuvarWNl5GkjRPdf3AsT8E3gO8iOam/nSq6/YlSeOvyweOHQF8FngM+DrwQ+CRIdcl\nSRpzXc4w3k0zmv83q+q7Q65HkjRPdLnJ/zzgbw0XSdKadAmYnwIPD7sQSdL80iVgLgH2SjLTzX1J\nkjoFzPHAU4BPJNlsyPVIkuaJLjf5z6O5yf8m4LAkNwP3TtOvqup3BilOkjS+ugTMb0/68xbALjP0\nqw7bliTNE10C5slDr0KSNO90ma7/0T4KkSTNL052KUnqRaeASePNSa5J8pMkqya1vSTJx5I8b3hl\nSpLGzawDJsmTaT5Y7OPAC4HVPPG+zA+AY4DDhlGgJGk8dTmDeSfNk2QfAhYBZ0xurKqfAlcDPqIs\nSQtYl4A5HPhaVZ3U3vCf7nHk5cBzBqpMkjTWugTMTsB1a+lzD7B1h21LkuaJLgGzCthyLX12YPrR\n/ZKkBaJLwHwbeHWSjaZrTPJUYF/g+kEKkySNty4BcxbN/ZXPJtl8ckMbLmcDTwc+PXh5kqRx1WUk\n/18n2Rc4AjiQ5vNhSPJ14NeBTYFPV9U/DrNQSdJ46TTQsqqOpBnrciuwLRBgV+B24E1V9eahVShJ\nGktdJrsEoKrOAs5qL5M9Hbivqu4bWmWSpLHWOWAmVNWDwINDqEWSNI842aUkqRezPoNJcss6dq2q\nesFsty9Jmh+6XCLbjOmnh9kSmHhs+V+BR7oWJUkaf10eU95uprYkvwZ8lGZ25dcOUJckacwN9R5M\nVd0E/B6wGDhxmNuWJI2Xod/kr6qHaD4v5vBhb1uSND76eorsFzQDMCVJC9TQAybJ02kuk90x7G1L\nksZHl8eU37uGbW1PEy5PA04YoC5J0pjr8pjyh9bS/iCwtKpO6bBtSdI80SVgXj3D+sdoZla+sap+\n3r0kSdJ80GUczD/1UYgkaX4ZeLLLhWrx8ZeMugRJWq91ucn/7K47q6o7u75WkjReupzB3MH0c5Gt\nTXXcnyRpDHV5wz8P2AHYHXgA+A6wkmZg5YuBLYCraT7dUpK0QHUJmA8AXwNOB06qqnsnGpJsBfxX\n4A+BN1bVrUOpUpI0drqM5D8V+F5VvXVyuABU1b1V9SfATW0/SdIC1SVg9gSWraXPsrafJGmB6hIw\nGwPPXEufbYFNOmxbkjRPdAmY/w0cmuTF0zUmeQnwB8C3BilMkjTeutzk/yBwCXB9knNpLof9K81Z\nzZ7AEe12PzisIiVJ42fWZzBVdTlwGPAwcBTwWeCydvnGdv1hVfXlddlekq2THJXkwiS3Jnk4yX1J\nrknyxiTT1phktySXJrmnfc13khyXZIPZ/kySpOHrNPCxqj6f5FKaqflfBmwJ3Ad8E7iwqh6YxeYO\nAT4F/Ai4imb8zDOB3wfOAl6b5JCq+uXgziQHAF8AVgGfB+4Bfhf4MPCqdpuSpBHqPLK+DZFz269B\n3ALsD1xSVY9NrGw/d+Z64CCasPlCu/6pwJnAo8BeVXVDu/5E4Erg4CSHVtX5A9YlSRrAwJ9omWSL\nJM/q+vqqurKqvjg5XNr1K4G/aL/da1LTwcAi4PyJcGn7r+LxDzl7c9d6JEnD0SlgkmyW5NQkdwD3\nAj+c1LZrkovbp8kG9Yt2+cikdfu0y8um6b8MeAjYLcnGQ9i/JKmjWQdMki2A64B30dz7uBnIpC7/\nlyYE/miQwpJsCLy+/XZymLygXd4y9TVV9QhwG82lv50G2b8kaTBdzmBOoJnU8qiqejHwt5Mbq+pn\nwFeB3xqwtqXAi4BL2yfXJmzZLu+b4XUT67cacP+SpAF0CZiDgCuq6uz2++mm7l8BbNe1qCTHAu+g\nmdPsiK7bmWHbxyS5IckNd9111zA3LUmapEvAbEczmn9NHuTxM41ZSfIW4KPAjcDeVXXPlC4TZygz\nbX9i/b3TNVbVGVW1S1XtsmjRoi4lSpLWQZeAeZDmKa412RG4e7YbTnIczccAfJcmXFZO0+3mdvn8\naV6/YbvvR4Dls92/JGl4ugTMPwOvS7L5dI1JtgVeS/MgwDpL8h6agZLfpgmXH8/Q9cp2+Zpp2vYA\nNgOuq6rVs9m/JGm4ugy0/BjNXGT/mOToyQ1Jnkcz+n7Ttt86aQdJfhD4BrDvNJfFJruA5rNmDk1y\n+qSBlpsAH2r7fGpd96313+LjLxnZvlcsXTKyfUvjbtYBU1VfSvIhmqfJbgJWAyRZSXPpLMD7quqa\nddlekiNpwuVRmo9aPjbJ1G4rquqcdv/3t8F2AfCVJOfTPC69P80jzBfQTB8jSRqhrnORvT/J1cCx\nwG/QfEbMxsAVwGnrOtFla8d2uQFw3Ax9vgqcM2n/FyXZE3gfzVNtmwC3Am8HPjZ53jJJ0mgMMhfZ\nl4HZBMlM2zkZOLnD664F9ht0/5Kkfsw6YJJcQXMT/eThl7MwrdhkoEkPfmnxqvOGsh1JGoYuT5Ht\nDmw07EIkSfNLl4C5Fdh+2IVIkuaXLgHzGWC/JJ2ngpEkzX9dbvJ/gWYiy2uTnEIz8HIl08xJVlV3\nDlaeJGlcdQmY22nCJMAn1tCvOm5fkjQPdAmA85h+BmVJkn6py0j+w/soRJI0v3gJS9NybI6kQa3T\nU2RJXp/kxX0XI0maP9b1MeVzgAMnr0hyZJIrp+8uSVrouoyDmbAY2HNIdUiS5plBAkaSpBkZMJKk\nXhgwkqRezCZgHFwpSVpnsxkHc3KSk6euTPLoDP2rqhxnM4eGNXZFkoZhNgGQWW57tv0lSfPIOgVM\nVXmvRpI0KwaHJKkXBowkqRcGjCSpFwaMJKkXBowkqRcGjCSpFwaMJKkXBowkqRcGjCSpF84V1pHz\nfq2bYR6nxavOG9q21nmfx18y5/sEWLF0yUj2Kw2TZzCSpF4YMJKkXhgwkqReGDCSpF4YMJKkXhgw\nkqReGDCSpF4YMJKkXhgwkqReGDCSpF4YMJKkXjgXmcbGuM9rJi00nsFIknphwEiSemHASJJ64T0Y\naQDeF5Jm5hmMJKkXBowkqRcGjCSpFwaMJKkXBowkqRcGjCSpFwaMJKkXjoOR1kOLj79kZPtesXTJ\nyPat+cUzGElSLwwYSVIvDBhJUi8MGElSLwwYSVIvDBhJUi8MGElSLwwYSVIvHGgp6QlGNcjTAZ7z\nj2cwkqReGDCSpF4YMJKkXhgwkqReGDCSpF6MbcAk2S7J2UnuTLI6yYokH0nytFHXJkka08eUkzwX\nuA54BvAPwE3ArsBbgdckeVVV/WSEJUrSgjeWAQN8kiZcjq2q0ydWJjkNeBvw34D/PKLaNAZWbPJH\noy6hN8P82RavOm9o21rrvkb4IWsLzVyNORq7S2Tt2cu+wArgE1OaTwJ+BhyR5ClzXJokaZKxCxhg\n73Z5RVU9Nrmhqh4ArgU2A35jrguTJD1uHAPmBe3ylhnav98unz8HtUiSZjCO92C2bJf3zdA+sX6r\n6RqTHAMc0377YJKbh1jbKGwD3D3qItYTY34sXjeUreTxPw7heAynpvXEmP/7GJ6cOvCxeM66dBrH\ngBlIVZ0BnDHqOoYlyQ1Vtcuo61gfeCyeyOPxRB6Px83VsRjHS2QTZyhbztA+sf7eOahFkjSDcQyY\niUtaM91jeV67nOkejSRpDoxjwFzVLvdN8oT6k2wBvAp4CPj6XBc2IvPmct8QeCyeyOPxRB6Px83J\nsUhVzcV+hirJ5TRjYWYaaPnpqnKgpSSN0LgGzNSpYr4HvIJmjMwtwG5OFSNJozWWAQOQZHvgg8Br\ngK2BHwEXAh+oqp+OsjZJ0njegwGgqn5YVW+oqmdV1UZV9ZyqOm4+h0uSrZMcleTCJLcmeTjJfUmu\nSfLGqfekFqIkhyep9uuoUdczCkl+q/03srKdafzOJJcn2W/Utc21JEuSXJHkjvb3ZXmSv0vyylHX\n1ockByc5PcnVSe5vfw8+t5bX7Jbk0iT3tMfoO0mOS7LBoPUsuHEwY+4Q4FM0Z2tXAbcDzwR+HzgL\neG2SQ2pcT0sH1J7Vfhx4ENh8xOWMRJI/Bd4F3AFcTDOYbhHwcmAv4NKRFTfHkpwKvBv4CXARzbH4\nt8ABwEFJXl9Va3zzHUMnAP+e5nfgDuDX1tQ5yQHAF4BVwOeBe4DfBT5M88DUIQNVU1V+jckXsE/7\nl/+kKeu3pQmbAg4adZ0jOjYB/ifw/4D/0R6Lo0Zd1xwfg6Pbn/scYKNp2p886hrn8FhsCzwKrASe\nMaVt7/Y4LR91nT383HvTDNUIzX8oCvjcDH2fCvwYWA3sMmn9JjT3uAs4dJB6FvwllXFSVVdW1Rfr\nVyf5XAn8RfvtXnNe2PrhWJoAfgPNjNoLSpKNaT6m4nbgmKr6+dQ+VfWLOS9sdJ5Dcwvgf1XVjyc3\nVNVVwAM0Z3bzSlVdVVXfrzYp1uJgmmNwflXdMGkbq2jOhADePEg9Bsz8MfHm8chIqxiBJDsDS4GP\nVtWyUdczIq+mebP4e+Cx9t7De5K8db7eb1iL7wM/B3ZNss3khiR7AFvQnPEuZPu0y8umaVtGM55w\nt/Y/L514D2YeSLIh8Pr22+n+scxb7c/+VzT/c3/viMsZpf/QLlcB3wJeNLkxyTLg4Kq6a64LG4Wq\nuifJe4DTgBuTXERzL+a5wP7Al4E3jbDE9cGMM9NX1SNJbgP+HbATzVCQWTNg5oelNG8ol1bV5aMu\nZo69H3gpsHtVPTzqYkboGe3yXcCNwG8C3wZ2BP6MZmDy37GALqFW1UeSrADOprk/NeFW4Jypl84W\noIFmpl8XXiIbc0mOBd4B3AQcMeJy5lSSV9Cctfx5VX1t1PWM2MTv8iPA/lV1TVU9WFX/B/g9mieK\n9lxIl8uSvBu4gOahh+cCT6F5mm458NftE3fqkQEzxpK8Bfgozf9Y966qe0Zc0pxpL42dS3N6f+KI\ny1kfTMwe/q2qWjG5oaoeAibObHedy6JGJclewKnAxVX19qpaXlUPVdU3aQL3X4B3JNlplHWOWO8z\n0xswYyrJccDpwHdpwmXliEuaa5vTzKi9M7Bq0uDKAk5q+5zZrvvIyKqcOxOzjM/0ZjAxAHnTOahl\nfTDxSWlXTW1oA/d6mve/l85lUeuZGWemb/8DtyPNGfHyrjvwHswYam9eLqW5xv7qqlqIn9K3GvjM\nDG0vo3njuIbml2ghXD77J5pxCy9M8qSpj7Lz+E3/2+a2rJGZePJppkeRJ9b/yuPcC8iVwGE00239\nzZS2PYDNgGVVtbrzHkY9MMivWQ+kOpHmjeQG4Omjrmd9/AJOZmEOtPyH9ud+25T1+wKP0ZzFbDnq\nOufoWPzH9lisBP7NlLbXtsfjYWDrUdfa4zHYi7UPtLyLHgdaegYzRpIcSTPB56PA1cCxSaZ2W1FV\n58xxaVo//DHNmdtpSZbQPK68I3Agzb+Zo6pqpieG5psLaMa5/DbwvSQX0oTNzjSXzwIcX/Ns1vUk\nB9L8fUMzmwHAK5Oc0/757qp6J0BV3Z/kaJpj9ZUk59NMFbM/zSPMF9BMH9OZATNedmyXGwDHzdDn\nqzRPzWiBqao7kryc5tHt/Wkuc9wPfBE4paquH2V9c6mqHmsn9/xj4FCaG/ub0byBXgp8rKquGGGJ\nfXkJcOSUdTu1XwA/AN450VBVFyXZE3gfcBDN2cutwNtpjtFA8xqO7XT9kqT1m0+RSZJ6YcBIknph\nwEiSemHASJJ6YcBIknphwEiSemHASJJ6YcBIknphwEiSemHASJJ68f8BYuBeFYAv0kAAAAAASUVO\nRK5CYII=\n"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "matplotlib.rcParams.update({'font.size': 20, 'font.family': 'serif'})\ndf.groupby('sex')['tip'].plot.hist()",
"execution_count": 53,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 53,
"data": {
"text/plain": "sex\nMale Axes(0.125,0.125;0.775x0.755)\nFemale Axes(0.125,0.125;0.775x0.755)\nName: tip, dtype: object"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": "<matplotlib.figure.Figure at 0x7fc955d4c358>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEFCAYAAADew/HIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF49JREFUeJzt3XuUJnV95/H3hyiKUQjCIKyyDipEF5WsOxgkJgrCGheI\n8UoCKzdXNvEGZ10jxwteQENwXfd4FAwqIkkUMasGHWNCAAUjYoZlFV2vmIFELg7KRbmIMt/9o6ql\np+2e7nr6qa5+ut+vc/r85qnfr6q+XWe6v131u1SqCkmSxm2boQOQJK1MJhhJUi9MMJKkXphgJEm9\nMMFIknphgpEk9cIEI0nqhQlGktQLE4wkqRf3GzqAIe288861du3aocOQpIly5ZVX3lxVa+Zrt6oT\nzNq1a9mwYcPQYUjSREly7ULa+YhMktQLE4wkqRcmGElSL0wwkqRemGAkSb0wwUiSemGCkST1wgQj\nSeqFCUaS1ItVPZN/Eq09af1g59542iGDnVvS5PEORpLUCxOMJKkXJhhJUi9MMJKkXphgJEm9MMFI\nknphgpEk9cIEI0nqhQlGktQLE4wkqRcmGElSL0wwkqRemGAkSb0wwUiSemGCkST1wgQjSeqFCUaS\n1AsTjCSpFyYYSVIvTDCSpF6YYCRJvTDBSJJ6YYKRJPXCBCNJ6oUJRpLUCxOMJKkXJhhJUi9MMJKk\nXphgJEm9MMFIknphgpEk9cIEI0nqhQlGktQLE4wkqRcmGElSL0wwkqReLMsEk+SwJJWkttJmryQf\nS3JzkjuSXJHk8KWMU5I0t2WXYJJsD5wxT5t9gA3AGmA/YDdgPXBektf2HqQkaV7LLsEApwH/Oldl\nkm2Ac2lif2FVfbeqbq+qtwCfBk5J8vilCVWSNJf7DR3AdEl+CzgOWAdcPUezA4EnAh+tqh/MqDsb\nOBQ4AXhJX3GuVmtPWj/IeTeedsgg55W0OMvmDibJtsD7gLdX1de20nTqt83ls9RdPqONJGkgyybB\nAK+niefUedo9oS03zqyoqhuBu4Hdkuw01ugkSZ0si0dkSfYG/gQ4uKp+Ok/zXdvyljnqbwMeCDwM\n+OF4IpQkdTX4HUzbaf8+4JyqumwBu2zXlj+bo/6etnzQHOc7PsmGJBs2bdrULVhJ0oINnmCAlwGP\nBF6zwPZ3teX956jfti3vnK2yqs6qqnVVtW7NmjULj1KS1MmgCSbJ7sDbgJdX1W0L3O3Gttxxjvod\n2vKmxcQmSVqcTgkmycljPv8zgAcDH5+auT9zBv+0bZ9rN00NX95jlvh2pel/uaGq7H+RpAF1vYN5\nY5JHjevkVXVOVWW2r2ltprY9vd30mbbcb5ZDPmVGG0nSQLommABfSfIPSV6QZIhRaBfR3MUcmmSX\nGXXHAZuBdy15VJKkLYzSB/MI4ALgDcD3k5ye5DHjDWtuVbUZOBoo4Pwkj06yfZI30Mzif1NVfXWp\n4pEkza5rgjm2qm6rqndV1ROB59AsOPl/k1yc5PAkc43umleSY7bSB/P0qW1VdRWwL3Az8GWajv/f\nA46oqlNGPb8kaXw6JZiq+tCMz1+sqmOBh9OsZnw2zV3N25Ps1TWYrfXJVNXnZrT9ZlU9v6p2qqoH\nVdW+VfWRrueUJPVj0cOU28djr6OZx7IdsDPwH4ENSS5J8ruLPYckafJ0HaZ8b1veL8kLk1wEfAv4\n7zQTHN8LPKmq9qF5R8uHgTN9R4skrT5dR4ElyZ/RdLKvoRlV9mXgLOC8qvrF7PmqugN4X5LP0rwc\n7G3jCVmSNAlGGWb8apoFJc8EzlrAiK3taSZTSpJWkVESzLHA+VV113wN2xeIXQJ8Y4TzSJImWNcE\n8/mZI8nmcTnNmmE/73geSdKE6zpM+YC56pLs3C69P7395qq6YwHveJEkrTBdR5Htn+RH7df/mlF9\nJM0cmBeMLzxJ0qTq+ojs6HafNwPnz6g7H9gJODfJrVV14RjikyRNqK4JZj/gJVX10ZkVVXUDcHKS\n64DXAiYYSVrFus7k3x3423nafAx4wmjhSJJWiq4J5v4L2CfAA0YLR5K0UnRNMFcDfzRPmz8GXC5f\nkla5rn0wZwIfSvLvgPNo1iG7A/hV4LHAHwBHAEeNM0hJ0uTplGCq6i+S/CbwUpphyTMFeHdV/dU4\ngpMkTa7Oy/VX1cuBZwN/B/wQuLct/xY4rKpeOdYIJUkTaZS1yKiqTwGfGnMskqQVZNEvHJtNkpP7\nOK4kaXL0kmCAN/Z0XEnShOj8iCzJc4H/DOwJPIimY1+SpC10SjBJTgDe2X78EfAToMYdlCRp8nW9\ngzkR+ChwQlX9YK5GSTYvKipJ0sTr2gezG3Di1pJL680jxiNJWiG6JphrWECfS1WZYCRpleuaYE4D\nXjNfoyT3jhaOJGml6NoHE2DvJFcBFwDXA3eNPSpJ0sTrmmDOmfbvfdpy5iiyzLJNkrTKjLJUzLHz\n1Af4wAjHlSStIJ0TTFV9aL42Sc4eLRxJ0koxyjDleVVVX0vQSJImRKdEUFU3zdyWZPvxhSNJWilG\nutNI8uIklyW5g2bJGJI8Lcn7kzx8rBFKkiZS17XItqUZnnww9024nBoxdj2wDvhCkv2r6oaxRSlJ\nmjhd72BeBfw2cCqwN7DDVEVVfQd4EnAlC5iMKUla2bommCOB46rqjVX1jar68fTKqtoMnAw8a1wB\nSpImU9cE8yjgk/O0+WfgEaOFI0laKbommLuAXeZpsydw52jhSJJWiq4J5ovAGXMNTU6yDfA24LLF\nBiZJmmxdZ/K/DbgUuC7Jx4CvACQ5FtiDpo/mEcD+4wxSkjR5OiWYqro8yYuA9wMvphminPZzaF6h\nfERVXTnuQCVJk2WUtcjOS3IJcDSwL81Q5VuBK4Bzq2rTeEOUJE2iUVZTnloy5vQxxyJJWkF6WZQy\nyX/r47iSpMnR16rHb+/puJKkCdF1LbKL+wpEkrSydO2DefoC2/nKZEla5UYZRfZLj9WSbAc8HHgu\nzYrKRy8+NEnSJOvaB/Oe2TZW1V1V9d2qOh34CPbBSNKq1/WNlq9YQLMLgReMFo4kaaXoYxTZ44CH\n9HBcSdIE6TqK7He2Uv2rwK8DJwAbFhOUJGnyde3k/xxbHyEWYBNw4qgBSZJWhlGWinnLLNuK5l0x\n3wH+vqp8H4wkrXKjDFN+cx+BSJJWlq6d/Hv0EoUkacXpmmA+OMpJXGJGklafro/InjbieUbdb9la\ne9L6oUOQpGWta4JJknt7iUSStKJ0TTCX0vTD7E4zHPlfgB/TTKzcHVgD/L+2bkqA3150pJKkidI1\nwbwaeD/w4qr6h5mVSQ4G3tjWf2/a9s2LilKSNHG6JphTgT+qqstnq6yqC5PcCbwDeM60Koc2S9Iq\n03UU2ZOZfxmYLwNbLCnj3BlJWn26Jpj7A4+dp83jgAeMFo4kaaXommD+CTgnyaNnq0zyGOAc4EuL\njEuSNOG69sG8DrgY+GaSq4BvAXfQrKT8WODfA/ew8FcrS5JWqK4vHPsi8CzgWppXIx8JHN+W/wG4\nBnhmVX15ocdM47Ak5yW5Lsk9SW5NcmmSF21lv72SfCzJzUnuSHJFksO7fD+SpP50fuFYVV0C7EnT\nkX8C8AbglcBTq+rXq+qyjod8HXABsBPwbODXgKcAtwDnJjl75g5J9qEZbLAG2A/YDVgPnJfktV2/\nJ0nS+I2yXD9VVcAX2q/FeiBwE/CcqvpJu+0bSV4AfAM4NslfVtXFAEm2Ac6lSY4vrKoftPu8Jcm+\nwClJLqiqr40hNknSiEZ+ZXKSRyc5PMkr2887JnnQCIf6PvChackFgKq6B7iw/XjQtKoDgScCn56W\nXKacTfM9nTBCHJKkMeqcYJLsneQy4NvAh4F3tlVPBr6/tX6T2VTVmVX1mjmqfzx12mnbDmnL2SZ7\nXj6jjSRpIJ0STDsM+TJgf5o+kE9Oq76MZqb/nyc5YEzx7dWWl07b9oS23DizcVXdCNwN7JZkpzHF\nIEkaQdc+mDfR3LkcWVXXAEytrty+JvkdSX5Ks2bZJYsJLMlDgWcCVwGfnVa1a1veMseut9H06zwM\n+OFiYpAkja7rI7IDgeOmkssczgP2GT2kXzgdKOCodlDBlO3a8mdz7HdPW47SHyRJGpOuCeahwHfm\nafPztt3IkhwJHENzpzRzNNhdbXn/OXbfti3vnOPYxyfZkGTDpk2bZmsiSRqDrgnmeuZ/O+UBNO+J\nGUm75P/7geOr6uOzNLmxLXec4xA7tOVNs1VW1VlVta6q1q1Zs2bUMCVJ8+iaYD4J/FWSo5P8Uv9N\nkgOBdwP/e5RgkhwEfAJ4WVX90gTL1tVtuccs++9K0/9yQ1XZ/yJJA+qaYE4BbqeZb3J7kg0A7bIu\n19HMW7kd+NOugSR5Bk0CO2F6cmmHRU9fAuYzbbnfLId5yow2kqSBdBpFVlW3JHkqcAbw+8CT2qqn\nApuBvwZeXlW3dzlue+fzN8CJVfWBGdX70vTHfLT9fBHNXcyhSXaZMdnyuDaOd3U5v5a3tSetH+zc\nG09zSpU0qs5LxVTVTcDzkjyMZsHLHYBbgX+qqs695u2cmU/TDC8+qH1MNt0e3NexT1VtTnI0zdyY\n85O8GNhEM3v/UODkqvpq1zgkSePVKcFMW3jyiqr6c5oFJhfraJqhx9sBc62G/PnpH6rqqnbdsVNp\n3qC5HfB14Iiq+sgYYpIkLVLXO5hjaH6RXzhPuwWrqmPa43bd75vA88cVhyRpvLommJ/RvO/l+j6C\nWa02PvCIsRxn7d0fHstxJGkcuo4iu4Zmdv1WJTlqtHAkSStF1wRzJgtbCv+DI8QiSVpBuj4imxoe\n/PfA+TQz9u/a+i6SpNWoa4K5mOYRWYBnjD8cSdJKMcork98yT32AN4xwXEnSCjLKRMs3z9cmycmj\nhSNJWim2mmCS/Nupf1fVddy31td8fmkhSknS6jLfHczGtqwkD6mqKxZy0Kq6dlFRaXDOzZG0WAt5\nRLYHNK9Enn5HM6W9s5EkaQvzJZiacTeykfsmWqb996/0EJckacJ17eTfgyaxfA/7WSRJW9H1fTDX\nAiSZeWcjSdIWui4VsyBJfqeP40qSJkcvCQa4pKfjSpImRF8JJj0dV5I0Iebrg0mSe+eomHV7a94l\n/TV+45q7IknjsJBO/lHuRkwwkrTKLWQeTOd5LvPc3UiSVoH5+mBGnaXv7H5JWuW2mmCqaqTJlKPu\nJ0laOfoaRSZJWuVMMJKkXphgJEm9MMFIknphgpEk9cIEI0nqhQlGktSLri8cU8t1vxZmnNdp7d0f\nHtuxFnzOk9Yv+TkBNp52yCDnlcbJOxhJUi9MMJKkXphgJEm9MMFIknphgpEk9cIEI0nqhQlGktQL\nE4wkqRcmGElSL0wwkqRemGAkSb1wLTJNjElf10xabbyDkST1wgQjSeqFCUaS1Av7YKRFsF9Impt3\nMJKkXphgJEm9MMFIknphgpEk9cIEI0nqhQlGktQLE4wkqRfOg5GWobUnrR/s3BtPO2Swc2tl8Q5G\nktQLE4wkqRcmGElSL0wwkqRemGAkSb0wwUiSemGCkST1wgQjSeqFEy0lbWGoSZ5O8Fx5vIORJPXC\nBCNJ6oUJRpLUCxOMJKkXE5tgkmyf5J1Jrktyd5JvJ3l9kvsPHZskaUJHkSXZHvhHYEfgD4Argd8F\nzgX2T3JYVd07YIiStOpN6h3MW4HHA8dX1Req6q6q+gTwJuBZwH8dMjhJEqSqho6hkyQPAX4A3AI8\nvKZ9A0l2AjYB11TVnvMda926dbVhw4bRAnnTDqPtJ81h7d0fHstxNj7wiLEcB8YXk5aXxc45SnJl\nVa2br90k3sEcCDwQuKJmZMeq+iHwbeAxSfYaIjhJUmMSE8wT2nLjHPVT258wR70kaQlMYoLZtS1v\nmaP+1rZ82BLEIkmawySOItuuLX82R/09bfmg2SqTHA8c3378SZJvjTG2IewM3Dx0EMvEhF+LQ8dy\nlNz3zzFcj/HEtExM+P+P8cmfLfpaPHIhjSYxwdzVlnPNd9m2Le+crbKqzgLOGndQQ0myYSGdbauB\n12JLXo8teT3us1TXYhIfkd3YljvOUf9rbXnTEsQiSZrDJCaYq9tyjznq185oJ0kawCQmmIuBnwJP\nTpLpFe08mL1o5sF8e4jgBrBiHveNgddiS16PLXk97rMk12LiJloCJHkP8FLgkKr6zLTtrwL+B/CK\nqnr3UPFJkiY3wewAfBHYgV9ei+yLNInn58NFKEmaxEdkVNVtwP7AXwMfoZn7cnr7ddhKTS5pHJbk\nvHYV6XuS3Jrk0iQvGjq+5aC9PpVk8v5yGpMkByW5IMlNSX6a5F+SrE/yh0PHttTaa/GZ9uflriTf\nTfKXSR47dGx9SrJzkvPbn4Vj5mm7V5KPJbk5yR1Jrkhy+DjimMgEA02SqaoTq2r3qnpAVe1ZVadU\n1T3z7z2xXgdcAOwEPJtmxNxTaCadnpvk7AFjG1y7yvYZQ8cxpCRvovnD6wLgccBDgVcAvw0cPVxk\nS699ZH4hzdJS/4nm5+YImlU+vpLk6cNF158kzwO+Dhy8gLb7ABuANcB+wG7AeuC8JK9ddDBV5deE\nfAGn0gzTfvCM7dsC1wAFHDh0nANenzOAy9vrUEPHM8D3//vt9/57s9S9Cnjf0DEu4bXYFrgd2Azs\nMqNu3/Y6XTF0nD18338MXA8cApzTfp/HzNF2G+ArwE9muUafAu4FHr+YeCb2DmaV+j7woar6yfSN\n1dy1Xdh+PGjJo1oGkvwWcBzwkqFjGdDbgG9W1QUzK6rqHVW1mq7NjsBDgJur6gcz6r7elk9c2pCW\nxNXA3lW1fgFtD6S5Bp+e5RqdTZOATlhMMJM4k3/Vqqozt1L947bMVtqsSEm2Bd4HvL2qvjZj9Pqq\nkOQ3aB6JORQXqKqbklwP7JZklxm/QPduyxtn2XWiVdUXOjSfWrP/8lnqLp/RZiTewawcU68nuHTQ\nKIbxepr/y6cOHciA9mvL65IcleTKtlP71iR/l+Rpg0Y3jGNoBgCdl+TxSbZL8mTg/W39ap/KMOfK\n9FV1I3A3TYLeadQTmGBWgCQPBZ4JXAV8duBwllSSvYE/AV5SVT8dOp4BPbot/wtwCs012Zmmc39H\n4KIkLxwotkFU1YU0g2CK5tHRncAVwAOAl1bVOwYMbzmYb2X629py5JXpTTArw+k0P0RHVdtDtxok\n2Ybm0dg5VXXZ0PEMbPu2XEvz/+Ciqrqjqq4G/pDm0el7kzx4qACXWpLn04yQ2gzsQ9Mn81Tg/wA7\nJPmVAcNbDha1Mv1C2Acz4ZIcSfMo4IVV9bWBw1lqL6NZNvxZQweyjNxUVZ+fvqGqrknyJZq5YwcD\nnxgksiWUZA/gL2j+On92VU2trv6PSb4PfItmNNnzBgpxOVjUyvQL4R3MBEtyMM3z5OOr6uNDx7OU\nkuxOM2rq5dVMvF3tph5zXDdH/bVtuecSxLIcHE4z/+VT05ILAFW1EfgS8Nwk+w8Q23Ix38r0O7Tl\nyCvTm2AmVJKDaP4SfVlVrcYJls8AHgx8fGrm/swZ/NO2fW6wKJfON9pyrr9Gp6yWR6hr2/KGOeqn\ntv9G/6EsW3OuTJ9kV5oEfUNV/XDUE5hgJlCSZwCfBE6YnlyS7D2uJR6Wu6o6p6oy29e0NlPbnj5g\nqEvlIprk8ci2b2qmqTcQfnPpQhrU1C/F3eao/zdtOVf/w2owtVDwfrPUPWVGm5GYYCZMkgOBvwFO\nrKoPzKjel2Ymr1aZqvpXmj86dqRZFuUXkjyK5pfI9dw3IXel+3RbHppku+kVSR4J/CZN5/8lSx3Y\nMnIRzV3MoUl2mVF3HM31eddiTmAn/wRJcgDND85twEHtY7Lp9uC+jjutPq8A1gHvSXI7TT/DXsAH\naN6hdFRV3T1gfEumqi5PcibNH1yfSPJq4Hs0M9fPoOnAfmtVfXfAMAdVVZuTHE0zd+78JC8GNtHM\n3j8UOLmqvrqYc0zkcv2rVZJzmH/Bws+vkkdCW2hXjP3gHNUHVNXnli6a4bR/ib6Z5hfEw4Af0byk\n761V9fWt7bsStaMsX0LT1/JgmomXVwLvraoVN5ouyVrgn+eovraq1s6yz2NpJikfQDN0+evA/6yq\njyw6HhOMJKkP9sFIknphgpEk9cIEI0nqhQlGktQLE4wkqRcmGElSL0wwkqRemGAkSb0wwUiSemGC\nkST14v8DP0N7717ba34AAAAASUVORK5CYII=\n"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "df.groupby('sex')['tip'].plot.hist()\nplt.xlabel('xlable', size=20, fontweight='semibold', family='serif', style='italic')",
"execution_count": 52,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 52,
"data": {
"text/plain": "<matplotlib.text.Text at 0x7fc9558e74e0>"
},
"metadata": {}
},
{
"output_type": "display_data",
"data": {
"text/plain": "<matplotlib.figure.Figure at 0x7fc955991860>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZgAAAEdCAYAAAAxRnE+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHElJREFUeJzt3Xu4bXVd7/H3RwXFFETYCMfIjQZq3MrAkDQRsTIg01IK\nj9w8knnDc8oiTUQhI8wuPiYGSkimCB01FNMIUTAR2xzyFihSG4o7yEWu29jf88cYyz33ZM211pxr\njjX3XOv9ep75jDnH7zfG+K757L2+6zd+l5GqQpKkcXvYpAOQJC1PJhhJUidMMJKkTphgJEmdMMFI\nkjphgpEkdcIEI0nqhAlGktQJE4wkqROPmHQAk7TtttvW6tWrJx2GJE2Vyy677NaqWjVfvRWdYFav\nXs2aNWsmHYYkTZUk1yyknrfIJEmdMMFIkjphgpEkdcIEI0nqhAlGktQJE4wkqRMmGElSJ0wwkqRO\nmGAkSZ1Y0TP5p9HqY8+b2LXXnnTgxK4tafrYgpEkdcIEI0nqhAlGktQJE4wkqRMmGElSJ0wwkqRO\nmGAkSZ0wwUiSOmGCkSR1wgQjSeqECUaS1AkTjCSpEyYYSVInTDCSpE6YYCRJnTDBSJI6YYKRJHXC\nBCNJ6oQJRpLUCROMJKkTJhhJUidMMJKkTphgJEmdMMFIkjphgpEkdcIEI0nqhAlGktQJE4wkqRMm\nGElSJ0wwkqROmGAkSZ0wwUiSOmGCkSR1wgQjSeqECUaS1AkTjCSpE5tkgklycJJKUnPU2SXJOUlu\nTXJPkkuTHLKUcUqSBtvkEkySLYH3zVNnT2ANsArYB9gBOA84K8mbOw9SkjSvTS7BACcB/zWoMMnD\ngDNpYn9ZVX23qu6qqncAnwZOSLLb0oQqSRrkEZMOoFeSnwWOAvYCvjGg2v7AHsDHqurmvrLTgYOA\nY4BXdRXnSrX62PMmct21Jx04ketKWpxNpgWTZHPgNOBdVfXNOarO/La5ZJayS/rqSJImZJNJMMAf\n0MRz4jz1dm+3a/sLqupG4H5ghyTbjDU6SdJQNolbZEl2BX4XeEFVPTBP9e3b7e0Dyu8EHgU8Abht\nPBFKkoY18RZM22l/GnBGVV28gEO2aLc/GFC+rt0+esD1jk6yJsmaW265ZbhgJUkLNvEEA7wWeBLw\newusf1+73WxA+ebt9t7ZCqvq1Kraq6r2WrVq1cKjlCQNZaIJJsmOwDuB11XVnQs87MZ2u/WA8q3a\n7U2LiU2StDhDJZgkx435+s8HHgN8fGbmfv8M/p59X2h3zQxf3mmW+Lan6X+5oarsf5GkCRq2BfO2\nJE8e18Wr6oyqymyvnjoz+/Zrd32m3e4zyymf1VdHkjQhwyaYAF9L8k9JXppkEqPQLqBpxRyUZLu+\nsqOA9cB7ljwqSdJGRumD+VHgXOCtwHVJTk7y4+MNa7CqWg8cDhRwdpKnJNkyyVtpZvEfX1VfX6p4\nJEmzGzbBHFlVd1bVe6pqD+DFNAtO/muSzyc5JMmg0V3zSnLEHH0w+83sq6rLgb2BW4Gv0nT8/zJw\naFWdMOr1JUnjM1SCqaoP9X3+clUdCTyRZjXj02laNe9KssuwwczVJ1NVX+ire2VV/VpVbVNVj66q\nvavqo8NeU5LUjUUPU25vj72FZh7LFsC2wM8Da5JcmOQXF3sNSdL0GXaY8oPt9hFJXpbkAuDbwO/Q\nTHB8P/CMqtqT5hktHwFO8RktkrTyDDsKLEn+mKaTfRXNqLKvAqcCZ1XVD2fPV9U9wGlJPkvzcLB3\njidkSdI0GGWY8ZtoFpQ8BTh1ASO2tqSZTClJWkFGSTBHAmdX1X3zVWwfIHYhcMUI15EkTbFhE8wX\n+0eSzeMSmjXD/nvI60iSptyww5SfN6gsybbt0vu99ddX1T0LeMaLJGmZGXYU2b5Jvte+/ryv+OU0\nc2BeOr7wJEnTathbZIe3x7wdOLuv7GxgG+DMJHdU1fljiE+SNKWGTTD7AK+qqo/1F1TVDcBxSa4F\n3gyYYCRpBRt2Jv+OwD/MU+ccYPfRwpEkLRfDJpjNFnBMgEeOFo4kabkYNsF8A3j1PHV+C3C5fEla\n4YbtgzkF+FCSnwDOolmH7B7gR4CnAb8OHAocNs4gJUnTZ6gEU1V/k+RngNfQDEvuF+C9VfW34whO\nkjS9hl6uv6peB7wI+BxwG/Bgu/0H4OCqesNYI5QkTaVR1iKjqj4FfGrMsUiSlpFFP3BsNkmO6+K8\nkqTp0UmCAd7W0XklSVNi6FtkSV4C/E9gZ+DRNB37kiRtZKgEk+QY4M/aj98D7gZq3EFJkqbfsC2Y\nNwIfA46pqpsHVUqyflFRSZKm3rB9MDsAb5wrubTePmI8kqRlYtgEczUL6HOpKhOMJK1wwyaYk4Df\nm69SkgdHC0eStFwM2wcTYNcklwPnAtcD9409KknS1Bs2wZzR837Pdts/iiyz7JMkrTCjLBVz5Dzl\nAT44wnklScvI0Ammqj40X50kp48WjiRpuRhlmPK8qqqrJWgkSVNiqERQVTf170uy5fjCkSQtFyO1\nNJK8MsnFSe6hWTKGJM9N8oEkTxxrhJKkqTTsWmSb0wxPfgEbJlzOjBi7HtgL+FKSfavqhrFFKUma\nOsO2YH4beA5wIrArsNVMQVVdBTwDuIwFTMaUJC1vwyaYlwNHVdXbquqKqvp+b2FVrQeOA144rgAl\nSdNp2ATzZOCT89T5D+BHRwtHkrRcDJtg7gO2m6fOzsC9o4UjSVouhk0wXwbeN2hocpKHAe8ELl5s\nYJKk6TbsTP53AhcB1yY5B/gaQJIjgZ1o+mh+FNh3nEFKkqbPUAmmqi5J8grgA8AraYYop/0cmkco\nH1pVl407UEnSdBllLbKzklwIHA7sTTNU+Q7gUuDMqrplvCFKkqbRKKspzywZc/KYY5EkLSOdLEqZ\n5P90cV5J0vToatXjd3V0XknSlBh2LbLPdxWIJGl5GbYPZr8F1vORyZK0wo0yiuwht9WSbAE8EXgJ\nzYrKhy8+NEnSNBu2D+YvZ9tZVfdV1Xer6mTgo9gHI0kr3rBPtHz9AqqdD7x0tHAkSctFF6PIng48\ntoPzSpKmyLCjyH5ujuIfAZ4KHAOsWUxQkqTpN2wn/xeYe4RYgFuAN44akCRpeRhlqZh3zLKvaJ4V\ncxXwj1Xl82AkaYUbZZjy27sIRJK0vAzbyb9TJ1FIkpadYRPMX49yEZeYkaSVZ9hbZM8d8TqjHrfJ\nWn3seZMOQZI2acMmmCR5sJNIJEnLyrAJ5iKafpgdaYYj/yfwfZqJlTsCq4B/a8tmBHjOoiOVJE2V\nYRPMm4APAK+sqn/qL0zyAuBtbfm/9+xfv6goJUlTZ9gEcyLw6qq6ZLbCqjo/yb3Au4EX9xQ5tFmS\nVphhR5E9k/mXgfkqsNGSMs6dkaSVZ9gEsxnwtHnqPB145GjhSJKWi2ETzL8AZyR5ymyFSX4cOAP4\nyiLjkiRNuWH7YN4CfB64MsnlwLeBe2hWUn4a8FPAOhb+aGVJ0jI17APHvgy8ELiG5tHILweObrc/\nDVwN/EJVfXWh50zj4CRnJbk2ybokdyS5KMkr5jhulyTnJLk1yT1JLk1yyDA/jySpO0M/cKyqLgR2\npunIPwZ4K/AG4NlV9dSqunjIU74FOBfYBngR8DjgWcDtwJlJTu8/IMmeNIMNVgH7ADsA5wFnJXnz\nsD+TJGn8Rlmun6oq4Evta7EeBdwEvLiq7m73XZHkpcAVwJFJPlxVnwdI8jDgTJrk+LKqurk95h1J\n9gZOSHJuVX1zDLFJkkY08iOTkzwlySFJ3tB+3jrJo0c41XXAh3qSCwBVtQ44v/14QE/R/sAewKd7\nksuM02l+pmNGiEOSNEZDJ5gkuya5GPgO8BHgz9qiZwLXzdVvMpuqOqWqfm9A8fdnLtuz78B2O9tk\nz0v66kiSJmSoBNMOQ74Y2JemD+STPcUX08z0/6skzxtTfLu024t69u3ebtf2V66qG4H7gR2SbDOm\nGCRJIxi2D+Z4mpbLy6vqaoCZ1ZXbxyS/O8kDNGuWXbiYwJI8HvgF4HLgsz1F27fb2wcceidNv84T\ngNsWE4MkaXTD3iLbHzhqJrkMcBaw5+gh/dDJQAGHtYMKZmzRbn8w4Lh17XaU/iBJ0pgMm2AeD1w1\nT53/buuNLMnLgSNoWkr9o8Hua7ebDTh883Z774BzH51kTZI1t9xyy2xVJEljMGyCuZ75n075PJrn\nxIykXfL/A8DRVfXxWarc2G63HnCKrdrtTbMVVtWpVbVXVe21atWqUcOUJM1j2ATzSeBvkxye5CH9\nN0n2B94L/N9RgklyAPAJ4LVV9ZAJlq1vtNudZjl+e5r+lxuqyv4XSZqgYRPMCcBdNPNN7kqyBqBd\n1uVamnkrdwF/NGwgSZ5Pk8CO6U0u7bDo3iVgPtNu95nlNM/qqyNJmpChRpFV1e1Jng28D/gV4Blt\n0bOB9cDfAa+rqruGOW/b8vl74I1V9cG+4r1p+mM+1n6+gKYVc1CS7fomWx7VxvGeYa6vTdvqY8+b\n2LXXnuSUKmlUQy8VU1U3Ab+a5Ak0C15uBdwB/EtVDd1r3s6Z+TTN8OID2ttkvXZiQ8c+VbU+yeE0\nc2POTvJK4Baa2fsHAcdV1deHjUOSNF5DJZiehScvraq/ollgcrEOpxl6vAUwaDXkL/Z+qKrL23XH\nTqR5guYWwLeAQ6vqo2OISZK0SMO2YI6g+UV+/jz1FqyqjmjPO+xxVwK/Nq44JEnjNWyC+QHN816u\n7yKYlWrtow4dy3lW3/+RsZxHksZh2FFkV9PMrp9TksNGC0eStFwMm2BOYWFL4f/1CLFIkpaRYW+R\nzQwP/kfgbJoZ+/fNfYgkaSUaNsF8nuYWWYDnjz8cSdJyMcojk98xT3mAt45wXknSMjLKRMu3z1cn\nyXGjhSNJWi7mTDBJfmzmfVVdy4a1vubzkIUoJUkry3wtmLXttpI8tqouXchJq+qaRUWliXNujqTF\nWsgtsp2geSRyb4tmRtuykSRpI/MlmOprjaxlw0TLtO8f3kFckqQpN2wn/040ieXfsZ9FkjSHYZ8H\ncw1Akv6WjSRJGxl2qZgFSfJzXZxXkjQ9OkkwwIUdnVeSNCW6SjDp6LySpCkxXx9Mkjw4oGDW/a15\nl/TX+I1r7ookjcNCOvlHaY2YYCRphVvIPJih57nM07qRJK0A8/XBjDpL39n9krTCzZlgqmqkyZSj\nHidJWj66GkUmSVrhTDCSpE6YYCRJnTDBSJI6YYKRJHXCBCNJ6oQJRpLUiWEfOKaW634tzDi/p9X3\nf2Rs51rwNY89b8mvCbD2pAMncl1pnGzBSJI6YYKRJHXCBCNJ6oQJRpLUCROMJKkTJhhJUidMMJKk\nTphgJEmdMMFIkjphgpEkdcIEI0nqhGuRaWpM+7pm0kpjC0aS1AkTjCSpEyYYSVIn7IORFsF+IWkw\nWzCSpE6YYCRJnTDBSJI6YYKRJHXCBCNJ6oQJRpLUCROMJKkTzoORNkGrjz1vYtdee9KBE7u2lhdb\nMJKkTphgJEmdMMFIkjphgpEkdcIEI0nqhAlGktQJE4wkqRMmGElSJ5xoKWkjk5rk6QTP5ccWjCSp\nEyYYSVInTDCSpE6YYCRJnZjaBJNkyyR/luTaJPcn+U6SP0iy2aRjkyRN6SiyJFsC/wxsDfw6cBnw\ni8CZwL5JDq6qBycYoiSteNPagvlDYDfg6Kr6UlXdV1WfAI4HXgj85iSDkyRBqmrSMQwlyWOBm4Hb\ngSdWzw+QZBvgFuDqqtp5vnPttddetWbNmtECOX6r0Y6TBlh9/0fGcp61jzp0LOeB8cWkTcti5xwl\nuayq9pqv3jS2YPYHHgVcWn3ZsapuA74D/HiSXSYRnCSpMY0JZvd2u3ZA+cz+3QeUS5KWwDQmmO3b\n7e0Dyu9ot09YglgkSQNM4yiyLdrtDwaUr2u3j56tMMnRwNHtx7uTfHuMsU3CtsCtkw5iEzHl38VB\nYzlLNrwdw/cxnpg2EVP+72N88seL/i6etJBK05hg7mu3g+a7bN5u752tsKpOBU4dd1CTkmTNQjrb\nVgK/i435fWzM72ODpfoupvEW2Y3tdusB5Y9rtzctQSySpAGmMcF8o93uNKB8dV89SdIETGOC+Tzw\nAPDMJOktaOfB7EIzD+Y7kwhuApbN7b4x8LvYmN/Hxvw+NliS72LqJloCJPlL4DXAgVX1mZ79vw38\nCfD6qnrvpOKTJE1vgtkK+DKwFQ9di+zLNInnvycXoSRpGm+RUVV3AvsCfwd8lGbuy8nt6+DlmlzS\nODjJWe0q0uuS3JHkoiSvmHR8m4L2+6kk0/eX05gkOSDJuUluSvJAkv9Mcl6S35h0bEut/S4+0/5/\nuS/Jd5N8OMnTJh1bl5Jsm+Ts9v/CEfPU3SXJOUluTXJPkkuTHDKOOKYywUCTZKrqjVW1Y1U9sqp2\nrqoTqmrd/EdPrbcA5wLbAC+iGTH3LJpJp2cmOX2CsU1cu8r2+yYdxyQlOZ7mD69zgacDjwdeDzwH\nOHxykS299pb5+TRLS/0Szf+bQ2lW+fhakv0mF113kvwq8C3gBQuouyewBlgF7APsAJwHnJXkzYsO\npqp8TckLOJFmmPZj+vZvDlwNFLD/pOOc4PfzPuCS9nuoScczgZ//V9qf/ZdnKftt4LRJx7iE38Xm\nwF3AemC7vrK92+/p0knH2cHP/VvA9cCBwBntz3nEgLoPA74G3D3Ld/Qp4EFgt8XEM7UtmBXqOuBD\nVXV3785qWm3ntx8PWPKoNgFJfhY4CnjVpGOZoHcCV1bVuf0FVfXuqlpJ383WwGOBW6vq5r6yb7Xb\nPZY2pCXxDWDXqjpvAXX3p/kOPj3Ld3Q6TQI6ZjHBTONM/hWrqk6Zo/j77TZz1FmWkmwOnAa8q6q+\n2Td6fUVI8pM0t8QcigtU1U1Jrgd2SLJd3y/QXdvtjbMcOtWq6ktDVJ9Zs/+SWcou6aszElswy8fM\n4wkummgUk/EHNP+WT5x0IBO0T7u9NslhSS5rO7XvSPK5JM+daHSTcQTNAKCzkuyWZIskzwQ+0Jav\n9KkMA1emr6obgftpEvQ2o17ABLMMJHk88AvA5cBnJxzOkkqyK/C7wKuq6oFJxzNBT2m3/ws4geY7\n2Zamc39r4IIkL5tQbBNRVefTDIIpmltH9wKXAo8EXlNV755geJuC+Vamv7PdjrwyvQlmeTiZ5j/R\nYdX20K0ESR5Gc2vsjKq6eNLxTNiW7XY1zb+DC6rqnqr6BvAbNLdO35/kMZMKcKkl+TWaEVLrgT1p\n+mSeDfw/YKskD59geJuCRa1MvxD2wUy5JC+nuRXwsqr65oTDWWqvpVk2/IWTDmQTclNVfbF3R1Vd\nneQrNHPHXgB8YiKRLaEkOwF/Q/PX+YuqamZ19X9Och3wbZrRZL86oRA3BYtamX4hbMFMsSQvoLmf\nfHRVfXzS8SylJDvSjJp6XTUTb1e6mdsc1w4ov6bd7rwEsWwKDqGZ//KpnuQCQFWtBb4CvCTJvhOI\nbVMx38r0W7XbkVemN8FMqSQH0Pwl+tqqWokTLJ8PPAb4+MzM/f4Z/D37vjCxKJfOFe120F+jM1bK\nLdTV7faGAeUz+3+y+1A2WQNXpk+yPU2CvqGqbhv1AiaYKZTk+cAngWN6k0uSXce1xMOmrqrOqKrM\n9uqpM7NvvwmGulQuoEkeT2r7pvrNPIHwyqULaaJmfinuMKD8f7TbQf0PK8HMQsH7zFL2rL46IzHB\nTJkk+wN/D7yxqj7YV7w3zUxerTBV9V80f3RsTbMsyg8leTLNL5Hr2TAhd7n7dLs9KMkWvQVJngT8\nDE3n/4VLHdgm5AKaVsxBSbbrKzuK5vt5z2IuYCf/FEnyPJr/OHcCB7S3yXrtxIaOO608rwf2Av4y\nyV00/Qy7AB+keYbSYVV1/wTjWzJVdUmSU2j+4PpEkjcB/04zc/19NB3Yf1hV351gmBNVVeuTHE4z\nd+7sJK8EbqGZvX8QcFxVfX0x15jK5fpXqiRnMP+ChV9cIbeENtKuGPvXA4qfV1VfWLpoJqf9S/Tt\nNL8gngB8j+YhfX9YVd+a69jlqB1l+SqavpbH0Ey8vAx4f1Utu9F0SVYD/zGg+JqqWj3LMU+jmaT8\nPJqhy98C/rSqPrroeEwwkqQu2AcjSeqECUaS1AkTjCSpEyYYSVInTDCSpE6YYCRJnTDBSJI6YYKR\nFinJ1v0LbiZZu8hznjnLOV+0gOP+9yzHHb+YWKRRmWCkxbuHZhn83ufx/Osiz/n7wO/07bt8Aced\nyUOfo77YWKSRmGCkRaqqdTTrXD25Z/fXFnnO64BVPbu+V1WDnvXSe9xtbHi65VhikUZlgpHGY2c2\nfrTsOH6p79nzfiGtl9mOuwtYO4ZYpKGZYKTx2KPv8zgSTO85h7nN1Xvc18sFBzUhJhipT5JHJLm/\nr6P8r/rqPDzJp5OckyRs3Gq4m+aW2Wzn3jfJh5Jck+SB9nV9knP66m3LhodiAdyU5LQk1yVZl+S/\nkrwnyWNnuUxvLA9JdGn8epJ/SHJTe77rk3wuyW+0P4+0aCYY6aEK2A24tGffke1S6DNOAR4PvKJt\nIfT+Un9IqyHJI5N8EPhnYHfgN4ETaJ5LsgPwjL4Y9uz7fAzwjzTPmr8KeCLN81/O7rvONm3ZjK/1\nlT+OZvn+j9Isz/42modvXQP8PPAR4L1IY2CCkfpU1YPtg6hO6Nm9GfBWgCRvAfYHXtTzAK+BrYYk\nm9E8KO4omltdz6mqzwK3DjqGhyaYV1XVOVX1JaC3NfWLSfaY47gfnrd9lPK5wH7trr+oqvdX1eU0\nyWvGYUhj4BMtpQGq6rwklwM/1e46rJ3fcgywb1XdAs08GGDHnkP7k8W7gJmnj/5WVd3Tvt99jmN6\nE8V1wGd7Pj/QV3c3YObJg73HrWfjodOHA8/p+fzhnvc/3/P+KqQxsAUjze3EnvePAN4CvLiqvtOz\nf65Ww240t7IA1lbVV3rqLTTBXNR3y237vrrrBxx3VVXd2/P56J73NwNXJtk1yYeBfdr9t9M8Zlha\nNFsw0tz+HrgN2Kb9fC1NP0qv3ltU69nQmgB4NRv+kLu477hZE0x7S+3pPWX9Q5Sf2vf5mgGx/HDk\nWZJHA3v3lK2iaQkFuI+mv+kzwCkzLTNpsUww0tz+iI0nLu4MvAT4u559va2G7/a1Gvbref/DRJHk\nScDj2o93VlXvc9SfRtP5P+OKvph+uuf93TTPmCfJI4Cf6CnrbRXtCDy85/NpwEnAXe3kTGnsvEUm\nDZDklTQd3j8H3N9T9Oa+qnMNC+4datybRJ7b8763xdN/PoDre2J6IrBLT9mH25UEoElMjxwQyw/6\nznlrVf1Hb3JJ8uoklybZDmkMTDDSLJLsD/wp8Mttv8kHe4p/KskvtfUeDuzaU9afYL7X8773l3zv\nSK35RpD1tqCO6Hl/O/D2OY7rPe81QO+tr96WDkl2AI4HvllVNyONgQlG6pPkqTTzS46qqq+2u/8Y\nWNdT7a1J9qEZwfWonv23tb+sZ5zV8/43k+yV5GQ2Hs11c5Ledcd6E8U64Ngkeyd5NXBcu/8OmuR3\n44Djvg9skeRHoBl6TbOA5oyDk7whyR5JDgEuAv6NDQMSpMWrKl++fLUvms78q4A3zVJ2Ks0kzN7X\n78+y7/09x2wG/AlwA02yuAJ4DXBl3zHH9RxzU8/+Pwf+ot23jmaQwSnAj80S3+dmiWWfvjoH0sx5\nua3nfDMTOB8+6e/f1/J6pcpliiRJ4+ctMklSJ0wwkqROmGAkSZ0wwUiSOmGCkSR1wgQjSeqECUaS\n1AkTjCSpEyYYSVInTDCSpE78f1FpC+FL2gqtAAAAAElFTkSuQmCC\n"
},
"metadata": {}
}
]
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
},
{
"metadata": {
"trusted": true,
"collapsed": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "py36-test",
"display_name": "py36-test",
"language": "python"
},
"language_info": {
"name": "python",
"version": "3.6.2",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"gist": {
"id": "",
"data": {
"description": "Matplotlib - Adjusting text parameters rcParams",
"public": true
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment