Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save RenSys/4b6c4b0abda338d6580e1aca6946c183 to your computer and use it in GitHub Desktop.
Save RenSys/4b6c4b0abda338d6580e1aca6946c183 to your computer and use it in GitHub Desktop.
TensorFlow - Basic Minimisation with Gradient Descent
Display the source blob
Display the rendered blob
Raw
{
"cells": [
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "import numpy as np\nimport tensorflow as tf",
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": "/home/karl/anaconda2/envs/py36-test/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.\n from ._conv import register_converters as _register_converters\n",
"name": "stderr"
}
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Using Gradient Descent, find the value of w when\nW**2 - 10*W + 25 = 0"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "w = tf.Variable(0, dtype=tf.float32)",
"execution_count": 25,
"outputs": []
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "cost = tf.add( tf.add(w**2, tf.multiply(-10.0, w )), 25)\ntrain = tf.train.GradientDescentOptimizer(0.01).minimize(cost)\ninit = tf.global_variables_initializer()\nsession = tf.Session()\nsession.run(init)\nprint(session.run(w))\n",
"execution_count": 46,
"outputs": [
{
"output_type": "stream",
"text": "0.0\n",
"name": "stdout"
}
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Perform 1 round of Gradient Descent"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "session.run(train)\nprint(session.run(w))",
"execution_count": 47,
"outputs": [
{
"output_type": "stream",
"text": "0.099999994\n",
"name": "stdout"
}
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Perform 1000 round of Gradient Descent"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "for i in range(1_000):\n session.run(train)\nprint(session.run(w))",
"execution_count": 48,
"outputs": [
{
"output_type": "stream",
"text": "4.9999886\n",
"name": "stdout"
}
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Test"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "5**2 - 10*5 +25",
"execution_count": 53,
"outputs": [
{
"output_type": "execute_result",
"execution_count": 53,
"data": {
"text/plain": "0"
},
"metadata": {}
}
]
},
{
"metadata": {},
"cell_type": "markdown",
"source": "### Overload Version"
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "x = tf.Variable(0, dtype=tf.float32)\ncost = w**2 - 10*w + 25\ntrain = tf.train.GradientDescentOptimizer(0.01).minimize(cost)\ninit = tf.global_variables_initializer()\nsession = tf.Session()\nsession.run(init)\nprint(session.run(w))",
"execution_count": 56,
"outputs": [
{
"output_type": "stream",
"text": "0.0\n",
"name": "stdout"
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "for i in range(1_000):\n session.run(train)\nprint(session.run(w))",
"execution_count": 57,
"outputs": [
{
"output_type": "stream",
"text": "4.9999886\n",
"name": "stdout"
}
]
},
{
"metadata": {
"trusted": true
},
"cell_type": "code",
"source": "",
"execution_count": null,
"outputs": []
}
],
"metadata": {
"kernelspec": {
"name": "py36-test",
"display_name": "py36-test",
"language": "python"
},
"toc": {
"nav_menu": {},
"number_sections": true,
"sideBar": true,
"skip_h1_title": false,
"toc_cell": false,
"toc_position": {},
"toc_section_display": "block",
"toc_window_display": false
},
"language_info": {
"name": "python",
"version": "3.6.4",
"mimetype": "text/x-python",
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"pygments_lexer": "ipython3",
"nbconvert_exporter": "python",
"file_extension": ".py"
},
"gist": {
"id": "4b6c4b0abda338d6580e1aca6946c183",
"data": {
"description": "TensorFlow - Basic Minimisation with Gradient Descent",
"public": true
}
},
"_draft": {
"nbviewer_url": "https://gist.github.com/4b6c4b0abda338d6580e1aca6946c183"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment