Created
May 7, 2016 07:02
-
-
Save Sentient07/a527bcbec4b1300f8cd313941865cd90 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "from lxml import etree\n", | |
| "import numpy as np\n", | |
| "from PIL import Image\n", | |
| "from os import listdir\n", | |
| "from os.path import isfile, join\n", | |
| "import numpy as np\n", | |
| "from PIL import ImageDraw\n", | |
| "from random import randint" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "def get_bbox(path):\n", | |
| " path = 'Annotations/' + path\n", | |
| " tree = etree.parse(path)\n", | |
| " root = tree.getroot()\n", | |
| " xmin,ymin,xmax,ymax = [], [], [], []\n", | |
| " for j in root.findall('object'):\n", | |
| " for i in j.findall('bndbox'):\n", | |
| " xmin.append(i.find('xmin').text)\n", | |
| " ymin.append(i.find('ymin').text)\n", | |
| " ymax.append(i.find('ymax').text)\n", | |
| " xmax.append(i.find('xmax').text)\n", | |
| " return xmin, ymin, xmax, ymax" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 260, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 180, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "1 235\n", | |
| "1.0\n", | |
| "(500, 335)\n" | |
| ] | |
| }, | |
| { | |
| "name": "stderr", | |
| "output_type": "stream", | |
| "text": [ | |
| "/Users/Ramana/projects/macvnev/lib/python2.7/site-packages/ipykernel/__main__.py:2: VisibleDeprecationWarning: using a non-integer number instead of an integer will result in an error in the future\n", | |
| " from ipykernel import kernelapp as app\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print xmin[1], ymin[1]\n", | |
| "print zero_arr[xmin[1],ymin[1]]\n", | |
| "print np.argpartition(zero_arr, 0).shape" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 181, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "def floodfill(matrix, x, y):\n", | |
| " #\"hidden\" stop clause - not reinvoking for \"c\" or \"b\", only for \"a\".\n", | |
| " if matrix[x][y] == 0: \n", | |
| " matrix[x][y] = 2 \n", | |
| " #recursively invoke flood fill on all surrounding cells:\n", | |
| " if x > 0:\n", | |
| " floodfill(matrix,x-1,y)\n", | |
| " if x < len(matrix[y]) - 1:\n", | |
| " floodfill(matrix,x+1,y)\n", | |
| " if y > 0:\n", | |
| " floodfill(matrix,x,y-1)\n", | |
| " if y < len(matrix) - 1:\n", | |
| " floodfill(matrix,x,y+1)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "def crop_image(xmin, ymin, xmax, ymax, j):\n", | |
| " image_path = 'JPEGImages/' +j\n", | |
| " original = Image.open(image_path)\n", | |
| " for i in range(0, len(xmin)):\n", | |
| " original.crop((int(xmin[i]), int(ymin[i]), int(xmax[i]), int(ymax[i]))).save(\"Cropped/\"+ str(i) + \"-\" +str(j))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "test_path = 'JPEGImages/2007_000042.jpg'\n", | |
| "original = Image.open(test_path)\n", | |
| "original.crop((0, 100, 450, 300)).show()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "#Add all the XML files to the list\n", | |
| "onlyfiles = []\n", | |
| "path = 'Annotations/'\n", | |
| "onlyfiles = [f for f in listdir(path) if isfile(join(path, f))]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 121, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "ename": "ValueError", | |
| "evalue": "invalid literal for int() with base 10: '45.70000076293945'", | |
| "output_type": "error", | |
| "traceback": [ | |
| "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
| "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m<ipython-input-121-a3dbd65e2864>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0monlyfiles\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mxmin\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymin\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxmax\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymax\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mget_bbox\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mcrop_image\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxmin\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymin\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mxmax\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mymax\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m+\u001b[0m\u001b[0;34m\".jpg\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5\u001b[0m \u001b[0mk\u001b[0m \u001b[0;34m+=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;32m<ipython-input-119-fc90298b8a5f>\u001b[0m in \u001b[0;36mcrop_image\u001b[0;34m(xmin, ymin, xmax, ymax, j)\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0moriginal\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage_path\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxmin\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0moriginal\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxmin\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mymin\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxmax\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mymax\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msave\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Cropped/\"\u001b[0m\u001b[0;34m+\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m\"-\"\u001b[0m \u001b[0;34m+\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mj\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m", | |
| "\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: '45.70000076293945'" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "k = 1\n", | |
| "for j in onlyfiles:\n", | |
| " xmin, ymin, xmax, ymax = get_bbox(j)\n", | |
| " crop_image(xmin, ymin, xmax, ymax, j.split('.')[0]+\".jpg\")\n", | |
| " k += 1" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 127, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "#Testing Block\n", | |
| "for k in range(14737, len(onlyfiles)-1):\n", | |
| " xmin, ymin, xmax, ymax = get_bbox(onlyfiles[k])\n", | |
| " crop_image(xmin, ymin, xmax, ymax, onlyfiles[k].split('.')[0]+\".jpg\")\n", | |
| " k += 1" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 191, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[[1 0]\n", | |
| " [0 1]]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "bin_rand = np.random.randint(0,2,(40,40))\n" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "ename": "ValueError", | |
| "evalue": "invalid literal for int() with base 10: '45.70000076293945'", | |
| "output_type": "error", | |
| "traceback": [ | |
| "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", | |
| "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", | |
| "\u001b[0;32m<ipython-input-6-4958e7aa399e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mzero_arr\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mzeros\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0moriginal\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msize\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxmin\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 7\u001b[0;31m \u001b[0mzero_arr\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mymin\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mymax\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxmin\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0mint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mxmax\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 8\u001b[0m \u001b[0mxmin1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mymin1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mxmax1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mymax1\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 9\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mzero_arr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m32\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
| "\u001b[0;31mValueError\u001b[0m: invalid literal for int() with base 10: '45.70000076293945'" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "for j in range(1453, len(onlyfiles)):\n", | |
| " xmin, xmax, ymin, ymax = get_bbox(onlyfiles[j])\n", | |
| " img_path = onlyfiles[j].split('.')[0]+ \".jpg\"\n", | |
| " original = Image.open('JPEGImages/' + img_path)\n", | |
| " zero_arr = np.zeros(original.size)\n", | |
| " for i in range(len(xmin)):\n", | |
| " zero_arr[int(ymin[i]):int(ymax[i]), int(xmin[i]):int(xmax[i])] = 1\n", | |
| " xmin1,ymin1,xmax1,ymax1 = [],[],[],[]\n", | |
| " for i in range(zero_arr.shape[0]-32):\n", | |
| " for k in range(zero_arr.shape[1]-32):\n", | |
| " if np.count_nonzero(zero_arr[i:i+32, k:k+32])==0:\n", | |
| " xmin1.append(k)\n", | |
| " ymin1.append(i)\n", | |
| " xmax1.append(k+32)\n", | |
| " ymax1.append(i+32)\n", | |
| " if len(xmin1) > 4:\n", | |
| " break\n", | |
| " n_back = 5\n", | |
| " if len(xmin1) < 5:\n", | |
| " n_back = len(xmin1)\n", | |
| " for ntemp in range(0,n_back):\n", | |
| " n_img = original.crop((xmin1[ntemp], ymin1[ntemp], xmax1[ntemp], ymax1[ntemp]))\n", | |
| " n_img.save('Background/' +str(ntemp)+ \"-\" +img_path)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 200, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "[[2 0 0 0]\n", | |
| " [0 0 2 1]\n", | |
| " [2 1 0 2]\n", | |
| " [0 0 2 1]]\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "a = np.random.randint(0,3,(4,4))\n", | |
| "print a" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 250, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "array([[0, 0, 2, 1],\n", | |
| " [2, 1, 0, 2]])" | |
| ] | |
| }, | |
| "execution_count": 250, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "a[1:3, 0:4]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "#Add jpg files to list\n", | |
| "back_files, obj_files = [], []\n", | |
| "path1 = 'Background/'\n", | |
| "back_files = [f for f in listdir(path1) if isfile(join(path1, f))]\n", | |
| "path2 = 'Cropped/'\n", | |
| "cropped_files = [f for f in listdir(path2) if isfile(join(path2, f))]" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "with open('train1.txt', 'w+') as f2:\n", | |
| " for i in range(1, len(cropped_files)):\n", | |
| " f2.write(path1+cropped_files[i]+ \" \" +str(1))\n", | |
| " f2.write(\"\\n\")\n", | |
| " for j in range(1, len(back_files)):\n", | |
| " f2.write(path2+back_files[j] + \" \" +str(0))\n", | |
| " f2.write(\"\\n\")" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 285, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "1453\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "print len(back_files)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "import random\n", | |
| "with open('train1.txt','r') as source:\n", | |
| " data = [ (random.random(), line) for line in source ]\n", | |
| "data.sort()\n", | |
| "with open('train4.txt','w+') as target:\n", | |
| " for _, line in data:\n", | |
| " target.write( line )" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "for kj in cropped_files[1:]:\n", | |
| " b_file = Image.open(path2+kj)\n", | |
| " b_file = b_file.resize((32, 32))\n", | |
| " b_file.save(path2+kj)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "f6 = open('val.txt', 'w+')\n", | |
| "count_temp = 0\n", | |
| "for l in open('train4.txt', 'r'):\n", | |
| " count_temp += 1\n", | |
| " if count_temp<4000:\n", | |
| " continue\n", | |
| " else:\n", | |
| " f6.write(l)\n", | |
| " if count_temp == 6000:\n", | |
| " break\n", | |
| "\n", | |
| " " | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 13, | |
| "metadata": { | |
| "collapsed": false | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "f5 = open('train.txt', 'w+')\n", | |
| "count_temp = 0\n", | |
| "for l in open('train4.txt', 'r'):\n", | |
| " f5.write(l)\n", | |
| " if count_temp == 4000:\n", | |
| " break\n", | |
| " count_temp += 1" | |
| ] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 2", | |
| "language": "python", | |
| "name": "python2" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 2 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython2", | |
| "version": "2.7.10" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 0 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment