Created
October 13, 2017 14:39
-
-
Save SilvaEmerson/26264c6b1399e426cc39032093ab374a to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| { | |
| "cells": [ | |
| { | |
| "cell_type": "code", | |
| "execution_count": 2, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "import pandas as pd\n", | |
| "import seaborn as sns\n", | |
| "import matplotlib.pyplot as plt\n", | |
| "import os\n", | |
| "import KNN\n", | |
| "#from sklearn.neighbors import KNeighborsClassifier as KNN\n", | |
| "\n", | |
| "sns.set_style(\"whitegrid\")\n", | |
| "%matplotlib inline" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(698, 10)" | |
| ] | |
| }, | |
| "execution_count": 3, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "'''\n", | |
| "# Attribute Domain\n", | |
| " -- -----------------------------------------\n", | |
| " 1. Sample code number id number\n", | |
| " 2. Clump Thickness 1 - 10\n", | |
| " 3. Uniformity of Cell Size 1 - 10\n", | |
| " 4. Uniformity of Cell Shape 1 - 10\n", | |
| " 5. Marginal Adhesion 1 - 10\n", | |
| " 6. Single Epithelial Cell Size 1 - 10\n", | |
| " 7. Bare Nuclei 1 - 10\n", | |
| " 8. Bland Chromatin 1 - 10\n", | |
| " 9. Normal Nucleoli 1 - 10\n", | |
| " 10. Mitoses 1 - 10\n", | |
| " 11. Class: (2 for benign, 4 for malignant)\n", | |
| "'''\n", | |
| "descrip = {2:'Clump Thickness',\n", | |
| " 3:'Uniformity of Cell Size',\n", | |
| " 4:'Uniformity of Cell',\n", | |
| " 5:'Marginal Adhesion',\n", | |
| " 6:'Single Epithelial Cell Size',\n", | |
| " 7:'Bare Nuclei',\n", | |
| " 8:'Bland Chromatin',\n", | |
| " 9:'Normal Nucleoli',\n", | |
| " 10:'Mitoses',\n", | |
| " 11:'Class' \n", | |
| " }\n", | |
| "\n", | |
| "columns = ['ID']\n", | |
| "\n", | |
| "for i in descrip.keys():\n", | |
| " name = descrip[i].split()\n", | |
| " name = [j[0] for j in name]\n", | |
| " name = ''.join(name)\n", | |
| " columns.append(name.upper())\n", | |
| "\n", | |
| "df = pd.read_csv('data/data.txt')\n", | |
| "df.columns = columns\n", | |
| "\n", | |
| "#drop the first columns, that is pacient ID\n", | |
| "df.drop('ID', axis=1, inplace=True)\n", | |
| "\n", | |
| "#refatoring the column label\n", | |
| "df['C'] = df['C'].apply(lambda x: 1 if x == 2 else 0)\n", | |
| "\n", | |
| "#shape of data\n", | |
| "df.shape" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "CT int64\n", | |
| "UOCS int64\n", | |
| "UOC int64\n", | |
| "MA int64\n", | |
| "SECS int64\n", | |
| "BN object\n", | |
| "BC int64\n", | |
| "NN int64\n", | |
| "M int64\n", | |
| "C int64\n", | |
| "dtype: object" | |
| ] | |
| }, | |
| "execution_count": 4, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#check out the type of the atributes\n", | |
| "df.dtypes" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "CT False\n", | |
| "UOCS False\n", | |
| "UOC False\n", | |
| "MA False\n", | |
| "SECS False\n", | |
| "BN False\n", | |
| "BC False\n", | |
| "NN False\n", | |
| "M False\n", | |
| "C False\n", | |
| "dtype: bool" | |
| ] | |
| }, | |
| "execution_count": 5, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#verifing whether has some miss values\n", | |
| "df.all().isnull()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "16" | |
| ] | |
| }, | |
| "execution_count": 6, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "#number of null values\n", | |
| "df.BN.tolist().count('?')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "(682, 10)" | |
| ] | |
| }, | |
| "execution_count": 7, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "# for i in range(len(df.BN)):\n", | |
| "# if df['BN'][i] == '?':\n", | |
| "# df.drop(i, axis=0, inplace=True)\n", | |
| "for i in range(len(df.BN)):\n", | |
| " try:\n", | |
| " float(df['BN'][i])\n", | |
| " except:\n", | |
| " df.drop(i, axis=0, inplace=True)\n", | |
| "df.shape" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 8, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "df.BN = df.BN.astype('int64')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "CT int64\n", | |
| "UOCS int64\n", | |
| "UOC int64\n", | |
| "MA int64\n", | |
| "SECS int64\n", | |
| "BN int64\n", | |
| "BC int64\n", | |
| "NN int64\n", | |
| "M int64\n", | |
| "C int64\n", | |
| "dtype: object" | |
| ] | |
| }, | |
| "execution_count": 9, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "df.dtypes" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/html": [ | |
| "<div>\n", | |
| "<style>\n", | |
| " .dataframe thead tr:only-child th {\n", | |
| " text-align: right;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe thead th {\n", | |
| " text-align: left;\n", | |
| " }\n", | |
| "\n", | |
| " .dataframe tbody tr th {\n", | |
| " vertical-align: top;\n", | |
| " }\n", | |
| "</style>\n", | |
| "<table border=\"1\" class=\"dataframe\">\n", | |
| " <thead>\n", | |
| " <tr style=\"text-align: right;\">\n", | |
| " <th></th>\n", | |
| " <th>CT</th>\n", | |
| " <th>UOCS</th>\n", | |
| " <th>UOC</th>\n", | |
| " <th>MA</th>\n", | |
| " <th>SECS</th>\n", | |
| " <th>BN</th>\n", | |
| " <th>BC</th>\n", | |
| " <th>NN</th>\n", | |
| " <th>M</th>\n", | |
| " </tr>\n", | |
| " </thead>\n", | |
| " <tbody>\n", | |
| " <tr>\n", | |
| " <th>count</th>\n", | |
| " <td>682.000000</td>\n", | |
| " <td>682.000000</td>\n", | |
| " <td>682.000000</td>\n", | |
| " <td>682.000000</td>\n", | |
| " <td>682.000000</td>\n", | |
| " <td>682.000000</td>\n", | |
| " <td>682.000000</td>\n", | |
| " <td>682.000000</td>\n", | |
| " <td>682.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>mean</th>\n", | |
| " <td>4.441349</td>\n", | |
| " <td>3.153959</td>\n", | |
| " <td>3.218475</td>\n", | |
| " <td>2.832845</td>\n", | |
| " <td>3.236070</td>\n", | |
| " <td>3.548387</td>\n", | |
| " <td>3.445748</td>\n", | |
| " <td>2.872434</td>\n", | |
| " <td>1.604106</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>std</th>\n", | |
| " <td>2.822751</td>\n", | |
| " <td>3.066285</td>\n", | |
| " <td>2.989568</td>\n", | |
| " <td>2.865805</td>\n", | |
| " <td>2.224214</td>\n", | |
| " <td>3.645226</td>\n", | |
| " <td>2.451435</td>\n", | |
| " <td>3.054065</td>\n", | |
| " <td>1.733792</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>min</th>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>25%</th>\n", | |
| " <td>2.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>2.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>2.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>50%</th>\n", | |
| " <td>4.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>2.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>3.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>75%</th>\n", | |
| " <td>6.000000</td>\n", | |
| " <td>5.000000</td>\n", | |
| " <td>5.000000</td>\n", | |
| " <td>4.000000</td>\n", | |
| " <td>4.000000</td>\n", | |
| " <td>6.000000</td>\n", | |
| " <td>5.000000</td>\n", | |
| " <td>4.000000</td>\n", | |
| " <td>1.000000</td>\n", | |
| " </tr>\n", | |
| " <tr>\n", | |
| " <th>max</th>\n", | |
| " <td>10.000000</td>\n", | |
| " <td>10.000000</td>\n", | |
| " <td>10.000000</td>\n", | |
| " <td>10.000000</td>\n", | |
| " <td>10.000000</td>\n", | |
| " <td>10.000000</td>\n", | |
| " <td>10.000000</td>\n", | |
| " <td>10.000000</td>\n", | |
| " <td>10.000000</td>\n", | |
| " </tr>\n", | |
| " </tbody>\n", | |
| "</table>\n", | |
| "</div>" | |
| ], | |
| "text/plain": [ | |
| " CT UOCS UOC MA SECS BN \\\n", | |
| "count 682.000000 682.000000 682.000000 682.000000 682.000000 682.000000 \n", | |
| "mean 4.441349 3.153959 3.218475 2.832845 3.236070 3.548387 \n", | |
| "std 2.822751 3.066285 2.989568 2.865805 2.224214 3.645226 \n", | |
| "min 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 \n", | |
| "25% 2.000000 1.000000 1.000000 1.000000 2.000000 1.000000 \n", | |
| "50% 4.000000 1.000000 1.000000 1.000000 2.000000 1.000000 \n", | |
| "75% 6.000000 5.000000 5.000000 4.000000 4.000000 6.000000 \n", | |
| "max 10.000000 10.000000 10.000000 10.000000 10.000000 10.000000 \n", | |
| "\n", | |
| " BC NN M \n", | |
| "count 682.000000 682.000000 682.000000 \n", | |
| "mean 3.445748 2.872434 1.604106 \n", | |
| "std 2.451435 3.054065 1.733792 \n", | |
| "min 1.000000 1.000000 1.000000 \n", | |
| "25% 2.000000 1.000000 1.000000 \n", | |
| "50% 3.000000 1.000000 1.000000 \n", | |
| "75% 5.000000 4.000000 1.000000 \n", | |
| "max 10.000000 10.000000 10.000000 " | |
| ] | |
| }, | |
| "execution_count": 10, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "features = df[df.columns[:-1]]\n", | |
| "labels = df['C']\n", | |
| "\n", | |
| "features.describe()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 52, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEBCAYAAADbxHY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACMlJREFUeJzt3W2IpWUdx/HfuGvppOUOpZskPYlXQ0HBBoGRCSWrEyQI\nQS+iIggEkyGCIFGEqBdFGGb0gCVZFEFFUDIxQmUUIsEQWTR76SQIthSxY6WNsbZtL2Y2NdYHdM7/\nOs58Pq/OnrNznf/enPOde++5zz0zx48fDwA1Thk9AMBuIroAhUQXoJDoAhQSXYBCogtQaO9TPbiy\nsuJ8MoBn4cCBAzMnu/8po7v1hds/TaHV1dXMz8+PHmNq2B5PZHs8xrZ4oueyPVZWVp70MYcXAAqJ\nLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEK\niS5AIdEFKPS0vyPt+eymm27K3XffndnZ2dGjTIX19fUcPXo0+/fvHz3K1Jibm8v1118/egx2kR0d\n3bW1tdxz3/05Njs3epSpsGfjSJLkTxsn/SWlu86ejfVc8JpXjh6DXWZHRzdJjs3O5ZHXLYweYyqc\nfmgpSWyPLSe2B1RyTBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0\nAQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BI\ndAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhSYS3eXl5SwvL09iaYCJ\nW15ezl133TWRtScS3aWlpSwtLU1iaYCJW1payp133jmRtR1eACgkugCFRBegkOgCFBJdgEKiC1BI\ndAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQ\nSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqIL\nUEh0AQqJLkAh0QUoJLoAhfZOYtEHH3wwR44cyeLi4iSWf8bW1tYyc2wi/0R2gJlHH8kDD/x9+Ot0\nWmxsbGR2dnb0GFNhbW0tZ5xxxkTWtqcLUGgiu4H79u3Lvn37cuONN05i+WdscXExK/f9ZegMTK/j\np56eV+w/e/jrdFqsrq5mfn5+9BhTYXFxMRsbGxNZ254uQCHRBSgkugCFRBegkOgCFBJdgEKiC1BI\ndAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQ\nSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqIL\nUEh0AQqJLkChvZNYdGFhYRLLApRYWFjI4cOHJ7L2RKJ78ODBSSwLUOLgwYNZXV2dyNoOLwAUEl2A\nQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJd\ngEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQS\nXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFNo7eoBJ27OxntMPLY0eYyrs2TiSJLbHlj0b60nO\nHD0Gu8yOju7555+fjY2NzM7Ojh5lKqyvn5qjR49m//5zRo8yJc7J3Nzc6CHYZXZ0dK+++uqsrq5m\nfn5+9ChTw/Z4otXV1dEjsMs4pgtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5A\nIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkChmePHjz/pgysrK0/+IABP6sCBAzMnu/8powvA\n9nJ4AaCQ6AIU2jt6gElprZ2a5JYkr0rywiSf6r3/aOhQg7XWzk6ykuSS3vuh0fOM1Fr7RJJ3J3lB\nki/13r8+eKRhtt4rt2bzvXIsyYd34+ujtfaWJJ/pvV/cWjs/yTeSHE/y+yRX9d7/sx3Ps5P3dN+X\n5Ejv/W1JLk3yxcHzDLX1xvpqkkdGzzJaa+3iJBcmeWuStyc5b+hA4y0k2dt7vzDJJ5N8evA85Vpr\nH0/ytSSnbd11Q5Jrt/oxk+Ty7XqunRzd7yW5buv2TJJ/D5xlGnwuyVeSHB49yBQ4mOR3SX6Y5MdJ\nbhs7znD3JNnbWjslyYuTPDp4nhH+mOSKx/35QJJfbN3+SZJ3btcT7djo9t4f7r0/1Fo7M8n3k1w7\neqZRWmsfTPLX3vvy6FmmxEuTvDnJe5JcmeTbrbWTnt6zSzyczUMLh5LcnOQLQ6cZoPf+gzzxm81M\n7/3EqV0PJXnJdj3Xjo1ukrTWzkvy8yTf6r1/Z/Q8A30oySWttTuSvCnJN1tr+8eONNSRJMu996O9\n957kX0leNnimkT6aze1xQZI3Jrm1tXba03zNTvf447dnJvnbdi28k3+Qdk6S25N8pPf+09HzjNR7\nv+jE7a3wXtl7//O4iYb7VZLF1toNSV6e5EXZDPFu9WAe28tbT3Jqkj3jxpkKv2mtXdx7vyPJZdnc\nedsWOza6Sa5Jsi/Jda21E8d2L+u97/ofJO12vffbWmsXJfl1Nv+3d1Xv/djgsUb6fJJbWmu/zObZ\nHNf03v85eKbRPpbk5tbaC5KsZvMQ5bbwiTSAQjv6mC7AtBFdgEKiC1BIdAEKiS5AoZ18yhg7RGvt\n9Uk+m2Q2yRlJlrL5Kap3JTkryblJ/rD119+xy0//YsqJLlOttXZWku8muaL3fm9rbU82r6tx+9bV\noC7O5oc93jtyTnimHF5g2l2e5Ge993uTZGsv9v3ZvGwnPO/Y02XanZvkvsff0Xt/eNAs8JzZ02Xa\n3Z//u95ta+3VWx/jhecd0WXa3Zbk0tbaa5P/XYz9hiRvGDoVPEuiy1Trvf8jyQeyefGRO5LcleS3\nSb48ci54tlzwBqCQPV2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhT6LyxUeygx992xAAAAAElF\nTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2007a34050>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEBCAYAAABojF4hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOWh//HPTPY9IQuQQMISeAwgiyCbgKi4gFXU2mot\nri/r1trb9dfaXzfvbXv7a29r7WK9tYtaa7XWre51QWQXAgJi8kBYAySEJGTPZJ3fHwk20EC2mZyZ\nyff9V5Izc+bLOH5z8pznPMfl9XoREZHg53Y6gIiI+IYKXUQkRKjQRURChApdRCREqNBFREKECl1E\nJESEO/XC+fn5mi8pItIPM2fOdHX3c8cKHWDmzJlOvnyfFBQUkJeX53SMPlHmwRFsmYMtLyhzV/n5\n+afdpiEXEZEQoUIXEQkRKnQRkRChQhcRCREqdBGREKFCFxEJESp0EZEQoUIXEQkRjl5YJB2e3HjQ\np/u7YU62T/cnIsFBR+giIiFChS4iEiJU6CIiIUKFLiISIlToIiIhQoUuIhIiVOgiIiFChS4iEiJU\n6CIiIUKFLiISIlToIiIhQoUuIhIiVOgiIiFChS4iEiJU6CIiIUKFLiISIlToIiIhQncskqCnOz6J\ndNARuohIiFChi4iEiB6HXIwxbuAhYBrQBNxurS3qsv3LwPWd375qrb3fGBMDPAFkALXAzdbaY74O\nLyIi/9KbI/SrgGhr7Tzgm8DPTmwwxowDPgvMB+YClxhjpgJ3AzustQuBx4Fv+zq4iIicrDeFvgB4\nHcBauwGY1WVbMXCZtbbNWusFIgBP1+cArwFLfJZYRES61ZtZLolAdZfv24wx4dbaVmttC1BujHEB\nPwW2Wmt3GWO6PqcWSOpuxwUFBQOIPrg8Ho/f8paU1vh0fwUF9YB/M/tLfzL76/3rrWB7n4MtLyhz\nb/Wm0GuAhC7fu621rSe+McZEA3+ko7jv6eY5CUBVdzvOy8vra17HFBQU+C3v1hrfTrvLy+uYdufP\nzP7Sn8z+ev96K9je52DLC8rcVX5+/mm39WbIZS2wDMAYMxfYcWJD55H5i8A2a+2d1tq2U58DLAVW\n9z22iIj0RW+O0J8HLjbGrANcwK3GmK8ARUAYcD4QZYxZ2vn4+4DfAo8ZY9YAzcANPk8uIiIn6bHQ\nrbXtwF2n/Liwy9fRp3nqp/obSkRE+k4XFomIhAgVuohIiFChi4iECBW6iEiIUKGLiIQIFbqISIhQ\noYuIhAgVuohIiFChi4iECBW6iEiIUKGLiIQIFbqISIhQoYuIhAgVuohIiFChi4iECBW6iEiIUKGL\niIQIFbqISIhQoYuIhAgVuohIiFChi4iECBW6iEiIUKGLiISIcKcDSOB7cuNBn+7vhjnZPt2fiHTQ\nEbqISIhQoYuIhAgVuohIiFChi4iECBW6iEiIUKGLiIQIFbqISIhQoYuIhAgVuohIiFChi4iECBW6\niEiIUKGLiIQIFbqISIhQoYuIhIgel881xriBh4BpQBNwu7W26JTHpANrganWWo8xxgUcAnZ3PmS9\ntfY+nyYXEZGT9GY99KuAaGvtPGPMXOBnwPITG40xlwI/BkZ0ec54YIu19gpfhhURkdPrzZDLAuB1\nAGvtBmDWKdvbgSVAZZefzQSyjDErjTGvGmOML8KKiMjp9eYIPRGo7vJ9mzEm3FrbCmCtfRPglM4u\nAf7bWvuMMWYB8ARw7qk7Ligo6G/uQefxePyWt6S0xqf7KyioB3yX2V/5utOfzIOZrzv+/Gz4Q7Dl\nBWXurd4Ueg2Q0OV794kyP4PNwInCX2OMyTTGuKy13q4PysvL61NYJxUUFPgt79Ya397iLS+v4xZv\nvsrsr3zd6U/mwczXHX9+Nvwh2PKCMneVn59/2m29GXJZCywD6BxD39GL53wP+FLnc6YBxaeWuYiI\n+FZvjtCfBy42xqwDXMCtxpivAEXW2n+c5jk/Bp4wxlxOx5H6Lb4IKyIip9djoVtr24G7TvlxYTeP\nG9Pl6+PA5QMNJyIivacLiyRoNbe2c7iqkZLqRlrb2p2OI+K43gy5iAQET0sbq3eX8+qOElbvLqe8\nrunjbeFuF6NSYhibFsfccakkREc4mFTEGSp0CXgHKxr449p9/D3/EHVNrSTFRHDhWRnkpMYyPDGa\nDw5Wcbiqkf0V9azadYyN+yq5YlomU7OScLlcTscXGTQqdAlYOw5V8/CqPbz2YQlhbhdXTM1k+Yws\n5o9PJSLsX6OFXi9MG50MQFmNh79vOcTTm4rZcaiaa87JIjZSH3MZGvRJl4CzeX8lv3qniFW7jpEQ\nHc4di8Zzy/wxjEiK7vG5GYnR3LloPGuLynmz4Ch/Xn+A2xaMPekXgEioUqFLQGhr9/JWwVF++cYR\ndpbtZVhcJF+/1HDjvBwS+zgeHuZ2sWhiOsmxETy1qZi/5x/iunNH49bwi4Q4Fbo4qrK+mRe2Hubx\n9fvZX9FARlw43/3EJK6fPXrAQyVTRyVT1dDC6ztLSYmN5LIpI3p+kkgQU6HLoDsxW+X5rYd486Oj\ntLR5mZGdzNcvPYucsONMmTzWZ6+1cEIalQ3NvLf7GMMTo5iRneKzfYsEGhW6DIrG5jZ2ldXy0ZEa\nfvjKR9Q3tzEsLpKb5o3h07NGY0Z0LBdUUFDl09d1uTpOppZWe3hlRwlmRIJOkkrI0idb/Ka8romP\njtRQWFrDwcoG2r0QFxXOldOzWDplBHPHpRIZ7v+TlWFuF8unZ/KblUX8c+dRrpqR5ffXFHGCCl18\nqqKuiS0Hq9h5pJqy2o4Lf0YmRbNoYjpnDU9g1LBYVszNGfRcI5NimDculXV7KpiZk8LoYbGDnkHE\n31ToMmCt7e1sP1TN5v2V7K9owAWMTYtj9thh5I1MJCU20umIAFyUN5wdh6t5cdth7lmcq1kvEnJU\n6AGm3eulrKaJ/RX1HDreSFp8JJNGJpKeEBVwVz22tLWz+cBx3tt1jOrGFtLiI7l00nCmZ6eQFBN4\nl95HR4Sx7OyRPLWpmE37K5kzNtXpSCI+pUIPIAcrG3hy4wFqPB33D4mNDKOhuY1/fnSU1LhIFk1I\nZ9aYFMeL3ev18kFxFa/vLKXW00r2sFiump7FxOHxjmfrydlZSazfW8G79hgzc1IId+uCIwkdKvQA\nsetoLX/ZeICE6AiuPWcUY9LiSImNoMbTSkFJDR8UV/H8B4f58Eg115wzyrEj4JLqRv6x7QgHKhoY\nlRLDp2eNZlxaXMAX+Qkul4sLTAaPrtvPtuIqZuYMczqSiM+o0APA9kNVPLP5EBmJUdwyf8xJKwUm\nxUQwd1wqs8cOY+O+Sl7/sIQH397FVdOzmDoqedAytra3s7KwjFW7jhEdEcY1M7I4JyelX+PQT248\n/S3jSkprfH5LuVNNyIgnMymaVbuOMSO7f/8GkUCkQnfYpv2VPL2pmJzUWG6cO4aYyLBuH+d2uZg3\nLpWJGfE8k3+IpzYVc6y2iQvPyvD70XFptYdn8ospqfZwTnYyy84eGdRzuV0uF+ebDP76/kF2Hqnh\n7KwkpyOJ+IQGEB3U2tbOd174kKSYCG6ZP/a0Zd5VanwUty8Yy4zRybxdWMbTm4tp8dPNHdrbvfx+\n9V5+824RNZ5WVszJ4dqZA78kPxBMzkwkLT6Kd20ZXq9udyuhIfj/zwxij68/QGFpLZ+dk92nC2zC\nw9xcO3MUGQlRvPHRUSrrm1kxJ4dEH46rl9V4+Ooz21i9u5y8kYlcPSOL+KjQ+bi4XS7On5jOs1sO\nsetoLWZEotORRAZMR+gOKav18MCbu1g0MZ1JI/teJieGDT47J5uymiZ+824RxZUNPsn2yvYSLntw\nNZv2V/Kjq89mxZzskCrzE6aPTiYpJoLVReVORxHxCRW6Q378aiGe1ja+f8WkAY2BT85M4q7zxxPu\ndvHI6r1s2l/Z7yGEY7VN3P1EPp9/cgujUmJ4+d6F3DAnO2hmsPRVmNvF7LHD2Hus/qTb2YkEKxW6\nA7YVV/Hc1sPcsWgc49LjB7y/EUnR3LM4l5zUWJ7fepgVf9jIgYr6Xj/f09LGn9bu4+IHVvF2YRnf\nuOwsnrt7PrkZA88W6GbmpOB2waZ9lU5HERmw0Ps7Ogg8um4/8VHh3L0412f7jIsK59bzxvL+vkpW\nFpZxyQPvcXVeIndn1JOTGtftc+qaWnl+62F+804RpTUe5o1L5b+umjIkivyExOgIJo1MJP/gcZZM\nGq47G0lQU6EPsvK6Jl7ZXsJnZo/2+bi02+Vi7rhUvrUsj/tf2slTO0p5ase7zMhOZtGEdOKiwogK\nD+N4QzNri8rZerCK1nYvs3JS+Pl105g/Ps2neYLF7LGpfHikhp1Hqpk+WuulS/BSoQ+ypzcV09zW\nzo3z/Lfi4IikaH67Yibvbd7BR/WxvLD1MA++vfvj7S5XxyXwn1s0jgvPymBWjvPLCThpXHocqXGR\nbNxXqUKXoKZCH0Rt7V6e3HiQeeNSyc1I8PvrpceFc9es8dx1/nha29rxtLbjaWkjMtzd5/t0hjK3\nq+Pk6GsfllJa43E6jki/acBwEL1TWMbhqkZu8uPR+emEh7mJjwonLT5KZd6Nc7JTCHe7eF8nRyWI\nqdAH0ePr9zMiMZqLJw13OoqcIi4qnEmZiWwrrqKptc3pOCL9okIfJPvK61m9u5wb5mQTrpkUAemc\n7BQaW9pYWVjmdBSRflGzDJLntx7G5YLrzx3tdBQ5jfHp8SREhfPslsNORxHpF50UHSSv7Shh9phh\nZCRGOx1FTiPM7WL66GRWFpZRUddEanyU05GC1pmWSO6PGVpqp1d0hD4Idh+tZXdZHZdPHel0FOnB\njOwUWtu9vLTtiNNRRPpMhT4IXtlRgssFl00e4XQU6cGIpGgmZyZq2EWCkgp9ELy2o5RzczTcEiyu\nOWcUOw5Xs+tordNRRPpEhe5nRWV12KO1LDtbR+fBYvn0TMLcLp7dcsjpKCJ9okL3s1d3lACw9GyN\nnweLtPgoFk9M58WtR2hv192MJHio0P3s1R0lzMpJYbiGW4LK8hlZlNZ42KgrRyWIqND9aO+xOgpL\na1mmo/OgsyQvg9jIMF78QCdHJXj0OA/dGOMGHgKmAU3A7dbaolMekw6sBaZaaz3GmBjgCSADqAVu\nttYe83X4QPfGzqMALNX4edCJjQzn0skjeHVHCfcvn0xUeM838BZxWm+O0K8Coq2184BvAj/rutEY\ncynwT6Bra90N7LDWLgQeB77tm7jBZaUtY9LIREYmxTgdRfph+fRMajytvDv0jkUkSPWm0BcArwNY\nazcAs07Z3g4sASq7ew7wWuf2IaXG00L+geMsNulOR5F+WpCbRmpcpIZdJGj05tL/RKC6y/dtxphw\na20rgLX2TQBjzOmeUwskdbfjgoKCvuZ1jMfj6VPeNQfqaGv3Mja6ocfnlZTWDDTeSQoKOu4n2tfM\np+PrfGfS2tJCSWnJoL1ed068fwDzR0fz+s6jbN62k7jI7o9/fPU+D5bByOvrz0xeZGRQvcfgzOei\nN4VeA3S9G4P7RJn38jkJQFV3D8rLy+vFyweGgoKCPuV9dOd2EqLDuXrh9B5XV9xa49t1L/LysoG+\nZz4dX+c7k5LSEkaOcPYk8on3D+DWuOO8VLiOfS2JfGpa9wur+ep9HiyDkdfXn5no6Pqgeo/Bf+9z\nfn7+abf1ZshlLbAMwBgzF9jRl+cAS4HVvXhOyPB6vby7q4yFE9K0VG6QmzE6mexhsbz4gdZ2kcDX\nm7Z5HvAYY9YBDwBfNsZ8xRhz5Rme81tgsjFmDXAHcP/AowaPgpJajtY0sdhkOB1FBsjlcnHV9EzW\n7SnnqG5PJwGuxyEXa207cNcpPy7s5nFjunzdAHxqoOGC1bu7Om6QsHiiToiGguUzsvjlO0W8tO0I\nty8c53QckdPSeIAfvGuPMWlkohbjChHj0+OZOiqJ57dqtosENhW6j2m6Ymi6anoWO4/UsFsrMEoA\nU6H72Nrd5bS1ezV+HmKumNaxAuMLmpMuAUyF7mPv7T5GQlQ452QnOx1FfCg9IYoFuWm8oBUYJYCp\n0H1sTVE588anarpiCLpqRiaHqxrJP3jc6Sgi3VLr+NDBigaKKxtZMCHN6SjiB5dMGkFMRJhOjkrA\nUqH70JqicgDOy1Whh6K4qHAunTycl7cdwdPS5nQckX+jQvehtUXljEyKZlxanNNRxE8+OXMUNZ5W\n3io46nQUkX+jQveR9nYva/eUc15uGi6Xy+k44ifzx6eRmRTN3zbrfqMSeFToPvJRSQ1VDS0s0HBL\nSAtzu/jkzFGs3n2MkupGp+OInESF7iMnxs/n56Y6nET87dqZo/B64bktOjkqgUWF7iNrdpdjhieQ\nkaDL/UNdTmocc8YO45nNxXi9mpMugaM366FLDzwtbby/v5IVc3KcjgLAkxs71qIuKa0Z1LXMh5JP\nzRrN157ZxuYDx4l3OoxIJx2h+0D+geM0t7azUPPPh4xlZ48gLjKMZzYXOx1F5GMqdB9YU1ROuNvF\n7LHDnI4igyQ2MpzLp47k5e0l1De3Ox1HBFCh+8S6onJmZCcTF6URrKHkhjk5NDS38c5ercAogUGF\nPkDVDS1sP1zN/PEabhlqpo9OZuqoJF4qrNHJUQkIKvQBWr+3Aq9Xl/sPVTfNG0NxdQvr91Q4HUVE\nhT5Q6/aUExMRxvTRWi53KPrE1JEkRrl5fP0Bp6OIqNAHam1RObPHDiMyXG/lUBQdEcYlExJ4s+Co\nrhwVx6mFBqC02sOeY/W63H+Iu3xiIu1e78fz/0WcomkZA7Bujy73FxiREMGFJoO/vn+Qz1+QS3RE\nmN9fcyC/PLq74OyGOdkDjSQBQEfoA7CmqJxhcZHkjUh0Ooo47LYFYymva+bv+VqFUZyjQu8nr9fL\nuqIK5o1Lxe3WcrlD3fzxqczITua37+6hpU0XGokzVOj9tLe8ntIaj4ZbBACXy8W9F+ZyuKqRF3SL\nOnGICr2f1p243ZwuKJJOF5gMJmcm8tC7e2hr14VGMvhU6P20pqicrOQYclJjnY4iAeLEUfq+8npe\n3n7E6TgyBKnQ+6G1rZ11RRUsnKDbzcnJLpk0ggkZ8fxmZRHtOkqXQaZC74dth6qpbWpl4YR0p6NI\ngHG7XXzhwlx2Ha3jOY2lyyBToffD6t3HcLngPJ0QlW5cMTWTGdnJ/Pi1Qmo8LU7HkSFEhd4Pq3eX\nM3VUMsmxkU5HkQDkdru4/8rJVNQ38au3dzsdR4YQXSnaR9WNLXxQXMU9i8c7HUUC2NRRyVw3azR/\nWruf687NJjdDN6o7E6/XS3ldM4erGjh8vJGqxhZS4yJJT4gmMzmaGbp2r1dU6H20fk8Fbe1ejZ9L\nj752qeGVHSXc/9JOHr9ttk6gd6Pd6+WjIzWstGWUVHsAiAhzkRgdQWFJLW2d68xvyIrhv1NHkZuR\n4GTcgKdC76PVu48RFxnGjGwtlytnlhYfxZeXTOQ/X/6IZ7cc5tqZo5yOFFAKS2t4/cNSymqbSI2L\n5MppmYxJjSM9IYowt4u2di/H65v5qKSG1bvKuPQXq7lhdjbfWpZHTKT/18sJRir0PlpTVM688alE\nhOn0g/Ts5vlj+OdHpXznhQ+ZNiqJCcN1hNnY3MbL24+wtbiK9Pgorps1mrNHJeE+5S+YMLeLtIQo\nFiWkc8uUKF47CI9vOMDuslp+f/O5xOuWj/9GrdQHByrqOVDRoOEW6bUwt4tfXj+DuKgw7vnLFhqa\nW52O5ChbWssv3t7FtkNVXGDSufeiXKaNTv63Mj9VUnQY9y+fwi+um86m/ce58Q8bqW7UDKJTqdD7\nYPXujsv9F07Q5f7SexmJ0Txw3XSKjtXxvRd3Oh3HEa1t7byy/QiPrd9PbGQYdy/O5eJJIwh3962C\nlk/P4jc3nMOHh6u54ZENVDeo1Lvq8W8WY4wbeAiYBjQBt1tri7ps/xxwJ9AK/MBa+7IxZhiwC/iw\n82HPW2sf9HX4wfbermNkJccwNi3O6SjiR31da7y79cVPdcOcbO69IJdfvlPE2PQ47lmcO5CIQaWi\nromnNhVzuKqRueNSWTplxICGLC+bMoLf3TSLOx7fzFef2cYjN83UCedOvRmEugqIttbOM8bMBX4G\nLAcwxowAvgjMAqKBNcaYN4FzgL9aa+/1T+zB19zmZU1ROVfPyNKHR/rlP5ZM5EBlAz953dLS6uWL\nF+WG9GfJ6/Xy/v5KXttRSpjbxYo52UzKTPLJvi8wGXxrWR73v/QRj6zeyx2LNI0YelfoC4DXAay1\nG4wxs7psmw2stdY2AU3GmCJgKjATmGmMWQWUAV+01pb4Nvrg2lHaSENzG0vyhjsdRYJUmNvFzz89\nnXC3mwfe2kVLWztfvWRiSJZ6raeF57Ycxh6tJTc9nk/OHEVSTIRPX+OW+WPYtL+S//e6ZUZ2CueO\nGebT/Qej3vzdkwhUd/m+zRgTfppttUASUAh811p7PvAC8CsfZHXUxkMNREe4mTdel/tL/4W5Xfz0\n2qlcf+5ofr2yiDv/nE9ZjcfpWD7T1NrG/67aw8/f3MWeY3V8YupIbjlvjM/LHDpWt/zxJ6cyOiWG\nLzy5hYq6Jp+/RrDpzRF6DdB1rpXbWtt6mm0JQBWwEWjo/NnzwH92t+OCgoI+hXWK1+tlY3E904ZH\ns69ol8/3X1Ja4/N9ArS2tFBSGlx/GIVq5oKC+pO+vzEvnNj2YTzxQRkX/s9Kbp81jEtyE3p9tN7d\nZ6bd66WqsY3jnjbqmtqpaWqjscVLW7uXVq8XvBAV7ibC7SWuuIGkaDfJMWGkRIdRkFjfzav0Xkub\nl7UH6nlsayWlda2MSY5gwZh4UmJaOHq0dED7BsiLjDxtX3xtfgpfeuUwX/3Ler6xKHD+gvZ4PIPe\ncb0p9LXAFcDfOsfQd3TZ9j7wQ2NMNBAF5NFxIvQx4Fngb8BFQH53O87Ly+t/8kG062gtZfX7+NIl\n48nL8/3NdHs6odZfJaUljBwx0i/79pdQzdzd52byJFixuI5vPruDX6wr57nCBq6ekcU152SRk3rm\nE+9ry/dSWuOhpMpDSbWH0upGymqbaO2yZG+420VCdDjhYW4i3G5wQU1jO/WeFpramk/a32t7PEzJ\nSmRyZhKTRiaSNzKR4YlRZ/wF09rWTmFpLS9+cJhntxymsr6ZicPj+cmnJ3HoeOMZ8/dVdHT9afsi\nDyhqjOUXb+3mlsWpLDYZPn3t/iooKPBLx+Xnd1unQO8K/XngYmPMOsAF3GqM+QpQZK39hzHml8Bq\nOoZv/q+11mOM+SbwR2PMPUA9cPtA/xFOeqvgKAAXnhUYHxQJHePS43nqjrm8tP0Iz2w+xC/f2c2D\nb+8mIyGK7GGxZA+LJTLcjaelDU9LOyU1HvaX1580BzshKpwRSdHMS49nRFI06QlRJMdGEhcZ1m0h\nl5SWkJY+nMr6ZirqmiirbSIizM2HR6p5dce/jqZTYiMYlRLLyKRohidGE+Z20dLWTlNrO0VldRSU\n1NDU2k6428WSvOFcN3s0iyakE+Z29Xmm0EDdvXg8L207wrdf+JB/fnkRsZFD86KjHv/V1tp24K5T\nflzYZfsjwCOnPGcfcIEvAgaCdwrKyB0WyYikaKejSAhyu10sn57F8ulZlFQ38sr2EnYdreVARQMb\n9lbQ0u4lJiKM6Ag36QlRfGLqSI7XN3+8cFVCdN/HpyPC3AxP7CjqSXRMqwSo8bRQWFJLQUkNhaW1\nHKlq5EBFAxv3VeL1eokIcxMR5iYnNZYb5+YwJSuJ83LTSE+I8vG70jdR4WH86Oqzue53G3jwrd3c\ntyw4/vr3taH5a6wPKuub2XLwONdP1dot4n8jk2K4feG4Hh/nryPgxOgIZo8dxuyxwTdjZM64VK4/\ndzS/X7OP5dOzmJQ59JZo1JWiPXjXltHuhdmjdO9QkUB339I8kmMiuP+lnXi9Q+8WgCr0HrxdWEZ6\nQhQTUp39k1JEepYUG8FXLpnIxn2VvLFz4LNrgo0K/Qwam9tYWVjGkryMHhcPEpHAcN2s0Zw1IoEf\nvlpAU2ub03EGlQr9DFbaMhqa2/jE1Eyno4hIL4WHufn25ZMormzkT2v3Ox1nUKnQz+Dl7UdIi49k\nThCeIBIZyhZMSGNJXga/fqeIY7VD5wpSFfpp1De18k5hGUunjCRcN7MQCTrfWpaHp6WNn79pnY4y\naDRt8TTeKjiKp6WdT0wNrqsWJTAN9oU20nHR1oq5OTy+fj+3njeWiUPgblE69DyNl7eXMDwxSiu4\niQSxL140gbiocH78WmHPDw4BKvRu1HhaWGWPcfnZmbjdmt0iEqyGxUXy+QtyeaewjHVF5U7H8TsV\nejfe3HmU5rZ2PjFNwy0iwe6W+WPISo7hh68W0N4e2hcbqdC78fL2I2QlxzBjtC73Fwl20RFhfP1S\nw84jNbzwwWGn4/iVCv0UJdWNvLe7nCunZ4bknWREhqIrp2UydVQSP33D0tgcuhcbqdBP8fSmYtq9\nXj5zru/XPRcRZ7jdLr59+SRKqj387r29TsfxGxV6F61t7Tz1fjELJ6STnarFuERCyeyxw1h29gge\nXrWH0urQue1fVyr0Lt4pLKO0xsNn5+joXCQU3bc0j7Z2Lz95IzSnMarQu3jy/YMMT4ziIt2ZSCQk\njR4Wy20LxvLclsNsP1TldByfU6F3Kq5sYNWuY1x/brYu9RcJYZ+/YDxp8ZF87x87Q24ao5qr01/f\nP4gLuH72aKejiIgfJURHcN/SPLYerOLpzcVOx/EpFTod657/bXMxF56VwcikGKfjiIifXXNOFnPG\nDuPHrxVSXhc6qzFqcS7gLxsPUF7XzB2LxjsdRcQRQ23xMJfLxQ+vnsLSB1fz368W8rNPT3M6kk8M\n+SP0xuY2Hl61h/NyU4Pyxrgi0j+5GQl8buE4nt1yiA17K5yO4xNDvtCf2NBxdP7lJROdjiIig+ze\nCycwKiWG+57bQUNzq9NxBmxIF3pDcysPr9rDwglpzNIyuSJDTkxkGD+5dir7K+r50asFTscZsCFd\n6H9ef4CK+ma+tGSC01FExCHzx6dx+4KxPLHhICsLy5yOMyBDttCrGpr53/f2snBCGjNzdHQuMpR9\n9RLDWSMcT6HIAAAIU0lEQVQS+Prft1MRxLNehmyh/+CVAmoaW/jm0rOcjiIiDouOCOOB66ZT09jC\nN57dHrQXHA3JQl+16xh/zz/EXeePZ3JmktNxRCQA5I1M5L5lZ/FWQRkPvLXL6Tj9MuTmodc1tfKt\n53YwPj2Oey/KdTqOiASQW+aPobCkll+9U8SE4QlcOS3T6Uh9MuSO0H/6eiFHqhv5ybXTiAoPczqO\niAQQl8vFf101hdljhvH1Z7YF3QJeQ6rQX9lewmPrD3DzvDHMzElxOo6IBKDIcDe/XXEOafFR3Pbo\nZnYfrXU6Uq8NmULfvL+SL//tA2blpOhEqIicUWp8FI/dNhu3C67/3QYKSmqcjtQrQ6LQ9x6r4/bH\nN5OVHMMjN80iOkJDLSJyZrkZ8Tx95zwiw9185pENfHi42ulIPQr5Qi+ubOCWP20izOXi0VvPJSUu\n0ulIIhIkxqbF8fQd84iLDOf6323g1R0lTkc6o5Au9PV7Krjy12uoamjm9zfPIic1zulIIhJkslNj\neeaueeRmxHPPX7bw/X/spLm13elY3QrJQvd6vTyx4QA3/mEjw+IiefELC5iRrZOgItI/mckx/O3O\nedx23lgeXbefT/52HVsPHnc61r8JuUIvKKlhxR828u0XPmThhDSe//x5jE3TkbmIDExkuJvvXjGJ\nh1ecQ0m1h6sfWsd/PLWVw1WNTkf7WMhcWLT3WB2PrN7L05uKSYyJ4PtXTOLGeWMIc7ucjiYiIeSy\nKSNZMCGdh9/dwyOr9/LajlKWnj2Cz87J4dwxKbhcznVOj4VujHEDDwHTgCbgdmttUZftnwPuBFqB\nH1hrXzbGpAFPAjHAEeBWa22Dr8MfrfGwsrCMZ/IPkX/gOOFuFzfPH8N/XDSB5Fid/BQR/4iPCudr\nlxo+MyebR97by7NbDvHiB0fIzYhnSd5wzp+YTlzb4K8H05sj9KuAaGvtPGPMXOBnwHIAY8wI4IvA\nLCAaWGOMeRP4LvCktfZRY8w36Sj8B3wR+FhtE//zhmXjvgr2V3T8jsjNiOe+pWdx9YwsMhKjffEy\nIiI9ykqO4ftXTuYbl53FS9uP8NyWQ/x+9V4eXrWH6HAXU7KqmJSZSN7IRHKGxZKVEsPIpBgiw/0z\n2t2bQl8AvA5grd1gjJnVZdtsYK21tgloMsYUAVM7n/Ojzse81vm1Twp999Fa1u4pZ9LIRFbMzWHu\nuFQmZyY6+meOiAxtMZFhfHrWaD49azR1Ta2sKyrn5U27KfHAc1sOU9d04OPHRoa5efrOuX6ZqNGb\nQk8Eus6obzPGhFtrW7vZVgsknfLzEz/7N/n5+X0OHAU8uOTE7o7TVHqcLaV93k2/9Cdvbxg/nckw\no8KBY/7ZuZ8os/8FW16Ahgb//f/nD6nAzWfHdn4X9W/b24/tJd8P/wl6UyU1QEKX792dZd7dtgSg\nqsvPG7v87CQzZ87UIbWIiA/1ZiBnLbAMoHMMfUeXbe8DC40x0caYJCAP+LDrc4ClwGqfJRYRkW65\nvN4zn4ntMstlKuACbqWjrIustf/onOVyBx2/HH5krX3WGDMceIyOo/Ny4AZrbb3//hkiItJjoQ91\nPU3bDETGmAjgj8AYOgbwfmCt/YejoXrBGJMB5AMXW2sLnc7TE2PMfcCVQCTwkLX2Dw5HOqPOz8Vj\ndHwu2oDPBfL7bIyZA/w/a+1iY0wu8CjgpWMU4PPW2oC7/v6UzNOBX9HxXjcBN1lrj/rz9UPuSlE/\n+HjaJvBNOqZtBroVQIW1diFwGfBrh/P0qLNs/peO8y4BzxizGJgPnAecD4x2NFDvLAPCrbXzgf8E\nfuhwntMyxvwf4Pd0TIcG+Dnw7c7PtIvOqdOBpJvMDwL3WmsXA88B3/B3BhV6z06atknHnPtA9wzw\nnc6vXXRc9BXo/gd4mI4L0YLBpXScT3oeeAl42dk4vbILCO/8qzMRaHE4z5nsAa7p8v1MYFXn168B\nSwY9Uc9OzXy9tfaDzq/DAY+/A6jQe9bttE2nwvSGtbbOWltrjEkA/g582+lMZ2KMuQU4Zq19w+ks\nfZBGxy/3TwF3AX8xxgT6zK06OoZbCoFHgF86muYMrLXPcvIvHJe19sT48GmnQjvp1MzW2hIAY8x8\n4Av46FqcM1Gh9+xM0zYDljFmNLAS+LO19kmn8/TgNuBiY8y7wHTg8c6rkANZBfCGtbbZWmvpOPpK\ndzhTT75MR+aJdJwTeswYEyyXVncdL+92KnQgMsZcR8dfnpdba/0++V+F3rMzTdsMSJ2zjP4JfMNa\n+0en8/TEWrvIWnt+51jjB3ScPBqky8X6bQ1wmTHGZYzJBOLoKPlAdpx//bVZCUQAwXL7rq2d5y0g\nSKZCG2NW0HFkvthau3cwXjOghw4CxPN0HD2u41/TNgPdt4AU4DvGmBNj6UuttUFxwjEYdC5Ct4iO\nazHcdMy6aHM4Vk8eAP5ojFlNx8ycbwXRdOKvAo8YYyKBAjqGEgOWMSaMjiGtg8BzxhiAVdba7/nz\ndTVtUUQkRGjIRUQkRKjQRURChApdRCREqNBFREKECl1EJERo2qIMacaYycBPgFggHniVjisqLweS\ngUzgo86HXxQEUxNlCFOhy5BljEkGngKusdbu7pw7/Azwz87V8hYDd1lrr3cyp0hvachFhrLlwDvW\n2t0AnUffN9Gx9LBI0NERugxlmcBJl2Rba+scyiIyYDpCl6HsAKesY26MGdt5Sb9I0FGhy1D2Mh0L\nbI2Hj2+y8XNgiqOpRPpJhS5DlrW2BriZjkWf3gU2ANuA3zqZS6S/tDiXiEiI0BG6iEiIUKGLiIQI\nFbqISIhQoYuIhAgVuohIiFChi4iECBW6iEiIUKGLiISI/w96O0j5qAi9RwAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f20078a7c90>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEBCAYAAADbxHY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACYxJREFUeJzt3V2I5XUdx/HP6GzpuBZtmVnYE1O/5iaNjYJC80JTlx5A\nKLooCCkQShZLogfrIgoKlsoQKyx7Im96LlvZHrAoTIKhoODsLzaDJGkRTdNmw911uvifTa1V0eZ8\n/8fZ1+tq9pzZ3/nOn533/ve///ObhfX19QBQ47ixBwA4loguQCHRBSgkugCFRBegkOgCFFp8pCdX\nV1fdTwbwOGzfvn3haI8/YnSnv3Hjpyk0mUyysrIy9hhzw/F4KMfjAY7FQ/0/x2N1dfVhn3N5AaCQ\n6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBeg\nkOgCFBJdgEKP+jPSHo/LL788+/fvz7Zt22ax/GOytraWpaWlsceYG/NyPJaXl3PppZeOPQaUm0l0\nJ5NJ7v3nWv5818FZLP843DP2AHNm3ONx/Nqdo74+jGkm0U2SHL+YAy/ZMbPleeI6ce/usUeA0bim\nC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBC\nogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2A\nQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCM4nuoUOHkvvvn8XSADO3Z8+e3HzzzTNZeybR\nPXjwYLIuusAT0+7du3PTTTfNZG2XFwAKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh\n0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5A\nIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCoku\nQKHFsQfg2LNw8ED27duXnTt3jj1K1tbWsrS0NPYYc8GxeMC+ffuydevWmaztTBegkDNdyq1vOTHL\nLzw1V1555dijZDKZZGVlZewx5oJj8YCdO3dmbW1tJms70wUoJLoAhUQXoJDoAhQSXYBCogtQSHQB\nCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0\nAQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BI\ndAEKiS5AIdEFKLQ4i0W3bNmSw/cdmsXSADO3Y8eO3HbbbTNZeybRXVxcTA7dP4ulAWbu/PPPz2Qy\nmcnaLi8AFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoA\nhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6\nAIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhRanNnKhw/lxL27Z7Y8T1zHr92Z\n5NSxx4BRzCS6Kysr2b9/f7Zt2zaL5R+TtbW1LC0tjT3G3JiP43FqlpeXR54BxjGT6O7atWsWyz4u\nk8kkKysrY48xNxwPGJdrugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2A\nQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhRaWF9ff9gnV1dXH/5JAB7W9u3bF472+CNGF4CN5fIC\nQCHRBSi0OPYAs9Ja25Lk2iTPT/LkJB/rvf9g1KFG1lp7ZpLVJOf13veOPc+YWmsfSPKGJE9KcnXv\n/UsjjzSa6ffKVzN8rxxO8s5j8c9Ha+2VST7Zez+ntbac5CtJ1pP8Icm7eu/3b8TrbOYz3bcmuaP3\nflaSC5JcNfI8o5p+Y30hyYGxZxlba+2cJK9K8uokr0ly+qgDjW9HksXe+6uSfDTJx0eep1xr7X1J\nvpjkhOlDn0pyxbQfC0neuFGvtZmj+80kH55+vJDk0IizzINdST6f5LaxB5kD5yf5fZLvJvlhkuvH\nHWd0f0yy2Fo7LslTkhwceZ4x/CnJRQ/69fYkv5h+fEOSczfqhTZtdHvv9/be72mtnZzkW0muGHum\nsbTW3p7k9t77nrFnmRPPSPLyJG9KckmSb7TWjnp7zzHi3gyXFvYmuSbJZ0edZgS992/noX/ZLPTe\nj9zadU+Sp27Ua23a6CZJa+30JDcm+Xrv/bqx5xnRxUnOa639PMmZSb7WWnvWuCON6o4ke3rv9/Xe\ne5J/JTll5JnGdFmG4/HiJGck+Wpr7YRH+T2b3YOv356c5K6NWngz/0faqUl+nOTdvfefjT3PmHrv\nZx/5eBreS3rvfxtvotH9KsnO1tqnkpyW5KQMIT5W/T0PnOXdmWRLkuPHG2cu/La1dk7v/edJLsxw\n8rYhNm10k3wwydOSfLi1duTa7oW992P+P5KOdb3361trZyf5TYZ/7b2r93545LHG9Okk17bWfpnh\nbo4P9t7/OfJMY3tvkmtaa09KMslwiXJDeEcaQKFNfU0XYN6ILkAh0QUoJLoAhUQXoNBmvmWMJ4jp\nXgiX9N7f8qDHPpHhHVI/yvAW5udluHf01iTvOXKfcWvtrCQfyXBv6UlJvtx7v3r63PszvH1zS4ab\n3S/vva8WfVlwVKLLPFtI8p0ku3rv30+S1tq5Sa6f7gj1vAxvWb2g976/tXZikhtba7ck+UuGXcRe\n3Xtfb62dmWEnrTPG+ELgCJcXmGdPT3L3keAmSe/9pxk2Jzk7yduSfK33vn/63IEMm9n8JMndSZ6b\n5OLW2nN6779L8ori+eF/iC7z7PYMgf1vt2Q4y3329OP/6L3f3Xs/3Hv/a6Znukl+3Vrbm+R1M54X\nHpXLC8yDAxk2mn+wrRl2vnr+UT7/RRnOZp+d/9oLt7V2RoaTiXuS/KP3fvH08ZcnuaG1dmPv/c6N\nHB4eC2e6zINJkpe11k5LkukOV2cnuS7Js1prrz/yia21C5IsZ9jr9Lok72itnTJ9bmuGjdpPS/LS\nJFdN3zufDHvG3pXhJyPAaOy9wFxorV2UYc/jtQybrlzTe79m+iOGPpPkBdNPvTXJZdPLB2mtvTbD\nZvWHM2zB98Xe++emz30oyZsz7Bd7XIYfxfK9uq8K/pfoAhRyeQGgkOgCFBJdgEKiC1BIdAEKiS5A\nIdEFKCS6AIX+DZAGxN7ModnQAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f20079bfc90>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEBCAYAAABYAE8AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VNd99/HPbNp3CYQQu4GDbMxiiA0Y29gJ8RbbpFmb\npEmcOKlbu03ipqkTt2nzPEmzOE7jLLRxEqdZ6sdxnRAvsSGOjTcwXmR2RgfEDpKQQGjXaJmZ548Z\nyQKENJgZzVzp+369eHHv3Ks7P4bRV0dnzjnXFQ6HERER53AnuwARETk3Cm4REYdRcIuIOIyCW0TE\nYRTcIiIOo+AWEXEY70g8SWVlpcYcioico0WLFrkGe3xEgjtaQP+23++noqJipJ76vDipVnBWvU6q\nFZxVr5NqBWfVO1K1VlZWnvWYukpERBxGwS0i4jAKbhERh1Fwi4g4jIJbRMRhFNwiIg6j4BYRcZhh\nx3EbY9zAamA+0AXcZq2tHnD8euBfARdQCdxhrdWEGxGRBIllAs4qIMNau9QYswS4D7gFwBiTC9wL\nrLDWHjfGfAkoARoSVfBo8dCrh+J6vY9cNiWu1xOR1BVLV8lyYC2AtXYTsHjAsWXAduA+Y8xLwDFr\nrUJbRCSBYmlx5wHNA/aDxhivtbaXSOv6amAB0Aa8ZIx5xVq7+/SL+P3+/u1AIHDKfipLVK21dS1x\nvZ7f3w7otU0kJ9XrpFrBWfWmQq2xBHcLkDtg3x0NbYATwOvW2joAY8yLREL8jOAeOLdf6xLA5pb4\ndpVUVES6SvTaJo6T6nVSreCsep2yVskG4AaAaB/39gHH3gTmGmNKjDFeYAmw6+2XKiIiw4mlxb0G\nWGmM2Uhk5Mitxpi7gGpr7ePGmC8D66LnPmKt3ZGgWkVEhBiC21obAm4/7eGqAccfBh6Oc10iInIW\nmoAjIuIwCm4REYdRcIuIOIyCW0TEYRTcIiIOo+AWEXEYBbeIiMMouEVEHEbBLSLiMApuERGHUXCL\niDiMgltExGEU3CIiDqPgFhFxGAW3iIjDKLhFRBxGwS0i4jAKbhERh1Fwi4g4jIJbRMRhFNwiIg6j\n4BYRcRgFt4iIwyi4RUQcRsEtIuIwCm4REYfxDneCMcYNrAbmA13Abdba6gHH7weWA63Rh26x1jYn\noFYRESGG4AZWARnW2qXGmCXAfcAtA44vAq611h5PRIEiInKqWLpKlgNrAay1m4DFfQeirfFZwAPG\nmA3GmE8lpEoREekXS4s7DxjY9RE0xnittb1ANvBD4HuAB1hvjHnDWrvt9Iv4/f7+7UAgcMp+KktU\nrbV1LXG9nt/fDui1TSQn1eukWsFZ9aZCrbEEdwuQO2DfHQ1tgA7gfmttB4Ax5jkifeFnBHdFRUX/\ntt/vP2U/lSWq1s0th+J6vYqKKYBe20RyUr1OqhWcVe9I1VpZWXnWY7F0lWwAbgCI9nFvH3BsNrDB\nGOMxxviIdKu8+fZLFRGR4cTS4l4DrDTGbARcwK3GmLuAamvt48aYXwObgB7gV9banYkrV0REhg1u\na20IuP20h6sGHL8XuDfOdYmIyFloAo6IiMMouEVEHEbBLSLiMApuERGHUXCLiDiMgltExGEU3CIi\nDqPgFhFxGAW3iIjDKLhFRBxGwS0i4jAKbhERh1Fwi4g4jIJbRMRhFNwiIg6j4BYRcRgFt4iIwyi4\nRUQcRsEtIuIwCm4REYdRcIuIOIyCW0TEYRTcIiIOo+AWEXEYBbeIiMMouEVEHMY73AnGGDewGpgP\ndAG3WWurBznnj8Bj1tr/SkShIiISEUuLexWQYa1dCtwN3DfIOV8HCuNZmIiIDC6W4F4OrAWw1m4C\nFg88aIx5PxDqO0dERBIrluDOA5oH7AeNMV4AY8xc4CPAVxNQm4iIDGLYPm6gBcgdsO+21vZGtz8O\nlAPPAdOAbmPMAWvtGa1vv9/fvx0IBE7ZT2WJqrW2riWu1/P72wG9tonkpHqdVCs4q95UqDWW4N4A\n3AQ8YoxZAmzvO2Ct/VLftjHm34C6wUIboKKion/b7/efsp/KElXr5pZDcb1eRcUUQK9tIjmpXifV\nCs6qd6RqraysPOuxWIJ7DbDSGLMRcAG3GmPuAqqttY/Hp0QREYnVsMFtrQ0Bt5/2cNUg5/1bnGoS\nEZEhaAKOiIjDKLhFRBxGwS0i4jAKbhERh1Fwi4g4jIJbRMRhFNwiIg6j4BYRcRgFt4iIwyi4RUQc\nRsEtIuIwCm4REYdRcIuIOIyCW0TEYRTcIiIOo+AWEXEYBbeIiMMouEVEHEbBLSLiMApuERGHUXCL\niDiMgltExGEU3CIiDqPgFhFxGAW3iIjDKLhFRBxGwS0i4jDe4U4wxriB1cB8oAu4zVpbPeD4HcAn\ngTDwXWvtI4kpVUREILYW9yogw1q7FLgbuK/vgDGmBPgbYBnwTuA+Y4wrEYWKiEhELMG9HFgLYK3d\nBCzuO2CtPQ4ssNb2ABOAgLU2nIhCRUQkYtiuEiAPaB6wHzTGeK21vQDW2l5jzJ3A14AfnO0ifr+/\nfzsQCJyyn8oSVWttXUtcr+f3twN6bRPJSfU6qVZwVr2pUGsswd0C5A7Yd/eFdh9r7Y+MMQ8ATxtj\nrrbWrj/9IhUVFf3bfr//lP1UlqhaN7cciuv1KiqmAHptE8lJ9TqpVnBWvSNVa2Vl5VmPxRLcG4Cb\ngEeMMUuA7X0HjDEG+CbwPqCHyIeXofMpVkREhhZLcK8BVhpjNgIu4FZjzF1AtbX2cWPMVuAVIqNK\nnrbWvpC4ckVEZNjgttaGgNtPe7hqwPGvEenfFhGREaAJOEnSGwzR1tU7/IkiIqeJpatE4igUCrNm\n81Hue2Y3zZ09FGT5mFyYRUVZLvMnFeByaRi8iAxNwT2Cth5u4itrtrOzpoXygkyWzCimpqmTQ40d\nbD/aTF1zgGsvmqDwFpEhKbhHSE1TJ5/4xWtk+jx8/0MLaOvqxR0N6FA4zBNba3hxz3G6ekPcNH9i\n/zERkdOpj3sEdPeGuOOhN+kNhnnoM0tYtbD8lGB2u1zcPH8iV84q4dX9jfz+zSOEw5qAKiKDU4t7\nBHx7bRWbDzWx+qOXML0ke9BzXC4X1140Aa/HzXNV9cwYl8MlUwpHuFIRcQK1uBNs7Y46fv7yfj65\nbBo3XFw25Lkul4tr5oxnSlEWT22v1agTERmUgjuBAj1B/uWxHVxcns9Xbohtiqzb5eK9C8vp6gnx\n1PbaBFcoIk6k4E6gh149RENrF/fcWEGaN/aXujQvg6vMOLYcbmL3sdYEVigiTqTgTpBAT5D/fGEv\nS2cUs2RG8Tl//YrZ4xiXk85jW47SE9TyLyLyFgV3gvS1tj/3rllv6+u9Hjc3L5jIyY4eXj/QGOfq\nRMTJFNwJcL6t7T4zSrKZVpzFi7sb6FWrW0SiFNwJ8D/R1vbn32Zru4/L5eLqOeNpCfRSeehknKoT\nEadTcMdZbzDET1/cx9IZxVx2Hq3tPjPH5TC5MJMXbAO9IbW6RUTBHXfP2wbqWgJ8Ytm0uFyvb2x3\nU2cPWw41xeWaIuJsCu44e/j1Q5TkpPPOivFxu+bs0lzKCzJ5fncDwZCmwouMdQruOKprDvBcVT0f\nWDwJnyd+L63L5WKFGUdjeze7auN7k2ERcR4Fdxw9WnmYUBg+/I7Jcb92RVkehVk+Nu49Hvdri4iz\nKLjjJBQK89s3DrPsgmKmFg++kNT5cLtcLJlRzMETHdQ0dcb9+iLiHAruONmw9ziHGzv5UAJa230W\nTy3C53Hxyr4TCXsOEUl9Cu44efi1wxRk+bj2ogkJe47MNA8LJxey9XAT7Vo5UGTMUnDHQXNnD8/s\nOsaqBeVk+DwJfa6lFxTTGwrzhqbBi4xZCu44+NPOOrqDIVYtLE/4c5XmZTBjXDab9jdqaKDIGKXg\njoMnttUyuSiT+ZPyR+T5ls0oprmzh6o6DQ0UGYsU3OfpRFsXG6qPc9O8iSN2d3YzIY/8TB+v7Vd3\nichYpOA+T0/vqCMYCnPT/Ikj9pwet4vF0wrZU99GY3v3iD2viKSGYW8WbIxxA6uB+UAXcJu1tnrA\n8S8AH47uPmWt/VoiCk1VT2ytYeb4HOZMyB3R5108tYj1VfW8tr+R6+YmbiSLiKSeWFrcq4AMa+1S\n4G7gvr4DxpgZwEeBZcAS4N3GmHmJKDQV1TUHeO1A44h2k/TJz/QxZ0IelQcbtVa3yBgTS3AvB9YC\nWGs3AYsHHDsMXGetDVprw4APCMS9yhT1x+21hMPwnvlD3709US6dXkR7d5CdWr9EZEwZtqsEyAOa\nB+wHjTFea22vtbYHOG6McQH3AputtbsHu4jf7+/fDgQCp+ynsqFqfWTTUS4oSqP7+GH857iESG0c\nRoTkhMPkpbt52dbi9/uA0fPapiIn1eukWsFZ9aZCrbEEdwswsAPXba3tn7ZnjMkAHgRagb8920Uq\nKir6t/1+/yn7qexstR452YE9vo8vXWeoqJh5ztfd3HIoHuWxtNXHup11eIsmMas0d1S8tqnKSfU6\nqVZwVr0jVWtlZeVZj8XSVbIBuAHAGLME2N53INrSfgzYaq39a2tt8PxKdY61O+oAuGFucrpJ+iya\nWojH5eJ/Xo3PDwIRSX2xtLjXACuNMRsBF3CrMeYuoBrwAFcB6caY66Pnf9la+0pCqk0h63bWMWdC\nLtNK4r8S4LnISfdyUXkev6s8wpeuM0mtRURGxrDBba0NAbef9nDVgO2MuFbkAPWtAd44eJLPvfP8\nbgYcL5dNL2bbkWYe31LD/JEdlSgiSaAJOG/Dup3HCIfh+iR3k/SZVpyFKc3lN68eJBzW+iUio52C\n+21Yt6OOGSXZzC7NSXYpQOTWZh9bMoUdR1vYfbwr2eWISIIpuM/RyfZuXtl3guvmThjxSTdDWbWw\nnKw0D09ajekWGe0U3OfoGf8xgqFwyk0zz83wsWphOS8eaKepQ+uXiIxmCu5ztG5HHeUFmVxcPjJL\nuJ6Lj102le5gmN++fjjZpYhIAim4z0FroIeX9hxPuW6SPhdOzOPi0gx+9cpBrV8iMoopuM/Bc1X1\ndAdDXJ9i3SQDvffCfI42dbJu57FklyIiCaLgPgfrdtYxLjedS6YUJruUs7p0UhZTirJ4cMP+ZJci\nIgmi4I5RZ3eQ9VUNXHtRKW536nWT9PG4Xdx6+TQqD55ky+GmZJcjIgmg4I7Ri3sa6OwJpsykm6F8\nYPFkctO9PPiyWt0io5GCO0Zrd9RRkOXj0ulFyS5lWDnpXj70jsk8tb2W2ubOZJcjInGm4I5Bd2+I\nP/uPsbKiFJ/HGS/ZJ5ZNIxQOq9UtMgo5I4WSbOPe47QGelNu0s1QJhdlccuCcn6z6RAn2jQNXmQ0\nUXDHYO2OOnLSvVw+syTZpZyTO66eSaA3yM/U6hYZVRTcwwiGwvxp1zGunjOeDJ8n2eWck5njc3jP\nvIn8auMBTrZrGrzIaKHgHsb2YwEa27tTetLNUP7umpl09AQ1rltkFFFwD+PFA21kpXm42oxPdilv\ny+zSXG6YW8Z/bzhAc0dPsssRkThQcA+hJxhiw8F23lVRSmaas7pJBrrzmpm0dvXys5f3JbsUEYkD\nBfcQNu49QUtXiBvnpf6km6FUlOVx0/yJPPDiPo42aVy3iNMpuIfwx201ZPlcXDV7XLJLOW93Xz8H\nlwu+9XTV8CeLSEpTcJ9Fd2+ItTvqWDo523GjSQZTXpDJZ6+8gCe21vDGgcZklyMi50HBfRYvVzfQ\nEujlyumpcV/JeLj9qhlMyMvga0/sIhTSTYVFnErBfRZPbq0lP9PHwrLMZJcSN1lpXv7pesP2o808\n+uaRZJcjIm+TgnsQgZ4gz+w6xrUXleLzpO4Srm/HLfPLWTy1kK8/uUsLUIk4lIJ7EOur6mnt6uU9\n8yYmu5S4c7tdfPcD8+kJhvnSo9vUZSLiQAruQfzuzSOU5qU7bm2SWE0ryeaeGyt4ac9xfr3pYLLL\nEZFz5B3uBGOMG1gNzAe6gNustdWnnTMO2ADMs9YGElHoSGlo7WK9beAzV8zAk8J3ujlfH71sCn/2\nH+Pfn/Jz+cwSZo4fPR/CSuI99OqhuF5vYV5cLzfqxdLiXgVkWGuXAncD9w08aIy5FvgT4MzFPE7z\n2JajBENh3r+oPNmlJJTL5eI775tHVpqHOx96k9aApsOLOEUswb0cWAtgrd0ELD7teAh4F+D4wcHh\ncJhHK48wf3IBM8fnJruchBufl8EP//ISquvbuOOhzfQEQ8kuSURiMGxXCZAHNA/YDxpjvNbaXgBr\n7TMAxpghL+L3+/u3A4HAKfupovpEF1V1rdxxWUl/fYmqtbauJa7X8/vbgXOvtxi4c0kx39/YwOd+\n+TJ3LinB5RqZLqJUfR+cjZPqTXSt8X7/VqSl6bU9B7EEdwswsPnp7gvtc1FRUdG/7ff7T9lPFY88\nsZM0j5vPXLuQgqw0IHG1bm6Jbx9hRcUU4O3VW1EB3WlVrH5+LxdNn8gdV8+Ma21nk6rvg7NxUr2J\nrjXe79+MjHa9tqeprKw867FYuko2ADcAGGOWANvjU1Zq6e4N8diWGlZeWNof2mPJF99tWLVgIveu\ns3xnbRXhsIYJiqSqWFrca4CVxpiNgAu41RhzF1BtrX08odWNoGf9x2hs7+Z9o/xDybNxu13c98EF\nZKV7Wf38Xk60dfON987F65CbI4uMJcMGt7U2BNx+2sNnLDFnrZ0Wp5qS4r83HqC8IJOrZjvzhgnx\n4HG7+MaquZRkp/GD56ppaOvivg/MpzB77P0GIpLKYmlxj3q7alp4dX8jX7lhzqgeux0Ll8vFhPxM\nbp4/kT9uq+Wqe9fz/kWTz2uc90cumxLHCkVEvwcDv9x4gEyfhw8tVsD0WTKjmL9ZcQHpXg8PbtjP\nk9tq6OwOJrssEUHBzcn2bv6w5SirFpaTn+VLdjkpZWJBJndcPZPLphexce8J7nvG8sre4wS1volI\nUo35rpKHXz9MV2+ITy6bluxSUlKa180tC8pZPK2Ip7fX8sS2WjbsPcHlM0u4ZEoB6V7n32RCxGnG\ndHD3BkP8+pUDLLugGDPB2TMl+9aOqK1rifsYW4jcQefTy6dj61p5ztbzxNYantlVxzumFnHJ1EJK\n8zLi/pwiMrgxHdxP76ijpjnAv918UbJLcQSXy8WcsjzMhFwONXawofo4G/Ye56Xq40zMz2DB5AIu\nmpivUSgiCTZmgzsYCnP/s3uYOT6Hd1aUJrscR3G5XEwtzmZqcTatgR62HWlmy+EmntpRx1M76piQ\nl0FFWR6zS3OYVJiV7HJFRp0xG9xPbK2hur6NH31k4ZgfAng+cjN8XD6zhMtnlnCirYtdtS34a1t4\n3taz3taT7nXzcnUDyy4oYcmMYmaNz8Gt11vkvIzJ4O4Nhrj/2T3MmZDLDXPLkl3OqFGck84Vs8Zx\nxaxxdHT3srehnT3HWnl1XyPrdh4DICvNw7TibKYVZ5Hj6uTipoPn9INTY8JFxmhw/37zUfYfb+eB\nv1qk1l+CZKV5ubg8n4vL8wFobO9m//E29jW0c7Cxg121kdXl1uxqobwgi6nFWUwuzGRSURZ5GRqW\nKTKUMRfc3b0hfvDsHuZNymflherbHilF2WkUZRexaGoRAM2dPWzde5SWUBqHGjt4aU8DfcPD8zN9\nTCrMpLwgk/Lo31lpY+6tKnJWY+674aFXD3LkZCf/d9XcEVt3Ws6Un+ljVkk6ZRMiXVU9wRC1TZ0c\nPtnJ4ZMdHD3Zyc6at9Z8LsjyMTE/k4bWLirKcqkoy2NSYab+Dx2gszvI0aZOTrR3cbK9h6bObnp6\nQ4TCECZMps/DlgIXFzcfZM6EXOZNytf8gGGMqeCube7ku3/azRWzSlgxe1yyy5EBfB43U4qzmVKc\n3f9Y3zd8TVNn/9/ff3Y3fSvO5qZ7mT0hFzMhF1Oay6zxOcwqzaUkJ02BnkQd3b1U17dRXd/GwcYO\nGlq7+o95XC7ys3yke924XODCRUNrFzuO9vDIjiYA0r1uLplSyAozjpsXTKQsPzNZ/5SUNWaCOxwO\n89XHdtIbCvGNVRfrG9sBMtM8zByfc8oCV129QY41B6htCVDXHOBYSxdr3jxKZ89b66hk+jyMy01n\nXE4643LTKclJozgnneLstDOWqdWHnecvHA5T39qFPzqi6MjJTsJE/h+mFmexYHIBkwuzGJebTm6G\nF/cg33vzctoonjSdbUeaeXVfI5v2neCbT1fxrbVVLJ1RzAcXT+bGeWX4tMwwMIaCe93OOp7ZdYwv\nXz+HKcUaW+xU6V7PGS3zcDhMa6CX+tYu6lsD1Ld20dDaxe5jrVQeOtl/notIF01RThrF2ekUZaeR\nn+ljSlEWk4syyc/0pdQP9PO5k/pgM2jj+UMqGApzqLGjP6xPtHcDMKkwk2vmjGd2aS7lhZmDhvRg\nPG4XZfmZlOVncu1FkfuOHzjezh+2HGXN5qN8/rdb+PbaKj51+XQ+fOlkcsf4B9hjIrhbAj189bGd\nXFiWx6eXT092ORJnLpeLvEwfeZm+M5afDfQEOd7WxfG2bo63ddHY3s2Jti521jTT0R1k3c66/nPT\nvW4Ks9IoyPJRkJVGQaaP/Cwf+RmRv9ubmoddTmA0t+DrmgO8tKeBF/cc58+7jtHZE8TjdnHBuGyW\nzyqhYkIeeZnxC9RpJdl8/l2z+ftrZvH87np+8sI+vvGUnx+tr+b2qy7gE8umjtkPrUf9vzocDnPP\nmh0cb+viZ59YrDu6jDEZPg+TCrMGncEZ6AlysqObE23dNHV0c7Kjh5Md3TR19HDgRDuBnjPvep+d\n1kRuho/cDC856V5yM7xkp3vJSvOSneah8mAj+Zk+8jJ85Gb4yPC5U6oVH6uO7l72HGtjZ00Lbxxs\n5M2DJzlwogOAkpx05kzIZU5ZHrPH55DuS+wHiW63i2vmlHLNnFK2HG7i/j/v5ttrq/j5y/v5+3fO\n5C8vnTLmulBGfXD/5wt7eWJrDf94rWHepIJklyMpJMPn6f/1fDCBniDNnT39f2oaThL2ZtAS6Onv\nmmnr6j1lmdtfbTp4yjXcLqLB7iHT5yHD5yHd68bnifzxelx43S48bhduV/Tv6Pbhxg5cEPkQzxV5\nzO2KBJkneq7H/dbXe90uvB43XreL1pYuToZa8HoiX+dywav7ThAm0s3REwwR6AnRGuihrauXxvZu\napsjnxscbGzncGNn/7+hODuNRVML+chlU1g+cxwVZbn8v9cOJ+K/ZFgLJhfwi1sv5Y0DjXxnneWr\nj+3kFxsOcPf1c3j3haWO/CH5dozq4H7Wf4x711lumj+Rv11xQbLLEYfJiAZt38qHtRld/cMX+4TD\nYbp7Q7R3B2nv6uWyGUW0BHpp7uyhLdBLe1cvbV29dHYHCfQGCfQE6eoN0RMM0dMbprMnSCgcpjcY\nJhgKEwr3/YmMdQ+Hw4TDEIr+HYweD4bChEKR/bNrPWXv5y/vP+uZbheU5mUwIT+DBZML+eCiycwq\nzWXOhFymFmelXCAunlbEbz+7hPW2nn9/qoq//nUl75hWyD03XsiCyaO/gTZqg3vPsVY+9/AWLpqY\nx3feNy/l3ngyOrhcLtJ9HtJ9Hoqy06hpCgDRYW+ZPvLj2Oc7mHA0xHujf4KhML3BELX19RQWlRAM\nhgiGI+ddPWc8Lhd43W48bhcZPjd5Gb7+Lh+ndSO6XJEulCtnjePh1w/z/T/vZtWPN3Dz/In847WG\nyUWjdxDCqAzuHUeb+eQvXiPD5+GBv1pMZpoG88vo5HK5It0tp73Fu9u8lBWc2gV0+cySEaxs5Hg9\nbj62ZCqrFpbzkxf28tOX9rF2Rx0fXTKFO66eSUlOerJLjDtn/YiNwaZ9J/jLBzaR5nHz8GeXMLFA\ng/dFxoKcdC//8G7D+i+u4L0Ly/nlxgNc9Z31fO+Z3TR39CS7vLgaVcH9xNYaPv7ga5TmZ/Do3yw7\nrzuTi4gzleVn8u33z+NPX7iKq8w4fvDsHi7/9nN86+mqU2ZxOtmo6CppbO/mq4/t4MlttSycUsDP\nP/EOinQXFpExbeb4HFZ/dBG7alr48fPV/OTFvfxiw35uWTCRjy+dxtzoypVO5Ojg7g2GeGJbDd/4\no5/mzh7+YeVsbl9xwZgb0ykiZ3fhxDx+/JFL2NfQxk9f2s8fNh/lkTeOcMmUAt63aBI3zC1z3O32\nHBncgZ4g/1t5hAde3Mvhxk7mlufx609fRkVZXrJLE5EUNWNcDt/8i4u5+/o5/K7yCA+9doh71uzg\nXx/byZWzx7HywlJWmHGOWNRq2OA2xriB1cB8oAu4zVpbPeD4Z4C/BnqBr1trn0xEoa2BHl7Y3cC6\nncdYX1VPW1cvCyYX8M83XsjKilLdEEFkGOez9slokp/p41PLp3Pr5dPYVdvC41tqeHJbLc9V1QNg\nSnO5dHoRl0wtYOHkwpQcxx5Li3sVkGGtXWqMWQLcB9wCYIyZAPw9sBjIAF42xjxjrY3LJwDP23qe\n3FbLtiNN7KlvIxyOzOJ6z7wyVi0s57LpRSn3goqIM7hcLi6amM9FE/O5+/o57Klv4wXbwIt7Gvj9\nm0f4dXQWbHaah5nRZYOnFWdBRyst6SeYkJ9BcU462WmeEc+hWIJ7ObAWwFq7yRizeMCxS4EN0aDu\nMsZUA/OA1+NR3A+fq+bA8XbmTcrn+rllLLugmMXTinRzXxGJK5fLxezSXGaX5vKZK2cQDIXZU9/K\n5kNN2LpW9tS38uLuBh7tG5XyckP/16Z53RRmRSYy5WT4yEl/a3mD5TNL+PCl8V94LJbgzgOaB+wH\njTFea23vIMdagUE/qq2srBxyfzBfuTQd6Bs83wonW9ly8kAMJcdXLLWeK5OgTxfMJC/QMOx5qcBJ\ntYKz6nVSrQAdHYn5Pjtfsz0wuxwo9wGF5/jVYaCBysr4/z/EEh8tQO6AfXc0tAc7lgs0nX6BRYsW\nqYksIhInsYyb2wDcABDt494+4NhrwBXGmAxjTD5QAeyIe5UiItLPFR5ydbFTRpXMI3ITkVuJBHm1\ntfbx6KiSzxL5IfDv1trfJbZkEZGxbdjgToRo6/w3RPrI04C7rLWvjHghQxhuGGQqMcb4gAeBaUQ+\nFPi6tfa5M5VFAAAFC0lEQVTxpBYVA2PMeKASWGmtrUp2PWdjjPkycDOR9+pqa+3Pk1zSWUXfC78k\n8l4IAp9JxdfWGHMZ8G1r7QpjzEzgv4l0Cu8A7rDWnnkXiyQ6rd4FwA+JvL5dwMettcdGsp5kTTG8\nC3jWWnsV8Engx0mqYyj9wyCBu4kMg0xVHwNOWGuvAK4DfpTkeoYVDZifAJ3DnZtMxpgVwDLgcuAq\nYHJSCxreDYDXWrsM+D/AN5JczxmMMV8CfkZkCDHA94B/jr5/XUSHG6eKQeq9H/g7a+0K4PfAP410\nTckK7v8g8k0LkQ9IA0mqYyinDIMkMlY9Vf0v8C/RbReRyVCp7rvAfwE1yS5kGNcS+VxnDfAEkJAJ\nZnG0G/BGf2PMA1JxWby9wF8M2F8EvBDdfhp414hXNLTT6/2wtXZLdDsp+ZXwKe/GmE8DXzjt4Vut\nta9HJ/D8Bvh8out4G4YaBplSrLVtAMaYXOBR4J+TW9HQjDGfBBqsteui3RCprASYCrwHmA48boyZ\nY60d+T7G2LQR6SapIlL7e5JazSCstb8zxkwb8JBrwOt51iHFyXJ6vdbaWgBjzDLgTuDKka4p4cEd\n7Q88o0/QGHMx8DDwRWvtC2d8YfINNQwy5RhjJhNpFa621j6U7HqG8SkgbIx5F7AA+JUx5mZrbd0w\nX5cMJ4Aqa203YI0xAWAcUJ/css7qC8A6a+2Xo++J54wxF1trU/G32j4D+7MHHVKcaowxHwLuAW60\n1o74gPmkLDJljLmQyK/3H7LWbk1GDTHYANwEPDLIMMiUYowpBf4E3GmtfTbZ9QzHWtvfQjHGPA/c\nnqKhDfAy8DljzPeAMiCbSJinqpO81T3SCPiAVL8F1GZjzApr7fPA9cD6JNczJGPMx4isz7TCWtuY\njBqStTrgN4l09N9vjAFottam1AcSRFqvK40xG3lrGGSq+gqRaV3/Yozp6+u+3lqb0h/8OYG19klj\nzJVE5iy4iYx4CCa5rKH8B/CgMeYlIqNgvmKtbU9yTcP5B+Cnxpg0wE+kuy8lGWM8wA+AQ8Dvo/n1\ngrX2X0eyjqQMBxQRkbdPdxwQEXEYBbeIiMMouEVEHEbBLSLiMApuERGHceTNgkVOF11T5HZr7YcH\nPPYtIjMI/0hkiv1UImOaDxNZ2Kwuet4VwFeJjHnOBn5hrV0dPXY3kSnYPiITRb5orU29Ff9lTFFw\ny2jnIrIQ0HettY8BRGdsPhld8W0qkXG511lrjxljMoH1xph9RMbq3gxcbq0NR1eF+yWRFSNFkkZd\nJTLaFROZ4PVY3wPW2j8TWTjoSuCvgF/1LcsZnbR0LfAMkbVqpgCfMsaURxcWunSE6xc5g4JbRrsG\nIiF9un1EWtsTo9v9rLXN1tqgtfYo0RY38IoxpooUXLRJxh51lcho0clbd5buk0Nkpbxpg5w/i0ir\neiKnrbFtjJlPpFHTCrRYaz8VfXwx8LQxZn2y1qgQAbW4ZfTwAwuNMWUAxpgMIl0hDwETjDE39Z1o\njLkOmElkDeiHgNuMMeOix3KIrBVfRuR2fT+KrqEBkbWum4jc+UQkabRWiYwaxpi/ILIWeQeRBZZ+\naq39afQWad8nsp42REaVfCHaFYIx5t1EbkQRJLKs6M+stf8ZPXYP8EEi61y7idy+6g8j968SOZOC\nW0TEYdRVIiLiMApuERGHUXCLiDiMgltExGEU3CIiDqPgFhFxGAW3iIjDKLhFRBzm/wOTjxDtbJvA\nOQAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2007760810>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEBCAYAAADbxHY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACRdJREFUeJzt3V+IpXUdx/HPuLOm41q0ZWogmUz9miuTDQLDbS8ydaEC\nIejCIqJAMFksCRLtIgoKFssIKzRLI28qo7KN7Q8ZhUgwFBQcf7EVJUmLaIo6G+6f6eKcxVV2V9zm\nfJ+zs6/X1ew5M7/z3Yed9z77zHN+O7e6uhoAapw29AAApxLRBSgkugCFRBegkOgCFBJdgELzx3ty\neXnZ/WQAJ2DLli1zR3v8uNGdfOHaT1NoNBplaWlp6DFmhuPxQo7H8xyLF/p/jsfy8vIxn3N5AaCQ\n6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBeg\nkOgCFBJdgEIv+X+knYgbb7wxe/fuzebNm6ex/MuysrKShYWFoceYGbNyPBYXF3P99dcPPQaUm0p0\nR6NRnnl2JX9/cv80lj8BTw89wIwZ9nhsWHli0NeHIU0lukmSDfPZ95btU1uek9eZD+8aegQYjGu6\nAIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgk\nugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUo\nJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSg0legeOHAgOXRoGksDTN3u3bvz0EMPTWXtqUR3\n//79yaroAienXbt25cEHH5zK2i4vABQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKi\nC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBC\nogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2A\nQvNDD8CpZ27/vuzZsyc7duwYepSsrKxkYWFh6DFmgmPxvD179mTTpk1TWduZLkAhZ7qUW914ZhYv\nOje33Xbb0KNkNBplaWlp6DFmgmPxvB07dmRlZWUqazvTBSgkugCFRBegkOgCFBJdgEKiC1BIdAEK\niS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQB\nCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0\nAQqJLkAh0QUoND+NRTdu3JiDzx2YxtIAU7d9+/Y8+uijU1l7KtGdn59PDhyaxtIAU3fFFVdkNBpN\nZW2XFwAKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBC\nogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2A\nQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCs1PbeWDB3Lmw7umtjwnrw0rTyQ5\nd+gxYBBTie7S0lL27t2bzZs3T2P5l2VlZSULCwtDjzEzZuN4nJvFxcWBZ4BhTCW6O3funMayJ2Q0\nGmVpaWnoMWaG4wHDck0XoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BI\ndAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQnOrq6vHfHJ5efnYTwJwTFu2bJk72uPHjS4Aa8vlBYBC\nogtQaH7oAaaltbYxyV1JLkzyiiSf673/eNChBtZae12S5SSX994fHnqeIbXWPp3kvUlOT3J77/2b\nA480mMn3yt0Zf68cTPKxU/HPR2vt7Um+2Hvf1lpbTPLtJKtJ/pzkut77obV4nfV8pntNksd775cl\nuTLJVweeZ1CTb6xvJNk39CxDa61tS3JpknckeWeSCwYdaHjbk8z33i9N8tkknx94nnKttU8luTPJ\nGZOHbk1y86Qfc0net1avtZ6j+70kt0w+nktyYMBZZsHOJF9P8ujQg8yAK5L8KckPk/wkyf3DjjO4\nvySZb62dluSVSfYPPM8Q/prk6iN+vSXJbyYf/yzJu9bqhdZtdHvvz/Ten26tnZ3k+0luHnqmobTW\nPpzksd777qFnmRGvTfK2JO9Pcm2S77bWjnp7zynimYwvLTyc5I4kXxl0mgH03n+QF/5lM9d7P3xr\n19NJXrVWr7Vuo5skrbULkvw6yXd67/cOPc+APpLk8tbaA0nemuSe1tp5w440qMeT7O69P9d770n+\nm+ScgWca0g0ZH483J7k4yd2ttTNe4mvWuyOv356d5Mm1Wng9/yDt3CQ/T/Lx3vuvhp5nSL33rYc/\nnoT32t77v4ebaHC/S7KjtXZrkvOTnJVxiE9V/8nzZ3lPJNmYZMNw48yEP7TWtvXeH0hyVcYnb2ti\n3UY3yU1JXp3kltba4Wu7V/XeT/kfJJ3qeu/3t9a2Jvl9xv/au673fnDgsYb0pSR3tdZ+m/HdHDf1\n3p8deKahfTLJHa2105OMMr5EuSa8Iw2g0Lq+pgswa0QXoJDoAhQSXYBCogtQaD3fMsZJaLIvwrW9\n9w8c8dgXMn631E8zfjvzGzK+j/SRJJ84fM9xa+2yJJ/J+D7Ts5J8q/d+e+lvAF6CM11OFnNJ7kty\nX+9922QjkruS3N9a29Bauyjjt69e03vflmRrkg+11q4cbGI4CtHlZPGaJE/13n90+IHe+y8z3qhk\na5IPJrmn97538ty+jDe2+cUAs8IxubzAyeKxjAP7Yn/L+HLD65P88cgneu9PFcwFL4szXWbNvow3\nnT/Spox3wbrwKJ//piT/TPKPvGhf3Nbaxa21S9Z+RDhxosusGSW5pLV2fpJMdrvamuTeJOe11t5z\n+BMn12sXM9739N4kH22tnTN5blPGm7afXzs+HJ+9F5g5rbWrM97/eCXjDVju6L3fMfnvhr6c5I2T\nT30kyQ29939Nvu7dGW9cfzDj7fju7L1/rXp+OB7RBSjk8gJAIdEFKCS6AIVEF6CQ6AIUEl2AQqIL\nUEh0AQr9D0/3lnaPIrn3AAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f20077afbd0>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEBCAYAAABYAE8AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl81PWB//HXTGZy3yThTLj9MIoCgqgUFG+r9dhW29r6\n69bWtm4P+9Pdnz13t7u/3V+729puj7WXtedql7XaWq3gjQoCmgIKDB8MVwIkEJKQe5LM8ftjJjZi\nIAOZ65u8n49HH2TmO/Odd+PknW8+8/l+vq5IJIKIiDiHO90BRETk1Ki4RUQcRsUtIuIwKm4REYdR\ncYuIOIyKW0TEYTypeJHa2lrNORQROUWLFy92DXd/Soo7FgC/34/P50vVS46a8iaX8iaX8iZXsvPW\n1taecJuGSkREHEbFLSLiMCpuERGHUXGLiDiMiltExGFU3CIiDqPiFhFxGBW3iIjDpOwEHPmLBzfW\nJ3R/Hzq/JqH7E5HMpiNuERGHUXGLiDiMiltExGFU3CIiDqPiFhFxGBW3iIjDqLhFRBxGxS0i4jAq\nbhERh1Fxi4g4jIpbRMRhVNwiIg6j4hYRcRgVt4iIw6i4RUQcRsUtIuIwKm4REYdRcYuIOIyKW0TE\nYUa85qQxxg3cBywA+oDbrbV1Q7Z/F1gOdMbuusFa256ErCIiQnwXC74RyLXWXmiMuQC4F7hhyPbF\nwFXW2qPJCCgiIm8Xz1DJcmA1gLV2A7BkcEPsaHwu8BNjzDpjzMeSklJERN4SzxF3MTB06CNkjPFY\na4NAAfB94NtAFvC8MeY1a+3rx+/E7/cTCATw+/2JyJ0Sycrb2NSR0P35/d1A8vImi/Iml/ImVzrz\nxlPcHUDRkNvuWGkD9ADftdb2ABhjniM6Fv6O4vb5fPj9fnw+3ygjp06y8m7uqE/o/ny+GiB5eZNF\neZNLeZMr2Xlra2tPuC2eoZJ1wDUAsTHuN4ZsOwNYZ4zJMsZ4iQ6r/Pn0o4qIyEjiOeJ+FLjCGLMe\ncAG3GWPuBuqstY8ZY34NbAAGgF9Za7cnL66IiIxY3NbaMHDHcXfvHLL9m8A3E5xLREROQCfgiIg4\njIpbRMRhVNwiIg6j4hYRcRgVt4iIw6i4RUQcRsUtIuIwKm4REYdRcYuIOIyKW0TEYVTcIiIOo+IW\nEXEYFbeIiMOouEVEHEbFLSLiMCpuERGHUXGLiDiMiltExGFU3CIiDqPiFhFxGBW3iIjDqLhFRBxG\nxS0i4jAqbhERh1Fxi4g4jIpbRMRhVNwiIg6j4hYRcRgVt4iIw3hGeoAxxg3cBywA+oDbrbV1wzzm\nCeAP1tofJSOoiIhExXPEfSOQa629EPgicO8wj/kXoCyRwUREZHjxFPdyYDWAtXYDsGToRmPMTUB4\n8DEiIpJcIw6VAMVA+5DbIWOMx1obNMbMBz4E3AT8w8l24vf7CQQC+P3+00+bYsnK29jUkdD9+f3d\nQPLyJovyJpfyJlc688ZT3B1A0ZDbbmttMPb1R4CpwHPADKDfGLPPWvuOo2+fz4ff78fn840ycuok\nK+/mjvqE7s/nqwGSlzdZlDe5lDe5kp23trb2hNviKe51wHXAKmPMBcAbgxustfcMfm2M+RrQNFxp\ni4hI4sRT3I8CVxhj1gMu4DZjzN1AnbX2saSmExGRdxixuK21YeCO4+7eOczjvpagTCIichI6AUdE\nxGFU3CIiDqPiFhFxGBW3iIjDqLhFRBxGxS0i4jAqbhERh1Fxi4g4jIpbRMRhVNwiIg6j4hYRcRgV\nt4iIw6i4RUQcRsUtIuIwKm4REYdRcYuIOIyKW0TEYVTcIiIOo+IWEXEYFbeIiMOouEVEHEbFLSLi\nMCpuERGHUXGLiDiMiltExGFU3CIiDqPiFhFxGBW3iIjDqLhFRBzGM9IDjDFu4D5gAdAH3G6trRuy\n/TPAR4EI8C1r7arkRBUREYjviPtGINdaeyHwReDewQ3GmArgb4BlwGXAvcYYVzKCiohIVDzFvRxY\nDWCt3QAsGdxgrT0KLLTWDgCTgIC1NpKMoCIiEjXiUAlQDLQPuR0yxnistUEAa23QGPNZ4J+A751o\nJ36/n0AggN/vH1XgVEpW3samjoTuz+/vBpKXN1mUN7mUN7nSmTee4u4Aiobcdg+W9iBr7Q+MMT8B\nnjTGXGKtff74nfh8Pvx+Pz6fb3SJUyhZeTd31Cd0fz5fDZC8vMmivMmlvMmV7Ly1tbUn3BZPca8D\nrgNWGWMuAN4Y3GCMMcDXgfcBA0Q/vAyPJqyIiJxcPMX9KHCFMWY94AJuM8bcDdRZax8zxmwFXiE6\nq+RJa+3a5MUVEZERi9taGwbuOO7unUO2/xPR8W0REUkBnYAjIuIwKm4REYdRcYuIOIyKW0TEYeKZ\nVSIJ1tMfZMOeVo719OObXMycqkK8WfodKiLxUXGnUEtXHz95cQ8/X7+P/mCYHI+b1/a3ke1xs7C6\nlPecMxmPWwUuIien4k6Rrr4g7//xK+w92s38qSWsPKOKyqIc9jR38fqBdjbtbaW3P8QHzqvG7dI6\nXSJyYiruFIhEIvyf/9nKvpYefvPx89nX0vPWtrkTi5g7sYjKohxWb28i15vFjQun4FJ5i8gJ6O/y\nFLj/pb08ua2JL1xtWDanYtjHXHRGJSvPqOTVfa2s2d6U4oQi4iQ64k6yDXta+Mbqnbx7/iQ+sWLW\nSR97xZkT6RkI8eKbR5lTVcScqsIUpRQRJ9ERdxINhMLc8/DrTC/P599vOmfE4Q+Xy8W1Z0+mvCCb\nP75+iFBYS5uLyDupuJPo0c0HqW/t4cvX+CjK9cb1HG+Wm/ecPZnmzj5e2X00yQlFxIlU3EkSDIX5\nz+frmD+1mMt8Vaf03HmTizETi3h25xE6AgNJSigiTqXiTpLfbznE/pYe7rx07mnNEHnPOZMJhiOs\n3qYPKkXk7VTcSRAMhfnBc29y5uRirjhz4mntY0JhDivmVLCl4RiHjvUmOKGIOJmKOwke23qIfS09\nfP7y0zvaHrRibiU5HjdrdzUnMJ2IOJ2KO8EikQj3vbAb3+RirjzNo+1BedlZnD+znG0H22np6ktQ\nQhFxOhV3gv25vo26I13ctmxGQs5+XDanArfbxUtvaoaJiESpuBNs1asHyM/O4ppzJidkf8W5Xs6t\nKaO2vk0zTEQEUHEnVHdfkMdfP8S1Z0+mMCdxJ6VeNLeCcDjC+rqWhO1TRJxLxZ1Af3qjke7+EO8/\nrzqh+51QmMP8qSVs3NtCYCCU0H2LiPOouBPof147wMyKApZML0v4vlfMraAvGKZ2f1vC9y0izqLi\nTpA9zV1s2tfKzUumJWVJ1mll+VSX5bFxbwuRiNYwERnPVNwJ8nDtAdwueN+505L2GufPmsDRrn52\nN3cn7TVEJPOpuBMgHI7wyJ8PstJUMbE4N2mvc/bUEvKzs9iwRx9SioxnKu4E+HN9G00dAW5YOCWp\nr+PNcrNkejn+xg6O9fQn9bVEJHOpuBPgiTcayfa4uXTeqa0CeDqWziwHYNO+1qS/lohkJhX3KIVj\nK/hdNLcy7jW3R6O8IBszqYhX97URDIWT/noiknlGPEvEGOMG7gMWAH3A7dbauiHb7wI+GLv5J2vt\nPyUjaKba3HCMxvYA91xtUvaaF8yawM71+9je2MGCaaUpe10RyQzxHHHfCORaay8EvgjcO7jBGDML\n+DCwDLgAuNIYc04ygmaqJ99oJDvLzWW+0S0odSrmVBVSlu/l1b0aLhEZj+Ip7uXAagBr7QZgyZBt\nDcDV1tqQtTYCeIFAwlNmqEgkwpPbmlgxt4LiFAyTDHK7XJw3o5w9R7s52qlVA0XGm3iKuxhoH3I7\nZIzxAFhrB6y1R40xLmPMt4DN1tpdyQiaibYeaOfgsV7efXZiFpQ6FYunl+F26UNKkfEonpWQOoCi\nIbfd1trg4A1jTC7wANAJfPpEO/H7/QQCAfx+/+lmTbmR8v76tRY8bqjJOobf3xn3fhubOhIRj5ll\n2by2r4Wt23aQneUac9/fTKO8yaW88YunuNcB1wGrjDEXAG8MbjDGuIA/AM9Za//tZDvx+Xz4/X58\nPt9o8qbUyfJGIhE2PvY8y+dWsnTh/FPa7+aO+kTE4yJXIT9fv499wRJumD91TH1/M5HyJpfyvl1t\nbe0Jt8VT3I8CVxhj1gMu4DZjzN1AHZAFXAzkGGPeHXv8l6y1r4wucubzN3ZyoK2Xz106J20ZZlcV\nUl6QzYMb67lh4dS05RCR1BqxuK21YeCO4+7eOeTr5J3jncGe3nEYlwsunZe62STHc7tcnDe9jDU7\nDlN3pCttOUQktXQCzml62t/EoupSKoty0prj3OlleLNcPLgxMcMvIpL5VNyn4dCxXrYd7OCKMyel\nOwpFuV6uOmsSD9c2EAjqTEqR8UDFfRqe9R8G4IpRXsU9UW69YDodgSAv7tVyryLjgYr7NDy14zCz\nKgqYU1WY7igAnD+znLlVhTxuEzPNUEQym4r7FHUEBtiwp4XLM+RoG8DlcnHrBdN5s6WP1w8cS3cc\nEUkyFfcpenFXMwOhSMYMkwz6q3Onkutx8ZsN+9MdRUSSTMV9ip7ecZgJBdmcW5P4CwKPRnGul0tm\nFfLY1kO09wykO46IJJGK+xQMhMI8v/MIl86rIsud+AsCj9a1ppjAQJhVrzWkO4qIJJGK+xS8ureV\njkAwo8a3h5pdnsPSmeX8Yv0+XWRBZAxTcZ+Cp/2HyfG4WTG3It1RTuj25TM5eKyXNdsPpzuKiCSJ\nijtOkUiEZ/yHWT6ngvzseJZ4SY/LfBOZPiGf+1/ek+4oIpIkKu447TrcRUNrb8YOkwzKcrv42Ltm\nsrn+GLX729IdR0SSQMUdp2diZ0teloIruY/WTYunUZzr4YGX96Y7iogkgYo7Tk/vOMyC6lKqijN/\nMcSCHA+3nF/Dk9saaWjtSXccEUkwFXccjnQG2NJwjCt8mX+0PeivL5yB2+Xi/pc01i0y1qi44/Cs\n/whAxo9vDzWlNI/3nTuNh15toKl93Fy/WWRcUHHH4Zkdh5lWloeZWDTygzPIZy+dQzgc4Udrd6c7\niogkkIp7BL39IV6uO8rlvom4XJl3tuTJVJfnc9PiaTy4qV5H3SJjiIp7BGt3NdMXDGfcolLx+swl\n0aPuH75Ql+4oIpIgKu4RrNneRGm+l6Uzy9Md5bQMHnU/tElj3SJjhYr7JAZC0bMlL5s3EW+Wc79V\nn7lkDuFIhO8+uyvdUUQkAZzbRinwelMvnYEgV89P/7UlR6O6PJ+PXDiD377awLaD7emOIyKjpOI+\nifX13eRnZ2X0olLx+vzlcynPz+YfH9tOJBJJdxwRGQUV9wmEwhFeqe9hpakk15uV7jijVpLn5QtX\nz6N2fxu/33Iw3XFEZBRU3Cewub6NtkCIq85y9jDJUDctnsaCaSV8/U876eoLpjuOiJwmFfcJrN7W\nhMcNlzhgUal4ud0uvnb9WRzp7OM7T+uDShGnUnEPIxKJsGZHEwsn51Gc6013nIRaVFPGh8+v4Wcv\n72Vd3dF0xxGR06DiHsb2Qx00tPayrKYg3VGS4ivX+phVWcDfrtrKsZ7+dMcRkVOk4h7GH7cewuN2\njdnizs/28L0PLqKlu48vPfKGZpmIOMyI1+AyxriB+4AFQB9wu7W27rjHVALrgHOstY4+PS8cjvDH\nrYdYMbeCklznzyY5kflTS/jbKw3feHInq15r4APn1aQ7kojEKZ4j7huBXGvthcAXgXuHbjTGXAU8\nBYyJ6Re19W0cag9ww8Kp6Y6SdJ9cMYt3zZnAV3+/jfW7Nd4t4hTxFPdyYDWAtXYDsOS47WHgcqA1\nsdHS4w9bDpLrdTt2UalT4Xa7uO9Di5kxoYBP/bqWnU0d6Y4kInFwjTS+aYy5H/idtfbJ2O16YJa1\nNnjc4/YB84YbKqmtrY3k5+cTCATIzc3cS38FwxE+vGo/Cyfn8aWLJyYt7592JbYgrzmjGOC08x7p\nCnLXnw7idsG3r5lKZUFqrmKf6e+H4ylvcinv2/X09LB48eJh15KO5ye0Axh6BQH38aUdD5/Ph9/v\nx+fznepTU+Z5e4SOvr3cumIePt+kpOXd3FGf0P35fNHx6dPN6wN+PbWGD/x4A19b28KvPraUaWX5\nCc04nEx/PxxPeZNLed+utrb2hNviKe51wHXAKmPMBcAbCcqVcf645RDFuR4uNpXpjnJKHtwY/UXQ\n2NQxql8Ktyyt4dcb9vHe+9bzi9uWcuaU4kRFlDFo8H2XKIv0dotbPGPcjwIBY8x64DvAXcaYu40x\n1yc3WmoFBkKs2d7ENWdPJsczdmeTnMzMigI+uWI2bpeLD/z4FdbrBB2RjDTiEbe1NgzccdzdO4d5\n3IwEZUqLNdub6O4Pcf2CKemOklaTSnJ55NPL+OsHNnHrzzby2Uvm8LnL5jp6PXKRsSY1n0I5wEOb\n6qkpz+eCWRPSHSXtXrDN3LK0hsdfb+R7z9XxyOaDvH9xNRVFOae8rw+dr/nhIommwyhgT3MXG/a0\n8sGl1bjdzrogcLLkerO4afE0bllaQ0tXP9977k1Wb2uktz+U7mgi456OuIkebXvcLm5aPC3dUTLO\n2VNLmF6ez1M7mnjpzaO8tr+NS0wV580oJ9uj3/si6TDuizswEOLh2gNcedZEqoqcM4c0lYrzvNy0\nuJplsyv407ZGnnijked2HmHpzHIumDWBkryxtYKiSKYb98W9ZnsTbT0D3LJUY7EjmVKax+3LZ7G/\npZuX647y4q5mXnqzmblVRZw7vYx5k4r0IaZICoz74n5wY/RDyXfNdv51JVNl+oQCpk8ooLW7n017\nW9nS0MZDmzrJ9bqZN6mYs6YUM7eqSEMpIkkyrou77kgXG/e2cs/VRh9Knobygmyunj+JK8+ayO7m\nLrY2HMPf2MmWhmN4s1zMqijklT0tmIlFlBdkv+P5p3PCkGapiIzz4v7Zy3vJznJz8+LqdEdxNLfL\nxdyqIuZWFREKR9jX0s2OQx3Yw53YrZ38kWjJz6ksZHZVIbMqCijIGddvPZFRGbc/PU3tAX5Xe4Cb\nl0yj8jTmJ8vwstwuZlcWMruykOuAo1197DrcSd2RLrYeOMamfdFFJCcV5zIxH+aH25k5oYB8FblI\n3MbtT8v9L+0hFInwqYtmpzvKmFZRmENFYQ7LZlcQCkc40NbDnqPd7GnuYtvhbrY2RYdKJhbnMCM2\ndj5jQj6l+e8cWhGRqHFZ3G3d/fzXxnquXzCFmgnJXwVPorLcrrc+2LzEVHHg0CFCOSXsPdrN3qPd\nbGk4xsa90SPykjwv1eX5TC/Pp7o8nykluXg0Y0UEGKfF/fP1++gdCPHplTraTqcst4tpsSJfaSAc\nidDUHmBfSzf1rT3Ut/aw7WB79LEuF5NLc7FNHcyfWsI500qZXVmgMpdxadwVd2dggF+s28tVZ01k\n7sSikZ8gKeN2uZhSmseU0jyWxX6ntvcO0NDaw4G2Hhraenm49gC/fGU/ALleN2ZiEWdOKcY3uZgz\nJhZxxglmsIiMJeOuuB94eR8dgSCfXjkn3VEkDiV5XkqmljB/agkQPSo/2tXHwbZeGtsDHGrv5feb\nD/HQpoa3nlOQ46GyMPut8fXygmwmFGZTlp9NrvftS/ZqeqE40bgq7gNtPfxwbR3XnD2JBdWl6Y4j\np8HtclFVlEtVUS6LYvdFIhE6AkEOdwQ40hHgSGcfzV19+Bs76D5uUaxcr5vSvGxK8rwU5Xpoau+l\nsjiXCQXZ0YIvyKYk30tJnve01mVP9MUFxtovlnAkQmcgSN9AiGA4QjAcIcfjpjDHQ3iEyyjKX4yr\n4v7XJ/wAfOXaM9OcRBLJ5XJFj8zzvJxx3PBXb3+I1p5+Wrv7aevu51jvAO090X8PHeuldn8bJ6oL\nb5aLXE8WOV53tMTDQQpXN5PtcePNcuPNcr31ryfLjccdve1xv/32Xx7njj3XRY4nC2+WC5dr7J74\nFRgIcaCtl/rWHg629XA09t8gGB7+O57lglmVzSyqKWVRTRnLZk9g+oSCFKd2hnFT3C+92cyT25r4\nuyvPYGppXrrjSIrkZWcxNTvvhP/NQ+EI3f1BuvuCdPeF6O4P0tsfoncgRG9/iL5giMBAmL5giK6e\nATr7BujvDjMQijAQCjMQChMMRU5Y/ifjdkGOJ4tcr5u87CzyvFnkZ3soyPFQmJNFUY6XnY0dFOV5\nKc3zkp+ddUpFf/yZqck+eh8Ihdnf0sPu5i7qjnRx6FjvW9+XisIcqopy3jqLNi87K/oLzu2iLxim\nMxCkINJL84CXp3YcZtVrBwA4a0ox154zmesXTEnJdVCdYlwUd38wzNce2870CfncvmJWuuNIBsly\nuyjO9VKcO/IKh41NjUyeNPkd90ciEUKRCMFQ9E//YKzMB8JvL/iBUISBYJi+UJj+gRB9wTCBYJhA\n7JdE70CIQ8d66e4PEhgIv+N1vFkuSvKyKS/wUl6QTXl+NhMKc5hQGB3m8bhTO8MmHIlwuCPA7uZu\n3jzcyd6j3QTDEdwuqC7P55J5VUwvz2daWT552SMPOy0q7sbn8xGJRNjX0sOz/sM8/noj/77a8q01\nlst9E/nY8pmcP7N8TP+lEo9xUdw/Xrub3c3dPPDRJe/4cEpktFwuFx6Xi0SuqRUMh+kKBOkMBGnv\nHXjrf209/bT19FPf2vO2cncBZQXZVBbmUFGYTUVRDq7+fvKK+ynO8+JOQNH19ofYfqidLQ3H+HN9\nGy/YZnpinyFUFOZw3oxy5lYVMrOigJxR/Jy5XC5mVhRw+4pZ3L5iFg2tPTy0qZ6HNtXz1I7DzJ9a\nzOcvO4PLfVXjtsDHfHG/sruF7zyzi+sWTOHSeRPTHUckLh63m9L8bErzsxluJZ1IJEJvf4iW7n6O\ndvVxtKuP5q5+jnb2sedoFwOh2CDFjg48bhel+V5Wb29iSkkuVUU5VBbnUpbvpSDbQ352Fl6Pm3A4\nQigcoXcgRFtPPy1d/RzuCLCnOXqC1P7WHkKx8ekpJbmYiUXMrixkVmVBUs90rS7P556r53HnZXN5\ndPNBfrR2N5/41WvMn1rMXZefwaXzxl+Bj+niPtIZ4HMPbWZGRQFff+/Z6Y4jkjAul4v8HA/5OR6q\ny98+9huOROjoHWBXQyNhbyFt3f2xD2j72HGog5buPuKdwJHjcTOzogAzqYhrzp7MOdNKWFhdSlVx\nbsJn0Iwk15vFLUtruHnxNB7dfJDvP1fHx3/5GufNKOOL7/axeHpZSvOk05gt7mAozJ0Pbaarb4D/\nuv18CrWIkYwTbpcreqReks3kSX+5+PXgh5PBUJjW2AybwQ9lB0Jhstwustwucjzu2NTIHIrzPBl3\nNOvJcnPzkmpuXDSV/361gf945k3e98P1XHXWRO65eh6zKwvTHTHpxmSbRSIR/u/jO9iwp5V7b16A\nmaQzJEUGebLcVBXnUlXs7Ev1ebPc3HrBdP5q0VR+9vJefrx2N8/4X+SWpdV8/rIzxvSqn2NuoYdI\nJMLXHtvOL1/Zz8eXz+R9ugCwyJhWkOPhzsvmsvaeS/jw+TX8dlMDF3/zee59ytLeO5DueEkxpoo7\nHI7w1d9v45ev7OcTK2by1Wt96Y4kIilSUZjDP98wn6fvvphL51Xx/efquOjfn+c/n6+jqy+Y7ngJ\nNWaKuyMwwJ2/3cx/baznb1bO5svX+DJubE5Ekm9mRQE/+NC5PHHnchZPL+Obayzv+sZzfOfpXbR1\n96c7XkKMiTHuTXtbueu/t9DUEeALV8/jjotnqbRFxrmzppTwwEfPY0vDMe57vo7vPvsmP31pD+89\ndyofuXDGO5ZHcBJHF/fRrj5++MJufr5uL9Xl+Tx8x4Usqhk/U4JEZGQLq0v5yUeWYJs6+elLe1j1\n2gF+s6Ge82eW877F07h6/qS4zpzNJI4s7iMdAX760h5+vWE//cEw719SzVffc6am/ImcRKrnXWca\nM6mIb928gK9c42PVaw08uKmeex5+na/+fhuXmEquOHMSF51RQVVR5s+2GbHpjDFu4D5gAdAH3G6t\nrRuy/RPAp4Ag8C/W2seTEfRIR4Cndhzmidcb2bi3BYAbF07lM5fOGRfzNkUkMcoKsvnUxbP55EWz\n2HqgnT9sOcgTrzeyZvthILqw1dKZ5ZxbU8aimlKmluZl3NBrPIeoNwK51toLjTEXAPcCNwAYYyYB\ndwJLgFzgZWPM09bavkSEe3rHYR7beojN9W0caOsFYFZlAZ+9ZA7vPXcaMyq05KOInB6Xy8XC6lIW\nVpfy99eeyY7GDtbuaubFXc08tKmen6/bB0Qv5jG3qpC5EwuZPqGAKaXR1SY7uwaY0R+KawGtRIun\nuJcDqwGstRuMMUuGbFsKrIsVdZ8xpg44B3g1EeHuf2kPDa09LKop46PLZvCuORXMm1SUcb/9RMTZ\n3G4X82NXWvrMJXMYCIWxTZ1srm9jZ1Mnbx7pYs32w7QePyvldw3kebMoy/dSmOuhMCe6LG+uN7pM\n7/I5Fbz/vOFWmxmdeIq7GGgfcjtkjPFYa4PDbOsESobbSW1t7dv+jcc9S7KBbCACtNFzqI0/H4r7\n6QlxKnnjZZI0FG+meYDm5Ow8CZQ3uZyWt6cnOT9vo3FmNpxZA9RkA+Wn+OwwcITa2iMJzxVPhXQA\nQ+fNuGOlPdy2IuDY8TtYvHixDpFFRBIknhNw1gHXAMTGuN8Ysm0TsMIYk2uMKQF8wLaEpxQRkbe4\nIiOs7zhkVsk5RNdrv41okddZax+LzSr5JNFfAv/PWvu75EYWERnfRizuRIodlf+G6Nh4NnC3tfaV\nlAWI00hTIDONMcYLPADMAHKITst8LK2hRmCMqQJqgSustTvTnWckxpgvAdcTfd/eZ639WZojDSv2\nXvgl0fdCCPhEpn5/jTHnA/9mrV1pjJkD/ILoB1rbgM9Ya995/bY0Oi7vQuD7RL/HfcBHrLWHU5Ul\n1WuV3A08a629GPgo8J8pfv14vTUFEvgi0SmQmexWoMVauwK4GvhBmvOcVKxcfgz0pjtLPIwxK4Fl\nwLuAi2HYi9JkimsAj7V2GfDPwL+mOc+wjDH3APcTnUYM8G3gq7H3sIvYlONMMUze7wKfs9auBB4B\nvpDKPKmd+n3/AAAD10lEQVQu7u8Q/YGF6AejgRS/frzeNgWS6Dz1TPY/wN/HvnYRPRkqk30L+BGQ\n4jlCp+0qop/tPAr8EUjKSWYJsgvwxP5qLAYydV3T3cB7h9xeDKyNff0kcHnKE53c8Xk/aK3dEvs6\n5V2WtHPEjTEfB+467u7brLWvxk7c+Q3wv5P1+qN0simQGcda2wVgjCkCHga+mt5EJ2aM+SjQbK1d\nExt+cIIKYDrwHmAm8JgxZp61NnXjjPHrIjpMspNo7vekNc0JWGt/Z4yZMeQu15Dv5wmnFafL8Xmt\ntY0AxphlwGeBi1KZJ2nFHRsDfMc4oDHmbOC3wN9Za9e+44mZ4WRTIDOSMaaa6BHhfdbaB9Od5yQ+\nBkSMMZcDC4FfGWOut9Y2pTnXybQAO621/YA1xgSASiDxE3RH7y5gjbX2S7H3xHPGmLOttZn61+2g\noePZw04rzjTGmA8AXwGutdamdMJ8SldlMsacSfTP+g9Ya7em8rVP0TrgOmDVMFMgM44xZiLwFPBZ\na+2z6c5zMtbat45MjDEvAHdkeGkDvAx83hjzbWAyUEC0zDNRG38ZHmkFvEDqz8k+dZuNMSuttS8A\n7waeT3OekzLG3Ep0jaaV1trWVL9+qpfT+zrRwf3vGmMA2q21GfUhRMyjwBXGmPX8ZQpkJvsyUAb8\nvTFmcKz73dZaR3z4l+mstY8bYy4iet6Cm+iMh1CaY53Id4AHjDEvEZ0B82VrbXeaM8Xjb4GfGmOy\nAT/RIb+MZIzJAr4H1AOPxLpsrbX2H1OVIaXTAUVEZPTGzKXLRETGCxW3iIjDqLhFRBxGxS0i4jAq\nbhERh9HVdWVMiq0vcoe19oND7vsG0TMKnyB62v10onOcG4gueNYUe9wK4B+IzoEuAH5urb0vpf8H\nRE5CR9wy3riILgr0iLV2ZWxRoweAx40xWcaYWUTn6N4aW0DoIuAjxpir05ZY5DgqbhlvJhA98esP\ng3dYa58huojQRcD/An41uERn7CSmq4Cn05BVZFgaKpHxpploSR9vD9GhkynAlqEbrLXtwzxeJG10\nxC1jVS/Ri0oMVUh05bwZwzx+LtFTmPdz3HrbxpgFxphFiY8ocnpU3DJW+YFFxpjJAMaYXKJDIQ8C\nk4wx1w0+MDZ+PYfoetAPArcbYypj2wqJriE/ObXxRU5Ma5XImGWMeS/Rtcl7iC649FNr7U9jl037\nD6Jra0N0Vsld1tqDseddSfTCFCGiS4zeb639Yarzi5yIiltExGE0VCIi4jAqbhERh1Fxi4g4jIpb\nRMRhVNwiIg6j4hYRcRgVt4iIw6i4RUQc5v8DNVE2am18h3UAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f20076dced0>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEBCAYAAADbxHY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACVNJREFUeJzt3W2IJVZ9x/HfmrupGROlg88YrCIeByoVVqooxsmoRPeF\ngqCIWNSCYJrSRQxCN0pA3IAQlYiIkla0VUHaVFBZXcHNihJCYRAf4O6RtH0jwUVMlcSJuJOML2ZG\nsyGbuHHu/9yd+/m8ug/MuX/u7nz3zJl77x7Y2toKADWeMHoAgEUiugCFRBegkOgCFBJdgEKiC1Bo\n8mh3rq+vez0ZwONw6NChA490+6NGd+cL936aQtPpNCsrK6PHmBuej3N5Pv7Ic3GuP+f5WF9fP+99\njhcACokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqIL\nUEh0AQqJLkAh0QUo9Jj/R9rjcf311+fMmTNZXl6exfIXZGNjI0tLS6PHmBvLy8u58cYbR48BC2sm\n0Z1Op7nvNxv5v1+dncXyj8O9oweYC5ds3JMXPv+5o8eAhTaT6CZJLpnk/hcdntnyXLjLTh8fPQIs\nPGe6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHR\nBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh\n0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSg0k+hubm4mDz44i6WBGThx4kTuvPPO0WMs\nhJlE9+zZs8mW6MLF4vjx47njjjtGj7EQHC8AFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIU\nEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgC\nFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXmBsn\nT57M6upqbr/99qFzrK6u5tprr83q6uqery26wNy46aabkiTHjh0bPMnsiC4wF06ePJnNzc0kyebm\n5rDd7sN3t3u9253s6WrMtQNn78/PfvbrHDlyZPQoc2NjYyNLS0ujxxjurrvuyuWXXz50ht1d7q5j\nx47l6quvHjTN7NjpAnNhd5d7vuv7hZ3uAtk6eFme88yn55Zbbhk9ytyYTqdZWVkZPcZwR44cycbG\nxtAZJpPJOaGdTPZnnux0gblw9OjRc67fcMMNgyaZLdEF5sLa2tofdreTyWTYee6pU6ce9fqfS3SB\nubG7292vu9zEmS4wR9bW1rK2tjZ6jJw6dWpm5/12ugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEF\nKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHR\nBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUGgyi0UPHjyY\nB363OYulgRk4fPhw7r777tFjLISZRHcymSSbD85iaWAGrrnmmkyn09FjLATHCwCFRBegkOgCFBJd\ngEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQS\nXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIU\nEl2AQqILUEh0AQqJLkAh0QUoJLoAhSYzW/mBzVx2+vjMlufCXbJxT5IrRo8BC20m0V1ZWcmZM2ey\nvLw8i+UvyMbGRpaWlkaPMSeeMRd/JrDIZhLdm2++eRbLPi7T6TQrKyujx5gb0+l09Aiw0JzpAhQS\nXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIU\nEl2AQqILUOjA1tbWee9cX18//50AnNehQ4cOPNLtjxpdAPaW4wWAQqILUGgyeoBZaa0dTPK5JH+V\n5C+SfKT3/rWhQw3WWnt6kvUkr+u9nx49z0ittX9O8sYklyb5dO/9XwePNMzO98oXsv298kCS9yzi\n34/W2suSfLT3vtpae0GSzyfZSvKTJNf13h/ci8fZzzvddyT5Ze/9VUlen+RTg+cZaucb67NJ7h89\ny2ittdUkr0jyyiSvTnLl0IHGO5xk0nt/RZIPJzk2eJ5yrbUPJPmXJE/cuenjST64048DSd60V4+1\nn6P7H0k+tHP5QJLNgbPMg5uTfCbJ3aMHmQPXJPlxkq8m+XqSb4wdZ7ifJpm01p6Q5MlJzg6eZ4T/\nSfLmh1w/lOS7O5e/meS1e/VA+za6vff7eu/3ttauSPKfST44eqZRWmvvSvKL3vuJ0bPMiacmeWmS\ntyR5b5IvtdYe8eU9C+K+bB8tnE5ya5JPDp1mgN77bTn3H5sDvffdl3bdm+Qpe/VY+za6SdJauzLJ\n7Un+vff+5dHzDPT3SV7XWjuV5CVJ/q219syxIw31yyQneu+/6733JL9N8rTBM430vmw/Hy9M8jdJ\nvtBae+JjfM1+99Dz2yuS/GqvFt7Pv0h7RpJvJ/nH3vt3Rs8zUu/9qt3LO+F9b+/95+MmGu77SY60\n1j6e5FlJnpTtEC+q/88fd3n3JDmY5JJx48yFH7TWVnvvp5K8Idubtz2xb6Ob5GiSv0zyodba7tnu\nG3rvC/+LpEXXe/9Ga+2qJP+d7Z/2ruu9PzB4rJE+keRzrbXvZfvVHEd7778ZPNNo709ya2vt0iTT\nbB9R7gnvSAMotK/PdAHmjegCFBJdgEKiC1BIdAEKiS5zrbW22lrbaq297WG3/6i19vmdy89urW20\n1t4yZEi4AKLLxeB0kj9Et7X24my/oWHXu7P91tXriueCCya6XAx+mOS5rbXd97+/I8mXkmTnMxP+\nLsnHklzaWvvrMSPCn0Z0uVjcluTNO5H92yR37Nz+miQ/7r3/Itufn2y3y1wTXS4WX872EcNVSb73\nkNvfk+R5rbVvJXl7krc+ZEcMc0d0uSj03v832+e4/5Tkizs3PzXJy5O8rPf++t77WpL/SvLOMVPC\nYxNdLiZfSXJl7/2nO9evSnLbwz6s5tYk/7Dgn4/LHPOBNwCF7HQBCokuQCHRBSgkugCFRBegkOgC\nFBJdgEKiC1Do9wOQmEbul/2GAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2007a0db90>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEBCAYAAABYAE8AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH/pJREFUeJzt3Xl8VOWh//HPmZnsKyQhhH1/CKsIBaSKVsWKe+1maW31\n1lZft6u2t1e9Vdt7u91fa5efvXbzZ23rfqvWpS7VWjcQ0Yis4WERCJCEneyTZJbfHzPQiIEMIZPJ\nk3zfr1d8ZebMnPNlTL5z8sxzzvGi0SgiIuIOX6oDiIjIiVFxi4g4RsUtIuIYFbeIiGNU3CIijlFx\ni4g4JtAbG6moqNCcQxGREzR79myvs/t7pbjjAXprUyetsrKS8vLyVMc4IcqcfK7lBfcyu5YXkpe5\noqLimMs0VCIi4hgVt4iIY1TcIiKOUXGLiDhGxS0i4hgVt4iIY1TcIiKOUXGLiDim1w7AkZj736jq\n1vOWzBvVw0lExFXa4xYRcYyKW0TEMSpuERHHqLhFRByj4hYRcYyKW0TEMSpuERHHqLhFRByj4hYR\ncYyKW0TEMSpuERHHqLhFRByj4hYRcYyKW0TEMSpuERHHqLhFRByj4hYRcYyKW0TEMV1euswY4wPu\nBGYCrcA11trNHZZ/A1gCRIAfWGsfS1JWEREhsT3uy4BMa+1pwI3A7YcXGGMKga8BpwHnAT9PRkgR\nEfmnRIr7dOBZAGvtcmBOh2VNwHYgJ/4V6emAIiLyXolc5T0fqOtwO2yMCVhrQ/HbO4D1gB/44bFW\nUllZ2e2QvS0YDCYtb01tfbeeV1nZdNzlycycLK5ldi0vuJfZtbyQmsyJFHc9kNfhtq9DaS8GyoCx\n8dvPGWOWWmtXHL2S8vLykwramyorK5OWd2V9VbeeV14+6rjLk5k5WVzL7FpecC+za3kheZkrKiqO\nuSyRoZKlwAUAxpj5wJoOyw4CLUCrtTYIHAIKu51URES6lMge92PAImPMMsADrjbG3ABsttY+YYw5\nF1hujIkArwHPJy+uiIh0WdzW2ghw3VF3b+iw/Dbgth7OJSIix6ADcEREHKPiFhFxjIpbRMQxKm4R\nEceouEVEHKPiFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpb\nRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4REceouEVEHKPi\nFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4REceo\nuEVEHKPiFhFxTKCrBxhjfMCdwEygFbjGWru5w/LFwG2AB1QAX7LWRpMTV0REEtnjvgzItNaeBtwI\n3H54gTEmD/gxcJG1dh6wDShOQk4REYlLpLhPB54FsNYuB+Z0WLYAWAPcbox5Fdhtrd3b4ylFROSI\nLodKgHygrsPtsDEmYK0NEdu7/hBwCtAIvGqMed1au/HolVRWVvZE3l4RDAaTlremtr5bz6usbDru\n8mRmThbXMruWF9zL7FpeSE3mRIq7HsjrcNsXL22A/cCb1tpaAGPMK8RK/H3FXV5efpJRe09lZWXS\n8q6sr+rW88rLRx13eTIzJ4trmV3LC+5ldi0vJC9zRUXFMZclMlSyFLgAwBgzn9jQyGFvA9OMMcXG\nmAAwH1jf/agiItKVRPa4HwMWGWOWEZs5crUx5gZgs7X2CWPMTcBz8cc+bK1dm6SsIiJCAsVtrY0A\n1x1194YOyx8EHuzhXCIicgw6AEdExDEqbhERx6i4RUQco+IWEXGMiltExDEqbhERx6i4RUQco+IW\nEXGMiltExDEqbhERx6i4RUQco+IWEXGMiltExDEqbhERx6i4RUQco+IWEXGMiltExDEqbhERx6i4\nRUQco+IWEXGMiltExDEqbhERx6i4RUQco+IWEXGMiltExDEqbhERx6i4RUQco+IWEXGMiltExDEq\nbhERx6i4RUQco+IWEXGMiltExDEqbhERx6i4RUQco+IWEXGMiltExDEqbhERxwS6eoAxxgfcCcwE\nWoFrrLWbO3nMX4HHrbW/TkZQERGJSWSP+zIg01p7GnAjcHsnj/keMKgng4mISOcSKe7TgWcBrLXL\ngTkdFxpjPgZEDj9GRESSK5HizgfqOtwOG2MCAMaYacAS4NYkZBMRkU50OcYN1AN5HW77rLWh+Pef\nBYYDLwJjgDZjzDZr7fv2visrK08yau8JBoNJy1tTW9+t51VWNh13eTIzJ4trmV3LC+5ldi0vpCZz\nIsW9FLgYeNgYMx9Yc3iBtfZbh783xnwHqO2stAHKy8tPLmkvqqysTFrelfVV3Xpeefmo4y5PZuZk\ncS2za3nBvcyu5YXkZa6oqDjmskSK+zFgkTFmGeABVxtjbgA2W2uf6JmIIiKSqC6L21obAa476u4N\nnTzuOz2USUREjkMH4IiIOEbFLSLiGBW3iIhjVNwiIo5RcYuIOEbFLSLiGBW3iIhjVNwiIo5RcYuI\nOEbFLSLiGBW3iIhjVNwiIo5RcYuIOEbFLSLimETOxy09oDUU5q5Xt/Lkqmo8z8PnQUluBgsnlZCZ\n5k91PBFxiIq7F6zYeoCbHl3Nlr1NlOZn4PM8wpEo66vrebvqIJfMHMaUYQWpjikijlBxJ9l/P7uB\nX720hRGDsrjn6g9QfSh4ZNmOA808tnIX975RxfThBXxizkj8Pi+FaUXEBRrjTqIHVlTxq5e28Mk5\nI/nb9Qs5ywx5z/KRg7P50ocmcG55KWt21fH4O7uIRqMpSisirtAed5JUbD/ArY+vZeGkEn5w+fRj\n7kn7fR5nTx5COBLhH3YvRTnpnHlUwYuIdKTiToLd9UGuu/dthhVmcccVsxIa/ji3vJQDTW08t343\ng3LSmTGisBeSioiLNFTSw6LRKF95YCVNrSF+e+UcCrLTEnqe53l89NQRjC7K5s8VO9nX0JrkpCLi\nKhV3D3tqdQ0rth7g1oumYIbmndBzA34fn5o7ioDf47F3dhHReLeIdELF3YOC7WF+9MwGppTl8/E5\nI7u1jvzMNBZPLWPrviYqth/s4YQi0h+ouHvQ3Uu3sutQC9++sPykpvXNHjOIscU5PLO2hoZgew8m\nFJH+QMXdQ/Y2tHLnP7ZwbnkpCyYUn9S6fJ7HR04ZTigc5cnVNT2UUET6CxV3D/nZCxsJtoe5+YLJ\nPbK+4rwMPjR5CGt31bF5T2OPrFNE+gcVdw/YebCZh97cwafnjWJcSW6Prff0CcUUZqXx7LoaIhF9\nUCkiMSruHnD3a9vwgGvPHN+j603z+1g0pZTqQ0GeXF3do+sWEXepuE/SoeY2HnyziktmDmNYYVaP\nr3/myELKCjL58XOW1lC4x9cvIu5RcZ+ke5dvp7ktzBfPHJeU9fs8j/OnDWXnwRb+9Pr2pGxDRNyi\n4j4JwfYw9yzbxlmmhMlD85O2nYlD8jhjYjF3vLiZuhZNDxQZ6FTcJ+GRt3eyr7GNaxf27Nh2Z25c\nPJm6lnbuevXdpG9LRPo2FXc3RSJRfvfKu8wcUcD8cYOTvr2pwwq4YPpQ7n5tKwea2pK+PRHpu1Tc\n3fTypr1s29/M588Yh+f1zsUPrj93Es3tYX7z8pZe2Z6I9E0q7m669/XtFOdmcP7Uob22zYmleVx2\nynD+8Po29jQEu3y8iPRPKu5u2HGgmRftHj41dyTpgd59Cb92zkTaw1Hu/If2ukUGKhV3N9y/ogoP\n+NTcUb2+7THFOXzs1BHc/0YV1Ydaen37IpJ6Ku4T1BoK89CbO1g0pTQpB9wk4ivnTCBKlDte3JSS\n7YtIaqm4T9Aza2o50NTGlfPHpCzDiEHZLJk7ioff2sm2fU0pyyEiqdHlNSeNMT7gTmAm0ApcY63d\n3GH59cAV8ZtPW2u/m4ygfcWflm9nXHEOC8YXpTTHl86ewENv7eDnL2zk51fMSmkWEeldiexxXwZk\nWmtPA24Ebj+8wBgzDvg0sACYD5xnjJmRjKB9QWVNPRXbD7Jk3ih8J3GhhJ4wJC+Tzy0Yw+OrqrG1\nDSnNIiK9K5HiPh14FsBauxyY02HZDuB8a23YWhsF0oB+O0/t/jeqSA/4+NjsEamOAsB1C8eTmx7g\np8/bVEcRkV7U5VAJkA/UdbgdNsYErLUha207sM8Y4wE/BlZaazd2tpLKysqTT9tLgsHg+/IG2yM8\nUlHFGaNyqNm+he5el6amtr5bz6us7Hws+9LJedy7ajfnlBUD7rzG0Pnr3Je5lhfcy+xaXkhN5kSK\nux7oeLlyn7U2dPiGMSYTuBtoAP71WCspLy/vbsZeV1lZ+b68D7+5g+b2KNedN53yMd0/xH1lfVW3\nnlde3vnUw38f284zm1/iT2saeeKcub12FGdP6Ox17stcywvuZXYtLyQvc0VFxTGXJTJUshS4AMAY\nMx9Yc3hBfE/7cWCVtfZaa22/PWH0fSuqmDgklzmjB6U6ynvkZabx9UWTWLM7yAuVe1IdR0R6QSJ7\n3I8Bi4wxywAPuNoYcwOwGfADZwIZxpjF8cffZK19PSlpU2RddR2rdhzitoun9Mk92is+MJLf/sPy\nw6crOcuUkObXLE+R/qzL4rbWRoDrjrp7Q4fvM3s0UR/0wIoqMgI+Lp/VNz6UPFqa38e/zB7Md1/c\nzQMrqvjsaWNSHUlEkki7Zl1oag3xl5XVXDijjILstFTHOaZ5I7I5bVwRP39hE/VBXWxBpD9TcXfh\n8XeqaWwN8el5o1Md5bg8z+M/LiznYHMbP39eh8KL9Gcq7uOIRqPcu3w75WX5nDqqMNVxujRteAFL\n5o7inmVbWburrusniIiTVNzH8XbVIdbX1HPl/NF98kPJznzr/MkMzsng5sfWEI5EUx1HRJJAxX0c\n9y3fTm5GgEtPGZbqKAkryErjtounsHpnHX96fVuq44hIEqi4j+FAUxtPra7ho6cOJycjkVmTfcdF\nM8pYOKmEn/xtI7V1/fYMBCIDlor7GB5+awdt4Qifnt+3P5TsjOd5fO/SaYQiEf7tz6uIaMhEpF9R\ncXciEo1y3xvbmTd2MJNK87p+Qh80qiibWy+ayqub9nHXa++mOo6I9CAVdyfe2tXCjgMtfMbBve2O\nPjV3JIunDeX/PGtZteNQquOISA9RcXfi0XWHKCvI5PxpvXcF92TwPI8fXT6D0vxMvvrgShp0YI5I\nv6DiPsraXXWsqg1y1YIx/eKcHwXZafziilPYcaCZbzy8SlMERfoBt6ZL9IK7X9tKVsDjihRcwf14\n7n/j+KeDramt7/SUsUvmjWLOmMHcetEUvvPkev7zyXV855KpCc1L72qbx7JkXt967UT6GxV3B7V1\nQZ5YVc2FJo+CrL57XpLuuOqDY9l5sIW7XtvK8EFZfHHh+FRHkn6su2/6s/J7OEg/peLu4A+vbyMS\njXJpeUGqoyTFzReUU1MX5AdPb2BIXiaXzRqe6kgi0g0q7rim1hD3Ld/Oh6cOpSyvf+1tH+bzedz+\niZnsb2rl+offoaE1xJWOz5wRGYjc//Sthzywoor6YIhrzhib6ihJlZnm5/dXzeVsM4Rb/rKWO/6+\niWhUH1iKuETFDTS3hfjVS1s4fUIxs0d3/3qSrshK9/PrK2dz+azh3P78Rm5+bC3B9n571TmRfkdD\nJcAfX9/O/qY2rl80MdVRek2a38dPPj6TIfmZ/PrlLbyz4xC/XDKL8SW5qY4mIl0Y8Hvcja0hfvPy\nFhZOKhkQe9sd+XweNy6ezN1XzaG2roWL73iNB1ZU6dwmIn3cgC/uPyzbxsHmdq4/d+DsbR/t7Mml\nPPO1hcwcUchNj67hI79axjs6RF6kzxrQxd0QbOe3r7zL2ZOHMGvUoFTHSamhBZnc/4V5/OyTM6k5\n1MJl/7OU/31rB3sbWlMdTUSOMqDHuO98aQt1Le18fQDvbXfkeR4fmTWCRVOGcseLm7j7ta28s+MQ\nU4cXcNakEoYVZqU6oogwgIt7855G7nr1XT566ghmjOj715PsTbkZAW5aXE5RTgZLN+9j+bv7Wbur\njpGDspg7tojpwwtIDwzoP9ZEUmpAFnc0GuU7T6wjM83PjYsnpzpOn5WbEeDDU4eycGIJb1cdZMXW\nAzzy9k6eWl3NtGEFzBxZyLiSHHyOXI9TpL8YkMX9zNpaXtu8j+9eMpWSvIxUx+nzstL9fHBCMQvG\nF7FtfzNvbz/I2uo6KqoOkpsRYEpZPlOH5TO2JIeAz5fweSqOPjGWTk4lkpgBV9xNrSH+66n1TCnL\n59MqihPieR5ji3MYW5zDJacMw9Y2sHpXHe/sOMSKbQfITPMxcUgeZmgek0rzyHXsWp0irhhwv1k/\nfKaSmrogv1wyi0A/ON92qqT5fUwbXsC04QW0hyNs3tPI+pp6NtY2sGZXHR4wfFAWE4bkMnFIHqMG\nZ+P3aUhFpCcMqOJ+anU19y6v4tqF4wbcwTbJlOb3UV6WT3lZPpFolJpDQTbsrmfT7kZe2biXl+xe\n0v0+xhRnM74kl7HFOZQVaIaKSHcNmOLevr+Jmx5Zw6xRhXzzwybVcfotn+cxfFAWwwdlcc7kUlra\nwmzZ28i7+xrZsreJZ9bWApAR8FGa62fSIT+ji7IZMUhF3pXunOO6prae8vIkhJGUGhDF3RoK8+X7\nV+LzedzxqVn94pJkrshK9x8ZUgGoD7azbV8TW/c1sam2jhcqdwPgAQ+9uYOZIwqZMbKA6cMLmFSa\nR2aaP6Ht6Go9MpD0++KORKLc9Oga1uyq47dXzmbEoOxURxrQ8jPTmDGikBkjCqmp9VE4eAg7Djaz\nfX8z4WiU59bX8tBbOwDw+zzGl+QweWg+k0pzmViax4QhuYwanN1jb74nUvgdZ8Go8LunpS3MvsZW\nGoIhmlpDNLWFaA9HgSjRKNicEKa+isE56QwvzGL8kByy0/t9TZ2wfv2KRKNRbnl8LY++vYvrz53E\neVPdvmp7f5SV7mdSaWwWypJ5o4hGo+w40ML6mjrWVdezrrqeiu0HeWJV9ZHn+H0eowZnM7oom9GD\nsxk5OJut+5oozEqnIDuNnHR/QtfUlOQJhSPU1gepORSkuq6Fmrog+xpbaW7r/PTBHuB5EIkCKw++\nZ9mIQVlMHZbPB8YM5gNjBjN1WP6An1jQb4s7Go3yg6crue+NKq49cxxfPWdCqiNJAjzPY1RRNqOK\nsjl/WtmR+xtbQ2ze08iWPY1s3dfEu/sa2b6/mYptB2loDb1nHQGfR15mgPzMNPKy0sjLCJCXGSA3\nI0DO4a90PzkZATICPpX8SQqFI2ze28ianXWs3lnH6p2HWFtdTzh+lsmMgI+hBZlMHVZAcW46xbkZ\n5GelHfl/0PGvpynZDZSOGsf+xjZ2HGhm055GNu5uYPXOOp5bFxtWy8sIsNCUcLYZwocmD2FwTnpK\n/t2p1C+LOxSO8P2nK/n90m187rTR3Hj+ZP1yOi43I8ApIws5ZeR7T08QjUapa2nnd69spa6ljUMt\n7dQ1t1MfbKc+GKLmUAubWkO0hiKdrtfnQU56gKx0P9npfrIPf5/mJys9/pUW+2pqbCetsZWsND/t\n4ciA+6wkFI6w61AL2/Y38+7eRjbUNLChth67u4Fge+z1zc0IMG14PgvGFzFiUDbDCjIZlJOe8NG1\nGQEfZQVZlBVkMW14AYs7LNtdH2TF1gMs3byPv2/Yw19X1+DzYP64Ii6YXsaHpw4dMAfU9bvi3tvQ\nypfvf5s3th7gqgVjuPWiKSrtfszzPAqz04/MZDmW9nCExmBsTLWpNURja5jmthDNbWGaWkO0tIdp\nbguzv6mVloNhWtrD8bHXo6ypA+D7T1eSmeYjPzON3MwAeRkBcjMDZKcH4m8AfjLT/GQE/GSm+UgP\n+Ejz+Qj4PVZWHYpnj63y8JXjItHYOG8kGiUciRKORolEooQj778vEo29aUXhyKXnPM87MuTgeR5+\nzyMYbKb5qfWx7ft9pPk8An4faX4Pn+fhiz82Go0SikRpC0dobY/QEAzR2NrOweZ29jS0src+yJ6G\nVkIdztU+OCed8rI8lswdzYwRBUwfUcDYohx8Pq/bHxYfT2l+JhfPHMbFM4cRiURZV13P39bX8tc1\nNXz7L2u59fG1nDa+iItnDOP8aUMpzO6/e+L9qriXbdnH9Q+9Q11LOz/9xEwuP3VEqiNJH5Hm9zEo\nJ51BJ/BndXs4Qkt7mJa22Ff13n1k5eTT0h7GlObR0BqivqWdhtbYm0FDMMSBppYjbwjBtjCtoQht\n4c739hPhERvT9/liRezzYre9DqV7+HGHS/xI+UchFAqz5UAV7eHoCeXISfeTl5lGQVYaQ/IzmFBS\nzNCCDEYX5TCmKIcxxdmU5GakbKfI5/OYHn+zuGHRJOzuBv66uoYnV1Vz46Nr+PZf1nL6xGIunF7G\neVOGUpDdvy4A3i+Ke+u+Jn70TCXPrdvN6KJsfn/VXKYMy091LHFcmj+2l5qfGfulzwjVUzY0dt72\nE5lVEonvyYYiUULhCA+9GZs1E43/x+tQwH7Pw+eLzYf3+7yTPoFXTW0N37h0Xmx78b3qUDhKeyRC\nJPLPkvc8j4DfIz3+b3bpKFfP85g8NJ/JQ/O5YdEk1lXX8+Sqav66poZ/+/NqbvavYf64Is6bUsq5\nU0r7xcFfzhZ3NBpl7a567l9RxZ8rdpDm9/HN8ybx+dPHkZWe2Nxfkd7g83lk+v75M5mXmZq9P8/z\nSPN7pPkhi/75O+J53pHjBm5cPJnVO+t4ek0Nz6/fzS2Pr+OWx9cxeWgeZ0ws5oyJJcwePYgcB8+p\n02ViY4wPuBOYCbQC11hrN3dY/gXgWiAEfM9a+1SSshKJRKmsrWfp5n38ZWU162vqyUzz8bHZI7l+\n0USG5GUma9Mi4hjP85g5spCZIwu56YJyNu9p5O+Vu3ll017+sGw7v3t1K36fx5SyfGaPHsSMEQVM\nGZbP+JLcPv/BcyJvNZcBmdba04wx84HbgUsBjDFDga8Cc4BM4DVjzPPW2h653lVtXZA3tu5n0+5G\nNtQ2ULH9AAeb2wGYNjyf/7psGpfMHEZBVv8avxLpK5LxIWOqTBiSy4QhuVx75nha2sKs2HaAt7Yd\n4K1tB3nwzSruWRb7DCDd72N0UfaRM2GOGJTF0IIshuZnUpKXQWF2WsJH9CZLIsV9OvAsgLV2uTFm\nTodlc4Gl8aJuNcZsBmYAb/ZEuM/dvQK7uwG/z2NMUTZnTy7lgxOKOG18Ub8YpxKR1MhK93PmpBLO\nnFQCxKY6btvfxLrqetbX1PPu3thpGV7auJe2TqaS5qT7KciKzSjyR9opXlZPRiA2fTTj8Awev8e8\nsUVcOKPsfc8/Wd7hqUTHYoy5C3jEWvtM/HYVMM5aGzLGfAaYbq399/iyPwJ/tNa+0HEdFRUVx9+I\niIi8z+zZszv9lDiRPe56IK/DbZ+1NnSMZXnAoUQ3LiIiJy6REfilwAUA8THuNR2WrQDOMMZkGmMK\ngHJgbY+nFBGRIxIZKjk8q2QGsXn+VxMr8s3W2ifis0q+SOxN4AfW2keSG1lEZGDrsrh7Qnxv/F4g\nH0gHbrDWvp70DZ+grqY+9jXGmDTgbmAMkEFsOuYTKQ2VIGPMEKACWGSt3ZDqPF0xxtwEXELs5/dO\na+3/S3GkY4r/XPyB2M9FGPhCX36NjTHzgP+21p5ljJkA3EPs+KS1wJestd0/9DQJjsp7CnAHsde5\nFfistXZ3sjP01mTFG4C/W2vPBK4C/qeXtnuijkx9BG4kNvWxL/sMsN9aewZwPvDLFOdJSLxYfgO0\npDpLIowxZwELgA8CZwIjUxqoaxcAAWvtAuA/ge+nOM8xGWO+BdxFbDoxwE+Bb8d/pj3iU4/7ik7y\n/gL4irX2LOBR4N97I0dvFffPiP2iQuwD0WAvbfdEvWfqI7H56X3Z/wK3xL/3iB0E5YKfAL8Gqrt6\nYB/xYWKf7TwGPAkk7SCzHrIRCMT/gswH2lOc53i2AJd3uD0beDn+/TPAub2e6PiOznuFtfad+Pe9\n1m09fqynMebzwPVH3X21tfbN+AE79wJf7+nt9pB8oK7D7bAxJtBhFk2fYq1tBDDG5AF/Br6d2kRd\nM8ZcBey11j4XH35wQTEwGrgIGAs8YYyZbK3tq9NcG4kNk2wglv2ilKY5DmvtI8aYMR3u8jq8rg1A\nQe+nOraj81prawCMMQuALwMLeyNHjxd3fOzvfeN/xpjpwIPAN621L7/viX3D8aY+9knGmJHE9gTv\ntNben+o8CfgXIGqMORc4BfijMeYSa21tinMdz35gg7W2DbDGmCBQAuxJbaxjuh54zlp7U/zn40Vj\nzHRrbV/9S7ejjuPZnU4v7muMMZ8E/gO40Fq7tze22StnVzHGTCH2Z/0nrbWremOb3bQUuBh4uJOp\nj32OMaYU+BvwZWvt31OdJxHW2iN7JMaYl4Dr+nhpA7wGfM0Y81OgDMghVuZ91UH+OTxyAEgDZ84q\ntdIYc5a19iVgMfCPFOc5rvhBiNcCZ1lrD/TWdnvrtFg/JDaY/wtjDECdtbZPfegQ9xiwyBizjH9O\nfezLbgYGAbcYYw6PdS+21jrxoZ8rrLVPGWMWEjtuwUdspkPnF0/sG34G3G2MeZXYLJibrbVNKc6U\nqG8AvzPGpAOVxIYA+yRjjB/4v0AV8Gi821621t6W7G33ynRAERHpOX373IUiIvI+Km4REceouEVE\nHKPiFhFxjIpbRMQxKm7p94wxZxljosaYK466f7Ux5p7498OMMc3GmI+nJKTICVBxy0CxAThS3PEj\neXM6LL+a2JzcL/VyLpETpuKWgWIVMDp+imGInVnxPgBjjAdcSexskOnGmGmpiSiSGBW3DCSPAJfH\ni3ousCx+/znAmvh5Ju5Ge93Sx6m4ZSC5n9hwyULg1Q73fwEYa4x5FlgCfKLDnrlIn6PilgHDWvsu\nsXHtrxI7vTDETns6H5hnrT3fWns2sRPify41KUW6puKWgeYhYKS1dmP89kLgkaNOGvU74F/jQyoi\nfY5OMiUi4hjtcYuIOEbFLSLiGBW3iIhjVNwiIo5RcYuIOEbFLSLiGBW3iIhjVNwiIo75//AebfiA\n6M5pAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2046974710>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEBCAYAAADbxHY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACp1JREFUeJzt3X+o3fddx/FXlpu5tnZyk7lGt7mgoR+vf+hoxoQWZyEd\ncS3+iEXxDxEp6CbrCMUwdMsouOsfkzrJnOKYm53TCWoI6BqNtLqhKCiXCgo3H7mDaDZRNL2ry4+5\nJbv+ce61zZpkRe99f87ueTz+uufenO9535OeZz/53O/53h1ra2sBoMZLRg8AMEtEF6CQ6AIUEl2A\nQqILUEh0AQrN3eyLS0tLzicD+D84cODAjut9/qbRXb/j5k9TaHl5OQsLC6PHmBqej2t5Pp7jubjW\n/+f5WFpauuHXbC8AFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh\n0QUoJLoAhUQXoJDoAhQSXYBCogtQ6Kv+jrSvZUePHs25c+eyd+/e0aNMjd27d+fRRx8dPQbMrG0d\n3eXl5Vy4eCmfvXTdX8o5c3ZeeiZ3futrR48BM21bRzdJsnMul7/9/tFTTIVbzpwaPQLMPHu6AIVE\nF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCF\nRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoA\nhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSi0JdE9ffp0Tp8+vRWHhm3Fa2X2zG3FQU+dOpUkOXTo\n0FYcHrYNr5XZY3sBoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEK\niS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQB\nCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKDQ3egBgvMOHD2d1dTV79uzJiRMn\nhs2xsrKSI0eO5Pjx49m/f/+wOQ4ePJirV69mbm4uTz755KYe20oXyOrqapLk/PnzQ+dYXFzMxYsX\ns7i4OHSOq1evJkmuXLmy6ccWXZhxhw8fvub2gw8+OGSOlZWVnD17Nkly9uzZrKysDJnj4MGD19y+\n7777NvX4W7K9sLq6mvPnz+fIkSNbcfgX7fLly8najqEzTJMdX7qcz3zm2eF/L9Pk0qVLufXWW4c9\n/srKSvbs2TPs8ZPnVrkbRq12v3J1u7i4mMcff7x8jo1V7obNXu1a6QJTYWOVe6Pb28WWrHTn5+cz\nPz+f48ePb8XhX7QHHnggF77wxaEzTJO1Xbfk1XtfOfzvZZosLy9nYWFh2OP7V8dz9u3bd01o9+3b\nN2yWrWSlCzNufn7+mtujtjuOHTt209tVdu7cec3tubnNXZuKLsy4kydPXnN71Clj+/fv/9/V7b59\n+4adMvbUU09dc9spY8Cm21jtjv6h3rFjx3LbbbcNW+Vu2FjtbvYqN/HmCCCT1e7o/e1kstp94okn\nhs6QTFa7W/V8WOkCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh\n0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5A\nIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkChua046P33378Vh4Vtx2tl9mxJdA8dOrQVh4Vt\nx2tl9theACgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0\nAQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BI\ndAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoNDd6gC139UpuOXNq9BRTYeel\nZ5LcPnoMmGnbOroLCws5d+5c9u69Y/QoU+KO7N69e/QQMNO2dXQfe+yxLC8vZ2FhYfQoU2N5eXn0\nCDDT7OkCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoA\nhUQXoJDoAhQSXYBCogtQaMfa2toNv7i0tHTjLwJwQwcOHNhxvc/fNLoAbC7bCwCFRBeg0NzoAbZK\na21Xko8k2Zfk65Is9t7/aOhQg7XWXplkKcmbeu9nRs8zUmvt55P8QJKXJvn13vuHB480zPpr5aOZ\nvFauJvmpWfzvo7X23Une23u/t7W2P8njSdaS/GOSt/Xev7wZj7OdV7o/nuR87/17knxfkg8Mnmeo\n9RfWB5NcHj3LaK21e5PcneSeJN+b5DVDBxrv/iRzvfe7k/xCkl8cPE+51to7kvxmkpetf+p9SY6t\n92NHkh/crMfaztH9gyTvXv94R5IrA2eZBo8l+Y0k/zp6kClwKMk/JDmZ5I+TfGLsOMP9U5K51tpL\nkrw8yZcGzzPCp5P88PNuH0jyqfWP/yTJfZv1QNs2ur33C733z7fWbk/yh0mOjZ5plNbaTyb5j977\n6dGzTIlXJHl9kh9J8tYkv9tau+7pPTPiQiZbC2eSfCjJ+4dOM0Dv/USu/Z/Njt77xqldn0/yDZv1\nWNs2uknSWntNkr9I8rHe+8dHzzPQQ0ne1Fr7ZJLXJfnt1tresSMNdT7J6d77F3vvPckXknzj4JlG\neiST5+POJN+V5KOttZd9lftsd8/fv709yec268Db+QdpdyT5syQP996fGj3PSL33N258vB7et/be\n/23cRMP9VZIjrbX3JfmmJLdlEuJZtZrnVnnPJNmVZOe4cabC0621e3vvn0zy5kwWb5ti20Y3yTuT\nzCd5d2ttY2/3zb33mf9B0qzrvX+itfbGJH+byb/23tZ7vzp4rJF+JclHWmt/mcnZHO/svV8cPNNo\nP5vkQ621lyZZzmSLclN4RxpAoW29pwswbUQXoJDoAhQSXYBCogtQaDufMsbXmNbaz2XydstdmZyc\nfjTJ25Pclcn5oxs+1nv/cGttPpO3N+9fv8+/JHlL7/3Z1tobkixmsrC4Pcnv995/ueybgRsQXaZC\na+07Mrnq1z2997XW2usyufLV00ne0Xv/0+vc7feSfLD3fnL9GI9kclGfH8vkAkc/0Xs/s36xn79u\nrf157/3piu8HbsT2AtPi2STfkuSh1tqreu9/n+QNN/rDrbXXJtm7Edx170/ylvWP/z3Jw621A5ms\nmu8RXKaBN0cwNVprdyV5OJMthktJ3pXk+/PC7YW3J/n6TFbAh29wrJcnObJ+/29L8vEkR3vv/71l\n3wC8CLYXmArrF43+r977Q+u3X5/JJfX+JtfZXmitvSrJq7/ic7uS/GiSE0nu6r2/J8l7Wmu7k/xW\nkp9O8qtb/b3AzdheYFp8Z5IPrL/XPZlc4/VzmfwmgxfovX82yX+21p5/cekjmVxs+stJfqe1duf6\nn30myT8nscplONsLTI3W2rsyWaleyGRB8N4kP5QXbi98qvf+aGvtFUl+Lck3Z3Khlk8n+Zn1sxfu\nTvJLmZzVsJbk75I80nuf9YvZM5joAhSyvQBQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEL/Axfi\nHKI3TUEqAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f200799c050>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEBCAYAAABYAE8AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4W9Wd//G3ZHnfgx3biRNICDkIAgkEQsIWYIAWOhRK\n21+B0oWWFtrCr0PpULrMtL9f2+nKUNpCgVJaYJqhTCFPoS2BsockbCZkAeUEZyFxYmf3btmWpflD\nsnESO5ZtWdJxPq/nyRPdRVdfPUo+Ojr33HM9kUgEERFxhzfVBYiIyPAouEVEHKPgFhFxjIJbRMQx\nCm4REccouEVEHONLxovU1NRozKGIyAjMnTvXc+C6pAR37MWT9VKDCgQC+P3+VJcxKq6/B9WfWq7X\nD+6/h+HUX1NTM+B6dZWIiDhGwS0i4hgFt4iIYxTcIiKOUXCLiDhGwS0i4hgFt4iIYxTcIiKOSdoF\nODJyi17d0ve4vqGZlc1bBt33qtOmJqMkEUmhuILbGHMa8BNr7TkHrL8S+BcgBKwBvmytDSe6SBER\ned+QXSXGmFuA+4CcA9bnAj8AzrXWngEUA/88FkWKiMj74unj3gBcPsD6TuB0a217bNkHBBNVmIiI\nDMwTz82CjTFHAQ9ba+cPsv1G4GLgYmvtQQesqamJ5OXljbLU0QsGg+Tk5Ay9Y5r5+/rmvseh7m58\nmZmD7nvxzKJklDRirn4GvVR/6rn+HoZTf3t7e+JnBzTGeIGfAjOBjw4U2r3SYTYvV2cV638ysr6h\nnqrKqkH39fvT++Skq59BL9Wfeq6/h0TMDjjaUSX3EO0yuUwnJUVEkmPYwW2MuQooAN4APg8sBZ4z\nxgDcYa1dnNAKRURkP3EFt7V2MzA/9nhRv026gEdEJMkUvCIijlFwi4g4RsEtIuIYBbeIiGMU3CIi\njlFwi4g4RsEtIuIYBbeIiGMU3CIijlFwi4g4RsEtIuIYBbeIiGMU3CIijlFwi4g4RsEtIuIYBbeI\niGMU3CIijlFwi4g4RsEtIuIYBbeIiGMU3CIijlFwi4g4RsEtIuIYBbeIiGMU3CIijlFwi4g4Jq7g\nNsacZox5YYD1lxhjXjfGrDDGfCHh1YmIyEGGDG5jzC3AfUDOAeszgduBC4GFwBeNMRVjUaSIiLwv\nnhb3BuDyAdb7gVpr7T5rbRfwMnB2IosTEZGD+YbawVr7qDHmqAE2FQFN/ZZbgOLBjhMIBIZdXKIF\ng8G0qGO46hua+x6Hurupb6gfdN9AoC0ZJY2Yq59BL9Wfeq6/h0TUP2RwH0IzUNhvuRBoHGxnv98/\nipdKjEAgkBZ1DNfK5i19j+sb6qmqrBp0X79/ajJKGjFXP4Neqj/1XH8Pw6m/pqZmwPWjCe4AcIwx\nZgLQSrSb5OejOJ6IiMRh2MFtjLkKKLDW3muM+RrwFNG+8vuttdsSXaCIiOwvruC21m4G5sceL+q3\n/gngiTGpTEREBqQLcEREHKPgFhFxjIJbRMQxCm4REccouEVEHKPgFhFxjIJbRMQxCm4REccouEVE\nHKPgFhFxjIJbRMQxCm4REccouEVEHKPgFhFxjIJbRMQxCm4REccouEVEHKPgFhFxjIJbRMQxCm4R\nEccouEVEHKPgFhFxjIJbRMQxCm4REccouEVEHKPgFhFxjG+oHYwxXuAuYDbQCVxrra3tt/1m4Cog\nDPyHtXbxGNUqIiLE1+K+DMix1i4AbgVu691gjCkBvgosAC4EfjEWRYqIyPviCe4zgSUA1tpXgFP6\nbWsD3gPyY3/CiS5QRET2N2RXCVAENPVb7jHG+Ky1odjyVuAdIAP40WAHCQQCIy4yUYLBYFrUMVz1\nDc19j0Pd3dQ31A+6byDQloySRszVz6CX6k89199DIuqPJ7ibgcJ+y95+oX0RUAVMiy0/ZYxZZq19\n7cCD+P3+URWaCIFAIC3qGK6VzVv6Htc31FNVWTXovn7/1GSUNGKufga9VH/quf4ehlN/TU3NgOvj\n6SpZBlwMYIyZD6zpt20f0AF0WmuDQCNQEldFIiIyIvG0uBcDFxhjlgMe4BpjzNeAWmvt48aY84FX\njDFh4GXgH2NXroiIDBnc1towcP0Bq9f12/5d4LsJrktERAahC3BERByj4BYRcYyCW0TEMQpuERHH\nKLhFRByj4BYRcYyCW0TEMQpuERHHKLhFRByj4BYRcYyCW0TEMQpuERHHKLhFRByj4BYRcYyCW0TE\nMQpuERHHKLhFRByj4BYRcYyCW0TEMQpuERHHKLhFRByj4BYRcYyCW0TEMQpuERHHKLhFRBzjG2oH\nY4wXuAuYDXQC11pra/ttvwj4LuABaoCvWGsjY1OuiIjE0+K+DMix1i4AbgVu691gjCkEfgb8s7X2\nNGAzUDYGdYqISEw8wX0msATAWvsKcEq/bacDa4DbjDFLgR3W2l0Jr1JERPrEE9xFQFO/5R5jTG8X\nSxlwLvAN4CLgX4wxMxNbooiI9DdkHzfQDBT2W/Zaa0Oxx3uA1621DQDGmJeAOcD6Aw8SCARGWero\nBYPBtKhjuOobmvseh7q7qW+oH3TfQKAtGSWNmKufQS/Vn3quv4dE1B9PcC8DLgEeMcbMJ9o10utN\nYJYxpgxoBOYDvx3oIH6/f1SFJkIgEEiLOoZrZfOWvsf1DfVUVVYNuq/fPzUZJY2Yq59BL9Wfeq6/\nh+HUX1NTM+D6eIJ7MXCBMWY50ZEj1xhjvgbUWmsfN8Z8E3gqtu8j1tq1cVUkIiIjMmRwW2vDwPUH\nrF7Xb/vDwMMJrktERAahC3BERByj4BYRcYyCW0TEMQpuERHHKLhFRByj4BYRcYyCW0TEMQpuERHH\nKLhFRByj4BYRcYyCW0TEMQpuERHHKLhFRByj4BYRcYyCW0TEMQpuERHHKLhFRByj4BYRcYyCW0TE\nMQpuERHHKLhFRByj4BYRcYyCW0TEMQpuERHHKLhFRByj4BYRcYxvqB2MMV7gLmA20Alca62tHWCf\nvwF/sdbePRaFiohIVDwt7suAHGvtAuBW4LYB9vkBUJrIwkREZGDxBPeZwBIAa+0rwCn9NxpjPgaE\ne/cREZGxFU9wFwFN/ZZ7jDE+AGPMLOAq4N/HoDYRERnAkH3cQDNQ2G/Za60NxR5/GpgMPAccBXQZ\nYzZbaw9qfQcCgVGWOnrBYDAt6hiuuu1NrN0R5O2dQQoyPVTVtVNZ6KO6KBOPx7PfvoFAW4qqjI+r\nn0Ev1Z96rr+HRNQfT3AvAy4BHjHGzAfW9G6w1t7S+9gY8z2gYaDQBvD7/aMqNBECgUBa1BGvSCTC\n39bU8/DaOva2dVFdmktzsIv3trYDcPykIj5xyhR8Ge//cPL7p6aq3Li49hkcSPWnnuvvYTj119TU\nDLg+nuBeDFxgjFkOeIBrjDFfA2qttY/HWauMwL0vbeRHT66joiibzyw4kpkVhTTsaKBkwkRe27yX\np95u4MFX3uOTp00l25eR6nJFJEmGDG5rbRi4/oDV6wbY73sJqkmApe/u4idL1vGhE6pYcPQRePt1\nieRmZbBwZjkF2Rk89uY27n95E589fRq5WQpvkcOBLsBJQ1v2tHPDopXMrCjkpx87cb/Q7m/ukRO4\n6rSpbG8MsnhlXZKrFJFUUXCnmfauEF986A0A7vnUXPKzD/2j6PhJxZzvn8ja7c2s2dZ0yH1FZHxQ\ncKeZO5+vZV1DC7+88iSOPCI/rueceUw5k0tyefytbexp7RzjCkUk1RTcaaS+qYP7lm7isjmTWDiz\nPO7nZXg9fHRuNcHuMN974p0xrFBE0oGCO43859PriUTg5gvNsJ9bWZTDucdO5IlV23nq7YYxqE5E\n0oWCO00E6pv585t1fPaMo5gyIW9Ex1g4sxxTUciPn1xHd084wRWKSLpQcKeJHz25jqKcTL5yzowR\nHyPD6+HrHzBs2t3Gn2s0ykRkvFJwp4Fltbt5af0ubjxvBsV5maM61vn+iZw8tYQ7nnmXYHdPgioU\nkXSi4E4Ddz5fS0VRNp9acOSoj+XxePjXDxxLQ3OQh1a8l4DqRCTdKLhTbO22JpZv2MM1Z0xL2GXr\nC44+grOOKeOuF2ppCXYn5Jgikj4U3Cl270sbKcj2cdVpiZ0c6pYPHMu+9m7uW7opoccVkdRTcKdQ\n3b52/ramnivnTaEoZ3R92wc6obqYC4+r4PfLNqnVLTLOKLhT6P6XN0enWzxj2pgc/4bzZtAcDPHQ\nK+rrFhlPFNwp0tTezcOvb+GS2ZOYVJI7Jq9xYnUJZ88s53dLN9HRpREmIuOFgjtFFr22hfauHr5w\n1vQxfZ0bzp3BnrYuHn59y5i+jogkj4I7BUI9YR5asZkF04/guElFY/pa86ZNYN5RE7jnxY10htTq\nFhkPFNwp8ExgB9ubgnzm9KOS8no3nDeDhuYgj725LSmvJyJjS8GdAn9YvpnJJbmc75+YlNc765gy\nZlcX85sXNhDSHCYizlNwJ5ltaOGVjXu5ev6R+93kdyx5PB6+cu4Mtuxt5/FV25PymiIydhTcSfbA\nis1k+7xcceqUpL7u+f4Kjq0s5M7na+kJR5L62iKSWAruJGpq72bxm9u4dM4kSvOzkvraXq+HG86b\nwYZdbSxZq/m6RVym4E6i/6nZSkd3T9JOSh7oollVTC/P51fPvUskola3iKsU3EnSE47wwIrNnHpU\nKcdPKk5JDRleD185ZwbrGlp4NrAzJTWIyOgpuJPkuXU72bq3Y8wub4/XpXMmMXVCHnc8q1a3iKt8\nqS7gcPGH5ZuoKs7hwuMqUlqHL8PLjefN4F//vJpvL17LrMnxtf4TPXuhiIycWtxJsH5HC8tq9/Cp\nBckbAngol59czYyJBfzjnR2E1eoWcc6QLW5jjBe4C5gNdALXWmtr+22/Cbgitvh3a+3/G4tCXfb7\nZdEhgFeemh6t1gyvh5svmMmX/vgmK7c0MvfI0lSXJCLDEE/z7zIgx1q7ALgVuK13gzFmOvBJ4HRg\nPnChMebEsSjUVY3tXSxeWcdHTpqc9CGAh/LBWZVMLsnl2XU7dDWliGPiCe4zgSUA1tpXgFP6bdsK\nfNBa22OtjQCZQDDhVTrsT69vJdgdTtkQwMF4PB4uPK6CxvZuXtu8N9XliMgwxHNysgho6rfcY4zx\nWWtD1tpuYLcxxgP8DFhprV0/0EECgcDoqx2lYDCY1Dq6eiLc+8IWZlfmQOM2Ao0jm+SpvqG573Go\nu5v6hvpB9w0E2uI+bn64hclFmTzzTgNVWZ3kZA7+PT6c4x5Ksj+DRFP9qef6e0hE/fEEdzNQ2G/Z\na60N9S4YY3KA+4EW4MuDHcTv94+0xoQJBAJJreOR17eyp6OH26+ci39m+YiPs7L5/bm06xvqqaqs\nGnRfvz/+fvSVzVu4PK+UXz9Xy+o9cOmcxBz3UJL9GSSa6k8919/DcOqvqakZcH08XSXLgIsBjDHz\ngTW9G2It7b8Aq6y111lrNeFzTDgc4e6XNnD8pCLOOqYs1eUMqqo4l/lHH8Frm/ZSt6891eWISBzi\naXEvBi4wxiyH6C0SjTFfA2qBDGAhkG2MuSi2/zettSvGpFqHPP3ODjbuauNXV56Ex+NJdTmHdIG/\ngrV1TTy+ajvXLzwab5rXK3K4GzK4rbVh4PoDVq/r9zgnoRWNA5FIhN+8uIGpE/K4aFZlqssZUk5m\nBhedUMkjb9RRs3kfp06bkOqSROQQUn81yDj0ysa9rNrayBfPnp4WF9zEY3Z1CdPK8nny7Xoa27tS\nXY6IHIIbqeKYO5+vpawgi4/NrU51KXHzeDxcftJkIhH40xtbNWe3SBpTcCfYstrdvFy7m+sXHk1O\nZkaqyxmWIwqyuXTOZN7b087zVrMHiqQrTTKVQJFIhJ8uWcek4hyunn9kqssZkTlTSqjd2cLz63Yy\nvTyf6WUFwz7Gole3DLqtvqF5v+GNmrxKZPjU4k6gJWsbWFXXxE0XzHSutd3fJbMnMSE/i0de36r+\nbpE0pBZ3goR6wvzsacvEwmw6Q+FDtjohvVua2b4MPnnakdy7dAP3L9vMdWdPT3VJItKPWtwJ8uib\ndWzc1caFx1WMi3HQlcU5fGr+UTS2d/HAis20dYaGfI6IJIda3AnQ1N7Nz59ez0lTS/BXFaW6nISZ\nVpbPlfOm8sdX3+O6h2q499Nzycs6fP/JLHp1y0F99INJ519U4r7D939hAv14yTr2tHby+8+eyuq6\npqGf4BB/VRGXn1zNY2/W8fG7V3DfZ06hqjg36XUM1fXUn0JTxjt1lYzSa5v28t+vbeHzZ06L+zZg\nrjl5aim/++ypvLenncvuXMaacfblJOIaBfcodIZ6+OZjq5lckstNF8xMdTlj6lwzkUe/dDo+r5eP\n3b2cu1/coBswiKSIgnsUfvPCBjbsauMHH5l1WPT9mspC/nLDGZw9s5wfP7mOS9X6FkmJ8Z82Y+S1\nTXv51XO1XDpnEueaiakuJ2nKCrK591NzWbK2gX9//G0+fOfLXHxCFV8+52iOnzQ+u4pk7A3nHMZJ\n4+f8/4gpuEdgZ0uQGxa9ydQJeXz/slmpLifpPB4PF51QxekzyvjNCxv4r1fe42+r6znHlHPFqVMJ\n9YSdmVxLxEUK7mEK9YS5cdFKmoPdPPj5eRTlZKa6pJQpzs3k1ouO5UvnHM1DKzbzh+Wbud7WkJPp\nZdakYvxVRUwry3f6KlKRdKTgHqafPmV5ddNebv/EbI6t1G82iAb4Decdw/ULj+bl2t384pl3WV3X\nxBvv7cPrgSkT8jjqiHyqS3PJCukmSSKjpeAeht++tJF7X9rI1fOn8pGT3JmyNVl8GV7OMRPZ3hgk\n1BNmy9523t3ZyoZdrSx9dxe9M8Xmr22hsiibiqLoPTimleUzvTyfiYXZaX+3IJF0oOCO04MrNvPD\nvwf40AlVfO+S41NdTtrzZXiZXl7A9PLo7ILdPWHqGzt4e8sO2iNZ7GgO8vrmvSzfsKfvOdk+L9Wl\nuVSX5jGpJIeKohwqi3KYWJRN3b52CrJ95Gf7yFT/uRzmFNxx+NPrW/j3v7zN+f4KfnHFHJ14G4HM\nDC9Tj8gnszu37y714UiEc4+dyKZdbWza3crWfR3U7Wtn694O3t7exO7WgWcm9Hk95GVlkJPZ+8dL\nTmYGWRlesn1etjd2kJuVQV7sz/v7ZZDj85KblUFubLl3v9zMjHHV2h9slMZAl+zrSlP3KLgPIRyO\ncMez73LHs+9y9sxy7vzkSWrtJZDX42FySS6TS3I585iyg7Z3hcLsbAmys6WTxW9uo7UzRFtniI7u\nHjq6eujo7iHY3UNbZw97Wrvo7gnTGQqzfOMeIsO8gY/XA/lZPgpyfBTnZlKal0VpfiblBdlUFEdb\n/pt2t9HTFSYSiYyrkBf3KLgH0dYZ4uZHVrHk7QY+enI1P/zILLJ9Gh2RTFk+L9WleVSX5rGuviXu\n5105bwqdofB+4d77d7A73Lfcu729q4e2zhAtwRCtnSEa27tpbO/CNrSwtGU3LcH9Z0bMfGtfNNCL\nYt05xTlMLsklP1v/nSQ59C9tAG9vb+LmR1axfkcL3/mQn8+fOU0tLId4PJ6+rpHSBByvvStEQ1OQ\nB1e8x6b6XYS8Oexs6WTDrlZWbm3s268kL5PqklymTMhjxsQCTphcTG6Wvuwl8RTc/XR09fCLZ9dz\n39JNlOZl8Ydr5nH2zPJUlyUplpflY3p5ATMrCimMtPb10UM01Oubgmzb18G2xmgf/drtzTy5toEM\nrwdTUcicqSXMqS5h1uRijqkoUHebjJqCm+hFNU+s3s7t/3iXLXvb+cQpU/jWxX6K8w7fi2skPnlZ\nPo4uL+Do8vfvzdnaGeLo8nze2trIW1sbeWLV9r6ThVk+L6aikGMqol8EM8oLWLOtidK8LLJ8Qwf6\neD+R2NHVw772Lhrbu2gOhmjvCtHe1UNXKEw4Er2v6/PZIaprwxTlZFKSl8nkkuhIpOoJuYfNBXGH\ndXAHu3v46+p67ny+lk272zi2spBF157G6TMOPlEmEq+CbB//5K/gn/wVQPQk9+Y9bazd3szabU28\ns72ZZbW7eezNbfs9Lz8rg8KcTPKzM8jP9pHt85KV4SXL58Xr9ZDh8dDU0U2ECJFI9Ljd4QihnjA9\n4QihcCT2d5j1O1r7juv1ePB5PWR4PXR2tFPWtptsXwa5mV7ys31s3NXKEQXZFOX4ktIlGIlE2N4U\nZP2OFmp3tFK7s5VXNu5hV2sn7V0HX6CV7YuOFvJ4PHg9sJUwK7bW0TrAXZmqinOYWVHIsZWFzJpc\nzInVxUydkDfuujoPu+CORCKsqmvi0Zo6Hl+1naaObo6rKuLuq+dGbzvmHV8fsKSe1+vpG9P+4dmT\n+tY3tXezYXcrf3ptK/vau9jX3k1bZ/QE6bZ9HXSFwnT2hOkOhekdJPP0OzsOOn5vKGdmeMnoDehQ\nbMrdSIRwBHpiod4TicDW9v2ef89LGwHIyfRSUZTDxMLsvjH0FUU5lBdmU16YTVlBNsW50VbuoaYx\n6AqFaezoorG9m4amINsaO9je2MGm3W1s3NXG5j1t+wX0EflZFOZkcvykYsoKsqIjevKyKMr1kZuV\ngc+7/y+Rk4ra8Pv99IQj7GvvYntjB3X7Oti8p413d7RiG1pYsWEPXbFph4tzMzmxupiTppQwZ2oJ\nJ1aXUFaQHffnl46GDG5jjBe4C5gNdALXWmtr+23/AnAdEAJ+YK396xjVOiKRSISG5iBvbN7H46/v\nZPXibexo7iTb5+WDsyr52NxqzpxRNu6+kSX9FedlcvLU0iFHzEQiESJEW9gfP2UKHk+0Fe3xREN7\noH+7g43jrtu+nQlHTCQYG3XT1hVi9pRidrd0sbMlyI7mTnY0B1m7rYlnAjsIdg8853rvmPlMn5fM\nDA894QjdPRG6QmE6ug9uNfdOfTCtLJ/Tpk9gxsQCjplYyDETCyjNzxrW7IC9MrweygqiXygnVpfs\nt60rFGb9jhbWbGtidV0jb21t4tfP1/ZdvTupOIcTqos5flIxx1YW4q8qoro015kciKfFfRmQY61d\nYIyZD9wGXApgjKkE/i9wCpADvGyM+Ye1tnOsCh5Ma2eIXS2d1Dd2sHlPO5v3tFG7s5XVdU3sbo2W\nU5DlZaGpYKEp5wPHV1Kce3j0h4nbPB4PHsCb4Rn1KJUMr4e8bB952UB+dN1g0zdEIhGagyF2t3ay\nu6WT3a1dNHV009jRRUswRGd3mK6eHrpDETIyPGRlePF5PRTlZlKal0lJXhaVxTlMKsmlojA7qReu\nZfm8zJpczKzJxVw5L3peoL0rxNptzayua2R1XRNrtjXx9Ds7+sb852Zm9E2/MHVCHpNLo9cYVBbn\ncER+NhPys8hIk1/k8QT3mcASAGvtK8aYU/ptmwcsiwV1pzGmFjgReD0RxS19dxcvrd8V/SbvCdMZ\nG4Mb7O6htTNEczBEc0c3+9q7Duoby8rwclRZHgtnlnNidTGzp5Tga97OrOOPS0RpIuOex+OhODeT\n4tzMvpOvi17dQkluFiW5WUM+/5J+3ULpIC/Lx7xpE5g3bULfurbOEOsaWljX0EztzlY27mpjVV0j\nT65toCe8/1VcXk+026UwJ5OiXB/5Wb7Y1bk+sjO9feckfLEvsAyvh5kVhVx20uSEvxdPZIhLzIwx\n9wGPWmufjC1vAaZba0PGmKuBE6y134htexB40Fr7TP9j1NTUDPM6NhERAZg7d+5Bzfx4WtzNQGG/\nZa+1NjTItkKgkQMM9MIiIjIy8XQ6LQMuBoj1ca/pt+014CxjTI4xphjwA2sTXqWIiPSJp6ukd1TJ\niYAHuIZokNdaax+PjSr5ItEvgf+w1j46tiWLiBzehgzu8WCoIY3pzhiTCdwPHAVkEx12+XhKixoB\nY8xEoAa4wFq7LtX1DJcx5pvAh4Es4C5r7e9SXFLcYv+GHiD6b6gH+IIrn4Ex5jTgJ9bac4wxM4A/\nABGiv+6/Yq0deMximjig/jnAr4h+Bp3Ap621Bw/OH8LhMmlC35BG4FaiQxpdcjWwx1p7FvBB4Ncp\nrmfYYsFxD9CR6lpGwhhzDnA6cAawEJiS0oKG72LAZ609Hfj/wA9TXE9cjDG3APcRHW4M8J/Ad2L/\nFzzEhianqwHqvwO40Vp7DvAY8I2RHPdwCe79hjQSHXfukv8B/i322EP0YifX/By4G9ie6kJG6ANE\nz+8sBp4A0upCszisB3yxX59FQHeK64nXBuDyfstzgRdjj58Ezk96RcNzYP1XWGvfij32AcGRHPRw\nCe4ioKnfco8xxpnL/a21rdbaFmNMIfBn4Duprmk4jDGfBXZZa59KdS2jUEb0C//jwPXAH40xLo2W\naiXaTbIO+C3wy5RWE6fYObP+XzIea21v/24LUJz8quJ3YP3W2noAY8zpwA3A7SM57uES3Ica0ugE\nY8wU4HngIWvtolTXM0yfAy4wxrwAzAEejF1165I9wFPW2i5rrSXaUnJpzt+biNY/k+i5ngeMMTlD\nPCcd9e/PHnD4cbozxnyC6K/PD1lrd43kGIdLcB9qSGPaM8ZUAE8D37DW3p/qeobLWnu2tXZhrF/v\nLaInZBpSXNZwvQx80BjjMcZMInrB+J4hnpNO9vH+r869QCbg4l0eVsbONwBcBCxNYS3DFrto8Qbg\nHGvtxpEex5nuglFaTLTFt5z3hzS65FtAKfBvxpjevu6LrLVOnuhzkbX2r8aYs4leu+AlOprh4NmU\n0tftwP3GmKVER8V8y1rbluKaRuJm4LfGmCwgQLTr0AnGmAyiXVRbgMeMMQAvWmu/O9xjHRbDAUVE\nxpPDpatERGTcUHCLiDhGwS0i4hgFt4iIYxTcIiKOOVyGA8phwhhzK9HLoDOJXqzxdeBG4GSi45d7\nPWSt/Z0xppTo5fgzYs/ZAlxnrW0yxswDfkC0gVMIPGKtdW2eGxmHFNwybhhjjiM6e98Z1tpIbCa2\nB4CVwC3W2iUDPO2/gXustYtjx7iJ6GRYVxCdzOvT1tp1sUmylhtjnrPWrkzG+xEZjLpKZDxpAqYC\nnzPGTI5N5jNvsJ2NMUcClb2hHfNL4LrY4x3ADcaYuURb72cotCUd6AIcGVeMMScTvaT4fKAd+DZw\nCQd3ldxhBykZAAAA/ElEQVQIFBBtiX9kkGMVAV+NPf9oYBHw9djNsUVSRl0lMm7EJtlvttZ+LrZ8\nCtGpP1cwQFeJMWYyUH3Aukzg/wCPAidba78PfN8YMwH4PdG7Pf1qrN+LyKGoq0TGkxOBX8fmsYDo\nHNSNRO82chBr7TZgtzGm/2T8XyU6OX8Y+C9jzMzYvnuB94jetUQkpdRVIuOKMebbRFvMrUQbJj8h\negekA7tKXrTWftcYUwbcCUwiOvnSBuBLsVElpwM/JTraJAK8Dtzk2pTAMv4ouEVEHKOuEhERxyi4\nRUQco+AWEXGMgltExDEKbhERxyi4RUQco+AWEXGMgltExDH/C4D5REi9ybgTAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f20079ff550>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEBCAYAAADbxHY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACJ1JREFUeJzt3V+I5WUdx/HPuLPpTmo4lBooRYRPc1UxQWSliySbe1Eh\ndBMFEQSKwVBJoGjSv4tgMYyIwpQsjOgPQcnGBpZRyBIMXRSdfcLoxhY30YzVY7h/pouZxV3YVXed\n8/2dmXm9rs6es/OcLz/mvPe3z5zzm5mVlZUAUOO8oQcA2EpEF6CQ6AIUEl2AQqILUEh0AQrNvtSD\ny8vL3k8GcA4WFxdnTnf/S0Z37QvXf5pCo9EoCwsLQ48xNRyPUzkeL3IsTvVqjsfy8vIZH7O9AFBI\ndAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQ\nSHQBCokuQKGX/R1p5+LWW2/NoUOHMj8/P4nlz8p4PM7c3NzQY0wNx+NU8/Pzueuuu4Yegy1kItEd\njUZ59rlx/vnMkUksfw4ODz3AlHE8kmTb+Olc9ZY3DT0GW8xEopsk2Tab59+2e2LLw6u148DeoUdg\nC7KnC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQS\nXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIU\nEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCE4nu0aNHk+PHJ7E0wMTt27cv+/fvn8ja\nE4nukSNHkhXRBTamvXv35tFHH53I2rYXAAqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCoku\nQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJ\nLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEK\niS5AodmhB4ChzBx5Po8//t8sLS0NPcpUGI/HmZubG3qMqfDYY4/lwgsvnMjaznQBCjnTZcta2b4j\nV1x+ae65556hR5kKo9EoCwsLQ48xFZaWljIejyeytjNdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ\n6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBeg\nkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQX\noJDoAhQSXYBCs5NYdPv27Tn2wtFJLA0wcbt3787BgwcnsvZEojs7O5scPT6JpQEmbteuXRmNRhNZ\n2/YCQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0\nAQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BI\ndAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkCh2YmtfOxodhzYO7Hl4dXaNn46yUVD\nj8EWM5HoLiws5NChQ5mfn5/E8mdlPB5nbm5u6DGmhuNxssum4nuUrWUi0d2zZ88klj0no9EoCwsL\nQ48xNRyPU41Go6FHYIuxpwtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEF\nKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkChmZWVlTM+uLy8fOYHATijxcXFmdPd/5LRBWB92V4A\nKCS6AIVmhx5gUlpr25Pcn+TNSc5P8tXe+y8HHWpgrbVLkywnub73fmDoeYbUWrstyYeSvCbJt3vv\n9w080mDWXisPZPW1cizJp7fi90dr7d1Jvt5739lae2uS7ydZSfLXJLf03o+vx/Ns5jPdjyd5qvf+\n/iQfTPKtgecZ1NoL67tJnh96lqG11nYmuTrJe5Ncm+TKQQca3u4ks733q5N8OcnXBp6nXGvtC0m+\nl+SCtbvuTnLHWj9mknx4vZ5rM0f3p0nuXLs9k+TogLNMgz1JvpPk4NCDTIFdSf6S5BdJfpXkoWHH\nGdzfk8y21s5LcnGSIwPPM4R/JLnxpD8vJvn92u1fJ/nAej3Rpo1u7/3Z3vvh1tpFSX6W5I6hZxpK\na+2TSZ7sve8bepYp8fok70ry0SQ3JXmwtXbat/dsEc9mdWvhQJJ7k3xz0GkG0Hv/eU79x2am937i\nrV2Hk7xuvZ5r00Y3SVprVyb5XZIf9t5/NPQ8A/pUkutba48keUeSH7TWLh92pEE9lWRf7/2F3ntP\n8r8kbxh4piF9NqvH46okb0/yQGvtgpf5ms3u5P3bi5I8s14Lb+YfpF2W5DdJPtN7f3joeYbUe7/m\nxO218N7Ue39iuIkG98ckS621u5O8Mclrsxrireo/efEs7+kk25NsG26cqfDn1trO3vsjSW7I6snb\nuti00U1ye5JLktzZWjuxt3tD733L/yBpq+u9P9RauybJn7L6v71beu/HBh5rSN9Icn9r7Q9ZfTfH\n7b335waeaWifT3Jva+01SUZZ3aJcFz6RBlBoU+/pAkwb0QUoJLoAhUQXoJDoAhTazG8ZYxNYu07C\nT5L8Lasf5z4/yc1JlpJc3Hu/8aS/+0TvfSt/6IMNwJkuG8Fve+87e+/XJvlikq+s3f++1tonBpwL\nzprostFckuTfa7dvS/Kl1toVA84DZ8X2AhvBdWsfXz4/q9cG+EiSjyX5V1avJHdfVq8cBlPPmS4b\nwYnthfckeWeSHyfZkSS99weTHG6t3TzkgPBKOdNlozl0mvtuTrI/q1eDgqnmTJeN4LrW2iOttYez\neuW4z+Wk34DRe39y7b65geaDV8wFbwAKOdMFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkCh/wPk\niWnaESGy5QAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f20076b3950>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEBCAYAAABYAE8AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOWh//HPTCb7QkIgC4R9eQg7si8XFUXqrrUuXbRu\nt+qtS6Xtbe3urfXe+7u1Vm291rprrbsV5WpdcGMVAiLL8EAwQAgJJIQsZE8mvz8mwYiBJDCTmZN8\n368Xr1dmzsyZL5nw5eSZ5zzH1dzcjIiIOIc71AFERKRrVNwiIg6j4hYRcRgVt4iIw6i4RUQcRsUt\nIuIwnu54kZycHM05FBHpoqlTp7rau79birslQJef4/V6yc7ODkKawFHGkxfu+UAZA0UZOy8nJ+eY\n2zRUIiLiMCpuERGHUXGLiDiMiltExGFU3CIiDqPiFhFxGBW3iIjDqLhFRBym207Akc55ds2egO+z\nsKiCDRV7+NbMwQHft4h0Px1xi4g4jIpbRMRhVNwiIg6j4hYRcRgVt4iIw6i4RUQcRsUtIuIwKm4R\nEYdRcYuIOIyKW0TEYVTcIiIOo+IWEXEYFbeIiMOouEVEHEbFLSLiMCpuERGHUXGLiDiMiltExGFU\n3CIiDtPhNSeNMW7gQWASUAdcb63NbbP9PmAeUNly14XW2vIgZBURETp3seCLgBhr7WxjzCzgHuDC\nNtunAoustSXBCCgiIl/WmaGSecBbANba1cC01g0tR+OjgIeNMSuMMdcGJaWIiBzRmSPuJKDt0EeT\nMcZjrW0E4oEHgD8AEcD7xph11trPjt6J1+vtcrja2toTel53CnTGwqKKgO2rVWNDA4VFhXi9VQHf\ndyD0xvc5GJQxMJyQsTPFXQEktrntbiltgGrgPmttNYAxZhn+sfCvFHd2dnaXw3m93hN6XncKdMYN\nFXsCtq9WhUWFZGZkkp09OOD7DoTe+D4HgzIGRrhkzMnJOea2zgyVrADOAWgZ497UZttoYIUxJsIY\nE4l/WGX9iUcVEZGOdOaI+1VgoTFmJeACrjHGLAZyrbVLjDFPA6uBBuApa+2W4MUVEZEOi9ta6wNu\nPOrubW22/w/wPwHOJSIix6ATcEREHEbFLSLiMCpuERGHUXGLiDiMiltExGFU3CIiDqPiFhFxGBW3\niIjDqLhFRBxGxS0i4jAqbhERh1Fxi4g4jIpbRMRhVNwiIg6j4hYRcRgVt4iIw6i4RUQcRsUtIuIw\nKm4REYdRcYuIOIyKW0TEYVTcIiIOo+IWEXEYFbeIiMOouEVEHEbFLSLiMCpuERGHUXGLiDiMiltE\nxGE8HT3AGOMGHgQmAXXA9dba3HYesxR4zVr7UDCCioiIX2eOuC8CYqy1s4GfAve085i7gJRABhMR\nkfZ1prjnAW8BWGtXA9PabjTGfAPwtT5GRESCq8OhEiAJKG9zu8kY47HWNhpjxgPfAr4B/Op4O/F6\nvV0OV1tbe0LP606BzlhYVBGwfbVqbGigsKgQr7cq4PsOhN74PgeDMgaGEzJ2prgrgMQ2t93W2saW\nr68CBgLLgKFAvTFml7X2K0ff2dnZXQ7n9XpP6HndKdAZN1TsCdi+WhUWFZKZkUl29uCA7zsQeuP7\nHAzKGBjhkjEnJ+eY2zpT3CuA84EXjDGzgE2tG6y1/976tTHmN0BRe6UtIiKB05nifhVYaIxZCbiA\na4wxi4Fca+2SoKYTEZGv6LC4rbU+4Maj7t7WzuN+E6BMIiJyHDoBR0TEYVTcIiIOo+IWEXEYFbeI\niMOouEVEHEbFLSLiMCpuERGHUXGLiDiMiltExGFU3CIiDqPiFhFxGBW3iIjDqLhFRBxGxS0i4jAq\nbhERh1Fxi4g4jIpbRMRhVNwiIg6j4hYRcRgVt4iIw6i4RUQcRsUtIuIwKm4REYdRcYuIOIyKW0TE\nYVTcIiIOo+IWEXEYFbeIiMOouEVEHMbT0QOMMW7gQWASUAdcb63NbbP9+8DVQDPwe2vtC8GJKiIi\n0Lkj7ouAGGvtbOCnwD2tG4wx/YCbgDnAGcA9xhhXMIKKiIhfZ4p7HvAWgLV2NTCtdYO1tgSYbK1t\nADKAWmttczCCioiIX4dDJUASUN7mdpMxxmOtbQSw1jYaY24G7gTuP9ZOvF5vl8PV1tae0PO6U6Az\nFhZVBGxfrRobGigsKsTrrQr4vgOhN77PwaCMgeGEjJ0p7gogsc1td2tpt7LW/skY8zDwpjHmdGvt\n+0fvJDs7u8vhvF7vCT2vOwU644aKPQHbV6vCokIyMzLJzh4c8H0HQm98n4NBGQMjXDLm5OQcc1tn\ninsFcD7wgjFmFrCpdYMxxgD/CVwCNOD/8NJ3MmFFROT4OlPcrwILjTErARdwjTFmMZBrrV1ijNkI\nrMI/q+RNa+2HwYsrIiIdFre11gfceNTd29psvxP/+LaIiHQDnYAjIuIwKm4REYdRcYuIOIyKW0TE\nYVTcIiIOo+IWEXEYFbeIiMOouEVEHEbFLSLiMCpuERGHUXGLiDiMiltExGE6szqgdIPm5mbW5JXy\nUk4+ReW1DOobx/D+CQzvF098tN4mEfmCGiEMvLN1P3ct3crug9VEe9wMSI5lw54y1uSV4nG7uGRq\nFpOykkMdU0TChIo7xN7cVMgtf9/AqPRE7r18EuXVjUR53DT5mik4VM1bW4p4fm0+pVX1nDa6Py6X\nrsUs0ttpjDuE3trsL+2JWX144YZZXDwliyiP/y2JcLsYnBrPtXOHMXlQMu9s3c8r6wvwNetazCK9\nnY64Q+Q9735uftZf2k9eO4PEmMh2H+eJcHPp1CxS4qJ43x4gJT6KBWPSujmtiIQTHXGHQGlVPT9+\n6TNMRuJxS7uVy+XizOw0JmX1Ydm2/ew5GJ5XaxeR7qHiDoG7lm6loqaBey6b1GFpt3K5XFw4eSB9\nYiN5fl0+tQ1NQU4pIuFKxd3Nlu8o4ZX1Bdxw6nDGZCR16bkxkRFcNm0QZdUNLNm4L0gJRSTcqbi7\nUU19Ez97dRPD+sVzy4JRJ7SPIanxLMhO49P8MryFFQFOKCJOoOLuRg8s28Ge0mruvngCMZERJ7yf\n00an0S8hire2FNHk0ywTkd5Gxd1NDh6u4/EVu7hw8gBmj0g9qX1FuF0sGpdBcWUd63cfClBCEXEK\nFXc3eWR5HrWNTSc8RHK0sZlJDO4bx7vb9lPf6AvIPkXEGVTc3aCsup6nVu7i3AmZjExLCMg+XS4X\nZ4/PoLK2keW5JQHZp4g4g4q7Gzy2YhdV9U3cvGBkQPc7JDWecQOS+GhHMZW1DQHdt4iELxV3kFXU\nNvD4ijwWjUvv8vS/zlg0NoOGRh8rcg8GfN8iEp5U3EH21MpdVNY2Bmxs+2j9EqMZP7APa/IO6qQc\nkV6iw7VKjDFu4EFgElAHXG+tzW2z/Xbgipab/2etvTMYQZ2ovtHHEyt3c5rpz/iBfYL2OqeO7s+m\ngnLW5JVy6uj+QXsdEQkPnTnivgiIsdbOBn4K3NO6wRgzHPg2MAeYBZxljJkYjKBO9NaWIkoO13H1\nnKFBfZ0BybGMSktgRW4JDU2aYSLS03WmuOcBbwFYa1cD09psywe+Zq1tstY2A5FAbcBTOtQzq3Yz\nJDWO+aOCfxQ8f3R/Dtc1smFPWdBfS0RCqzPFnQSUt7ndZIzxAFhrG6y1JcYYlzHm98AGa+32YAR1\nmm1FFXyyq5TvzByC2x38ix8M7xdPVkosH+8o1prdIj1cZ9bjrgAS29x2W2sbW28YY2KAx4BK4N+O\ntROv19vlcLW1tSf0vO50rIwPrComKsLFxMTqLv0dCotOfP2RCf09vLm9huVbdzMqNfrI/Y0NDRQW\nFeL1hudysE5+n8OJMgaGEzJ2prhXAOcDLxhjZgGbWjcYY1zAa8Aya+1/H28n2dnZXQ7n9XpP6Hnd\nqb2MFbUNfPD33VwweSAzp4zv0v42VOw54Szp6c2sKdiO92AT88dlHrm/sKiQzIxMsrMHn/C+g8mp\n73O4UcbACJeMOTk5x9zWmeJ+FVhojFkJuIBrjDGLgVwgAjgViDbGnN3y+DustatOLrKzvbq+gOr6\nJq6aPaRbX9ftcjF7eCpLNxVSUFbDwOTYbn19EekeHRa3tdYH3HjU3dvafB0T0EQO19zczDOrdzMp\nqw8TQ3Bl9qlDUnhn635W7SzhG1MHdfvri0jw6QScAPs0v4wdBw7zzRmhGZaIiYzglCHJbNxbzuG6\nxo6fICKOo+IOsBdz9hIT6ebciZkdPzhIZg1PpcnXzCd5pSHLICLBo6u8B1BNfROvf7qPc8Zndvpa\nksGQlhjDqLQE1uQd1JmU0mXPrjnxD8g7MiXwy/X0SjriDqB/bimisq6Rb0zLCnUU5oxIpbK2kc0F\n5R0/WEQcRcUdQC/m5DOobyyzhp3cFW4CYVR6IqnxUaz6XKsGivQ0Ku4A2XuompU7D/KNUwZ1y5mS\nHXG7XMwcnsqe0mqKq/QhpUhPouIOkJdzCgC4ZOrAECf5wtTBKURGuPisqCbUUUQkgFTcAeDzNfPS\n+nzmjuhHVkpcqOMcERsVwaSsZLaX1FFTr7W6RXoKFXcArNt9iPzSmrA62m41a3gqjT7I2a2pgSI9\nhYo7AF5Zv5e4qAgWjcsIdZSvGJAcS2aih9V5pfh8WjVQpCdQcZ+kukYfSz8r5OzxmcRFhee0+IkZ\nsZRW1fPh9uJQRxGRAFBxn6TV+dVU1jVyySnhN0zSakTfKBKjPTy5aleoo4hIAKi4T9J7OysZ0CeG\nWcNDP3f7WCLcLmYM68sHtpjPiw+HOo6InCQV90k4UFlLzr4aLpoyMCzmbh/PjGF9iYxw8dSq3aGO\nIiInScV9EpZ8ug9fM3w9jIdJWiXGRHLexAG8lLOXytqGUMcRkZOg4j4JL68vYHRqNCPTEjt+cBi4\nes5QDtc18nLO3lBHEZGToOI+QVv3VeAtrGDBiIRQR+m0SYOSmTI4mSdX7dbUQBEHU3GfoJfX7yUy\nwsXpw5xT3OA/6s4rqeLDHZoaKOJUKu4T0NDk47VPC1gwJo2kmIhQx+mSs8dnkpYYzWPL80IdRURO\nkIr7BHy0vZiSw/Vcckro193uqiiPm6vnDuXjHSVs2ae1ukWcSMV9Al5ev5fU+ChOH5MW6ign5Nsz\nhxAfFcFfP/o81FFE5ASouLuorLqed7ce4ILJA4iMcOa3r09sJFfMGMzrnxVSUKYlX0WcxpnNE0Kv\nb9xHfZPPkcMkbV07bxiAxrpFHEjF3UUvrS9gTEYi4wY4+6qnA5NjOX9iJs99sofyGp2QI+IkKu4u\n2LG/ko35ZVxyShYuV3if4t4Z35s/gqr6Jv62RqfBiziJirsLnlubT2SEyxGnuHfG2AFJzB/dn0c/\nzqO6XtelFHEKFXcn1TU28cr6vZw1NoPUhOhQxwmY284YxcGqei0+JeIgKu5OenvLfg5VN3D59EGh\njhJQU4ekMH90fx7+6HOq6nTULeIEKu5Oen5tPgOTY5k3sl+oowTc7WeOorSqXhdaEHGIDq+1ZYxx\nAw8Ck4A64Hprbe5Rj+kPrAAmWmtrgxE0lPYcrGZ5bgmLF44O+3W3T8SUwSmcbvxH3VfNHkpCdHhe\ngk1E/DpzxH0REGOtnQ38FLin7UZjzCLgbSD8rpQbIC+sy8ftgkunOXvu9vH84MzRlFU38MQKzesW\nCXedKe55wFsA1trVwLSjtvuAM4HSwEYLD41NPl7Myec0k0Zmn9hQxwmaSYOSOTM7nb98+Dklh+tC\nHUdEjqMzvxMnAW1XI2oyxnistY0A1tp3AIwxx92J1+vtcrja2toTel4grdhdxf6KOm6Y6mo3S6Az\nFhZVBGxfrRobGigsKsTrrTru4y43kby/rZFfPL+G2+b0D3iOYwmH97kjvSljMH4GW2VHRfWa72Mw\ndaa4K4C2l3hxt5Z2V2RnZ3f1KXi93hN6XiD95qNVDEyO5bsLpxLRzvh2oDNuqNgTsH21KiwqJDMj\nk+zswcd9XDbw3eJIHl+Zxy1nT2LcgD4Bz9KecHifO9KbMgbjZ7BVTExVr/k+nqycnJxjbuvMUMkK\n4BwAY8wsYFNgYoU/b2EFa/JK+e6cIe2Wdk902xmjSI6N5D9e30pzs66SIxKOOlPcrwK1xpiVwL3A\n7caYxcaYC4IbLfSeXLmLmEg3l03rWXO3j6dPXCQ/PMuwJq+UNzcXhTqOiLSjw6ESa60PuPGou7e1\n87ihAcoUFg5V1fPqhgK+fkoWyXFRoY7Tra6YPohnVu/mrje28i+j+pEYExnqSCLShk7AOYbn1uZT\n1+jj6jlDQx2l23ki3Nz99QkUVdRy1xvh/SGNhLdGn4/q+kbKqutpbPKFOk6PoTMt2tHY5OPpVbuY\nMyIVk5HY4eN7olMGp/C9+SN46MOdfG18hmOv9iPdx9fczK6SKvJKqsg7WMXeQzXUN35R1i4gI9FD\n9sDDzB3Zj/MnZpKWFBO6wA6m4m7H0k2F7Cuv5TcXjAt1lJC6feEolm3bz09e/oy3b5/f64aMpHMq\nahvI2X2ItXmllNU04AIy+8RwyuBkEmMiiYpwExnhprymnsbaavaUVrPsja3ctXQrs4enctXsoSwa\nl94jlkruLiruo/h8zfz5/VxGpSVwZnZ6qOOEVLQngnsunczFD67gV69t4b4rJusflxxRUdvAsm0H\nWLerFF8zjOyfwNkTMhmVlkBMZES7z5mS5J8OmHvgMEs27uMfGwq48ZkcJg1K5ieLDHN64FpAwaDi\nPsrbW4vYvv8w910xuUeuS9JVE7L6cOsZo/jDO9uZMjiZa+YOC3UkCbG6xiY+2l7M8twSmnzNTB/a\nl7kj+9GvC8sdj0xLYPHC0dy6YCSvrC/gj+9u51uPrGHh2HTuvngC/RN7ztLJwaDibqO5uZkHluUy\nrF88500cEOo4YePm00eyqaCcu5Z6GZWWyLxROirqrbYVVbDk032U1TQwMasPC7PTT2p9ek+Em8um\nD+KCyQN4fMUu7n13O4v++BG/u2g8Z0/IDGDynkWzStp43x5gy74KbjptRK854aYz3G4X914+mRH9\n4/n+s+vZVXL8U+el56msbeDvn+zhqVW7ifK4uWH+cK6YPjhgFxWJiYzgptNGsPSWeQxMjuWmv63n\nRy9upLahKSD772lU3C2am5u5/71cBibHcvGUnnFpskBKiPbwyFXTcbng+qfWaSGqXmRzQTn3vbeD\nrYUVnJmdzs0LRjIkNT4orzUqPZFX/m0Oty4YyUs5e7n0oVUUlNUE5bWcTMXd4sPtxXyaX8ZNp40g\nMkLflvYMTo3joe9MZe+har758GqKK1XePVlNfRMvrsvn2U/2kBwXyc2nj2TBmDQ87uD++4iMcLP4\nLMMjV01jV0kV5z+wnFU7Dwb1NZ1GDYV/3vbvlnoZkhrXo9fcDoRZw1N57Orp7D1Uwzf/upoDlT3u\nuhkCfF58mPuX7WDj3jIWjEnjplNHkt7Nc67PHJvOP26eS0pcJFc9toaXc/Z26+uHMxU38Pe1+ew4\ncJg7zs4m2tP+NCb5wpwR/Xj8munsK6vhir+sZmfx4VBHkgCpb/Tx1uZCHl2eh8ft4ob5IzgzOz1k\nn/mM6J/Aq9+fy4xhffnhixv547vbtfgZKm7Kaxr4w9uWmcP6smhc75633RWzhqfy1LUzKKtp4MI/\nreDNTYWhjiQnaVtRBRf+eQUf7Shh2tAUbl4wkkF940Idi6SYSB6/egaXnJLFH9/dwY9f+oyGXn76\nfK8v7j8t20FZTQO/PG+sTi7pomlD+/LGLfMYkZbATX9bz++WbtUsAAdq8jXz0Ic7ueCBFRRX1nLl\nrCFcPCUrrH77jPK4+f2lE7ntjFG8lLOX659cR1Vdly8L0GP06uLOK6niiZW7uHRqFuMHds9FA3qa\nAcmxvHDDLK6cNYS/fpzHoj9+xLJt+0MdSzppx/5KLn1oJf/15jYWjEnjnz+YT3ZmUqhjtcvlcnH7\nwtH859cn8PGOYr7119Uc7KWzm3ptcTf5mvnxixuJiYzgR2cd/7JrcnzRngh+e9F4nrluJh63i2uf\nWMf1T65lc0F5x0+WkKhv9HHfuzs49/7lfF5Sxb2XT+J/v3NKwOZlB9M3ZwzmL1dOY1tRJd94aBW7\nD/a+8wp6bXE/8vHnrNt9iDsvGKcVygJk3qh+vHnbfO44ewyrPy/lvAeW882HV7Ns236afPpAKVx8\nvKOYc+7/2H+W4vgM3l18KhdPyXLUUOHCsek8+68zOVRdzyX/u5KN+WWhjtStemVx26JK7nl7O4vG\npetkmwCL8ri54dQRrLxjAT87Zwx5JVVc+8Q6Zt79Hr96bTNrPj+odZlDJL+0mhueXseVj35CfaOP\nR787jQe+OaVLa4yEk6lD+vLyTXOIiYzgiodX8/62A6GO1G163Vol9Y0+Fr/wKYkxHu6+eIKjjjKc\nJCkmku/NH8E1c4fxztb9vL5xH8+vzeepVbtJiPYwfWgKs0ekMnlQChENKvJg2l9Ry5+W5fLc2j14\n3G5+vMhw3bxhx1zBz0lG9E/glX+bw7VPrOW6J9fy6/PH8d1ecPGTXlfcd/+fly37Knj4yqmOGM9z\nusgIN+dMyOScCZlU1TXygS1mxc4SVn9+kPdt8ZHHDXu7mFFpCQzvn8Dw/vEM6xfP4L5x9E+I5rm1\n+UHL962Zg4O271ArKKvhseV5PLN6N02+Zi6bPohbF4wio0/PGhpMS4zh+e/N5rbnPuXXS7aQe+Aw\nvz5/LJ4efAZ0ryrup1ft4omVu7h27jDOGpcR6jjd7tk1e4K2784UYHy0h3MnZnLuRP+qbwcqa9lc\nUM4Hn+5kf0MUuQcO8749QEPTF+PhUR43STGRpMRFkhIXRUpcJMnxUfSNiyIlPor4qAj91nSUz/aW\n8cjHeSxtmVt/4eQB/OCM0QxODf2c7GCJj/bwlyun8v/e2sZfPvqcXQeruP+KKaTE98yLf/Sa4v7A\nHuA3r2/lzOw0fn5udqjjCP4jpQVjYshsLiU72/+eNDb5yD9Uw55S/5VS8kurWZlbwqHqBgrKyqmu\n//I88WiPm77xUaTGR9EvMZr+CdH0T/T/Cad5yMFWVl3Pa95yfvj2x2wtrCAh2sM1c4Zy9dyhZKX0\n3MJuK8Lt4o5zshnRP4Ff/GMz5z2wnD9/+xQmD0oOdbSA6xXF7S2s4OZnN2DSE7nviilasjWMeSLc\nDOvnHypp1fY3hbrGJg5VN3Coqp7SNn8Ky2vZWlhB28kryXGRpCfGkNHH/yczKYZ+idG4e8gRemlV\nPe9sLeL/NhWxcmcJDU3NjB+YxG8vHMeFUwaSFBMZ6oghcdn0QYzJTOSmZ9Zz6UMr+cW5Y7lq9pAe\n9ZtZjy/unN2HuPaJtSREe3j06mnER/f4v3KPFu2JICMpgox2pnA2+nyUVtVTUlnH/so69lfUcqCi\njh0HKo8UemSEi/SkGAb0iSUzOYaxA5IYk5HoiA/qahua2JhfxvLcEl7dUEDBoRqagZS4SGYNS2Vg\nXCMTRwwC4I2NvXsJgolZySy9dR6LX9jIr5ds4X17gP++ZGK3L5QVLD26xT6wB7jpmfWkJ0Xz9HUz\nyewTG+pIPdbJjJ8XFlWwoeLkx989bjdpiTGkJcYwts39jT4fxZV1FJbXUlhWQ2F5LZ8VlPHJLh+v\nfboPt8s/OyE7M4mxA5IwGYmY9EQy+8SE7CjN52sm72AVW/ZVsLmgnJzdh9i0t5z6Jh9uF2SlxHH6\nmDTGZiYdyVlY1LvL+mjJcVE8ctU0nlq1i/96axsL//Ahd144josmD3T80XePLO7m5maeW5vPL/+x\nGZORyJPXznDsXFU5eR63m8w+sf7/uAenAP6fkbLqBkakJbB1XzlbCyvI2X2IJRv3HXleYoyHES2z\nXBKbq5lav4+slFiykmNJTYg+6SG3Jl8zBw/XkX+ohr2H/OP5O4ur2Fl8mNwDh4+M50dFuBk/MImr\n5w5l6pAUZg1PZelnKunOcLtdXD13GPNH9+dHL27k9uc38uK6vfzq/LGMyQjPU/s7o8cV98HDddzx\nyibe3rqfeSP78b/fOYXEXjrWJ8fmcrlIiY/ia+Mz+Nr4L2YYlVXXs33/YWxRBXZ/JZ8XV7Ey9yBF\nFbU8ueHQkce5XZCaEE2/hGiSYyNJiPGQGOMhJjICj9t15GIDDU0+Gn0+aht8VNY2UlnbQHlNAyWH\n6yitqufoE0oH9IlhRFoCl00bxNjMJMYNTGJUWiJRnp47ta07DO+fwIs3zuFva3Zzz9vbOee+j/n2\nzCHccsZI0hKdN3zSY4q7ubmZNzcX8avXtlBR08DPz8nmunnDdKV26ZLkuChmDOvLjGF9v3T/+s+2\nkJA+mL2Hqtl7qIYDFXWUHK6juLKO8poG8kurqaxtpK7RX9RNTc004x9T90S4ifa4SYyJJDHGQ1ZK\nHFMGJ/tnwCTFkJUcS1ZKLANTYomL6jH/JMNOhNvFVbOHcv7EAfzx3e08s2YPz6/L54rpg7jh1BEM\nTHbOUKrjf0qam5v5YHsx97xt2VxQwZiMRJ6+bkbYrnAmzhQb6WZ0eiKj0xNDHUVOUkp8FHdeOJ5r\n5g7joQ938vdP9vDsmj0sHJvOZdMH0d8B6+o4trgPVdWzZOM+XszJZ3NBBVkpsfz+0klcNHlAjz5j\nSpwjmCc8yckb2i+e/7pkIreeMYrHV+Tx8voC3txcRL+4CC7MgzOy05g+tG9YXoO2w+I2xriBB4FJ\nQB1wvbU2t832fwVuABqBu6y1bwQjaHNzM3Z/JStyD7J8RzHLc/3zVscNSOJ3F4/n0qmDNA4oIl02\nIDmWn587lh8vGsN73v08/uE2nl69m0eX55EU42Hm8FSmDUlh2tAUxg3oExZTRztzxH0REGOtnW2M\nmQXcA1wIYIzJAG4FpgExwHJjzDvW2oCsbv5pYQ3P79iCt7CCbUWVlNc0ADCsXzzfnT2US6ZmaUhE\nTkpnj4oDNWVRwleUx83ZEzIZ6ilj8PBRLM8t4T3vfj7JK+Wdrf6Lg7hdMLhvHKPTExnWP77l84k4\nMvrEkJrgX4qhO37j70xxzwPeArDWrjbGTGuzbQawoqWo64wxucBEYG0gwj2xvpS9FY2YjETOnZjJ\nlEHJzBmMyW9AAAAFN0lEQVTZz1EfIoiI88RHe1g0LoNFLWsaFVfWsX7PIbyFFWzfX4ktquQDW0x9\nO0sUJ8V4jnwQfdbYdBYH4UItro6umGyMeQR42Vr7ZsvtPcBwa22jMeY7wARr7U9atj0FPGWtfbft\nPnJycsJ/tF9EJMxMnTq13WlxnTnirgDafpTuttY2HmNbIvCVS1Ec68VFRKTrOjMYswI4B6BljHtT\nm22fAP9ijIkxxvQBsoHNAU8pIiJHdGaopHVWyUTABVyDv8hzrbVLWmaVfA//fwJ3W2tfDm5kEZHe\nrcPiDqWWo/hngCQgClhsrV0V2lQdT5EMB8aYSOAxYCgQjX+q5pKQhjoGY0wakAMstNZuC3Weoxlj\n7gAuwP8z+KC19tEQR/qSlvf6SfzvdRPwr+HyfTTGzAT+21p7mjFmJPAE0Iz/N/PvW2tDft26ozJO\nBh7A/32sA66y1u4PacB2hPvE58XAe9baU4GrgT+HNs4RR6ZIAj/FP0Uy3HwHOGit/Rfga8CfQpyn\nXS2l8xegJtRZ2mOMOQ2YA8wFTgUGhTRQ+84BPNbaOcB/AL8LcR4AjDH/DjyCf6owwB+AX7T8TLpo\nmVYcSu1kvA+4xVp7GvAK8JMQRTuucC/ue/H/owb/B6m1IczS1pemSOKfxx5uXgR+2fK1C/8JUuHo\n98BDwL6OHhgii/B/rvMq8DoQlBPMTtJ2wNPym2AS0BDiPK12Al9vc3sq8GHL128CZ3Z7oq86OuMV\n1tpPW74Op875krA55d0Ycx1w+1F3X2OtXdtyos8zwA+6P1m7koDyNrebjDGeNrNtQs5aexjAGJMI\nvAT8IrSJvsoYczVQbK39Z8twRDjqBwwBzgOGAUuMMWOsteE0xngY/zDJNvx5zwtpmhbW2peNMUPb\n3OVq832rBPp0f6ovOzqjtbYQwBgzB7gZmB+iaMcVNsXdMm74lbFDY8wE4DngR9baD7/yxNA43hTJ\nsGGMGYT/SPFBa+2zoc7TjmuBZmPMmcBk4CljzAXW2qIQ52rrILDNWlsPWGNMLdAfOBDaWF9yO/BP\na+0dLe/5MmPMBGttuB0tth3PbnfqcDgwxlwO/Bw411pbHOo87Qmb4m6PMWYs/l/5L7fWbgx1njZW\nAOcDL7QzRTIsGGPSgbeBm62174U6T3ustUeOZowxHwA3hllpAywHbjPG/AHIBOLxl3k4OcQXwyOl\nQCQQ+gU1vmqDMeY0a+0HwNnA+yHO8xUtJxXeAJxmrS0NdZ5jCeviBv4T/4cG9xljAMqttSH/QAP/\nUexCY8xKvpgiGW5+BqQAvzTGtI51n22tDcsPAcOVtfYNY8x8/OcsuPHPhGjq4Gnd7V7gMWPMx/hn\nvvzMWlsV4kzt+SHwV2NMFODFP4QXNowxEcD9wB7glZbO+dBa++uQBmtHWE8HFBGRrwr3WSUiInIU\nFbeIiMOouEVEHEbFLSLiMCpuERGHCffpgCIB0bLmyAvAVvxTOKOBm4DbgCRr7dfbPLbIWpsRipwi\nnaEjbulNlllrT2tZtOxXwG9b7p9njLkyhLlEukTFLb1VCl+ctn4HcKcxJiuEeUQ6TUMl0pssaDm1\nPhr/WuoXAd8CCvCvpPgo/tUARcKajrilN2kdKpkNTMG/eFksgLX2b0ClMeamUAYU6QwdcUtv1d5V\nTW4CVvPllR9Fwo6OuKU3WWCM+cAY8x7+lRMX0+bKOy1LeC4G4kKUT6RTtMiUiIjD6IhbRMRhVNwi\nIg6j4hYRcRgVt4iIw6i4RUQcRsUtIuIwKm4REYdRcYuIOMz/B0jYjIDMPlSxAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f200786fd90>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEBCAYAAADbxHY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACTBJREFUeJzt3V1o3Xcdx/FPbOZcRKWddnohiAR/5kqlgjhRizqqvVCx\nOLzwQgSf0FJUEJwPFz6BIMqciKIOH/CBaRFUKhV8Qq+EIEwx+0mc6IVoNZmwmclmrRcnYe3c1qE5\n39/Jyet10ySn+Z8vf5J3f/nlf/5duHDhQgCo8YjRAwDsJ6ILUEh0AQqJLkAh0QUoJLoAhRYf6sHV\n1VXXkwH8D44cObLwQB9/yOhuf+LuT1NobW0tKysro8eYGc7HpZyP+zgXl/p/zsfq6uqDPmZ7AaCQ\n6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBeg\nkOgCFBJdgEKX/T/S9rKbbropt956a5aWlobOsbm5mSQ5dOjQ0DmSZGtra/j5SJLl5eWcPHly9BhQ\nbq6ju76+nt/e/oecXxobuwNbG0mS3//93qFz3OfOoc9+YGtz6PPDSHMd3SQ5v3Qodz/9+NAZrrrt\nTJIMn2NW7JwP2I/s6QIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCoku\nQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJ\nLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBeg0FSie/bs2Zw9e3Yahwbm\n2H5ox+I0DnrmzJkkybFjx6ZxeGBO7Yd22F4AKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUo\nJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEF\nKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCi2OHgBg\n1pw4cSIbGxs5fPhwbrnlll09tpUuwP1sbGwkSc6dO7frxxZdgIucOHHikvevv/76XT3+VLYX7rjj\njmxsbOTUqVPTOPzDtr6+noXzdlBmzcK9d2d9fX3410eSbG1tZWlpafQYM2EWzsX6+nquvvrqoTPs\nrHJ37PZq10oXoNBUloEHDx7MwYMHc+ONN07j8A/bqVOnsnr7X4bOwH+7cMVVWX7qNcO/PpJkbW0t\nKysro8eYCbNwLmbhp59ps9IFuMj9tzcOHz68q8cXXYCLnD59+pL3XTIGMGU7q93dXuUmXhwB8F9O\nnz49tT1uK12AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCF\nRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoA\nhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSi0OI2DHj9+fBqHBebcfmjHVKJ77NixaRwWmHP7oR22\nFwAKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQ\nSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqIL\nUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCi2OHmDaDmxt5qrbzgyeYSNJhs8xKw5s\nbSa5ZvQYMMRcR3d5eTlbW1tZWloaOsfm5hVJkkOHDg2dI8lMnI/kmiwvLw+eAcaY6+iePHkya2tr\nWVlZGT3KzHA+YCx7ugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqIL\nUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhRauHDhwoM+uLq6+uAPAvCgjhw5svBAH3/I6AKwu2wvABQS\nXYBCi6MHmJbW2hVJbk7ylCRXJvlQ7/07Q4carLV2OMlqkut677eNnmek1tq7k7w8ySOTfLr3/oXB\nIw2z/b3ypUy+V84necN+/PporT0nyUd770dba8tJvpjkQpJfJ3lr7/3fu/E887zSfW2Sjd7785O8\nNMmnBs8z1PY31meT3D16ltFaa0eTXJvkeUlemOTJQwca73iSxd77tUk+kOTDg+cp11p7V5LPJ3nU\n9oc+nuS92/1YSPKK3XqueY7uN5O8b/vthST/GjjLLPhYks8k+dPoQWbAsSS/SvLtJN9N8r2x4wz3\n2ySLrbVHJHlsknsHzzPC75K86qL3jyT56fbb30/ykt16ormNbu/9rt77na21xyT5VpL3jp5plNba\n65L8tfd+dvQsM+LxSZ6d5NVJ3pzkq621B7y8Z5+4K5OthduSfC7JJ4dOM0Dv/XQu/cdmofe+c2nX\nnUket1vPNbfRTZLW2pOT/DjJV3rvXxs9z0CvT3Jda+0nSZ6Z5MuttSeOHWmojSRne+/39N57kn8m\necLgmUZ6eybn42lJnpHkS621R13mc+bdxfu3j0ny99068Dz/Iu2aJD9I8rbe+w9HzzNS7/0FO29v\nh/fNvfc/j5touJ8nOdVa+3iSJyV5dCYh3q/uyH2rvM0kVyQ5MG6cmfDL1trR3vtPkrwsk8Xbrpjb\n6Ca5IcnBJO9rre3s7b6s977vf5G03/Xev9dae0GSX2Ty095be+/nB4810ieS3Nxa+1kmV3Pc0Hv/\nx+CZRntnks+11h6ZZC2TLcpd4RVpAIXmek8XYNaILkAh0QUoJLoAhUQXoNA8XzLGHNi+T8ItSX6T\nycu5r0zylt77L1trb8zkHhv/zuTa0vdsX1cJM8tKl73gR733o733FyZ5f5IPttZek+S6JC/uvR/N\nJL5faa09fuCccFmiy15zMMm5JG9K8pHe+71J0nv/fZJn9t7/NnI4uBzbC+wFL9p++fKVmdwb4JVJ\nbkpy+8V/qfe+n1/Kyx5hpctesLO98Nwkz0ryjSR/zP3ug9taO9Zae9KIAeHhEl32mr9s/3lzJvfV\nWEyS1trTMrkJ9X6+hwJ7gO0F9oKd7YXzmdxm7x29969v357y5621ezK5K9Zre+/nBs4Jl+WGNwCF\nbC8AFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6DQfwBICqmyLGSkywAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2007a90f50>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEBCAYAAABojF4hAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlgVOW9//H3zGSZkA2ykQVCgMBDUAgQkEUQ3BVEadVq\n1Va5tVVrW1v7a6utvb3eelvvbW1vraW29dpqrW2xiiKKuyI7EsImwwNhSyATkkBWyDKZmd8fM9EY\nApkkMzkzJ9/XP2bmmXPOJ5Pxy5nnPOd5LF6vFyGEEJHPanQAIYQQwSEFXQghTEIKuhBCmIQUdCGE\nMAkp6EIIYRJS0IUQwiSijDpwcXGxjJcUQog+KCoqsnT3vGEFHaCoqMjIw5+Vw+GgoKDA6Bi9Fqm5\nQbIbRbIboz/Zi4uLz9omXS5CCGESUtCFEMIkpKALIYRJSEEXQgiTkIIuhBAmIQVdCCFMQgq6EEKY\nhBR0IYQwCUNvLBK98/zmsnO2OysbKGno/jW3zMwN2XHPpT/HFUL0jpyhCyGESUhBF0IIk5CCLoQQ\nJiEFXQghTEIKuhBCmESPo1yUUlZgGVAItAJ3aq1LO7XfC9wBeIFfaq2XK6UswFFgv/9lG7XWDwY5\nuxBCiE4CGba4BLBrrWcrpWYBjwHXASil0oB7gKmAHdijlHoBGAts01ovDk1sIYQQXQXS5TIXeANA\na70JmN7RoLWuAaZorV1AJtCitfYCRUCOUup9pdTrSikV/OhCCCE6C+QMPQmo7/TYrZSK0lq3A2it\n25VS3wAeBh73v8YJ/Fxr/YJSai7wHDCj644dDke/wodKS0tLWGZzVjacs73d5cJZ6ey2zeE4FbLj\nnkugxw3X9zwQkt0Ykv1MgRT0BiCx02NrRzHvoLV+Qin1R2C1UupiYDPQUfDXKaWylVIW/9n7J8J1\n+ahwXdrqbHeBdnBWOsnKzOq2raCg73ds9nTccwn0uOH6ngdCshtjsGbv7xJ064GFAP4+9F0dDcrn\nJf9FUBe+i6Ye4CfAt/2vKQTKuxZzIYQQwRXIGfoK4HKl1AbAAixVSt0PlGqtVyqldgAb8Y1yWa21\nXqOU2gk8p5RahO9M/Y7QxBdCCNGhx4KutfYAd3d5em+n9ofx9Z933qYWWBSMgGbTn4muhBDiXOTG\nIiGEMAkp6EIIYRJS0IUQwiSkoAshhElIQRdCCJOQgi6EECYhBV0IIUxCCroQQpiEFHQhhDAJKehC\nCGESUtCFEMIkpKALIYRJSEEXQgiTkIIuhBAmIQVdCCFMQgq6EEKYhBR0IYQwCSnoQghhElLQhRDC\nJKSgCyGESfS4SLRSygosAwqBVuBOrXVpp/Z7gTsAL/BLrfVypVQc8ByQATQCt2utq4MfXwghRIdA\nztCXAHat9WzgAeCxjgalVBpwDzAHuBR4TCll8T+3S2s9D3gWeCjYwYUQQnxWIAV9LvAGgNZ6EzC9\no0FrXQNM0Vq7gEygRWvt7bwNsBq4LJihhRBCnKnHLhcgCajv9NitlIrSWrcDaK3blVLfAB4GHu9m\nm0YgubsdOxyOPoUOtZaWlpBlc1Y2hGS/AO0uF85KZ7dtDsepPu+3P5kDPW4o3/NQk+zGkOxnCqSg\nNwCJnR5bO4p5B631E0qpPwKrlVIXd9kmEajrbscFBQW9TzwAHA5HyLKVNJSFZL8AzkonWZlZ3bYV\nFOT2eb/9yRzocUP5noeaZDfGYM1eXFx81rZAulzWAwsBlFKzgF0dDcrnJX+/uQvfRVNP522Aq4G1\nfUouhBAiYIGcoa8ALldKbQAswFKl1P1AqdZ6pVJqB7AR3yiX1VrrNUqpj4BnlFLrgDbglhDlF0II\n4ddjQddae4C7uzy9t1P7w/j6zztvcxq4MRgBhRBCBEZuLBJCCJOQgi6EECYhBV0IIUxCCroQQpiE\nFHQhhDAJKehCCGESUtCFEMIkpKALIYRJSEEXQgiTkIIuhBAmIQVdCCFMQgq6EEKYhBR0IYQwCSno\nQghhElLQhRDCJKSgCyGESUhBF0IIk5CCLoQQJiEFXQghTEIKuhBCmESPi0QrpazAMqAQaAXu1FqX\ndmr/DnCz/+HrWuuHlVIW4Ciw3//8Rq31g0FNLoQQ4jN6LOjAEsCutZ6tlJoFPAZcB6CUGgPcCswE\nPMA6pdQK4DSwTWu9ODSxhRBCdBVIl8tc4A0ArfUmYHqntnLgKq21W2vtBaKBFqAIyFFKva+Uel0p\npYKcWwghRBeBnKEnAfWdHruVUlFa63attQuo8Xex/AIo0VrvU0plAj/XWr+glJoLPAfM6Lpjh8MR\nhF8h+FpaWkKWzVnZEJL9ArS7XDgrnd22ORyn+rzf/mQO9LihfM9DTbIbQ7KfKZCC3gAkdnps1Vq3\ndzxQStmBp4FG4Ov+p7cC7QBa63VKqWyllMV/Fv+JgoKC/mQPGYfDEbJsJQ1lIdkvgLPSSVZmVrdt\nBQW5fd5vfzIHetxQvuehJtmNMVizFxcXn7UtkC6X9cBCAH8f+q6OBv+Z+SvADq31XVprt7/pJ8C3\n/a8pBMq7FnMhhBDBFcgZ+grgcqXUBsACLFVK3Q+UAjZgPhCrlLra//oHgUeB55RSi/Cdqd8R7OBC\nCCE+q8eCrrX2AHd3eXpvp5/tZ9l0UV9DCSGE6D25sUgIIUxCCroQQpiEFHQhhDAJKehCCGESUtCF\nEMIkpKALIYRJBDIOXYQ5t8fL0drT7Dh6mrZj5TS7PDS3ubFaYdiQGIYNiSE9MZZ549KwR9uMjiuE\nCBEp6BGs/ORp1pbWsK+ykTa3B4DkOBdx0TbiYmy0u73sq2yksbWddxzHSYyN4orzMrm+KIc5Y9MM\nTi+ECDYp6BFof1Uj7++t5vCJU9ijrUzJHUp+egJDPE2MGZlzxuvb2j2MSY/n1R0VvPFxJS9uO8ql\nEzL498UTGZUab8BvIIQIBSnoEaTF5ea1nU6Ky2oZGhfNoklZTB81jFh/N4qz8nS328VEWblofDoX\njU/np0vO59mNh/nNO/u5/FcfcveCsdx36ThsVssA/iZCiFCQgh4hDlY38a/io9Q3u1gwPp1LCjKI\nsvb+mrY92sbXLhrLdVNy+NnrDh5/dz8OZwOP3zyVuBjpXxcikskolwhQUlbL0+sPEWWzcNf8sVxx\nXmafinlnw5Ps/ObmqfzH4om84zjOrU9tovZUW5ASCyGMIAU9zG06eIIXio+SlxbPvRfnk5syJKj7\nv+PC0Sy7ZRq7Kxq4/skNnGhqDer+hRADRwp6GPtwXzUrd1QwITOR22fnERsVmi6Rqydl8dxXZnKs\ntpl7n9+Gyz9iRggRWaSgh6nt5XW88XElk0ckc+vMUUTbQvunumB0Cv99/WQ2HTzJI6v2hPRYQojQ\nkIuiYaiirpkVJUfJSx3CjUUjB2wEypKpOXxcUc+f1h5iYnYSN83o+7J1QoiBJ2foYeZ0Wzt/23yE\nuGgbX7wgd8CHE/7gqgnMG5fGQy/vxuEM3YLWQojgk4IeRjxeL//8qJyG5nZumTmKRHv0gGeIsll5\n/OapJNqj+dGKXXg8shSsEJFCCnoY2Xq4lv1VTSyanBX00Sy9MSw+hh8uLGBbWR3Lt5YblkMI0TtS\n0MNEU2s7b35cyei0eGaOTjE6DtdPy2Hm6BR+vnovTa3tRscRQgRACnqYeGN3Ja3tbq4tzMZiMf42\nfIvFwiNLzudUaztv7HYaHUcIEYAeR7kopazAMqAQaAXu1FqXdmr/DnCz/+HrWuuHlVJxwHNABtAI\n3K61rg52eLM4VHOKbWW1zB+fzvAku9FxPjFueCJfu2gMyz44wAV5KeTKRF5ChLVAztCXAHat9Wzg\nAeCxjgal1BjgVmAOMAu4Qik1GbgH2KW1ngc8CzwU7OBm4fZ4WbnjGEOHRHOxyjA6zhm+cUk+8TE2\n3t1bZXQUIUQPAinoc4E3ALTWm4DpndrKgau01m6ttReIBlo6bwOsBi4LWmKT2V5ey/GGVhZNyiIm\nKvx6wIbERDFvXDr7q5ooP9n9bI5CiPAQyI1FSUB9p8dupVSU1rpda+0CapRSFuAXQInWep9SqvM2\njUBydzt2OBz9iB46LS0tIcvmrPx0bLfH6+WdPbWkx9sYZjl11ulvA9XucuGs7L6/2+E41ef9jop3\nYY+y8PqOMq4t6PZPeVaBHjeU73moSXZjSPYzBVLQG4DETo+tWutPhj0opezA0/gK99e72SYRqOtu\nxwUFBb3NOyAcDkfIspU0lH3y8/byOupbTnDrzFyys3pXKLvjrHSSlZnVbVtBQd/v+ixpKOOipije\n2nMcd2wyI4YFPqQy0OOG8j0PNclujMGavbi4+KxtgXzHXw8sBFBKzQJ2dTT4z8xfAXZore/SWru7\nbgNcDaztfWxz83i9fKCryEiMpSAryeg4PZo1JpW4aBvvSV+6EGErkDP0FcDlSqkNgAVYqpS6HygF\nbMB8IFYpdbX/9Q8CvweeUUqtA9qAW4KePMLtqWigqrGVm6aPxBoGwxR7Yo+2cWF+Gu84jlNR10z2\n0DijIwkhuuixoGutPcDdXZ7e2+nns42zu7GvoczO6z87T42PYdKI/ne1DJQ5Y1P5cF81Gw6c4Iai\nEUbHEUJ0EX7DKgaB0uomKupbmD8+PSLOzjvYo21MyR3KzqN1nJa7R4UIO1LQDbDl0EmGxNiYMnKo\n0VF6bdaYVNo9XrYeqTU6ihCiCynoA6yxxYXD2cC03GFEhXjRilDITLKTlxrP5kMn8HhlJkYhwknk\nVZQIt+1ILR4vzMgzfgKuvpo1JoXa0y72HW80OooQohMp6API4/Hy0ZFaRqfFk54Ya3ScPjsvO5nE\n2Cg2HzxpdBQhRCdS0AfQxoMnOHmqLaLPzgFsVgszRqew73gjJ0+1GR1HCOEnBX0APb+ljLhoG+dl\nh/+NRD25IC8FiwU+Oixn6UKECynoA6SmqZW3Pq5kWu5QoiPwYmhXSXHRjMtIZHt5nVwcFSJMRH5l\niRArt1fgcnuZHuHdLZ1NzR1KfbOLg9V9n/hLCBE8UtAHyKqdFUzITAyrBSz6qyArCXu0lW1lMiZd\niHAgBX0AHKtrZltZHYsLs42OElTRNiuTc4bycUU9rS53zxsIIUJKCvoAeH2nb47yRZO6n9o2kk3L\nHYrL7WV3RX3PLxZChJQU9AGwamcF5+ckkZdmvjU5R6YMITU+hm1l3U55L4QYQFLQQ6z85Gl2HK3n\nmsnm6m7pYLFYmDZqGIdqTsmYdCEMJgU9xFaZuLulw9SRQ7EAJeVycVQII0lBD7FVOysoHDmUkSmB\nL9sWaYYOiSEvLZ6d5fV4ZUy6EIYJZMUi0UeHak7xcUUDDy2KzHUPe2PyiGRe2V6Bs75FVjPqh+c3\nl/X8orO4ZWbf140V5iBn6CG0erevu2WhibtbOkzKTsZqgZ1H5eKoEEaRgh5C7zqqOD8naVCcsQ6J\njWJcRiI7j9bLVABCGEQKeojUNLWyrayWywqGGx1lwEwekUxds4vyk6eNjiLEoNRjH7pSygosAwqB\nVuBOrXVpl9ekA+uByVrrFqWUBTgK7Pe/ZKPW+sGgJg9z7++twutlUBX0iVlJRFkt7Dhax6hU8425\nFyLcBXJRdAlg11rPVkrNAh4DrutoVEpdCTwKZHbaZiywTWu9OJhhI8m7jioyk+ymmCo3ULHRNiZk\nJbHrWAOLJmVjs0bOAthCmEEgXS5zgTcAtNabgOld2j3AZUDnibGLgByl1PtKqdeVUioYYSNFa7ub\ntfuruaQgA4tlcBW1whHJnGpt52B1k9FRhBh0AjlDTwI6T9ThVkpFaa3bAbTWbwN0qdlO4Oda6xeU\nUnOB54AZXXfscDj6mjukWlpa+pWt+NhpTrW5UQltZ+zHWdnQ33hn1e5y4ax0dtvmcPR9itveZE7C\nS4zNwqb9ThK8TQEft7/vuZGCmb0/n4++/I3lfTdGqLIHUtAbgMROj60dxfwctgIdBX+dUipbKWXR\nWn9m+ENBQXiOz3Y4HP3K9rzeTVy0jZsWTMEebftMW0lD38cZ98RZ6SQrs/shkgUFfR+j3NvM5+e4\n2eNsID19OAUFeQFt09/33EjBzN6fz0df/sbyvhujP9mLi4vP2hZIl8t6YCGAvw99VwDb/AT4tn+b\nQqC8azE3K6/Xy7uO48wdl3ZGMR8sJo8YSovLw/4q6XYRYiAFcoa+ArhcKbUBsABLlVL3A6Va65Vn\n2eZR4Dml1CJ8Z+p3BCNsJHA4G6mob+G+y8YZHcUwY9MTGBJjY4fcZCTEgOqxoGutPcDdXZ7e283r\n8jr9XAss6m+4SPTe3uMAXDwhw+AkxrFZLZyXncyO8jqa29zExQzObypCDDS5sSjI1uyrZlJOMhmJ\n5llqri8mj0imze3hvb1VRkcRYtCQgh5E9c0utpXVMX98utFRDDc6LZ7E2Che3VFhdBQhBg0p6EG0\nobQGt8fLfCUF3WqxcH5OMu/pKhpbXEbHEWJQkIIeRGv2VZNoj2LqyKFGRwkLk0ck09bu4e09x42O\nIsSgIAU9SLxeL2v2VTM3P40om7yt4FtvNGdoHCul20WIASGVJ0j2VzXhrG+R/vNOrBYL1xRmsXZ/\nDSeaWo2OI4TpSUEPkjW6GoCLpKB/xpIpObg9Xl7b1f2UBEKI4JGCHiQf7q9mXEbCoFjMojcKspJQ\nwxN5ueSY0VGEMD0p6EFwuq2dzQdPSnfLWVw3NZttZXWUnZCFL4QIJSnoQbD54Ena3B4ZrngW1xZm\nA7Byh5ylCxFKUtCDYM2+auzRVmbkpRgdJSyNGDaEGXnDeHl7BV5Zb1SIkJGCHgQf7q9m1pjUQTu7\nYiCum5JDaVUTe5yhmw9eiMFOCno/Ha09zcHqU8wbJ90t57JwUhZRVguvbJcx6UKEihT0flq7vwaA\ni8alGZwkvKXEx7BApbOi5Bjtbo/RcYQwJSno/bR2fzVZyXbyMxKMjhL2bpw+kurGVtbsqzY6ihCm\nJAW9H9weL+v21zBvXNqgWwy6Ly6ZkEFaQgzLt5YbHUUIU5KC3g87jtbR0NIu/ecBirZZ+fy0Ebzr\nqKK6UaYCECLYpKD3w9p9NVgsMDdf+s8DdWPRCNo9XrlzVIgQkILeD2v3VzM5J5lh8TFGR4kY44Yn\nMjV3KMu3lsuYdCGCTAp6HzW0uCgpr5PJuPrgpukj2V/VxPZyWURaiGDqcZFopZQVWAYUAq3AnVrr\n0i6vSQfWA5O11i1KqTjgOSADaARu11qbamjDhtITuD1e6T/vg0WTs3j41T0s31rO1NxhRscRwjQC\nOUNfAti11rOBB4DHOjcqpa4E3gIyOz19D7BLaz0PeBZ4KDhxw8fa/dXEx9iYmiurE/VWoj2aayZn\n8cr2CuqbZXk6IYIlkII+F3gDQGu9CZjepd0DXAac7G4bYLW/3TQ6Vie6MD+NaFmdqE/uuDCP021u\nln8kQxiFCJZAqlESUN/psVsp9UlXjdb6ba31iXNs0wgk9ytlmDlYc4qjtc0yu2I/nJedzAWjU3hm\n42HcHrk4KkQw9NiHDjQAiZ0eW7XW7b3YJhHo9uqXw+EI4PADr6Wl5ZzZXt7j+7cqx1rf69/BWRm6\nyanaXS6cld2vDORwnOrzfvuT+VzHvWJUNI8cOslf3i5mWoYtbD8PPenp89IboXqvzyaY2QeaZD9T\nIAV9PbAYWK6UmgXsCnCbhcAW4GpgbXcvKigoCDDmwHI4HOfM9ujGLYxNj2fBjMm93ndJQ1l/op2T\ns9JJVmZWt20FBbl93m9/Mp/ruOPGe/jz9g94+4iLObnxYft56ElPn5feCNV7fTbBzD7QBmv24uLi\ns7YF0uWyAmhRSm0Afg18Ryl1v1Lq2nNs83vgPKXUOuBrwMO9yBvWWlxuNh08wfzxGUZHiXhRNitf\nnj2KTQdPcuik3DkqRH/1eIautfYAd3d5em83r8vr9PNp4Mb+hgtHmw+dpLVdVicKlptn5PK/7+zn\nZUcDCy80Oo0QkU2GaPTSB7qK2CgrM0fL6kTBkDwkmhuKRvDewUaO1TUbHUeIiCYFvZfW7JPViYLt\nngVjAXjivdIeXimEOJdALooKv/KTvtWJbps5yugoEeP5zYFd5JuYYeefH5WRMzSOFP/cOLfM7PuF\nXCEGIzlD74WOhRmk/zz4inLisFosvL+3yugoQkQsKei98IGuJmdoHGPS4o2OYjoJMTZmjk6hpLyW\nmiYZ8SJEX0hBD1CLy8260mouLciQ1YlC5KLx6disFt6Ts3Qh+kQKeoA2HKihxeXh0oLhRkcxrUR7\nNLPHpLGjvI6yk6eNjiNExJGCHqC391QRH2Nj1hgZrhhKF6t0Eu1RvLL9GO1uj9FxhIgoMsolAB6P\nl3cdx5mv0omNkuGKoRQbbeOaydk8v6WMv2w4zJ3zxvRpP4GOrumOjK4RkUoKegB2V9RT1djKpROk\nu2UgnJedhBqeyK/e3sfCSVlkD40zOpJhmlrbOdnUyqk2N02t7STERjEqZQhDYuV/XXEm+VQE4J09\nx7Fa4OIJMn/LQLBYLCwuzOaJ9/fzHys/5g9fKhpUF6K9Xi8Hqk+x+dAJHM4GuptdOD0xlolZSczL\nT5PiLj4hn4QAvOOoYvqolE9ueBGhlxIfw7cvG8+jq/fyj4/K+eIFg6Mb5FhtM//aVs7xhlaGxNiY\nm5/G6LR4EmKjGRJro/60iyMnTnGw5hQf7qtm08ETzBmbxtz8NKOjizAgBb0Hx+qa2eNs4MGrJxgd\nZdD56rwxrC+t4ScrP2ZSTjLn55hqnZTPcHu8PLnmAL9fU0pCbBQ3FI1gUk7yGStiDRsSQ15aPPMV\nHG9o4V3Hcd7XVWw9fBKVmcjccVLYBzMZ5dKD9xzHAbhsovSfDzSb1cL/3jSF1PgY7vlbMfWnzbn+\naO2pNm750yZ+8abmvOxkvnXpOKblDutxecPhSXZumTmKexfkY4+x8aWnN/Po6r24ZHTQoCUFvQdv\n7TnOmLR4xqYnGB1lUEpNiOWJW6bhrGvhuy9sx2Oy5eqON7Rw0x83UlJexy9vLOTmGSMZEtO7L845\nw+K4d0E+N8/I5ck1B7jpDxvlbttBSgr6OZw81cbGAye44rxMo6MMakWjhvHQogLecVTxo5d34fWa\no6gfOXGK63+/gWO1zfxl6QxuKBrR54u/MVFWfv75STxxy1T2OBv43LL1lFY1BTmxCHfSh34Ob+yu\npN3jZXFh98u6iYFzx4WjqW5q5XfvH8AebePfr5kY0SNfDlY3cdMfN9Hu9vD8V2dROHJov/fZMfZ+\n6ZzRPLvxMIt/u45bZ+UyJu3s3y6dlQ2UNJTJ2HuTkDP0c3h1RwVj0uOZmJVkdBQB/L8rFP924Wj+\nvP4wv3hTR+yZ+rG6Zm57ajMej5d/3jU7KMW8s5EpQ7hnQT7xsVH8ef1h9lSEbmFyEV6koJ9FVUML\nmw6dYPHk7Ig+EzQTi8XCj68p4JaZuSz74AA/XLE74i4AVje2cttTm2lsbefZr1zA+OGJITlOSnwM\nd88fQ1aynee3HGF7eW1IjiPCixT0s3h9lxOvF+luCTMWi4VHrjufry8Yy9+3lHH701siZvRLfbOL\nLz+9hcr6Fv6ydAbnZYd2GOaQmCi+cuFo8lLjeWHrUTYdPBHS4wnjSUE/i1d3OpmQmUh+RmjOoETf\nWa0Wvn/VBB67sZCPDp/kc8vW43CGd7dCc5ubO5/5iNKqRv7wpSKKRg3MJG+x0TZun5OHykxk5Y4K\n1u6vHpDjCmP0eFFUKWUFlgGFQCtwp9a6tFP7V4G7gHbgEa31KqVUCrAP2O1/2Qqt9W+CHT5Uqpra\nKT5Sy/euVEZHEedwfdEIclOHcM9z27juifV8/ypfH7vVGl5dZC63h3uf38bWI7X87pZpXDR+YFe8\nirZZuXXmKJZvLWf17kpa2z1cOkHm9TejQEa5LAHsWuvZSqlZwGPAdQBKqUzgW8B0wA6sU0q9DUwD\n/q61/mZoYofWh4d9w70WT842OInoyYy8FN789jweeGkXj7zm4H1dxaOfn2x0rE94PF6+/6+dvLe3\nip99bhILJxnThWezWrhpxkhibFbe21tFW7uHq8+X4bhmE0iXy1zgDQCt9SZ8xbvDBcB6rXWr1roe\nKAUmA0VAkVJqjVLqBaVURHVEf3CoicIRyeSmDjE6ighAakIsf/xSEY9+fhIlZXVc/us1rNlXjdvg\nm5A8Hi8PvbKbFSXH+N6VyvChgVaLhc9Ny2HWmFTWldawouQYnggdKSS6F8gZehJQ3+mxWykVpbVu\n76atEUgG9gLFWut3lFK3Ar8Fbui6Y4fD0efgobKvppUDJ9u4Jz8xJPmclaHr6213uXBWOrttczhO\n9Xm/oczcobvsvc1cmAi/X5zDk1tqePPjSj46WM380fGMSO7dpGq9PW5LS8sZnxWP18vvNtXw+r5G\nbpo0lIuHtwX0eRqI93p6Brhb4/joSC0n6qO4ytu/z4dRunvfI0WosgdS0BuAzlcGrf5i3l1bIlAH\nbAY61hBbAfxndzsuKCjoVdiB8MyLO4mNsnDPwiKS7NFB339JQ98XXuiJs9JJVmb3X4YKCvp+dhjK\nzB26y96XzAXA/Bnw45d38+rOClbsaWBiVhJXn59JakJsYPvo5XEdDsdnPssej5cfv7Kb1/c18vUF\nY/nelSrg/uqBeK8BPpcFGaU1vLbLyZsHWrjn6tB83kOp6/seSfqTvbi4+KxtgRT09cBiYLm/D31X\np7YtwH8ppexALL7/n3YDzwAvAsuBS4GzJwgjDS0uVu6oYMHohIj7cIvPKshKIj8jgfWlNXywr5r/\nfWc/M8eksEBlkBDC+cNbXG6+96+dvLqjgnt6WcwH2oX5abQ1N/LugSZu/P1Gnl46g5wBXkykPytL\nTZX7/c4QyCd7BXC5UmoDYAGWKqXuB0q11iuVUo8Da/H1x/9Ia92ilHoAeFop9XXgFHBniPIH1Ssl\nxzjd5mbhePmkmEG0zcoClUHRqGG84zjOpoMn2Hqklrn5vvnD7dHBXU6wqqGFrz67lZ3H6vn+VYp7\n5o8N22LeYUK6nZHD03lhazlLfreep2+fwaQR5p2m2Ox6LOhaaw9wd5en93Zq/xPwpy7bHAIuDkbA\ngeL1evkTixzxAAAM10lEQVTb5jLOz0lifFpgX81FZEi0R/O5qSO4MD+Nd/Yc5729VWw4UMOcsWnM\nGZMalBV/thw6yX3/KKG+2cWTtxVxZQRN6JafkcCLX5/D0j9/xBf+sJH/uWEyiwtlhFckkhuL/LaV\n1bK3spFbZ44yOooIkYzET+cPH5OWwHt7q/iftzSrdlZQ1dDSp32eaGrlV+uq+MIfNmK1WHjh7tkR\nVcw7jB+eyIp751CQlcg3/17CT1ftibhpFYTMtviJv20qIyE2imsLsyk7uN/oOCKEcobFcdusUVQ2\ntPDhvmo2HzzJhgMnyEuNZ1ruUC6ZkEFmsv2c+zhQ3cQrJcd4ZuMRmlpc3LNgLN+8JL/Xc5mHk4xE\nO//42mx+9rqD/1t3iF1H63n8i1N7fC9E+IjcT18QOeubWbXTyU0zRhIvC+4OGplJdr4wfSQLJ2Wx\n7UgtWw6f5KWSY7xUcowJmYlMGzWM7GQ7WclxRNksVNa3UNnQwtbDtew6Vo/FAvPHp3PzhFiumm2O\nJQpjoqz8x7XnMWXkUB58aRdX/HoNP11yPtcWyiR1kUCqF/D7Dw7g8Xr52kVjjI4iDJAQG8VF49OZ\nNy7NtzhzrI0PdBWrdzmp7TLxV3yMjfyMBB5aVMDiwmyGJ9kjdiz0uSyZmkPhyKF8d/l27vvHdt7a\nc5yHrz2PtACHfgpjDPqCXlHXzD+2lHPj9BGMTJE7Qwczi8VCZrKdW2bmcvf8sYBvGGJlfQsut4fM\nZDuJg2g46+i0eF64ew5/+PAAv357Hx/uq+Y7l43nS7NH9bjeqTDGoP+rLPugFC9e7r043+goIgzZ\no23kpcUzbnjioCrmHWxWC19fkM/q+y5iau4w/nPVHhb+Zi1vflxpuvVdzWBQF/SKumb++VE5N04f\nyYhhcnYuxNnkZyTwzNIZPPXl6bjcHu76azFX/eZDXi45RruMhgkbg7qg/+593yzAcnYuRM8sFguX\nTRzOO/fP5zc3TwHg2//czqyfv8cjq/aE/Zz0g8Gg7UPXlY0s31rOF6aPHPDbnYWIZFE2K9dNyWHx\n5Gze11Us31rOMxsP89S6Q4xOi+fC/FTm5qcxbdQw0hNiZXTMABqUBb3d7eH7/9pBkj2a714hi1gI\n0RdWq4VLC4ZzvKGV6aNS2HWsnn3HG1m+9SjPbfLN0TIkxkZGop3UhBgSY6NIsEcRF20j2mYl2mbB\nZrVisfjmFLFYLP7/+vrufa+xEhtlJS7GhlX+YejRoCzoT68/xI6j9fz2i1NJie/d1KpCiDPFx0Yx\na0wqs8ak4vZ4OVp7mmN1zRxvaOF4Qyv7jzfS1NpOX6+j2iwWEu1RJMVFk5EYy/AkO5YsGDW2PaJv\n5gq2QfdOHKxu4rG39nH5xOFcMzmi1t0QIiLYrBZGpcYzKjX+M897vF6a29w0u9y43B7a3V7aPV68\neMELHi948eL1+qYgbnN7cLk9tLg8NLW209Dsoq7ZhcPZwNYjtby2C/793UqmjBzK7LFpXDFxOOdl\nJw3qLp5BVdDb3R4eeHEXsVFWHlly/qD+w4uz6+2Urs7Khs/MY270ykThymqxEB8bFZS7sRtbXAxx\n1XHMFc/GAzU88d5+Hn93P7kpQ1g4KYvrp+UwbvjgW+B90BR0r9fLT1Z+zJbDJ3nsxkKGJ8n8FEJE\nqkR7NFMzhvClAt+UC7Wn2nhrTyWrdjr509qDPLnmANNyh3LzBblcMzlr0HTLDI7fElj2wQH+trmM\nu+aP4fqiEUbHEUIE0bD4GG6akctNM3I50dTKipJj/H1LGd//104eWbWHm2aM5Euz8ky/TvCgKOgv\nFh/lF29qlkzJ5gdXmmMSJSFE91ITYrlz3hi+Mnc0W4/U8syGw/x5vW9Y5aUTMrhjzmguzE81ZZer\nqQu61+vluU1HePjVPVyYn8r/3FCI1Wq+P6IQ4kwWi4UZeSnMyEuhsr6Fv20+wvOby3jHsZlxGQnc\nPiePJVNzQrok4UAz7Z2iHWs7/viVj7lofDpP3lZETJRpf10hxDlkJtv57hWK9Q9cwi9vLCQmyspD\nL+9m1s/e5ccv7zbNXa7m+aepk11H63lwxU52H2vgvkvHcd+l4+TMXAiBPdrGDUUjuH5aDiXldTy3\n6Qj/3FrOXzcdYWJWEtcXjeDawmzSEyNzmmBTFfSOMeav7XKSEh/DU1+ezmUThxsdSwgRZiwWC9Ny\nhzEtdxg/XjSRlTsqeHHbUX66ag//9doepo9K4crzM7m8YHhEXUjtsaArpazAMqAQaAXu1FqXdmr/\nKnAX0A48orVepZRKA54H4oAKYKnW+nQI8lPf7OKtjyt5daeT9aU1xEZZ+dal4/jqvNGDcrpTIUTv\nDIuP4fY5edw+J499xxt5baeTNz+u5Ker9vDTVXsYMSyOOWNTmTk6lcKRyYxOS8AWpt/4AzlDXwLY\ntdazlVKzgMeA6wCUUpnAt4DpgB1Yp5R6G/h34Hmt9V+UUg/gK/i/DkbgdreH13Y52V5ex47yOnYf\na6DN7WFkShx3zx/D0gtHy6oqQog+GT88kfGXJ/Kdy8dzuOYUa/ZVs+FADW/srmT51qOAb36agqwk\nxqbHMzotgbzUIWQm28lMtpOWEGvo4h+BFPS5wBsAWutNSqnpndouANZrrVuBVqVUKTDZv83P/K9Z\n7f85KAX9rT3Hue8f24mLtjEpJ5mlc/O4+vwsCkckm3IYkhDCGHlp8eSlxXP7nDzcHi/7qxrZdbSe\n3cfqcTgbeV9Xf1LkO0uyRzF0SAzJcdHEx9oYEhNFXIyN2CgrsVE2kuxRLMh0hySzxes992w5Sqmn\ngBe11qv9j8uAMVrrdqXUbcAkrfUP/G3PAs8CT/qfb1ZKjQGe1VrP7bzf4uJiWe5ECCH6oKioqNuz\n10DO0BuAzpMiWLXW7WdpSwTqOj3f3Om5gAIJIYTom0A6e9YDCwH8fei7OrVtAeYppexKqWSgANjd\neRvgamBt0BILIYToViBdLh2jXCbjm4d+Kb5iXaq1Xukf5fI1fP84/Exr/aJSajjwDL6z8xrgFq31\nqdD9GkIIIXos6INFT8Mzw5lSKhp4GsgDYvENH11paKheUkplAMXA5VrrvUbnCZRS6kHgWiAGWKa1\n/j+DIwXE/5l5Bt9nxg18NRLed6XUTOC/tdYLlFL5wF8AL76egXu11mG5YnWX3FOA3+J731uBL2ut\njwfjOHIv/Kc+GZ4JPIBveGakuA04obWeB1wFPGFwnl7xF5c/4LvmEjGUUguAOcCFwHxgpKGBemch\nEKW1ngP8J/BfBufpkVLq+8BT+IZIA/wKeMj/ubfgH04dbrrJ/Rvgm1rrBcBLwA+CdSwp6J/6zPBM\nfGPrI8ULwI/9P1vw3eQVSX6Jb2RUhdFBeulKfNeUVgCvAquMjdMr+4Ao/zfTJMBlcJ5AHAA+3+lx\nEbDG//Nq4LIBTxSYrrlv1lpv9/8cBbQE60BS0D+VBNR3euxWSkXE1Aha6yatdaNSKhH4F/CQ0ZkC\npZS6A6jWWr9pdJY+SMP3D/+NwN3A35RSkTJ6qwlfd8te4E/A44amCYDW+kU++w+PRWvd0WfcCCQP\nfKqedc2ttXYCKKXmAN8gSPfogBT0zs41PDPsKaVGAu8Df9VaP290nl74N+BypdQHwBTgWf8dyJHg\nBPCm1rpNa63xnWmlG5wpUN/Bl308vutGzyilIm0Zr8795d0Ojw5XSqmb8H0rXaS1rg7WfqWgf+pc\nwzPDmn9U0VvAD7TWTxudpze01hdpref7+xO347tAVGlwrECtA65SSlmUUtlAPL4iHwlq+fQb6Ukg\nGrAZF6dPSvzXMSCChkf7b8j8BrBAa30wmPuOiC6FAbIC35niBj4dnhkpfggMA36slOroS79aax1R\nFxkjjX8iuovw3Y9hxTfKIjT3dAffr4GnlVJr8Y3Q+WEEDi3+LvAnpVQM4MDX3RjWlFI2fN1bZcBL\nSimANVrrnwRj/zJsUQghTEK6XIQQwiSkoAshhElIQRdCCJOQgi6EECYhBV0IIUxChi2KQcs/hnk5\nsAffUNVY4B6tdYlS6mv45sjx4Buj/SOt9QcGRRUiIHKGLga797TWC7TW8/GthftTpdTNwOXApf4b\nnm4D/upf/FyIsCUFXYhPDQOq8C1q/jOttQtAa30ImKK1rjEynBA9kS4XMdhd4p9HJhbfnCZL8M1V\n/ZlbsrXWkXJLvxjE5AxdDHYdXS6zganAP/Ddlv2Zuc2VUlcqpbKMCChEoKSgC/GpjlVjnsY3L04U\ngFJqPL4FCiJlnhYxSEmXixjsOrpc3PimYL1fa/13/xS+65RSbfhmIbxNa11lYE4heiSTcwkhhElI\nl4sQQpiEFHQhhDAJKehCCGESUtCFEMIkpKALIYRJSEEXQgiTkIIuhBAmIQVdCCFM4v8DnHyntJ0/\n8soAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2007597550>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEBCAYAAADbxHY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACP5JREFUeJzt3V+I5WUdx/HP6qzppEmD2R+KIsRnB4KCDYKi2ovC2ouK\nIIjoQmKDDYNVkiBRjDAoMMOIMjLtD3VTEZVsbFBtVCLB0EXB2ScmukikJbRCHctdnS5mNndl1Xab\n833Oznm9rs75HeZ3vpzdee+zz/zOmR3r6+sBoMZ5owcAmCeiC1BIdAEKiS5AIdEFKCS6AIUWnu3B\nlZUV15MBnIXdu3fvON3xZ43u5hdu/TSFJpNJlpeXR48xM7wep/J6PMVrcar/5/VYWVl5xsdsLwAU\nEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgC\nFBJdgEKiC1DoOX9H2tm4/vrrc/To0SwtLU3j9GdkbW0ti4uLo8eYGUtLS7n55ptHjwFzayrRnUwm\neeTRtfz5H8emcfqz8PDoAWbC+WsP5cpXv3L0GDDXphLdJMn5C3ls196pnZ4zd9GRg6NHgLlnTxeg\nkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQX\noJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVE\nF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhaYS3ePHjydPPjmNUwNTcOjQodx3332jx5gLU4nu\nsWPHknXRhXPFwYMHc++9944eYy7YXgAoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCF\nRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoA\nhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKLYweAOCEffv2\nZXV1Nbt27codd9wxbI49e/b89/bhw4e39NxWusDMWF1dTZIcOXJk8CTTI7rATNi3b98p9/fv3z9k\njpNXuae7//+yvTBHdhx7LPff/88cOHBg9CgzY21tLYuLi6PHGG51dTUXX3zx8BlOtl1Xu1a6AIWs\ndOfI+s6L8vKXXJ7bb7999CgzYzKZZHl5efQYwx04cCBra2ujx5gLVrrATLjiiitOub9r165Bk0yX\n6AIz4c477zzl/qhLxp5+iZhLxoBt68Rqd7uuchN7usAMefpqd5TDhw9Pbb/fShegkOgCFBJdgEKi\nC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBC\nogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2A\nQqILUEh0AQotTOOkO3fuzBOPH5/GqYEp2Lt3bx544IHRY8yFqUR3YWEhOf7kNE4NTMFVV12VyWQy\neoy5YHsBoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEF\nKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHR\nBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6DQwtTO/MTxXHTk4NROz5k7f+2h\nJJeMHgPm2lSiu7y8nKNHj2ZpaWkapz8ja2trWVxcHD3GjHjxTPyZwDybSnRvvfXWaZz2rEwmkywv\nL48eY2ZMJpPRI8Bcs6cLUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgk\nugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AoR3r6+vP+ODKysozPwjAM9q9e/eO0x1/1ugCsLVsLwAU\nEl2AQgujB5iW1trOJHcleVWS5yW5pff+o6FDDdZauzzJSpK3996PjJ5npNbaJ5K8K8kFSb7Ue//a\n4JGG2fxe+UY2vleeSPLhefz70Vp7Q5LP9t73tNauSPL1JOtJ/pDkmt77k1vxPNt5pfvBJA/23t+c\n5B1Jvjh4nqE2v7G+kuSx0bOM1lrbk+SNSd6U5K1JXjF0oPH2Jlnovb8xyaeSfHrwPOVaax9PcmeS\nCzcP3Zbkxs1+7Ejy7q16ru0c3e8muWnz9o4kxwfOMgtuTXJHkgdGDzIDrkry+yQ/SPLjJPeMHWe4\nPyZZaK2dl+QFSY4NnmeEPyV570n3dyf55ebtnyR521Y90baNbu/9kd77w621S5J8L8mNo2capbV2\ndZK/9d4PjZ5lRlyW5PVJ3pdkf5Jvt9ZOe3nPnHgkG1sLR5J8NckXhk4zQO/9+zn1H5sdvfcTl3Y9\nnOTSrXqubRvdJGmtvSLJL5J8q/f+ndHzDPShJG9vrR1O8rok32ytvWTsSEM9mORQ7/3x3ntP8q8k\nLxo800jXZeP1uDLJa5N8o7V24XN8zXZ38v7tJUn+sVUn3s4/SHtxkp8m+Wjv/Wej5xmp9/6WE7c3\nw7u/9/7XcRMN9+skB1prtyV5aZLnZyPE8+rveWqV91CSnUnOHzfOTPhda21P7/1wkndmY/G2JbZt\ndJPckOSFSW5qrZ3Y231n733uf5A073rv97TW3pLkt9n43941vfcnBo810ueT3NVa+1U2rua4off+\n6OCZRvtYkq+21i5IMsnGFuWW8I40gELbek8XYNaILkAh0QUoJLoAhUQXoNB2vmSMbWDzcxJ+mOQ1\nvfe/bB77TDbePXV3kvf03n+4efwdSd7fe796zLTw3Kx0ORf8O8ndp3mr7lqS21prlw2YCc6K6HIu\n+Hk23il1zdOOP5zkc0m+XD4RnCXR5VzxkSTXbX7O6cm+nOTS1toHBswEZ0x0OSf03h9Mcm02Pmz7\nvJOOr2fjA31uSfKyMdPB/050OWf03n+cpCe5+mnH70/yySSfqZ8Kzozocq65Nqf57Re9928m+U39\nOHBmfOANQCErXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFPoP2g2I7q71BWcAAAAASUVORK5C\nYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f20078ec4d0>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAEBCAYAAABYAE8AAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAH1hJREFUeJzt3Xl8VPWh9/HPbNkXEghhJyzyM4oCBQVcAL3FrVbtch+t\nt4v00arVW692097ep2r3p1Vr7dXearW1rfp4r/JS3K3UqrhgIyhL8pPIEpaEPQnZk5l5/pghDiEh\nQ5LJzI98369i58yZOfN1DN+c+c3vnOMJh8OIiIg7vMkOICIiR0fFLSLiGBW3iIhjVNwiIo5RcYuI\nOEbFLSLiGP9gvEhZWZnmHIqIHKXZs2d7urt/UIo7GqDzdnl5OaWlpYP10v3iUlZwK69LWcGtvC5l\nBeXtTllZWY/rNFQiIuKYuIrbGDPXGPNqN/d/2hjzrjHmLWPMVQOeTkREDtNrcRtjvgM8AGR0uT8A\n3AWcAywEvmaMKU5ESBER+Vg8e9wfAZ/t5v5SoNJau99a2wa8ASwYyHAiInK4XovbWvsE0N7Nqjyg\nLmb5AJA/QLlERKQH/ZlVUg/kxiznArU9Pbi8vLzzdktLyyHLqcylrOBWXpeyglt5XcoKynu0+lPc\n5cBxxphCoIHIMMkve3pw7NQZl6b+uJQV3MrrUlZwK69LWUF5u3Ok6YBHXdzGmMuBHGvt74wxNwEv\nEhlyedBau73PKUVEJC5xFbe1djMwL3r7kZj7lwHLEpLsGPfIO1V9et7lcycMcBIRcY0OwBERcYyK\nW0TEMSpuERHHqLhFRByj4hYRcYyKW0TEMSpuERHHqLhFRByj4hYRcYyKW0TEMSpuERHHqLhFRByj\n4hYRcYyKW0TEMSpuERHHqLhFRByj4hYRcYyKW0TEMSpuERHHqLhFRByj4hYRcYyKW0TEMSpuERHH\nqLhFRByj4hYRcYyKW0TEMSpuERHHqLhFRByj4hYRcYyKW0TEMSpuERHHqLhFRByj4hYRcYyKW0TE\nMSpuERHH+Ht7gDHGC9wLzABagSuttZUx678JXA6EgJ9Ya5cmKKuIiBDfHvclQIa1dj5wM3DHwRXG\nmGHADcB84BzgV4kIKSIiH4unuM8AXgCw1r4NzIlZ1whsAbKjf0IDHVBERA7V61AJkAfUxSwHjTF+\na21HdHkrsB7wAT/taSPl5eWdt1taWg5ZTmWJylpdU9+n55WXNx5xvd7bxHEpr0tZQXmPVjzFXQ/k\nxix7Y0r7fGA0MCm6/KIxZoW1dmXXjZSWlnbeLi8vP2Q5lSUq66r6qj49r7R0whHX671NHJfyupQV\nlLc7ZWVlPa6LZ6hkBXABgDFmHrAmZt1+oBlotda2ALXAsD4nFRGRXsWzx70UWGyMeRPwAEuMMTcB\nldbap40xnwTeNsaEgDeAlxMXV0REei1ua20IuKbL3RUx638A/GCAc4mISA90AI6IiGNU3CIijlFx\ni4g4RsUtIuIYFbeIiGNU3CIijlFxi4g4RsUtIuIYFbeIiGNU3CIijlFxi4g4RsUtIuIYFbeIiGNU\n3CIijlFxi4g4RsUtIuIYFbeIiGNU3CIijlFxi4g4RsUtIuIYFbeIiGNU3CIijlFxi4g4RsUtIuIY\nFbeIiGNU3CIijlFxi4g4RsUtIuIYFbeIiGNU3CIijlFxi4g4RsUtIuIYFbeIiGNU3CIijvH39gBj\njBe4F5gBtAJXWmsrY9afD/wA8ABlwHXW2nBi4oqISDx73JcAGdba+cDNwB0HVxhjcoFfABdaa+cC\nm4ERCcgpIiJR8RT3GcALANbat4E5MetOA9YAdxhjXgd2Wmt3D3hKERHp1OtQCZAH1MUsB40xfmtt\nB5G967OAmUAD8Lox5i1r7YddN1JeXt55u6Wl5ZDlVJaorNU19X16Xnl54xHX671NHJfyupQVlPdo\nxVPc9UBuzLI3WtoAe4F3rbU1AMaY14iU+GHFXVpa2nm7vLz8kOVUlqisq+qr+vS80tIJR1yv9zZx\nXMrrUlZQ3u6UlZX1uC6eoZIVwAUAxph5RIZGDnoPmG6MGWGM8QPzgPV9jyoiIr2JZ497KbDYGPMm\nkZkjS4wxNwGV1tqnjTG3AC9GH/u4tXZtgrKKiAhxFLe1NgRc0+Xuipj1jwGPDXAuERHpgQ7AERFx\njIpbRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4REceouEVE\nHKPiFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4R\nEceouEVEHKPiFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpb\nRMQx/t4eYIzxAvcCM4BW4EprbWU3j3kWeMpa+9tEBBURkYh49rgvATKstfOBm4E7unnMj4CCgQwm\nIiLdi6e4zwBeALDWvg3MiV1pjPk8EDr4GBERSaxeh0qAPKAuZjlojPFbazuMMdOBy4HPA//nSBsp\nLy/vvN3S0nLIcipLVNbqmvo+Pa+8vPGI6/XeJo5LeV3KCsp7tOIp7nogN2bZa63tiN7+MjAWWA6U\nAG3GmM3W2sP2vktLSztvl5eXH7KcyhKVdVV9VZ+eV1o64Yjr9d4mjkt5XcoKytudsrKyHtfFU9wr\ngE8Djxtj5gFrDq6w1n7n4G1jzK1ATXelLSIiAyee4l4KLDbGvAl4gCXGmJuASmvt0wlNJyIih+m1\nuK21IeCaLndXdPO4Wwcok4iIHIEOwBERcYyKW0TEMSpuERHHqLhFRByj4hYRcYyKW0TEMSpuERHH\nqLhFRByj4hYRcYyKW0TEMSpuERHHxHOSKRlAwVCYD7bVsrxiJ63tIY4rzqVkRBZ+r36Hikh8VNyD\nJBgKc+fLlr+8U0VtUzsewOv18HrlHtL9XqaPzefCk0aTHvAlO6qIpDgV9yBoaO3ghkdX8UrFLs6f\nPorzpo9iZ30raT4vH+1uoLy6nveq9rN1XxNfnl9CYXZasiOLSArT5/ME27a/ic/f9yavfribH158\nIvd9cTYXzxxLTrqfNL+X0tF5fPYT47jitEkcaOng3lcr2binIdmxRSSFqbgTqL6lncvvf4fttc38\nYckpfGl+SY+PnToyh2sXTSE7zc9DKzazdV/T4AUVEaeouBMkHA5zy5NrOkv7zOOKen3OiJx0rl4w\nmbwMP4+srKKhtaPX54jI0KPiTpC/vFPFsx9U8+1zDbMnFsb9vKx0P5fPnUhjawePvVtFMBROYEoR\ncZGKOwHW76jn9mfWs3BaEV87c/JRP3/ssEwunjmGjbsbeXn9zgQkFBGXqbgHWHswxA2PraIgK8Cd\n/2sGXq+nT9uZPbGQU0sKeW3Dbn1ZKSKHUHEPsEfeqWLDrgZ+ePF0huek92tbF5w0moKsAE+t2kFH\nMDRACUXEdSruAVTb1MZdf/2Q06cOZ/EJxf3eXprfy0UzxrK7oZXXNuwZgIQicixQcQ+gu1/ZQH1z\nO9//1Al4PH0bIunKjMpl+th8XrW72NvQOiDbFBG3qbgHSOWuBv701hYuO3UCpaPzBnTbF540Gp/X\nw1Pv7yAc1iwTkaFOxT1AfvpcOZkBHzctnjbg287LDHDOCcVU7mrgxXWaZSIy1Km4B8Cqqv28UrGL\na8+awoh+fiHZk1MnDacoN53/+0IF7fqiUmRIU3EPgHuWV1KQFeArRzikvb98Xg/nnTiKjXsaeWxl\nVcJeR0RSn4q7n9Zur2N5xS6uPHMy2emJPdni8aNymTupkF/9dQMHWtoT+loikrpU3P3061c2kJfh\n58vzJyb8tTweD9+7oJS9jW387rWNCX89EUlNKu5+KK+u56X1O/nqGZPIzQgMymvOGD+MT88Yw/2v\nb6SmrmVQXlNEUouKux9+s7ySnHQ/S06bNKiv+51zDcFQmF8v3zCorysiqUHF3Ucbdzfw3NpqvnLa\nRPKzBmdv+6DxhVl84dQJPP7uVjbvaRzU1xaR5FNx99H9r28i4PNyxSDvbR90/dlTCfi83Pnyh0l5\nfRFJHhV3H+w+0MoT723jc58YR1FuYuZt92ZkbgZLTi/h6fd3sH5HfVIyiEhy9Dp/zRjjBe4FZgCt\nwJXW2sqY9TcCl0UXn7PW3paIoKnk4bc20x4McdWZydnbPujqBVP489tb+OVLlgevOCWpWURk8MSz\nx30JkGGtnQ/cDNxxcIUxZjLwL8BpwDzgHGPMyYkImiqa2jr409tbWFxazOSinKRmyc8KcM2iKSyv\n2MW7m/clNYuIDJ54ivsM4AUAa+3bwJyYdVuB86y1QWttGAgAx/Qctcff3UptUztXLzz6K9skwpLT\nJjEyN52fPV+hE1CJDBGe3v6yG2MeAJ6w1j4fXa4CJltrO2Ie4wF+AeRaa6/uuo2ysrJwVlZW53JL\nSwsZGRkD82+QYLFZg6EwVy7dSmGmjzsuGNuv7T73Yd/GpS+YdviZB5+z9dzz9h5+cFYxM0f6nHxv\nXeBSXpeygvJ2p6mpidmzZ3d7fuh4jtGuB3Jjlr1dSjsDeBA4AHy9p42UlpZ23i4vLz9kOZXFZn3m\ngx3UNGzits/MoLR0VL+2u6q+b+cbKS2dcNh9U6eFeLbyNR5Z18gp44qcfG9d4FJel7KC8nanrKys\nx3XxDJWsAC4AMMbMA9YcXBHd034KeN9ae7W1Nti/qKkrHA5z/2sbmTQim8Wl/b+6zUAK+Lx861zD\nhl0NvPKRrk8pcqyLZ497KbDYGPMm4AGWGGNuAioBH7AQSDfGnB99/C3W2rcSkjaJVm7ax/vb6vjx\nZ6b3+QLAiXT+9FHMGJfPn1bv4+rzg2QEfMmOJCIJ0mtxW2tDwDVd7q6Iue3OwFQ//O61jRRmp/G5\nT4xLdpRueTwevnv+8Vx+/zs8tGIz1y6akuxIIpIgOgAnDpW7DvBKxS6+PH9iSu/JnjZlBHPHZfGb\n5RvYdeCYntwjMqSpuOPwwOubSPd7+dK8xJ+6tb+uOmU4bcEQv3zRJjuKiCSIirsX+5o7ePK97Xx+\n9jiGJ+iyZANpbF6AJadP4r/LtrFmW12y44hIAqi4e7F0fR0doRBXnpkaB9zE4/qzp1KYlcZty9bp\noByRY5CK+wjqmtp51tbzqZPHMGlEdrLjxC0vI8C3zzX8Y8t+nn5/R7LjiMgAU3EfwcNvbaa5Pcy1\nC92bofHPc8YzY1w+ty9bz/7GtmTHEZEBpOLuQVNbBw+9uZlTx2VxwpjDDzNPdT6vh5997mTqmtv5\n4bPrkx1HRAaQirsHj63cyr7GNi49aViyo/RZ6eg8rl00hSff286rdley44jIAInnyMkhp60jxP2v\nb2TupEJOGOn28UXXnz2V59ZU8+9L1/LijQvISdd/ckmcR97p2zl4Zrn3oTaptMfdjcf/sZXquha+\nftbUZEfpt3S/j59/7mR21DXz42fLkx1HRAaAiruLlvYg9yzfwCklBSw4bkSy4wyIOSWFXL1gCo+u\nrOKp1duTHUdE+knF3cWf3trCzvpWvnWOweNJvZNJ9dU3z5nGnIkFfO/JNXy0W2cQFHGZijvGgZZ2\n7n21kgXTipg7eXiy4wyogM/Lr78wizS/l+v+8h4t7cfsGXhFjnkq7hgPvrGZ/U3tfOucacmOkhBj\nhmVy56Uzqag5wC1PrtFRlSKOUnFH7W9s4/7XN3LuicWcPM7dKYC9OcuM5KbF01i6ajs/f0EnohJx\nkeaGRd3xsqW5Pcg3zzHJjpJw/3r2VHbWt/Dbv3/EyNx0vnrGpGRHEpGjoOIG1m6v4y/vVPGV+SVM\nK87t/QmO83g83H7xdPY2tHH7M+spzE7jkln9u/ixiAyeIV/coVCY/3hqLcOz07hx8bE5tt0dn9fD\nry6byRUPreTGx1dT29TGFacfvufd1wMqLp97+EWNRWRgDPkx7ife28aqqlpuPr+U/MxAsuMMqoyA\njz8sOZXFpcXcumw9P3+hQl9YijhgSBd3XXM7P3u+gtkTC/jsEB0qyAj4uO+Ls7l87gTue/UjvvHY\nag60tCc7logcwZAeKrnt6XXUNrdz20UnpuSV27vT29BFdU09q+oPf8yRhi58Xg8/vmQ6Y4dlcsdL\nlve31nL3ZTOZNaGg33lFZOAN2T3up1Zv58lV2/nG2ccxfWx+suMkncfj4bqzpvL41fMJhsJ8/rdv\ncdfLH9IeDCU7moh0MSSLe+u+Jr6/dC2zJxZw3VnuXSQhkeaUFPLcDWdy4cmjufuVDdz18oe8v7VW\nY98iKWTIFXdHMMRNj68mDPzq0pn4fUPuLehVfmaAuy+bxaNXzSMrzcf/+8dW7n31I9ZsryMYUoGL\nJNuQG+P+xYuWdzfv565LZzC+MCvZcVLa/CnD+fpZU1lVtZ+/2d08urKKgqwA86eMYOb4YTq3t0iS\nDKm/eX98czP/9dpGvjhvAp+ZNS7ZcZzg9XiYPbGQWRMKKK+u5/UNe3huTTUvrK3muJG5zBg/DFOc\nS2aaL9lRRYaMIVPcL66r4dZl6/hkaTG3XTQ92XGc4/V4OHFMPieOyaemvoXVVbW8v60W+4+teD0w\ncXg2x4/KZXJRDqPz3b5qUCo62gOhDs4uGswDocLhMPXN7exvamNfYxu1ze00tHTQ0NpBY2sHbcEQ\nHcEwHaEwXk/kjJUBn4esND9v5cHxNZWUDM/GjMqhZHi2hjGPYEgU98pN+/jGo6uYMW4Y93xhFj5H\npv6lqlF5GZw3fRTnnFjM1n1NVNQcwNYc4Pm1NQBkBLwsr9jFrPHDmDF+GDPGDSM/KzUPbjqaQoyd\najmUjwztCIao2tfEhl0NbNh5gMpdDXy0u5GNuxtobDv0dMEZAS856X6y0/1kpfnwe734vB5C4TDt\nwRDtwTB7Glqp2tvOMvvxSc/SfF5KR+cyp6SQU0oKOKWkkOE56YP9r5qyjvnifmFtNTc8tpqxwzL5\n/Vfm6CP9APJ6PEwcns3E4dmce+Io6prb2bSnkU17Gtmyt5HlFR9foHjssExKR+dy/Kg8po7MYXJR\nNm1tAzfVsK+H5kv3wuEwexvbqNrXxKbdkf+mG/c0ULmrgc17mmiLmSY6dlgmk4uy+ec549nb0Eph\ndjoF2QEKstIIxLnXPCuvkYlTjmPj7kY+3BnZEVi9tZY/v72F37+xCY8HThqbz8JpRSwyRcwaX+DM\nsReJcEwX90MrNnH7M+uZOX4Yv//KKRRmpyU70jEtPzPAzPHDmDk+clrclvYg2/Y3s31/E9X1LXyw\nrY7lFbuInZiS9cRWCrPTKMhKIz8zwMJpRRTnZzAiO43CnDQKsyP3p/v1C7e/wuEwTW1B6lvaqW/u\nYF9jW/RPK7sPtFJT30JNfSvVtc1s299Mc8zFNnxeD+MLMpk6Moezjh/J1KIcphXnMmVkziFfUvfn\nF2hWmp/pY/MPOa6irSPE2h11vFm5h1ftbv7zb5Xcs7ySETnpLD5hJOecMIrTp44gzT+0hlWOyeI+\n0NLOT54r59GVWznnhGLuvmyW9rSTICPgY+rIHKaOzOm8ryMYYm9jG3saWtlYvYcObwa1TW3sqG2m\noqaeNyr3dLutNL+XvIzIR+7MgI/MNB8Zfh9pfi9pfi/Vtc14vR68Hg8ewOMBDx6i/wPgkImM4S7L\nMTzRf3RuJ7rN5uYmcnbtwOvxsGVfIz6PB7/Xg8/rxe/z4PN68Hmi/+/14O1cjnw68Xo8vL1xb+Q1\nYnYWD06RDxMp13AYQmEIhcORP6EwoTAEw2GCochyMBSmIxwmGIzeDoXoCIWjY8ghmlpaYX0DD7yx\nkabWII2tHTS2ddDTbE6PB4py0inOy2DSiGxG5qZTkJ1GYVYaI3LSGZYdwO/9uBzbg2HW7ahn3Y76\nHt7FgZHm9/KJCQV8YkIB1599HHVN7fx9w25eXFfD06t38OjKreRm+FlcWsx500exYFoRGYFj/+/6\nMVfcr324m5uf+IDq+hauWTiFb59rNKadQvw+L8V5GRTnZVDobWL0qNGd68LhMBfOGMPO+hb2NLSy\nv7GdfY2t1DW3c6Clg/qWDpraOmhqC9LSHvnT1BykrSPEnoZWwuFwZ+EdLOauBw51vY5o15+Mg48+\n+LxwGELR5WAwBHvaCIfh3c37ooU5+PPavR46fzn4vN7oL4/ILxG/z9M5jpyTGWDKyByy03xkpfnJ\nTveRmxEgPzNAXkaAYVkBCrPTGJ6dRkH2ocMaqTr0lJ8V4KIZY7hoxhhaO4KsqNzD82tqeGn9Tp5c\ntZ2sNB9nHT+S804cxUJTRF5Gan630l/HTHHbmgPcs3wDz3xQzZSibP7nmtOYPVHn2nCJx+MhPzNS\nLEd7XvTBKJrqmurOXzSxX06GogXeEQpF94iJ3A5Hbgeje83hcORUC133/GM/FXg9ns69fJ/Xg9fz\n8d66N2bPPd6sx/KXqOl+H2cfX8zZxxfzk2CItz7aywvranhpXQ3PflBNwOdh3uTh/NPxI1loRlIy\nPOuYuQC408UdCoV5d/M+fv/GJl5av5PsNB/XnzWV68+eOiQ+Lklq8Ho9pHk9pMVxILJmRiRGwOdl\nwbQiFkwr4ocXT6dsy35eKd/Jy+U7uXXZeli2nvGFmZwxtYh5kws5paSQMcMykx27z3otbmOMF7gX\nmAG0Aldaaytj1l8FXA10AD+y1j6ToKwANLV1sLqqlpfLd/Lcmmp21reSnxnghn86jiWnlzAsS19A\nigxlPq+HUycVcuqkQm65oJTNexp5fcNuXtuwh2Xv7+DRlZFPZ+MKMpkxbhgnjs3jpLH5mOJcinLT\nndgrj2eP+xIgw1o73xgzD7gDuBjAGDMK+AYwB8gA3jDGvGytbR2IcPsa23h/Wy0bo3NEP9hWx/rq\neoKhMGl+L4umFfGpk0fzydJisnX4tYh0o2RENiUjsvnS/BI6giEqag6wctM+yrbs54PttTy7prrz\nsbkZfqYU5TBxeBbjCjIZV5DFqLwMinLTGZETmeaYCjOc4mm7M4AXAKy1bxtj5sSsOxVYES3qVmNM\nJXAy8O5AhPuXB96hvDryrXVuhp8Tx+Rx7cIpzJ5YwJySAnKP0S8eRCQx/D5v55TDgxfJrm1qY92O\n+sjBRLsb+GhXI2Vb9vPMB9XdnlQtM+AjKwCFObvISveTneYjM+AjPeAlw+8j4IvMMgr4vMydVMj5\nJ40+bBv95entdJ3GmAeAJ6y1z0eXq4DJ1toOY8wXgZOstd+NrnsYeNha+9fYbZSVlemUciIiR2n2\n7NndjtvEs8ddD8R+xe+11nb0sC4XqI33xUVE5OjFc7jRCuACgOgY95qYdSuBM40xGcaYfKAUWDvg\nKUVEpFM8QyUHZ5WcTGS66RIiRV5prX06Oqvka0R+CfzEWvtEYiOLiAxtvRb3QIvumf8ZyAPSgJus\ntW8Naog49DYNMpUYYwLAg0AJkE5kWubTSQ0VB2PMSKAMWGytrUh2np4YY24BLiLy83qvtfb3SY7U\no+jPwh+J/CwEgatS9b01xswFfm6tXWSMmQr8gcghSWuB66y1KXPB0y5ZZwL3EHl/W4EvW2t3Dmae\nZJyZ5SbgFWvtQuAK4D+TkCEendMggZuJTINMVV8E9lprzwTOA36T5Dy9ihbMfwHNyc5yJMaYRcBp\nwOnAQmB8UgP17gLAb609Dbgd+HGS83TLGPMd4AEi04gB7gS+H/0Z9hCdcpwKusl6N/Cv1tpFwJPA\ndwc7UzKK+y4if2Eh8uVoSxIyxOOQaZBE5qqnqv8G/iN620PkYKhU90vgt8COZAfpxblEvtdZCiwD\nEnqA2QD4EPBHPzHmAe1JztOTj4DPxizPBv4evf088MlBT9Szrlkvs9aujt5OSocl9KgVY8z/Bm7s\ncvcSa+270YN3/gz8WyIz9EMeUBezHDTG+GNm1KQMa20DgDEmF/gf4PvJTXRkxpgrgN3W2hejwxCp\nbAQwEbgQmAQ8bYw53lqbqlNcG4gMk1QQyX5hUtP0wFr7hDGmJOYuT8x7egDIP/xZydE1q7W2GsAY\ncxpwPbBgsDMltLijY4GHjQcaY04CHgO+Za39+2FPTA1HmgaZcowx44nsFd5rrX0k2Xl68VUgbIz5\nJDATeNgYc5G1tibJubqzF6iw1rYB1hjTAhQBu478tKS5EXjRWntL9GdiuTHmJGttqn6yPSh2PLvb\nacWpxBhzKfDvwKestbsH+/UH/ThxY8wJRD7aX2qtfX+wX/8orAA+DTzezTTIlGKMKQZeAq631r6S\n7Dy9sdZ27qEYY14FrknR0gZ4A7jBGHMnMBrIJlLmqWo/Hw+P7AMCQPKP0e7dKmPMImvtq8D5wN+S\nnKdH0QMPrwYWWWv3JSNDMk7w8VMig/x3G2MA6qy1KfNFRIylwGJjzJt8PA0yVX0PKAD+wxhzcKz7\nfGttSn/x5wJr7TPGmAVEjlnwEpntEOzlacl0F/CgMeZ1IrNgvmetbUxypnh8E7jfGJMGlBMZ8ks5\nxhgf8GugCngy2mF/t9b+YDBzDPp0QBER6Z+hdaE2EZFjgIpbRMQxKm4REceouEVEHKPiFhFxjK73\nJce86PlGngKmW2u3Ru/7GZGjCx8CLrHWPhW9/zwihzRfkZy0Ir3THrcMFa3AQ8aYrhf1aALuNMaM\nSEImkT5RcctQsZzIkYTXdbn/AJEzP9436IlE+kjFLUPJtcCN0XM/x7oPyDfGXJ6ETCJHTcUtQ4a1\ndi+Rs1H+kZif/ehZ6b4K/AgYk5x0IvFTccuQYq1dBlgiF/GIvX8bcCvws8FPJXJ0VNwyFP0b3Vx5\nx1r7MJGzQoqkNJ1kSkTEMdrjFhFxjIpbRMQxKm4REceouEVEHKPiFhFxjIpbRMQxKm4REceouEVE\nHPP/ASuEmowc6xKgAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2008071410>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAV0AAAEBCAYAAADbxHY7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACYtJREFUeJzt3V+IpXd9x/HPxNUIrpaCrXoR6oX0x16EFibYoKhng7Ju\nSRQWAl54UYTAnsSklC6SipKJ1IsFozCYNmVVtLqSEo1gFsIWilssJcgcRFPY/AS9LAVRC07RaMx4\nMXOanCUb3WTO9zd/Xq+reeawz3x52Hnvd55zzuzK1tZWAKhx3egBAA4T0QUoJLoAhUQXoJDoAhQS\nXYBCR17swdls5vVkAC/B6urqygt9/kWju/MHd3+aQpcvX86xY8dGj7FnuB6LXI/nuBaLXs71mM1m\nV33M7QWAQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBeg\nkOgCFBJdgEKiC1BIdAEKLSW6Fy9ezMWLF5dxaoB97Xf+x5Qvxfr6epLkxIkTyzg9wL7l9gJAIdEF\nKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHR\nBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh\n0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQKEjyzjp008/vYzTAux7S4nuM888s4zTAux7bi8A\nFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDo\nAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ\n6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhQ50dCeTSabTaSaTydA5jh8/nslkkltuuWXoHGfOnMl0\nOs299947dI7z589nMpnk4YcfHjrHxsZG7rzzzsxms2EznD17NpPJJA888MCwGZJkfX090+k0Dz74\n4NA59orpdJrpdJq777571899oKO7V2xtbSVJnn322aFzbGxsJEmeeOKJoXOcO3cuSfLQQw8NnWNt\nbS1bW1u57777hs3w+OOPJ0kee+yxYTMkyaOPPpokeeSRR4bOsVdcvnw5SfLkk0/u+rkPbHSv3G5H\nbbvHjx9fOB617Z45c2bheNS2e/78+YXjUdvuxsZGNjc3kySbm5tDtt2zZ88uHI/adtfX1xeOD/u2\nO51OF453e9s9sNHdK+Zb7tyobXe+5c6N2nbnW+7cqG13bW1t4XjEtjvfcudGbbvzLXfusG+78y13\nbre3XdHlUJpvuVc7hmURXQ6lo0ePvugxLIvoLtnKysrC8XXXjbnkN91008LxzTffPGSOO+64Y+H4\n9OnTQ+a48vbC/fffXz7DyZMnF45vu+228hmS5NSpUwvHt99++5A59opjx44tHN944427ev6VK+85\nPt9sNttaXV295pPOn7S6dOnSSxxrdzz/ybORs5hjb85x6623ZnNzM0ePHs2FCxeGzLBXrsVemWOv\neLnXYzabZXV1deWFHrPpFphvu6O23Ln5tjtqy52bb7ujtty5tbW1rKysDNly5+bb7qgtd26+7R72\nLXduvu3u9pabHPBNN9l+JvLKHxcOM9djkevxHNdi0cu5HjZdgD1CdAEKiS5AIdEFKCS6AIVEF6CQ\n6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBeg\nkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqILUEh0AQqJLkAh0QUoJLoAhY4s\n5aRHlnJagH1vKXW8/vrrl3FagH3P7QWAQqILUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQ\nSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQqIL\nUEh0AQqJLkAh0QUoJLoAhUQXoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCFRBegkOgCFBJdgEKi\nC1DoyDJOes899yzjtAD73lKie+LEiWWcFmDfc3sBoJDoAhQSXYBCogtQSHQBCokuQCHRBSgkugCF\nRBegkOgCFBJdgEKiC1BIdAEKiS5AIdEFKCS6AIVEF6CQ6AIUEl2AQitbW1tXfXA2m139QQCuanV1\ndeWFPv+i0QVgd7m9AFBIdAEKHRk9wLK01l6Z5AtJ3pzk+iR/33v/5tChBmut/XGSWZL39N6fGj3P\nSK21v0vyviSvSvIPvffPDx5pmJ3vlS9l+3vlN0nuOIx/P1prf5HkbO990lp7S5IvJtlK8l9J7uq9\nP7sbX+cgb7ofTPKT3vs7krw3yWcHzzPUzjfWPyX5xehZRmutTZK8Lcnbk7wryQ1DBxrvL5Mc6b2/\nLcknknxy8DzlWmsfSfK5JK/e+dSnk3xspx8rSd6/W1/rIEf3kSQf3/l4JckzA2fZCz6V5KEk/z16\nkD3gRJInk3wjyWNJLowdZ7gfJDnSWrsuyeuS/HrwPCP8MMmp5x2vJvn3nY8fT/Lu3fpCBza6vffN\n3vvPW2uvTfK1JB8bPdMorbW/SvLj3vvF0bPsEa9PclOS25OcTnK+tfaCL+85JDazfWvhqSTnkqwP\nnWaA3vvXs/iPzUrvff7Srp8n+YPd+loHNrpJ0lq7Icm3kny59/7V0fMM9KEk72mtXUry50n+ubX2\nxrEjDfWTJBd777/qvfckv0zyR4NnGulvsn09/jTJnyX5Umvt1b/jzxx0z79/+9ok/7tbJz7IT6S9\nIcm/Jvlw7/3fRs8zUu/9nfOPd8J7uvf+P+MmGu4/kvx1a+3TSd6U5DXZDvFh9bM8t+X9NMkrk7xi\n3Dh7wndba5Pe+6UkJ7O9vO2KAxvdJB9N8odJPt5am9/bPdl7P/RPJB12vfcLrbV3JvlOtn/au6v3\n/pvBY430mSRfaK19O9uv5vho7/3/Bs802t8mOddae1WSy9m+RbkrvCMNoNCBvqcLsNeILkAh0QUo\nJLoAhUQXoJDosm+01iatta3W2geu+Pz3W2tfHDQWXBPRZb95Ksn/R7e1dmO239wA+4Lost98L8mf\ntNbm74X/YJLzA+eBayK67EdfT3Jq55fUvDXJfw6eB35vB/ltwBxcX03yj0l+lOTbg2eBa2LTZd/p\nvf8o2/dx70nylcHjwDURXfarf0lyQ+/9B6MHgWvhF94AFLLpAhQSXYBCogtQSHQBCokuQCHRBSgk\nugCFRBeg0G8B0YnU5JYdnMMAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2007a9bb10>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAEECAYAAAA4Qc+SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGmxJREFUeJzt3XmUlPWd7/H3U1uv0DSryKqiP9u4gGBARgWdLG4x6D2Z\neB3jSWZMzJzkJjeZe5LokeTeORnnzGQxZkYnVzKYyIRxrlEcBaImBo0rYouyWPwA2Xth7wW6q7eq\n+0dVQ9k0XVVdVV3Urz+vczi1PNv31918nqd+z+95yovFYoiISPHzFboAERHJDQW6iIgjFOgiIo5Q\noIuIOEKBLiLiCAW6iIgjAgNNNMYEgaXAdKAE+KG19tmk6d8C7gYOJt66x1pr81OqiIgMZMBAB+4E\nDltrv2CMGQ28BzybNH02cJe1tjZfBYqISHpSBfqTwG8Tzz2gu8/02cC9xpizgFXW2n/IcX0iIpKm\nAQPdWnsMwBgzgniw399nlieAh4EWYIUx5mZr7cq+66mtrdXlqCIiGZo9e7aXyfypjtAxxkwBVgCP\nWGuXJ73vAT+z1jYnXq8CZgGnBHqisEzqylg4HKampiav2xhKLrXHpbaAW+1xqS3gVntqazPvyU51\nUnQC8CLwdWvtS30mjwQ2GWNqgOPAdcRPoIqISAGkOkK/D6gGFhtjFifeWwJUWGsfNcbcB6wBOoCX\nrLWr81eqiIgMJFUf+jeBbw4wfRmwLNdFiYhI5nRhkYiIIxToIiKOUKCLiDhCgS4i4ggFuoiII1Je\nWCQftXztnpTz3DF36hBUIiLyUTpCFxFxhAJdRMQRCnQREUco0EVEHKFAFxFxhAJdRMQRCnQREUco\n0EVEHKFAFxFxhAJdRMQRCnQREUco0EVEHKFAFxFxhAJdRMQRCnQREUco0EVEHKFAFxFxhAJdRMQR\nCnQREUco0EVEHKFAFxFxhAJdRMQRCnQREUco0EVEHKFAFxFxhAJdRMQRCnQREUco0EVEHKFAFxFx\nhAJdRMQRgYEmGmOCwFJgOlAC/NBa+2zS9M8A3we6gaXW2iX5K1VERAaS6gj9TuCwtfZq4HrgX3on\nJML+QeBTwALgK8aYCfkqVEREBjbgETrwJPDbxHOP+JF4rxpgu7X2KIAx5jXgmsQypwiHw9lVmkIk\nEsn7NgAaGltSzhMOH896O0PVnqHgUlvArfa41BZwrz2ZGjDQrbXHAIwxI4gH+/1Jk0cCzUmvW4Gq\n062rpqZm8FWmIRwO530bAOtb9qScp6ZmatbbGar2DAWX2gJutceltoBb7amtrc14mZQnRY0xU4A1\nwDJr7fKkSS3AiKTXI4CmjCsQEZGcSHVSdALwIvB1a+1LfSaHgfONMaOBY8S7W36clypFRCSlVH3o\n9wHVwGJjzOLEe0uACmvto8aYbwMvED/SX2qtrctfqSIiMpBUfejfBL45wPTngOdyXZSIiGROFxaJ\niDhCgS4i4ggFuoiIIxToIiKOUKCLiDhCgS4i4ggFuoiIIxToIiKOUKCLiDhCgS4i4ggFuoiIIxTo\nIiKOUKCLiDhCgS4i4ggFuoiIIxToIiKOUKCLiDhCgS4i4ggFuoiIIxToIiKOUKCLiDhCgS4i4ggF\nuoiIIxToIiKOUKCLiDhCgS4i4ggFuoiIIxToIiKOUKCLiDhCgS4i4ggFuoiIIxToIiKOUKCLiDhC\ngS4i4ggFuoiIIwLpzGSMmQv8o7V2YZ/3vwXcDRxMvHWPtdbmtEIREUlLykA3xnwH+AJwvJ/Js4G7\nrLW1uS5MREQyk06Xy4fAbaeZNhu41xjzmjHm3tyVJSIimfJisVjKmYwx04EnrLXz+rz/A+BhoAVY\nAfyrtXZl3+Vra2tj5eXlOSn4dCKRCKWlpXndBsDqrS0p57nxgpFZb2eo2jMUXGoLuNUel9oCbrWn\nra2N2bNne5ksk1Yfen+MMR7wM2ttc+L1KmAWcEqgA9TU1Ax2U2kJh8N53wbA+pY9KeepqZma9XaG\nqj1DwaW2gFvtcakt4FZ7amsz78kedKADI4FNxpga4v3r1wFLs1ifiIhkIeNAN8bcAVRaax81xtwH\nrAE6gJestatzXaCIiKQnrUC31u4C5iWeL096fxmwLC+ViYhIRnRhkYiIIxToIiKOUKCLiDhCgS4i\n4ggFuoiIIxToIiKOUKCLiDhCgS4i4ggFuoiIIxToIiKOUKCLiDhCgS4i4ggFuoiIIxToIiKOUKCL\niDhCgS4i4ggFuoiIIxToIiKOUKCLiDhCgS4i4ggFuoiIIxToIiKOUKCLiDhCgS4i4ggFuoiIIxTo\nIiKOUKCLiDhCgS4i4ggFuoiIIxToIiKOUKCLiDhCgS4i4ggFuoiIIxToIiKOUKCLiDhCgS4i4oi0\nAt0YM9cY83I/73/GGLPOGPOmMebLOa9ORETSljLQjTHfAX4JlPZ5Pwg8CHwKWAB8xRgzIR9FiohI\naoE05vkQuA1Y1uf9GmC7tfYogDHmNeAa4Mn+VhIOh7MoM7VIJJL3bQA0NLaknCccPp71doaqPUPB\npbaAW+1xqS3gXnsylTLQrbVPGWOm9zNpJNCc9LoVqDrdempqajIuLhPhcDjv2wBY37In5Tw1NVOz\n3s5QtWcouNQWcKs9LrUF3GpPbW1txstkc1K0BRiR9HoE0JTF+kREJAvpdLmcThg43xgzGjhGvLvl\nxzmpSkREMpZxoBtj7gAqrbWPGmO+DbxA/Eh/qbW2LtcFiohIetIKdGvtLmBe4vnypPefA57LS2Ui\nIpIRXVgkIuIIBbqIiCMU6CIijlCgi4g4QoEuIuIIBbqIiCMU6CIijlCgi4g4QoEuIuIIBbqIiCMU\n6CIijlCgi4g4QoEuIuIIBbqIiCMU6CIijlCgi4g4QoEuIuIIBbqIiCMU6CIijlCgZ2BzfTMvbG5k\n9+HjhS5FROQUaX1J9HD3p60H+cUrH/LGh4cBeHXbQW64eCLzzxuD53kFrk5EJE6BnsIae4AvPbaO\niVWl3HvDhXRHY6zc0MCqjQ3sPtLGf7t8EiUBf6HLFBFRl8tA2jt7WPzMJmaMr2TN/1rIPQvOo7o8\nxJ1zp3L9x85ic10zK99vKHSZIiKAAn1AD720jX1H2/n7RRdTGjx5FO55HtdcMI6rZozl3T1HaWyO\nFLBKEZE4BfppbGls4Zev7uDzc6Yw99wx/c6z0IynNOjn+c06SheRwlOg9yMajXHf0xsZWRbkezdc\neNr5ykJ+FppxbN1/jO0Hjg1hhSIip1Kg9+P34f28u6eJe2+4kOqK0IDzzjt3DKPKgzy/uYFoLDZE\nFYqInEqB3o/la/dw1shSbp01KeW8Qb+PT100gfqmCBv2NQ9BdSIi/VOg97H3SBt/2naQv7hiCgF/\nej+eSyePYvyIEl7ffijP1YmInJ4CvY//eHsPHnD7FVPSXsbneXz8nNHUNbVT39Sev+JERAagQE/S\n1RPl/72zj2vNeM4eVZbRsjOnjCLg81i360ieqhMRGZgCPcnvP9jPoWMd3DF3asbLlocCXDypivf3\nNdHe2ZOH6kREBqZAT7J87R7OriploRk/qOXnTK8m0hVl1UaNSxeRoadAT9h9+DivbT/E56+Yit83\nuBtunTOmgrGVIf5z3Z4cVycikpoCPeG/3qsH4HNzJg96HZ7nMWfaaNbtOsr2A625Kk1EJC0p77Zo\njPEBjwCXAR3A3dba7UnTHwKuAnoT7LPW2qIbkL1yQz1XTK/O+GRoX5dPq+YP4f088fZe7r/5ohxV\nJyKSWjpH6IuAUmvtlcD3gJ/0mT4b+LS1dmHiX9GF+db9rWzdf4ybLpmY9boqSwJcd+F4/uv9enqi\nunJURIZOOoF+FfA8gLX2LWBO74TE0fv5wKPGmNeNMX+VlyrzbOWGBjwPbsxBoAMsmjWJg60dvLXj\ncE7WJyKSjnS+4GIkkHzU3WOMCVhru4EK4J+BnwJ+YI0x5h1r7Ya+KwmHw7mo97QikcigthGLxVjx\nzj4umVDK4bqdHK4beP6GxpaU67zo3ErKgh6/enkzo7sGN2JmsO05E7nUFnCrPS61BdxrT6bSCfQW\nYETSa18izAHagIestW0Axpg/Eu9rPyXQa2pqsix1YOFweFDbCDe0sLd5J1+51lBTMy3l/OtbUo9g\nmXnJVG4Md/Pi5kbOmXHBR+6lnnZdg2zPmciltoBb7XGpLeBWe2prazNeJp0ul9eBGwGMMfOAjUnT\nLgBeN8b4jTFB4t0z72ZcRQGt2tCAz4MbLj4rp+tdNOtsWju6edkeyOl6RUROJ51AXwFEjDFvAA8C\n3zLGfNsYc4u1NgwsA94CXgEet9Zuzl+5uRWLxVi5oZ75541lbGVJTtd95bljGFtZwjPr63O6XhGR\n00nZ5WKtjQJf7fP2lqTpPwJ+lOO6hsTm+hZ2HW7jngXn5XzdAb+Pz1w2kd+s3UNzexdVZcGcb0NE\nJNmwvrBo1cYG/D6P6z+W2+6WXp+dOYnO7igvbG7My/pFRJIN20CPxWKs3tjA/PPGpPxWosG6bHIV\n08eU88z6FENnRERyYNgG+ub6FnYfbsvZ2PP+eJ7HolmTeHPHYRqadZ90EcmvYRvoqxPdLZ/OU3dL\nr1tnTSIWQydHRSTvhmWg93a3XHnuGEbnqbul17QxFcyZVs3T7+4jpi+RFpE8GpaB/kFDfHRLPrtb\nkt12+WS2HTjGprrUV5mKiAzWsAz0k90tE4ZkezddMpGQ38fT6/cNyfZEZHgadoEe725pZN65oxmT\n44uJTqeqPMgnLhrPs+/V09UTHZJtisjwM+wCPdzQys5Dx4esu6XXrbMmc/h4J69uOzik2xWR4WPY\nBfrKDfVDMrqlrwUXjGN0RYinajUmXUTyY1gFejQaY8X6Oq45P/f3bkklFPCxaOYkXvygkQOtkSHd\ntogMD8Mq0N/acZiG5gi3XT747w3NxheunEZXT4z/WLu3INsXEbcNq0B/6t06RpQE+ORFQzO6pa9z\nxlaw4IJx/Gbtbp0cFZGcGzaB3tbZze82NXDTpRMH9YUTufLF+dM50NqhG3aJSM4Nm0B/YXMjbZ09\nBetu6bXggnFMHV3Or9/YVdA6RMQ9wybQn363jimjy5gzrbqgdfh8HnddOY11u46yub459QIiImka\nFoHe2Bzhte2HuHXWZHw+r9Dl8LnZUygL+nn8jd2FLkVEHDIsAv2pd/cRi8FtsyYVuhQgfuXobZdP\nYsX6OvYdbSt0OSLiCOcDvbM7yuNv7uLPZoxh+tiKQpdzwtevm4HnwU9/v7XQpYiII5wP9FUb69nf\n0sHdV59b6FI+YmJVGV+cP50V6+vY0qi7MIpI9pwO9FgsxpI/7WTG+EoWnD+u0OWc4m8WnseIkgD/\n9LwtdCki4gCnA/3NHYf5oKGFu68654w4GdrXqPIQf7NwBn/ccoC1Ow4XuhwRKXJOB/ovX93J2MoQ\ni86Qk6H9+eL86UwYWcIDv9tCT1TfaCQig+dsoG8/cIw/bjnAF+ZNL+iVoamUhfx874YLeX9vEw+v\n2V7ockSkiDkb6A+v2U5JwMed86YWupSUFs2cxKKZZ/OzP2xV14uIDFqg0AXkw7pdR1ixvo6vXXve\nkH0rUaaWr93zkdeXTR7Fq9sO8eXH3+Eb151P89EWamoKVJyIFCXnAr27J8riZzZxdlUpX7t2RqHL\nSVtJ0M/tH5/KL175kCdr9/GJc0I5W3ffnUd/7ph75n+SEZGBOdfl8u9v7WZLYyuLb76I8lBx7a8m\njSrjpksmYve3stq2EunqKXRJIlJEnAr0g60d/OTFrVx9/liuv3hov2IuV+adO4bPXDqRnUc7+dJj\n62iNdBW6JBEpEs4EejQW4/5nNhLp7uH/3PIxPO/MG3eerivPG8unZlSybtcRbn/0LWxja6FLEpEi\n4EygL609wgub9/Pd6y/k3HGVhS4na2ZcKUvumkNdUzs3/vxV/u65D2jR0bqIDMCJQF/25i6e2tzM\nXVdO46+vOqfQ5eTMtReOZ83fLuTzV0zhsTd2cu2PXuaB1WE+qG8hFtNFSCLyUcV11rAfL2xu5AfP\nbubjk8v5/s0XFXVXS3+qK0I8cOsl/PcrpvLzP27jsdd38uifdnD++EquOGc0l06q4uJJVUyuLqOq\nLOhc+0UkfUUb6N09UX72h208/PJ2LplUxb3XVBPwO/GBo1+XTK5iyV1zOHq8k1UbG/jdpgaee7/+\nI0MSQwEf4ypLqCwJUBryUxb0EfT72N8Swed5+H3eiceg30dJwEco4KM06Kc06KO6IsS4yhImVpUy\nuiKknYOcUdIZfjtr5BAUcgYrykDfd7SN//nEe7yz+yh/MWcy//uWj7H7w22FLmtIVFeEuHPeNO6c\nN41oNMaeI2180NBCQ3OEA60RDrZ20NbRQ3tXD+2dPRzr7uZ4Rw/RWIyeaOzEY3dPjI6eKJ3dUQBW\nb2z4yHZCfh9nVZUyubqMSaPKmJT0OHlUOeNHlpxyS4XT/YdraGxhfUt8msa7i+RPUQX6hn1NPPb6\nLlZuqKck4Oeh22fy2Zln7o238s3n85g+tiLlF3cMdGQTjcXo6Iry5zXjOXy8k4OtHTQ2t9PQEqG+\nKULd0TZe2XqQA60dpyxbXR5kwshSxlaWMKYyxMHWDspCfsqCfspDfkoDfkqCflqPd1NyvJNQwEek\nq4eSgE9H/6cxVBeB9W4neWebj+3I0EoZ6MYYH/AIcBnQAdxtrd2eNP3LwD1AN/BDa+3KXBXX3NbF\nmzsO8fbOo7yVuBVuZUmAv5w7jbuvPofJ1eW52tSw5fM8ykL+lDuGju4eGpoi1DW1U9fUzv7mCI0t\nEfa3dHDkeAd797bR2ByhI3HEf4oNTQA8sDpMwOdRURKgIuSnoiRAeeJ5echPaWJnUBaM7wxKAz5K\ngn5C/nj3UNDvI+j3WLfryCndSD7Pw+cDf+L1TZdOJOj3EUh0MQX9PgJ+j6Av/hjwewR8PnweWe1g\nYr2feqIxunqidPXEHzu6onR099DRHX+MdPXz2NVDZ2KZzu4o7+9tIhqLEY3F15t86ru3wp2HjuHz\nPDzPw+fFf4c+D/A8vMTv1PPi83tJbfOS5n1vTxOe53HsWDv72o/g8/X+PE7+rDbsa6Is6Kcs5Kc8\nFKA85M/bzrirJ0prpJvm9i6a2jppSjwePX7y9ft7m2jviv/cOhM/066e+M++99On3wdB/x78Pu9E\n7WVBPyNKA4woDTKyLMCoshDV5UFGVcQfq8tDjCoPMqo8RFVZkIqQv2gPONI5Ql8ElFprrzTGzAN+\nAnwWwBhzFvANYA5QCrxmjPm9tfbUw7lBuPPf1rKxrpmSgI9ZU0fx/Zsv4nNzJjOiNJiL1UsGSgKp\nQ3/52j30RGPx/3SdPUQSodVw8BAVlVV0dPdw4cSRHO/opq2zh2Md3bR1xruE2jq7aWjuor2zh7YT\ny8aXH6xHXv4w7Xn9Pg9/YofgSwpGvHjY9A4qigGxaBS8nSdCN5d3PT4Z0PFQhngQJ29/fW/oRyFG\nfPvZ3Xr5eL/vLnl1xynveR4nP4EF/SfOv4QSO4FQwHdy5+p5kKgvGot383UmuvkiXfHfc/zvoGvA\n37PnwcjS4ImQLg36qCwJndjB+33xHZHnwbhgF6OqR9MTjRLpitLeFf/bao10U9fUTrghvoM43nn6\nq7ADPo8RpQEqSwOMKAnGDzASBxwlAf+Jc0+9BwsBvw9/4kDCl/g76t2Rzpoyivkzxmb8GxksL9Xw\nN2PMT4G3rbVPJF7XWWsnJZ7fAtxorf1q4vUK4AFr7brkddTW1mqMnYhIhmbPnp3RR4V0jtBHAs1J\nr3uMMQFrbXc/01qBqmyLEhGRzKUzzq8FGJG8TCLM+5s2AmjKUW0iIpKBdAL9deBGgEQf+sakaW8D\nVxtjSo0xVUANsCnnVYqISErp9KH3jnK5lPiJ8y8RD/jt1tpnE6NcvkJ85/CAtfap/JYsIiL9SRno\nZ7pUwyqLiTEmCCwFpgMlxIeBPlvQonLAGDMeqAU+aa3dUuh6BssYcy9wCxACHrHW/luBSxq0xN/a\nr4n/rfUAXy7G340xZi7wj9bahcaYGcCviA8G2gR8zVo7+GFSBdCnPTOBfyb+++kA7rLW7h9oeReu\nlT8xrBL4HvFhlcXqTuCwtfZq4HrgXwpcT9YSwfF/gfZC15INY8xCYD7wZ8ACYEpBC8rejUDAWjsf\n+Dvg7wtcT8aMMd8Bfkl8yDTAT4H7E/9/PBLDq4tFP+15CPgf1tqFwNPAd1Otw4VAvwp4HsBa+xbx\nMfHF6klgceK5R/xirWL3Y+AXQH2hC8nSp4mfP1oBPAfk7AK6AtkKBBKfcEcCxXhv5g+B25JezwZe\nSTz/HfCJIa8oO33bc7u19r3E8wAQSbUCFwK932GVhSomG9baY9baVmPMCOC3wP2FrikbxpgvAget\ntS8UupYcGEv8YOFzwFeB3xhjink47jHi3S1bgCXAzwtazSAkztcl74g8a21vH3K/Q6jPZH3bY61t\nADDGzAe+DjyYah0uBPpAwyqLjjFmCrAGWGatXV7oerL0V8AnjTEvAzOBxxNXFxejw8AL1tpOa60l\nfrQ0rsA1ZeNbxNtzAfHzT782xpSmWOZMl9xf7sQQamPM54l/wr3JWnsw1fwuBPpAwyqLijFmAvAi\n8F1r7dJC15Mta+011toFiT7A94if1GkscFmD9RpwvTHGM8acDVQQD/lidZSTn2yPAEHAf/rZi8L6\nxLkOgBuAVwtYS9aMMXcSPzJfaK099T4M/SjKrok+VhA/CnyDk8Mqi9V9QDWw2BjT25d+g7W2qE8o\nusBau9IYcw3xay98xEdQnP6GIGe+B4GlxphXiY/auc9a2/9NXYrH3wJLjDEhIEy827IoGWP8xLvB\n9gBPG2MAXrHW/mCg5Yp+2KKIiMS50OUiIiIo0EVEnKFAFxFxhAJdRMQRCnQREUco0GXYMcYsNMbE\njDG393l/gzHmVwUqSyRrCnQZrrYAJwLdGHMJ8YuFRIqWAl2Gq/eBaYkvZoH4nS5/U8B6RLKmQJfh\n7CngtsRNtj4OvFHgekSy4sKl/yKDtRz4V2AHRX7fDxHQEboMY4kbHlUA3wD+vcDliGRNgS7D3X8C\nU6y1WwtdiEi2dHMuERFH6AhdRMQRCnQREUco0EVEHKFAFxFxhAJdRMQRCnQREUco0EVEHPH/AU9g\nZ5NtOgrjAAAAAElFTkSuQmCC\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f20079f2e10>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2007fc2f90>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "features.astype(float)\n", | |
| "# features.columns.shape\n", | |
| "for i in features.columns[:9]:\n", | |
| " sns.boxplot(features[i])\n", | |
| " plt.show()\n", | |
| " plt.clf()\n", | |
| " sns.distplot(features[i])\n", | |
| " plt.show()\n", | |
| " plt.clf()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "The atributes 10,9,8,6 and 5 has outliers, going on, check how much of the data is belong to this group" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 53, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "59" | |
| ] | |
| }, | |
| "execution_count": 53, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "threshold= features.MA.quantile(.75)-features.MA.quantile(.25)\n", | |
| "len([i for i in features.MA if i > features.MA.quantile(.75)+(1.5*threshold)])" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 54, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.axes._subplots.AxesSubplot at 0x7f2007a27e50>" | |
| ] | |
| }, | |
| "execution_count": 54, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWsAAAD0CAYAAABdAQdaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAFxBJREFUeJzt3X9wXWWdx/H3SZsmIohNcVNZsQW79zFtWgudoS5K6Wqh\n/Cht1xkdxGL4VQm4BSwuwa6s665kiSN1h7JtpIRuEcEVRRoqLIVxQRkETRDbNJcvYmX9wbRi0610\nIW1ozv5x7403P5p7e3NOcp7285rJTO6Tk3M+PTn53NMnN3mCMAwREZFkKxvrACIiUpjKWkTEAypr\nEREPqKxFRDygshYR8YDKWkTEA+Pj2nF7e7teEygiUoI5c+YEA8diK+vsAUe8j3Q6TU1NTQRpopXE\nXMpUHGUqXhJzHemZ2tvbhxzXNIiIiAdU1iIiHlBZi4h4QGUtIuIBlbWIiAeKejWIc24u0GRm851z\n04D/AEKgA/ismfXGF1F8FASDXnnEWP+FxyRmSqoknqujPVPBO2vn3I3AXUBldmg18EUzOxMIgCWx\nJBNv5V/Ac+fOHXJ8tOUfu76+fshxycg/J01NTUOOj7b8Y8+ePXvI8dGWO3ZZWRl33XUXZWVlsWYq\nZhrkV8DH8h7PAZ7Kvv8osCDqUHJkCMOQDRs2jPndT74wDLn22msTlSmpwjDkwgsvTNS5CsOQ++67\nLzGZysrKOHjwIGeccQYHDx7sK+w4FJwGMbPvOeem5g0FZpY7U68Dxx/qc9Pp9GEHWrx4MS+//PKw\n20ybNo3W1tbD3neplOnwzZ07l3Q6TXd3N+l0mrlz5/Lcc8+VdE1Epb6+vl+m+vp6mpubxyRT0r9+\nTU1N/c5VU1MTDQ0NY/r1mz17dr9Ms2fP5oUXXhjTTHfeeWe/THfeeSdXXnllPJnCMCz4lkqlpqZS\nqWez7/8ub3xJKpW6Y6jPaWtrC6MwpWFzJPuJWhJzJSUTmZ9nhGEYhp2dnYPGlGmwpHztwjCZ5yqp\nmcrKyvplKisrG3GmbHcO6tRS7tl/7pybn33/PODHpT5RyJEtCAIuu+yyRM0LB0HA7bffnqhMSRUE\nAQ8//HCizlUQBFx88cWJydTb28u4ceN45plnGDduHL298b3WopS/DXIDsN45NwFIA9+NNpL4LgzD\nvm+m5557rt/4WMnP1Nzc3G9c+ss/Vw0NDf3Gx0p+phdeeKHf+FjJZert7eXKK6+MPVNRZW1mrwAf\nzL7/EnBWLGnkiJG7YJP0R3eSmCmpkniujvZM+qUYEREPqKxFRDygshYR8YDKWkTEAyprEREPqKxF\nRDygshYR8YDKWkTEAyprEREPqKxFRDygshYR8YDKWkTEAyprEREPqKxFRDygspZYzJo1iyAImD59\nOkEQMGvWrLGOxIoVK6isrGT69OlUVlayYsWKsY4khyEIgn7XVFIWIBgtKmuJ3KxZs9i2bRuLFy/m\n6aefZvHixWzbtm1MC3vFihU0NzfT2NhIW1sbjY2NNDc3q7A9kSvmIAhobm7u9/hoobKWyOWKetOm\nTVRVVbFp06a+wh4r69evp6mpiZUrV3LMMcewcuVKmpqaWL9+/ZhlksOTW5Vl3rx59Pb2HlVFDSpr\niUlLS8uwj0fb/v37qa+v7zdWX1/P/v37xyhR8tTW1vZNLww15RAEAbW1tWOW79FHHx328ZFOZS2x\nuOKKK4Z9PNoqKir6rb0ImbUYKyoqxihR8nR0dAxaUXtKw+Z+jzs6OsYs33nnnTfs4yOdyloiN3Pm\nTFpbW1myZAldXV0sWbKE1tZWZs6cOWaZli9fTkNDA6tXr+aNN95g9erVNDQ0sHz58jHLJIcnDEPK\nysr40Y9+RFlZ2VG32HEpq5uLDGvr1q3MmjWL1tZWWltbgUyBb926dcwyrVmzBoBVq1axf/9+Kioq\nqK+v7xuXZMutJB6GYb/prKOpsHVnLbHYunUrYRjS2dlJGIZjWtQ5a9asobu7m87OTrq7u1XUnslN\nxeSuqaOpqEFlLSLiBZW1iIgHVNYiIh5QWYuIeEBlLSLiAZW1iIgHVNYiIh5QWYuIeEBlLSLiAZW1\niIgHVNYiIh5QWYuIeEBlLSLiAZW1iIgHSvp71s65cmAjMBU4CCw3sxcjzCUSuaHW7Dva/symRKuy\nsrLf0nAVFRV0d3fHcqxS76zPB8ab2RnAPwO3RBdJJHr5Rd3Y2DjkuMjhyBV1dXU1mzdvprq6mv37\n91NZWRnL8Uot65eA8c65MuAdQE90kUTiE4YhS5cu1R21jFiuqHfu3Mkpp5zCzp07+wo7DqUu67WP\nzBTIi8AJwKKhNkqn0yXuPp79RC2JucYy0+LFi3n55ZcLbjdt2rS+5b5GU2NjI+l0mu7ubtLpNI2N\njaxatSoxX8ek5Bgo6dfUWF1PAC0tLf2uqZaWFhYtWhTPORu4mnExb6lUanUqlfrX7PsnpVKpX6ZS\nqcr8bdra2sIoTGnYHMl+opbEXMp0aECYudzDsLOzc9DYWEvKeRooibmSkgkIq6urwzD88zVVXV09\n4msq252DerfUaZA9wN7s+11AOTBuhM8bIrELgoCHHnpIc9UyYhUVFezatYvJkyezY8cOJk+ezK5d\nu6ioqIjleKVOg3wduNs592NgArDKzP4vulgi0Qqzq2NDZoXz/HGRUnR3d1NZWcmuXbtYtCgzExzn\nq0FKKmsz2wd8IuIsIrHKFXM6naampmaM08iRIFfMo3FN6ZdiREQ8oLIWEfGAylpExAMqaxERD6is\nRUQ8oLIWEfGAylpExAMqaxERD6isRUQ8oLIWEfGAylpExAMqaxERD6isRUQ8oLIWEfFAqX/PWkTk\nqFdeXs5bb73V93j8+PH09MSzJK3urEVESpAr6okTJ/LQQw8xceJE3nrrLcrLy2M5nspaRKQEuaLu\n6uoilUrR1dXVV9hxUFnLEa+2tpYgCPrepk+f3u9xEATU1taOdUzx0FNPPTXs4yiprOWI19HR0W+V\n6CkNmwetHN3R0THWMcVDZ5111rCPo6SyFhEpwfjx49mzZw9VVVW89NJLVFVVsWfPHsaPj+d1G3o1\niIhICXp6eigvL2fPnj0sXboU0KtBREQSqaenhzAM6ezsJAzD2IoaVNYiIl5QWYuIeEBlLSLiAZW1\niIgHVNYiIh5QWYuIeEBlLSLiAZW1iIgHVNYiIh5QWYuIeEBlLSLiAZW1iIgHVNYiIh4o+U+kOue+\nACwGJgBrzawlslQiItJPSXfWzrn5wBnAh4CzgJMizCQi4oWFCxdSVlbG9OnTKSsrY+HChbEdq9Rp\nkIXANuD7wMPA5sgSiYh4YOHChWzZsoX6+nqeffZZ6uvr2bJlS2yFXeo0yAnAFGARcDLQ6px7v5mF\nkSUTEUmwxx9/nKuvvpq1a9eSTqdZu3YtAM3NzbEcr9Sy3g28aGYHAHPOdQPvAv6Qv1E6nR52Jx+/\n/xX2HegteLCpN/2g4DbHTijjgU9OLbhdlAr9+8aCMhVnNDPpOo9eEjKFYUhdXR3pdJru7m7S6TR1\ndXWsW7culnyllvXTwHXOudXAu4G3kynwfmpqaobdyb4DO3jl1guG3SadThfcD2Qu9GK2i86OUT5e\nMZSpOKObSdd51JKRKQgCNm7c2HdnXVNTwzXXXEMQBCPK197ePuR4SWVtZpudc/OAn5KZ9/6smR0s\nOZ2IiGfOPvts1q1bB0BdXR3XXHMN69at45xzzonleCW/dM/MbowyiIiITx577DEWLlxIc3Mz69at\nIwgCzjnnHB577LFYjldyWYuIHO1yxVzsNNZI6DcYRUQ8oLIWEfGAylpExAMqaxERD6isRUQ8oLIW\nEfGAylpExAMqaxERD6isRUQ8oLIWEfGAylpExAMqaxERD6isRUQ8oLIWEfGA/kSqiEiJJk2aRFdX\nV9/jqqoqdu8etGhWJHRnLSJSglxRz5gxgyeeeIIZM2bQ1dXFpEmTYjmeylpEpAS5ou7o6ODEE0+k\no6Ojr7DjoGmQAT7w5S3sfbOnqG0LrUZ9/NvK+cWXolmPrdhco5lJ/JXU69w3jzzyyKDHU6ZMieVY\nKusB9r7ZU3AlaihuGZ9CF/nhKCbXaGcSfyX1OvfN+eefT0dHR7/HcdE0iIhICaqqqti+fTu1tbW8\n+uqr1NbWsn37dqqqqmI5nu6sRURKsHv3biZNmsT27dtZsGABoFeDiIgk0u7duwnDkM7OTsIwjK2o\nQWUtIuIFlbWIiAdU1iIiHlBZi4h4QGUtIuIBlbWIiAdU1iIiHlBZi4h4QGUtIuIBlbWIiAdU1iIi\nHlBZi4h4QGUtIuKBEf2JVOfcXwDtwNlm9mI0kUREZKCSy9o5Vw58A3gzujgiIv4IgmDQWBiGsRxr\nJNMgXwOagVcjyiIi4o1cUZeXl3PvvfdSXl7ebzxqJZW1c+5S4DUzeyzaOCIi/igvL+fAgQOcdtpp\nHDhwoK+w41DqNMjlQOicWwDMBu5xzi02s535G6XT6WF3cszJX2fmxpsKH+2nhTc55uRq0ulTCm9Y\nhEK5Abq7u4varphtilVoX6Od6eP3v8K+A70Ftyu0oOqxE8p44JNTE5UJos0V1deumH0VK4nXeRKv\nqeFs2LCBdDrdd542bNjAsmXLIv2+7xOG4YjeUqnUk6lU6v0Dx9va2sJCpjRsLrhNZ2dnwW2K3VeU\n+ykmV1SZit2XMvl7TSUxUxj6+/WLMtOhAGF5eXkYhn/OVF5eHmZqtXTZ7hzUtXrpnohIiXp6epgw\nYQLPP/88EyZMoKenJ7ZjjXh1czObH0EOERGvhGFIEAT09PSwbNmyfuNx0J21iEiJclMUudXN4ypq\nUFmLiHhBZS0i4gGVtYiIB1TWIiIeUFmLiHhAZS0i4gGVtYiIB1TWIiIeUFmLiHhAZS0i4gGVtYiI\nB1TWIiIeUFmLiHhgxH8iVUTkaOXLgrkiIket/KK+4oorhhyPkspaRGQEwjDkhhtuiPVvWYOmQUSO\nSkUvVg0FF6w+5uRq4IIRZ/LRqlWrBj1ubGyM5Vgqa5Gj0Bu//hyv3Fq4YNPpNDU1NcNuU8xK8Ueq\nxsZGbrnlln6P46JpEBGREQiCgNtuuy22ueoclbWISAny56hbWlqGHI+SylpEpERaMFdERPpRWYuI\neEBlLSLiAZW1iIgHVNYiIh5QWYuIeEBlLSLiAZW1iIgHVNYiIh5QWYuIeEBlLSLiAZW1iIgHVNYi\nIh5QWYuIeKCklWKcc+XA3cBUoAL4ipm1RphLRCTxfFjdfBmw28zOBM4F7ogukohI8uUXdV1d3ZDj\nUSq1rB8Abs6+HwBvRRNHRMQvYRjS0NCQzNXNzWwfgHPuOOC7wBeH2i6dThfcV3GLbe4ouMWxE8qK\nOl4xitlPd3d3UdtFlamYfSnTYazaXWDFboBj31dNOn3KyEMR3XkqZl/FKn6h2+G//6L83oPkXVPD\nqaurI51O92Wqq6tj48aN8Rw7txTN4b6lUqmTUqlUWyqVunyoj7e1tYVRmNKwOZL9RH28zs7OyPZV\njGL2pUzFSeLxijlPxe4rSkk8XlKuKSDMVOifM+WPlSrbnYM6taRpEOdcNbAFaDCzu6N76hAR8UsQ\nBDQ1NcW+unlJ0yDAKmAicLNzLjd3fZ6ZvRlNLBGRZAvDsK+gN27c2G88DqXOWV8HXBdxFhERr+SK\nOZ1OU1NTE+ux9EsxIiIeUFmLiHhAZS0i4gGVtYiIB1TWIiIeUFmLiHhAZS0i4gGVtYiIB1TWIiIe\nUFmLiHhAZS0i4gGVtYiIB1TWIiIeUFmLiHhAZS0i4gGVtYiIB1TWIiIeCOJagqa9vT2cM2fOYX9e\nbW0t27dvH3abGTNm0NHRUWq0YU3/xgLGVe6KZmcHJrNt+eOR7CqyXEd4pqHomirOWJ8nSOY1FVWm\ng93VdF71RMHt2tvbmTNnzqAFHRNX1gONxnI5pUhiLmUqjjIVL4m5jvRMhyprTYOIiHhAZS0i4gGV\ntYiIB1TWIiIeUFmLiHhAZS0i4gGVtYiIB1TWIiIeiPWXYmLZsYjIEW5Uf4NRRESio2kQEREPqKxF\nRDwwfqwD5HPOzQC+ChwDHAs8AuwDLgDeCZwIdGY3/6iZHYzgmPOBejO7KG/sVuBF4AfA14ApwDjg\nt8BKM9uZ3e5M4B+BcuDtwAYzW5v92E3AguzHeoHPm1l7kjJGJZvvv4FPmtm388a3As+b2aXOuROB\nl4E6M3sg4uMPOtfACuA0oCtv02+aWYtzbiKZczYt+zm/Aa4ys73OudOBr5C5kTkO+I6Z3RZh1vnA\nd8hcxwFQAVwNXAe8w8w+lrftTjObHNWxS8llZj93zn0GWEbm3JYD/2BmT45Cnk1ArZn9NjuWu+Y3\nAEvNbFN2/FzgIjO7NM5Mh8g47HUf5fESc2ftnHsn8G3gejP7G+CDwEzgdTObD1wP/NDM5mffRlzU\nBQTAg8CD2eOdCdwNbHbOjXPOnQLcDizL5psHfNo5d65zbjqwGDjbzM4CPpf93MRkjCHLi0D+k8lM\nMk8OOZdls3w2yoMWONc35l0v882sJTt+P7DZzM4yszOA54BvZD92B3CtmS0APgxc5Jw7NcrM/Pk6\nPovME+m/ZMc/7Jy7JOJjjSiXc+4i4GwyN0fzyZT2N51zJ4xCnv3ABufcwB+2vQGsHqUMhRS67iOT\nmLIGlpC5WH4JkC3jTxNPyRVjErA39+ydzfQE8CsypXcJcI+Z7cp+7E1gIfA4sBd4L3C5c+4vzewF\n4PSEZYzaL4Apzrnjs4+XAd8CyH6zXQLcBkxwztVGeNzDOtfOuSnAZDP7ft7w7cBV2fd3AX/nnJtD\n5k7yQ2b28wjzDjQR+EP2/S8AX3bOvSfG4xUrl+sqoNHMegDM7NfAbDP74yhk+CGZ/xkNfIJ/ncy1\ntG4UMhRyyOs+akkq6xOBHfkDZrbPzA6MUZ7XyJTeQDvITDkMlXevmR00s9+Tudv7EPAT59yLwKIk\nZYwhC8D3gI9ly/l04Jns+EeBbWb2Gpkn38jurguc6686557Me5tJ5pz8esA+DprZ3uzDT5Ep7HVk\nyuo251xFVHmzPpLN8xMy/6XP/Rf698DNQMshPzNeQ+Ua6hraPYqZrgY+55ybNmB8HXC8c+7iUcxy\nKIe67iOVpLL+H+Ck/AHn3MnOuXkxH/dNMvNz+Y4FpmbfBvorMnOcQ+X9gHPu1OyF9Sczu9zM3kvm\n2bbZOVeVlIwl5ijkPjL/JZwH/DhvfDlwsnPuv4CLgU/k3YmMyKHONVDF4GmQbWTOy3sG7KPcOfcp\n51wlcJqZ/YuZnU7mPL4X+EwUWfPkphv+GjiVTCm+DcDMvgW87py7OuJjlprrNwy+hhY65949GoGy\nTwzXAxvJ6yszC4HLyfx84cTRyDKMQ133kUpSWW8GznXOvQ8y30DAaiDK/zIPJQ2cmrv4st+w88h8\nASY75y7MbZid650GPJX9+JXOuXdlP3YsmXnPdwOzgDuccxOyn/oS8L9AqXe0cWSMnJntIDNfdy1w\nb3b4BDI/f5hrZuea2UfIzLPXRXTYwzrX2TvxPzrnluQNX0dmGq4XuNc5l8pu20XmCW9/RFmHMtR6\nUVeT+SHpcTEet5BcrruBm51z4wGy5+YuSr+WD5uZPQwYcOmA8d8B/wTcOlpZhnKI6z5yiXk1iJn9\nyTlXB6x3zuV+Ev8wMc9LZY+7EviBc+4NYAKwxsx+mS3Bf3POrcpu/lvgguw0wivOuRuBB51zB7N5\n7zKzRwCcczXAz5xz+8g8Kf593n+1E5ExJv8JXGJmL2V/wDkve8z8b+71wD3OuTXZO6SSmdmDQ51r\nYCmZaZCb8jZ/ysy+RGb+/N+dc58ncy5/BSw3swPOuU8Ad2dvFkLgZ0T/c5OPOOeeJFN4xwErgfl5\n/6bXsl/vhyI+7mHnMrP7nXOTgaedcwfIvOJomZn9YZj9xOF6MtNp/ZjZPc65vx3lLEMZeN1HTr/B\nKCLigSRNg4iIyCGorEVEPKCyFhHxgMpaRMQDKmsREQ+orEVEPKCyFhHxgMpaRMQD/w/ALCI89bZG\n0QAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f20079aa550>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "features.boxplot()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "1.8535564853556485" | |
| ] | |
| }, | |
| "execution_count": 11, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAD0CAYAAABtjRZ7AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADSZJREFUeJzt3X+snXddwPH3LW13jbZFsqFGnbion9yEKNk1dIOW1qQw\n6iBDQsxE5YdRSGwiFczGdNCaLCo4qlkcQbeMYaJ/QOfEiGUzUUetxepxGhtOPmQ0s0YjaRu6FuTO\ntff6x3kKd7e9556d+5xz+uG+X0mTc57n/Ph8e2/f9+lzn9tOLSwsIEmqad2kB5AkDc+IS1JhRlyS\nCjPiklSYEZekwoy4JBW2fpxv1ul0vJ5RkoYwOzs7daXtY414M8jQz+12u8zMzLQ4zdVtra0XXPNa\n4ZpfmE6ns+w+T6dIUmFGXJIKM+KSVJgRl6TCjLgkFWbEJakwIy5JhRlxSSps7D/sI0mT8rL3f2Zi\n733o7TeM5HU9Epekwoy4JBVmxCWpMCMuSYUZcUkqzIhLUmFGXJIKM+KSVJgRl6TCjLgkFWbEJakw\nIy5JhRlxSSrMiEtSYUZckgoz4pJU2ED/KUREvBToAK8FLgAPAwvAcWBPZs5HxD7g1mb/3sw8NpKJ\nJUnfsOKReERsAP4Q+Hqz6QBwd2ZuB6aA2yLiRmAHsBW4Hbh/NONKkhYb5HTKvcDHgP9u7s8CTzS3\nDwG7gG3A45m5kJkngfURcV3bw0qSnq/v6ZSIeAdwKjMfi4i7ms1TmbnQ3D4PbAE2A2cWPfXS9lNL\nX7Pb7Q497Nzc3KqeX81aWy+45rXCNbdnpXPivwAsRMQu4BXAHwMvXbR/E3AWONfcXrr9MjMzM0MP\n2+12V/X8atbaesE1rxWTW/OJCbxnz/T09NBr7nQ6y+7rezolM1+TmTsycyfwr8DbgEMRsbN5yG7g\nMHAEuCUi1kXE9cC6zDw91LSSpIENdHXKEu8DHoiIjUAXOJiZFyPiMHCU3heGPS3OKElaxsARb47G\nL9lxhf37gf2rnkiSNDB/2EeSCjPiklSYEZekwoy4JBVmxCWpMCMuSYUZcUkqzIhLUmFGXJIKM+KS\nVJgRl6TCjLgkFWbEJakwIy5JhRlxSSrMiEtSYUZckgoz4pJUmBGXpMKMuCQVZsQlqTAjLkmFGXFJ\nKsyIS1JhRlySCjPiklSYEZekwoy4JBVmxCWpMCMuSYUZcUkqzIhLUmFGXJIKM+KSVJgRl6TCjLgk\nFWbEJakwIy5JhRlxSSps/UoPiIgXAQ8AAVwE3glMAQ8DC8BxYE9mzkfEPuBW4AKwNzOPjWhuSRKD\nHYm/ESAzXw18EDjQ/Lo7M7fTC/ptEXEjsAPYCtwO3D+SiSVJ37BixDPzz4F3NXd/APgyMAs80Ww7\nBOwCtgGPZ+ZCZp4E1kfEde2PLEm6ZMXTKQCZeSEiPgH8FPAW4A2ZudDsPg9sATYDZxY97dL2U4tf\nq9vtDj3s3Nzcqp5fzVpbL7jmtcI1t2egiANk5tsj4k7gH4FvW7RrE3AWONfcXrr9eWZmZoablN4X\ngNU8v5q1tl5wzWvF5NZ8YgLv2TM9PT30mjudzrL7VjydEhE/HxF3NXf/F5gH/jkidjbbdgOHgSPA\nLRGxLiKuB9Zl5umhJpYkDWSQI/E/Az4eEZ8DNgB7gS7wQERsbG4fzMyLEXEYOErvi8OeEc0sSWqs\nGPHM/Brw01fYteMKj90P7F/1VJKkgfjDPpJUmBGXpMKMuCQVZsQlqTAjLkmFGXFJKsyIS1JhRlyS\nCjPiklSYEZekwoy4JBVmxCWpMCMuSYUZcUkqzIhLUmFGXJIKM+KSVJgRl6TCjLgkFWbEJakwIy5J\nhRlxSSrMiEtSYUZckgpbP+kBXojdnzgBnBj7+z79O7eO/T0laRAeiUtSYUZckgoz4pJUmBGXpMKM\nuCQVZsQlqTAjLkmFGXFJKsyIS1JhRlySCjPiklSYEZekwoy4JBVmxCWpsL7/FG1EbAAeAl4GXAPc\nA3wBeBhYAI4DezJzPiL2AbcCF4C9mXlsdGNLkmDlI/GfA85k5nZgN/AHwAHg7mbbFHBbRNwI7AC2\nArcD949uZEnSJStF/FPABxbdvwDMAk809w8Bu4BtwOOZuZCZJ4H1EXFd28NKkp6v7+mUzPwqQERs\nAg4CdwP3ZuZC85DzwBZgM3Bm0VMvbT+19DW73e7qpx6zSc08NzdX8vdrNVzz2uCa27Pif88WEd8P\nPAp8NDP/NCI+vGj3JuAscK65vXT7ZWZmZoafdgL/NRusdubhdbvdib33pLjmtWFya55MQwCmp6eH\nXnOn01l2X9/TKRHxXcDjwJ2Z+VCz+cmI2Nnc3g0cBo4At0TEuoi4HliXmaeHmlaSNLCVjsR/HfhO\n4AMRcenc+HuA+yJiI9AFDmbmxYg4DByl94Vhz6gGliR900rnxN9DL9pL7bjCY/cD+1uZSpI0EH/Y\nR5IKM+KSVJgRl6TCjLgkFWbEJakwIy5JhRlxSSrMiEtSYUZckgoz4pJUmBGXpMKMuCQVZsQlqTAj\nLkmFGXFJKsyIS1JhRlySCjPiklSYEZekwoy4JBVmxCWpMCMuSYUZcUkqzIhLUmFGXJIKM+KSVJgR\nl6TCjLgkFWbEJakwIy5JhRlxSSrMiEtSYUZckgoz4pJUmBGXpMKMuCQVZsQlqTAjLkmFrR/kQRGx\nFfhQZu6MiB8CHgYWgOPAnsycj4h9wK3ABWBvZh4b0cySpMaKR+IRcQfwIDDdbDoA3J2Z24Ep4LaI\nuBHYAWwFbgfuH824kqTFBjmd8iXgzYvuzwJPNLcPAbuAbcDjmbmQmSeB9RFxXauTSpIus2LEM/MR\n4LlFm6Yyc6G5fR7YAmwGnln0mEvbJUkjNNA58SXmF93eBJwFzjW3l26/TLfbHeItJ2tSM8/NzZX8\n/VoN17w2uOb2DBPxJyNiZ2b+HbAb+FvgKeDDEXEv8H3Ausw8faUnz8zMDDsrcGIVzx3e6mYeXrfb\nndh7T4prXhsmt+bJNARgenp66DV3Op1l9w0T8fcBD0TERqALHMzMixFxGDhK7xTNnmEGlSS9MANF\nPDOfBm5qbn+R3pUoSx+zH9jf3miSpJX4wz6SVJgRl6TCjLgkFWbEJakwIy5JhRlxSSrMiEtSYUZc\nkgoz4pJUmBGXpMKMuCQVZsQlqTAjLkmFGXFJKsyIS1JhRlySCjPiklSYEZekwoy4JBVmxCWpMCMu\nSYUZcUkqzIhLUmFGXJIKM+KSVJgRl6TCjLgkFWbEJakwIy5JhRlxSSrMiEtSYUZckgoz4pJUmBGX\npMKMuCQVZsQlqTAjLkmFGXFJKsyIS1Jh69t8sYhYB3wU+DHgWeAXM/OpNt9DkvRNbR+JvwmYzsyb\ngfcDH2n59SVJi7Qd8W3AZwEy8/PAj7f8+pKkRaYWFhZae7GIeBB4JDMPNfdPAjdk5gWATqfT3ptJ\n0hoyOzs7daXtrZ4TB84BmxbdX3cp4P2GkCQNp+3TKUeAnwSIiJuAf2/59SVJi7R9JP4o8NqI+Adg\nCnhny68vSVqk1XPibVjpMsWI+CXg3cAF4J7M/MuJDNqiAdb8q8Dtzd2/yszfHP+U7RrkctTmMZ8B\nPp2ZHxv/lO0a4OO8G9jX3P0XYE9mXl1/QF+AAdb7a8DPAPPAb2XmoxMZdAQiYivwoczcuWT7G4EP\n0uvXQ5n5wGrf62r8YZ9lL1OMiO8GfgV4NXAL8NsRcc1EpmxXvzXfAPws8CrgZuB1EfGjE5myXYNc\njnoP8JKxTjVa/T7Om4DfBd6QmTcBTwPXTmLIFvVb74vp/Vm+GXgd8PsTmXAEIuIO4EFgesn2DcDv\n0VvvDuBdTdNW5WqMeL/LFF8JHMnMZzPzGeAp4FshaP3W/J/A6zPzYmbOAxuAufGP2Lq+l6NGxFvo\nHaEdGv9oI9Nvza+i9z2kj0TEYeDLmXlq/CO2qt96vwb8B/Dtza/5sU83Ol8C3nyF7TPAU5n5lcz8\nP+Dvge2rfbOrMeKbgWcW3b8YEeuX2Xce2DKuwUZo2TVn5nOZeToipiLiXuDJzPziRKZs17JrjoiX\nA2+l99fObyX9PrevBX4CuBPYDeyNiB8Z83xt67de6B2gfIHeqaP7xjnYKGXmI8BzV9g1kn5djRHv\nd5ni0n2bgLPjGmyE+l6aGRHTwJ80j/nlMc82Kv3W/Dbge4G/Ad4BvDciXj/e8Uai35rPAP+Umf+T\nmV8FPge8YtwDtqzfencD3wP8IHA98KaIeOWY5xu3kfTraox4v8sUjwHbI2I6IrbQ++vJ8fGP2Lpl\n1xwRU8CngX/LzHdn5sXJjNi6ZdecmXdk5tbmm0IPAwcy87OTGLJl/T63O8DLI+La5mj1JnpHqZX1\nW+9XgK8Dz2bmHL2YvXjsE45XF/jhiHhJRGwEXgMcXe2Ltn2JYRsuu0wxIt5L71zSX0TEfcBhel+A\nfqP5BKhu2TUDL6L3TZBrmqsXAO7KzFV/8Ces78d5sqONzEqf23cBjzWP/WRmVj9AWWm9u4DPR8Q8\nvfPDfz3BWUcmIt4KfEdm/lGz/sfo9euhzPyv1b7+VXeJoSRpcFfj6RRJ0oCMuCQVZsQlqTAjLkmF\nGXFJKsyIS1JhRlySCjPiklTY/wNR3vd/c60sCgAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x163d0c59b38>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "#proportion of the labels\n", | |
| "labels.hist()\n", | |
| "float((labels.tolist()).count(1))/float((labels.tolist()).count(0))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 56, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "#sns.pairplot(features,hue='C')" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 57, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.axes._subplots.AxesSubplot at 0x7f20077828d0>" | |
| ] | |
| }, | |
| "execution_count": 57, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWwAAAD0CAYAAAC/3RwjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzsnXd4FFX3xz+zm91NT0joLRAIQwKhhVCkF1HkBZWiiBTp\nCiKCNKWjdASU9iKoiKIggigqRaU3IfSSTGgJLQlppCdbf39sSKFmaDHv736eZ59k5t6Z75y7s2fP\nnpm5R7LZbAgEAoHg34+msA9AIBAIBAVDOGyBQCAoIgiHLRAIBEUE4bAFAoGgiCActkAgEBQRhMMW\nCASCIoJDYR/AgzDFXSqUew531fjwmWsaJOsz1wRYYjAVim4pyVAouoFm3TPXjNIWzq2zyYV0Ti2O\n3l8oupmZV6TH3Ycan6Mr7vvYemr5VztsgUAgeKZYLYV9BA9EOGyBQCC4ja1wfpUUFOGwBQKB4DZW\n4bAFAoGgSGATEbZAIBAUESzmwj6CByIctkAgENxGXHQUCASCIoJIiRQOp86GMX/ZV6xaPOfJ7VSS\n8J/dH9caPlizTJwbuZyMiJicZu/WdfAd1RVJguSTlwkb92VOm3PVsjTYMp09NQdhzVJx77MkUXXW\nAFxrVMJqNBE+8r9kRkTnNBdrXQefD7qBJJF66hIXxq0EoOHx5WRcjgIgOSSciBnfqzRVov8ng/EJ\nqIQpy8zysYuJiYy+q8/YVRMI2X6Yv9Zsw8XDlWGfjcDJ1YmUxBS+GLeU5Pgk1brdPulPOX8fzEYT\nP4xdTlxk7hh3ntyHKvWrk5mWAcCKgXNxcnOmx5x30DhokCSJtR9+wc1LUap0kSSazngLr4CKWIxm\n9o5eSXKe97bx1F6UCq6GKS0TgO395uPo6UqLBYORJImU63HsHfMllkyjat2XPulL6YCKmLNMbB67\nksQ89r4wuRcVgmWMqXZ71w2cj6TR8O6uT7mpXAUgbFsIh7/epkJSovMn/Sjjb7f1x7FfEJ9H8+XJ\nvalcXyYr29avB85D52igx8KhaHUOpCel8sP7S3La1eh+/vl0AgP9MRqNvP32GC5disxpHzy4N716\ndcNms7Fw4Rds2PAbABcvHubixcsA/PPPMSZOnK1KVxX/3y86yrJcA5gDOAOuwB9AKtAB8ATKAuey\nu7dRFOWxf5N8tWY9m7fuwMnxyT6cUbJ9MBqDjiMdJuIR5Ee1qb042WceAFoXR6pN7knIq1MxJaTg\nM7QTOm83TPEpaF2dqDalFzaj+odUvNsHo3HUc+I/43Gr54fvlN6ce2tOjqbvpF6c7DwFc0IK5Yd2\nQuftjtbNmdTTlzjb+9FP7OAXGqIz6Jn46jj86laj14S+zBs4M1+f10e9iau7a87yq+92JexIKJuW\n/ERgk1q8MaYny8cuUaUb2C4YnUHHgs4TqVTXj1cn9GLFwHk57RVq+rK09wzSElNy1nWZ0pc9q7dy\nensI1ZvXpuOYHnz59qeqdCu9GITWoOPXl6dSsl4VGk7swZ/9F+S0Fw+sxJY3Z5OVmJqzrvm8gYR+\n9zcXNx1EfqMltQa15/jnv6jSrf5CEA4GHV+9OoVydavSbsKbrBs4P6e9TGBl1vSaRUYe3cpNanDm\n1wNsnbxaldZtarSrj4NBx+LOk6lYtyodJ/Rk1cDc8SpfszJf9J5Fep4xbjeiGyEb9nB0417avd+F\nBt1bsffLLap0O3V6AUdHAy1bvkqDBnWZPXsi3boNAMDbuxiDBvWiYcP2ODoaOHHibzZs+A1fXx9O\nnDhDly79HslWtfzbLzo+1UfTZVn2BNYC7yuK0gpoBAQCKYqitATeB3YoitIy+/VEEkgVypZh4YwJ\nT2JX+fBsKBO38yQASUfP4167Sm5bsExq6BWqTelF/V+mYIy9hSnefsIHfDqICzPWYknPUq3p0cCf\nxB3HAUg5dh63PJruwTJpoVeoMqU3tTdNwxSbhCk+GbfavuhLe1Frw2RqrvkQpyplVevKwf6c3H0M\ngPPHw6lSq2q+9oYvNcZms3Ji9/GcdeX9KnBi11EAwkLCkOv7q9atEiwTuts+xhHHz1MhMNdeSZIo\nUak03WcO4v2fptGoW0sANn3yLWezx0ij1WDKUhnlAqWDZa7uOgXAzWMXKVG7cm6jJOFeuTTN5vSn\n48+TqPZ6cwCK+ZXjavb5EHMknFINZNW6FYNlLmbbe/34BcrUyq/rVak0/5k1gL4bJlPntRaA3YmX\nCaxMn3UT6Lr0PVxLeqrSrBwso2RrXjl+gQqBvnkkJYpXKkO3mQMY+tMUgrPH+Ndpqzn28z4kScKj\njDeZyemqbX3uuWC2b98FwOHDx6lXr1ZOW3x8Ig0avIjZbKZUqRJkZto/K/Xq1aJs2VJs27aWTZtW\n4efne69dPzms1oK/CoGnHWG/jN0hnwdQFMUiy3JvQP0nSgXPt2rK9aiYh3dUiYObM+Y8J6rNYkXS\narBZrOi83SjWpAaHWo/BkpZJ/V+nkhRyntKdmxD35zFSz0U+YM/3R+vmhDklvyZaDVis6Lzc8GxS\nk6NtRmNJy6TOL9NIDgnHGJPI1UU/E7f5EO4NqlN9yTCOv6jucXtnV2fS8+haLVY0Wg1Wi5UK1SrS\n9OXmzH97Dl2Gv57TJ+LsZeq3bWD/+3wwBif1v3AcXZ3JuI+u3tnAnm+2sXPlb2i0Gob9MIkrpy9x\nI+wKACV9y/DK+F6sHDRXta7OzQljyn3eW2cD577ezqkvtqDRaujw40fEnbpM/LlIfJ4P4vxPe/Fp\nVw/dI9ird3UiKyXjnrp6ZwNHvtnOwRV/oNFq6L12PDdOXSLuYhRRn/7E5f1nqfnKc7w4tQ8/vfNZ\ngTUdXZ3IfMAY7/tmG3tW/o5Gq+HtHyZy7fQlosKuIGk1fLBlFg4GHX99vlG1re7uriQl5UbtVqsF\nrVaLxWKP0ywWC2+/3YeJE0eydOnXAERHxzB37lI2bvyd554L5uuvP6Np046qtQuMpXCmaigoT3vy\np7LApbwrFEVJVRTlqTrsp4U5JR0HV8ecZUkj2R0oYEpIIfnERYyxSVjSs7h1KBS3mj6U6dqMsj1a\nEbRxEvqSntRbN16VpiUlA62rUz5NbmsmppJy4gKm2FtY0zNJOhSKS81KpJy8SPzWEACSD4ehL+Wl\n2tb01HQcXfLrWrN1m3dpRbFS3kz84WNadG1NhwGdqN2iLpuW/kSJ8iWZ8uN0SpQvSXxUnGrdzNR0\nHF1yx1iTR9eYkcXur//AlGkkKy2T8ANnKefvA4Bf4xoM+GI0345YrD5/DZhSMtDnsReNJue9NWdk\ncebLbVgyjZjSMrlx4BxeARU5NO17fNrVpcP68dhsNjLzpBAKijE1A71L3nMqV9eUkcU/X23FnGnE\nmJZJxIFzlPL3IeLAWSIO2rOIYVtDKF3DR5VmZmoGhvu8t8aMLPZ9vSVnjC8cOEsZ/4oAWM0W5j4/\nmp8+XEn3+UNU25qcnIqbW24KTZI0Oc76Nv/97zdUqlSfpk0b0qJFY44ePcXmzdsBOHDgCGXKlFKt\nqwqbteCvQuBpO+xIoELeFbIsV5ZluflT1n0q3DqsULxNXQA8gvxIDb2S05Z8+jKu1Sug83JD0mrs\n7eHX2d9oOEc7T+No52kYb97i2OvTVWkmHwnDq009ANzq+ZEWlquZevoSLtUr4uDlBloNbkF+pIdf\nw+eDbpQb9BIALgE+ZN1Q7ziVkDDqtgoCwK9uNa4oub8Q1sz8hgmvjGFa9wns/mkHv6/8lZO7j+Pf\nsAZ/r93OlNfGEx0ZjRISplr3UohCQCv7GFeq68cNJdfekpXL8v5P05A0EhoHLVWCZa6euYxf4xp0\nntSHZX1mcPX0pfvt+oFEh4RToXVtu069KiSGXc1p8/AtQ8dNk5A0EpKDltLB1Yg/HUH5ZjU5Mms9\nv3ebjs1i5dqeM6p1r4SEU7VVHQDK1a2acyERwNu3DH03TM6xt0JwNaLPXKbj7IH4t28AgG+TGkSd\nvqxKMyIknOrZmhXrViU6j2aJymUY+tPUHM3KwTLXz0TQ+eN+VGkcAEBWWga2R0gJHDwYwosvtgKg\nQYO6nD2be374+fmydu1yAEwmE1lZWVitVsaPH8GwYf0BCAz059q1G6p1VfH/PCXyG/CRLMvLFEW5\nKMuyDpgP/AnsecraT5ybfxzBu0Utgn+bBpLE2eHLqDi4AxkR0cRuO8r56T9Qb+1HAMT8epC0PB/6\nRyXuj8N4Nq9F7c2fIEkSyvtLKDf4P2RcjiZhewiXp68h8Ad7vj528wHSw65yddEm5CXv4dU2CJvZ\ngjJc3YU/gCNbD1GraW2mbZyFJMGyUYvoMKAT0RFRHP3ryD23uXHxOkMXvA9AYnQ8/x2zWLXuqW1H\nkJvVYsQG+xivGb2MVv07EBsZzZm/jnLk572M/Hk6VrOZwxv3EH3+Gn0+fw8HvQM9P7VHfTcvRbHu\noxWqdCO2hFC+WU06bZoEksTukV8QOLA9SRExXPnzGBc27OflX6diNZs5/9M+EsOv4+DiSKtF72Ax\nmkkMv8b+8d+otjdsawi+TQPpu3EykiTxy6jlNBrQnoSIGML/Osapn/fRb9NUrGYLpzbsI/b8df6e\nvZZOcwdRv1dbTBlZbB67UpXmmW1HqNYskHc3TAUJ1o1eTvP+LxEXGcO5v45y7Oe9vPfzx1jMFo5u\n3EvM+WvsXbWVrtP7Y3uvMzarjY0TvlJt6y+/bKVNm2bs3LkRSZIYNGgU7703gIsXI/n99z85fTqU\n3bs3YbPZ2L59F3v3/sPp02F8/fVC2rdvjdlsYeDAD1TrquJfftFRetpV02VZDgLmYo/m3YDNwFRF\nUWyyLLcE3lYUpfu9thXTqz59xPSqTx8xveqz4UlMr5p1aluB3yxDrRf+96ZXVRTlKND6Pm27gF1P\n+xgEAoGgINis/+6Ljv+zD84IBAKBav6/PzgjEAgERYZ/eQ5bOGyBQCC4jZj8SSAQCIoIIsIWCASC\nIoLIYQsEAkERQRQwEAgEgiKCiLAfncJ4gAWg5dmZD+/0hDEf+e2ZawLMHFM4uh6VEgtF92aYyzPX\nLBWQ9sw1AdJuFM7H+7SlRqHoPglsNnHRUSAQCIoGIsIWCASCIoK4S0QgEAiKCCLCFggEgiKCuEtE\nIBAIiggiJSIQCARFhMdIiciyrAGWArWBLGCAoigX8rSPBd4AkoE5iqL8JstyceB7wAm4AfRVFOW+\nBTOfdsUZgUAgKDo8XsWZVwBHRVEaA+OAnFL0siwHAj2wFyJvB0yTZdkZmAR8ryhKM+A4MPhBh1c0\nI2xJwn92f1xr+GDNMnFu5HIyInKL7nq3roPvqK5IEiSfvEzYuC9z2pyrlqXBlunsqTkIa9aTnfv2\n1Nkw5i/7ilWL5zyxfVqtNmb8tJvw63HoHLRM7t6KiiVyq2R//dcxthwLx9VRz1tt6tG8RqWctu92\nnSQ+JZ3hHRurF5Ykik8Yhl72xWY0ETt5Aear9vJMetkX77Hv5HQ11PInZvgUMvbb60i693wVh+LF\nSFiovioJkoTLOyPQVq4KJiOpi+ZijboOgLZyVVwGvpvT1UEOIGX6BMzhoXgu/w5LpL1UlvHgXjI3\nb1CtW3rqUAzVK2Mzmoj66DNMV3JrQ7o0r0+JYT1Aksg8c57oKUvReLhSbt5oNK7OWG4lEzX+cywJ\nSao0nd8egUOlqthMRtIWz8UanWurc//8tqbOmIDp3Clc3hmJpmQZJJ0DaV98huW8ylJskkSxscPR\n+VXBZjKS+MmnmLNLb+mqVcFzZG69RkPNAOJGT8J0KRKvSaNAqwVJInHGfMyR11TKSgybPpTKAb6Y\njCYWjlnIjYiou/p8/M1UDm4/xO/f/YFGo2HQpIFUq+WHzqDju/lr+Ofvw+rsVcPjpUSaAlsBFEU5\nJMty/Txt/sAuRVEyAWRZPg/Uyt5mRnafLdn/L7ifwEMd9r2qwsiyPAsIA34H5gE+gBa4CoxUFCU6\nu18z7N8gOsAF+FpRlKXZbeOAttltVmBUdrGDh1KyfTAag44jHSbiEeRHtam9ONlnHgBaF0eqTe5J\nyKtTMSWk4DO0EzpvN0zxKWhdnag2pRc245OfpPyrNevZvHUHTo5PtpLKztOXyDJZWD2iK6ciopn/\ny34WDugAwPkb8Ww5Fs63I7oC0OezDQT7lUNCYuq6HZyJvEnb2lUeSde59XNIBj03er6PoVZ1vEcP\nIua9KQAYlUtE9RsNgEu7ZjjfjCdjfwiSQU/xqSNxrCmT9tfeR9LVN2oKej3Jo4fgIAfg0m8IKdPt\nhYstly+Q/JG9BJm+SUv08XGYjh1GVzuIrN07SP+i4JXD78Tt+cZIBh2Rr32AYx2ZUh8O4No7HwOg\ncXGi5Nh+XOk5DktiMl4Du6L1csd7YDfSj54l/r8/4vxcHUp+8BZR4wt+DLqGTZF0epLHDkFbLQDn\nfkNInZFra8oEu62651qiT4jDdPwwTt3fwhJ5mbSFM9D6+KKtXFW1w3Zq2QTJoOdm/2Hoa/rj+f7b\nxI2aBIAp/CKxb9vLcDm1aY4lNo7Mg0fwmjyW1B9/IWP3fhwb1cdj6ADix0xRpfvcC43ROeoZ8cpI\nqtetzqCJA5nSf1q+Pm+N6Y2rh1vOcpsurXHQOTCy8yi8S3vTvEMzVZqqebyLju5A3m9siyzLDoqi\nmIHTwIeyLLsBeuA54Is7tkkBPB4k8DgpEQnYCGxUFKVldkj/FfCbLMtaWZZ9gc+BnoqitASaA71l\nWX5RluUAoBPwvKIoLYAR2dsWCM+GMnE7TwKQdPQ87nmckmewTGroFapN6UX9X6ZgjL2FKd5ezTrg\n00FcmLEWS3rWY5h9byqULcPCGROe+H6PX4qiSXbV6lqVSnP2amxO26WYBIKqlsOgc8Cgc6BicU/O\n34jHaDbTMbg6A54PemRdx3o1Sd9nj5izToVhCKh2Vx/JyZFiQ3oTP2upfdmgJ/WXP0lc8f0j6zoE\n1MJ01B5BmZVzOPjJd3cyOOLUoy9pKxYBoK1aDYeq1XCf+RmuY6ciFVNfJd4pqAZpe+zxQuYJBcea\nfrltdf3JCo+g5LgB+Hw/B0tcIpaEZAxVK5K6xz5GGUfP4RQUoEpTF1AL03G7rZbwczhUvbetzj36\nkp5tq65uA2xmE25T5uL0ep+c7dVgqB1IxgF7XU7jmVB0/nfrSo6OeAx6i1vz7PVAby1cRsa+Q/ZG\nrRZbllG1bo0GNQjZZR/jsONh+NXyy9fe9KWmWK02QnaF5KwLahFEfHQ801ZN5f3Zwzn01z+qdVXx\neCmRZOxlEG+jyXbWKIoSCizGHoEvBv4B4u7Yxg249aDDexyH7Q0kKYryy+0ViqL8BVzE7px7AasV\nRYnJbssAXsBegDcJqAj0k2W5nKIoJ4AGBRV2cHPGnJybl7dZrEhauyk6bzeKNanB+Y/XcPyNmVQc\n9BLOvmXwHdWVuD+PkXou8n67fSyeb9UUB4cnn2FKyzLi6qjPWdZKEmaL/WTxK+PNsYs3SMs0cist\nk5MR0WQYTbg7O/Jc9YqPpatxccaamueRaqsVtPlPF7dXXyRt+x6st5LtXZJTyThYoB9J90VydsaW\nnqtrs1pBo83Xx7FdB4z7d2FLtgcmlmtXyFjzFckfDsd4aC8ug4er1tW6OmNJyXOtJ4+9Wi93XBrW\n4ubcr7kyYBJeb72CvlI5MkMv4da6EQCubRqhcVL568rZGVvag201PJ9ta4rdVsndA42rGylTRmM8\ncgDnvkNQi+SSXxer5a731uXl9qT/vRtrUvZ7m5QMFgsOPuXxHD6Y5JWrVes6uzqTlpyra7VY0WTr\n+sg+tHqlJavnfZtvG49i7pStVIZJb03mx2Xr+eDTEap1VWGzFvx1N/uBlwBkWW6EPaome7kE4KYo\nShPgbaACcCbvNkB74IE/TR/HYcdid853cgl7iqRs9v85KIqSpCiKRVGU69gj7CbAQVmWw4D/FFTY\nnJKOg6tjzrKkkbBlOzFTQgrJJy5ijE3Ckp7FrUOhuNX0oUzXZpTt0YqgjZPQl/Sk3rrxKs0tHFwM\netLyRDNWmw2H7JPct7QX3ZsFMmT5Zmb9tIdAn1J4ujg9EV1rWjqavPvSSGDJf5K6dmhN8oatT0Tv\nNrb0dCQn59wVknTXpPL6Fm3J2p47B4rp1DFMp48DYDy0Fwff/JFbQbCk3mmvJsdeS2IKGafPY4lL\nxJaeSfqRMxj8fYlf/iO68qXw+X4O+vIlMUXFqRO9w1bpHrYaWrQl689cW20pSRgP24vcmg7vv3dU\n/hBsaelIznlslTR3vbfOL7Yh7Zc/8h9LUB2Kz51G/ORZqvPXAOmp6Ti75upKGg3WbN22XdpQvLQ3\ns9fN4vluz9N54KvUbxlE8q0U/vnL/ivi9KHTlKtcTrWuKh4vwv4ZyJRl+QD2PPQIWZZHyrLcCXs0\n7S/L8hHgD2C0oigW4BOguyzL+4HG2KPv+1KQkDADuDN0cAUqZb/uxA97FF0W+7dIDrIs18b+JZEC\nJCuK0i97fX1giyzLOxVFSXjYAd06rFCiXRAxvx7CI8iP1NArOW3Jpy/jWr0COi83zElpeAT5ce27\nHexvlBt1NT2yiGOvT3+YzL+COr5l2H0mghfq+nEqIhq/Mt45bQmpGaRlmvhmeBdSMrJ4Z9mvVC2j\nPh1wL7KOn8W5ZSPStu3BUKs6xvMR+dolV2ckvQ5LTOy9d/CImENPo2vwHMZ9O3GQA3IuJOboOrsg\n6XRY43J1XYeNwXhgD8Z9O9HVCsJ8MVy1bsaxc7i2bkDKlr041pHJUiJy2jLPXsDg54O2mDuW5FSc\n6lTn1rqtOAfX5Na6rWQcD8XthSZkHDunStMUehp98HMY9+9EWy0A8z1sxSG/raZzp9EFNcJyMRyH\nGrWxXIlALVknz+DUvDEZf+1GX9Mf08U7dF1c7npvDUF18PxgKLHvjcMSfVO1JsC5I+do+HxD9vy2\nl+p1qxMRlqv75YzcjGjPEW+SGJtIyK6jlPUpS3DrYPZt2Y+vf2VibzzZ8+0uHuO2PkVRrNij57zk\nvcBw1x0g2RmIFwuqURCHHQrUlWW5jKIoUbIsO2JPeXQBXpJluaOiKJsBZFl+EagK7MYeXW+SZXmd\noiixsiy7AsuBaUBlYJAsy50URTEC4dhzNwWaKuvmH0fwblGL4N+mgSRxdvgyKg7uQEZENLHbjnJ+\n+g/UW/sRADG/HiQt7GpBx+NfR+tAXw4pV+m9cAPYbEzt0YZvd56gQgkPWtSoxOWYBHp8uh6dg4YR\nLzdBq3kyd2qm/b0fp8b1KPvtApAkYid+ikfvLpiuXCd91yH0PuUx34h5+I5UYjy4F12d+rjPWQKS\nROpns3B8+TUsUdcwHT6AplwFrDej822T/s1yXN8bh+NLL2PLzCR1kfq7dFK2H8ClSV181s0DSSJq\n3AK8+r6KMfIGqTv+IfbTVVT4yn4RMmXLXrLOR2LNMlJ2rv0CnTkmnqiPFqrSNB2y2+o2ewkSEqmf\nz8Kx02tYorNtLXu3rZk/fYfLu2Nwn70Um8VM2sIZ99n7/cnYtQ/HhkGU/PJzQCJh2hxce3TFfO06\nmXsOorvHe+s5cgiSzgGvKWPt9kZeI3HmfW9muCf7tx6gXrO6LPj5U5Ak5n8wn84DX+VGxA0O/Xnv\n3PSWH7YybMa7LPxlAZIEn3+4SLW9qrDZnu7+HxPJVoADlGW5MzABSMd+hXOFoigrZFkuCSzE7oDB\nfpfIiOyUB7IstwMmYnfEbsBKRVGWZbeNB14DUrFH3bMVRdmUV/fPUq8Xyuj9f5peNarQpld98hd+\nC4KYXvXpMyBa//BOT4FtV7dIj7uPjDUTC+xznN78+LH11FKgd1RRlI3Y7wi5c/1N7DeD32+77cD2\n+7RNB4pGXkIgEPz/QDyaLhAIBEUEMVufQCAQFBH+5Tls4bAFAoHgNiLCFggEgiKCcNgCgUBQNLBZ\nRBFegUAgKBqICFsgEAiKCOK2vkfHIBXO4BXGQywOwQWeSuWJkp52z9vknzr6m4VTO8/ZTf0sc4+L\nKemZP18BFN4ND6nWwnko6olgFXeJCAQCQdFApEQEAoGgiCAuOgoEAkERQUTYAoFAUEQQOWyBQCAo\nIoi7RAQCgaCIICJsgUAgKBrYRA77KSBJVJ01ANcalbAaTYSP/C+ZEbmVOYq1roPPB93sFUtOXeLC\nuJUANDy+nIzLUQAkh4QTMUNddW+r1caMn3YTfj0OnYOWyd1bUbGEZ077138dY8uxcFwd9bzVph7N\na1TKaftu10niU9IZ3rHxYxh+b06dDWP+sq9YtVh9pZX7IkmU/XgIjtUrYzOauP7h5xgjo3KaXVsE\nUfK9N0CSyDhzgahJy9B6uFJ+wSg0rk5YElO4/tEiLPFJqnU9xwxH51cFjCYSZszDcu0GADq/KniO\nGJrTVV8zgLgxEzFfjqTYhNFIWi1IEokz52O+orLKkCTh9eF76KtVwWY0Ef/xp5ivZutWq4LXqNxi\nt4ZAf25+MJnM7Mrjbj06o/X24tailao13UaMwKFKFTCZSJ47F8v16wA4VK2K27vv5nTVBQRwa8IE\njIft9Q11tWvjMX48ca+9pk4zW7fYuOHo/apgMxlJ+PhTzNdybS32QR5bawYQO2oSpkuReE8aBQ5a\nQCJhxnzVdR0lSWLUzOFUDaiCMcvErNHzuB5x464+c1fPYN/2A2z6dnPO+opVKrDityV0rNMFY5ZJ\nvc0F5X/5LhFZllsCbyuK0j3PulnY65j9DszDXpBXi70azUhFUaKz+zUDJgE6wAX4WlGUpQXR9W4f\njMZRz4n/jMetnh++U3pz7i27s9K6OOI7qRcnO0/BnJBC+aGd0Hm7o3VzJvX0Jc72nv3I9u48fYks\nk4XVI7pyKiKa+b/sZ+GADgCcvxHPlmPhfDuiKwB9PttAsF85JCSmrtvBmcibtK1d5ZG178dXa9az\neesOnBxVVux+CO7tGiHpdVzqOgqnOjKlP+rPlcGfAKBxcaL0uH5c7vEhlsRkig/qgtbLnRKDu5Ie\ncpbYpetxaVKbUqN6c0NlSSfHFk2R9HpiBwxDX9Mfz+HvED96IgCm8xeJHTISAKfWLXCKjSPr0BGK\nTRpL6vri420VAAAgAElEQVRNZO7Zj6FhfTyGDCB+3GRVuk6tmiDp9US/9R76QH+KjXib2JGT7Lrh\nF4kZZC8F5ty2OZabcWQeOIJk0OM98QP0NWXS/96nSg/A0NRua+LQoegCAnB95x2SJkwAwHzhAonv\nv2/v16IFhtjYHGetKVEC527dwOHRPr5OLe22xvTLHuMRbxP3Qa6tNwfbbXVqk23rwSN4TRlLyo+/\nkLF7P46N6uM5dABxY6ao0m3+YlP0Bj2DOw2jRj1/hk16h3H9JubrM2hsP9w93fKtc3Z1ZtjkdzAZ\nn6Kjvs2/PCXyZAoA3o2EvULNRkVRWiqK0gz4CvhNlmWtLMu+wOdAT0VRWmKvEdk7uybkQ/Fo4E/i\nDnuV7JRj53HL4wjdg2XSQq9QZUpvam+ahik2CVN8Mm61fdGX9qLWhsnUXPMhTlXKqjbq+KUomvhX\nBKBWpdKcvZpbEPRSTAJBVcth0Dlg0DlQsbgn52/EYzSb6RhcnQHPB6nWKwgVypZh4YwJT3y/zvVr\nkLrnGAAZJxScAnMrkTvX8yczPILSH/Wn8rrZmOMSsSQkY/CrSMquowCkh4TiUj9Ata6hdk0yD9kj\nV+OZUPTV764KLjk64j6oD7fm2wtMJ322jMz9h+xtDlpsRvVPMzrWqUlGdsRsPB2KPqDaPXU93u5D\nwrwl9mW9ntTftpP0pbpfarfRBQaSle2ETefOoZPvUQHd0RHXvn1JWZxdTFuvx33kSFIWqqsfmRdD\nnUAyD+YZY/97j7Hn4LdIzLb11oJlZOyzjzHaRxvjWg1qcminXffssVCq18qv27JDc6xWW06f24yd\nM5Lls1aSmfEMnqB8vKrpT52n5bC9gSRFUX65vUJRlL+Ai9idcy9gdXbFYBRFyQBewF5t/aFo3Zww\np6TnLNssVtDaTdF5ueHZpCaXPl7D6R4zKDewA06+ZTDGJHJ10c+c6jKVK5/9TPUlw1QblZZlxNUx\nt16dVpIwW+xvnF8Zb45dvEFappFbaZmcjIgmw2jC3dmR56pXVK1VUJ5v1RSHR4y0HoTG1QlLSm4t\nQpvVkjPGWi93XBrVImb210T2nYx335fRVy5L5rlLuLVtCIBb24ZITuqjfo2LM7bUe+vexqVTezL+\n3o01KRnA/tdiwaFiBTyGvU3yytWqdSUXZ6x5dMlzTt3G9ZUXSf9rN9Zb2bopqWQeOqpa6zYaFxds\nqam5K6xW0Grz9XF66SUyd+3ClmRPLbkPH07aunVY4+IeQ/cOW+81xi+3t9t65xj7lKfY+4NJWqF+\njF1cnUnLc05ZrBa02bqV5Uq0e6UNK+d+nW+bfiP7cODvf7hw7pJqvUfCaiv4qxB4WjnsWOzO+U4u\nYU+RlAVO5G1QFKXAyU5LSgZaV6ecZUkj2T9ggCkxlZQTFzDF3gIg6VAoLjUrkfDnUWxme5/kw2Ho\nS3mpMgjAxaAnLSs3srDabDhkn3C+pb3o3iyQIcs3U8bTjUCfUni6ON1vV/96rKkZaPIcvyRpcsbY\nkphMxqnzmOPsY5x2+CyO/r7ELltPmcmDqLx2Fik7j2C6od6pWNPSkZzzjJsmV/c2zi+0Jf7DKfnW\nGYLq4Dl6OAlTZqrPXwO2tHQ0Ls55dKW7dF3atyF2zDTV+74f1rQ0JOe8mpq7cqhObdtya7I9vaPx\n9kYXGIi2XDn7spsbHpMmkTRN3TFZ09LR5B1j6e4xdmnfhrixU/OtMwTVwWvce8RPmqU6fw2QlpqO\nc57PrUajwZKt275rO4qXLs7nP35KmQqlMZlMRF2N5oXObbkZFct/urfHq4QXC76fy9Au76vWLjD/\n47f1ZQB3hlGuQKXs1534YY+iywIV8jbIslwb0CiKcvxhoslHwvBqV5+4Xw/iVs+PtLArOW2ppy/h\nUr0iDl5umJPScAvyI2rNX/h80A1TYgrXlvyKS4APWY/gTOr4lmH3mQheqOvHqYho/Mp457QlpGaQ\nlmnim+FdSMnI4p1lv1K1jPovhX8L6UfP4da6Acl/7MOpjkymEpHTlnH2Io7VKqIt5o4lORXnujKJ\n67bh3KAGCWu3kXEsDPcXnyP9aKhqXeOpMzg2bUzG37vR1/THfCF/ZCW5uIBeh+VmbjrKEFQHjxFD\niXt/HJbomEeyN+vEWZyaNyL9z93oA/0xXbicX9fVBUmvwxITe589qMd05gyG554ja9cudAEBmC/d\ny1Y91li7pjU+nvjevXPai2/cqNpZA2SdPINTs8ak/2Uf47tsdXFB0uW31RBUh2KjhnJz2Dgs0TdV\nawKcPnKGJs83Zsfm3dSo58/F0Fx7l07/Iuf/fiP7kBCbwD+7jvB6014563869D0jeox+JO0C8y/P\nYT+uww4F6sqyXEZRlChZlh2xpzy6AC/JstxRUZTNANn56arAbuyR9iZZltcpihIry7IrsByYBjzU\nYcf9cRjP5rWovfkTJElCeX8J5Qb/h4zL0SRsD+Hy9DUE/mDP68ZuPkB62FWuLtqEvOQ9vNoGYTNb\nUIYvUW1s60BfDilX6b1wA9hsTO3Rhm93nqBCCQ9a1KjE5ZgEeny6Hp2DhhEvN0GreVoZp6dP8raD\nuDati+/6uSBJXBuzEO/+r2CMuEHK34eJmbuaSqvsziLpj71khUdiyzJSfp79oqApJp7r4z5TrZux\nax+GBkGUWLEIJEj8eA6ub3TFfO0GmXsP4FCxPJao6HzbeIwYiqTT4TVprF37ylVuzVqgSjd95z4c\nG9Wj1NefIUkScVPm4vZmF8xXb5Cx5yC6iuUx33i0L4P7kbV3L/r69Sm2eDFIEsmzZ+PcrRuW69fJ\nOnAAbfnyWKKjH74jlWTs3IdjwyBKffk5SBLxU+fg9mZXzFev2231KY85Kr+txT4YgqRzwHtq9hhH\nXiNxhrox3r1lH8HNg/jvL4uQJJg+Yg6vD+rK9cs32PfngSdm3+NgM/+77xKRbI85B6Msy52BCUA6\noAdWKIqyQpblksBCoHJ216vACEVRrmdv1w6YCFgAN2CloijL8u57T+luhfJ1F/x1s2euWVjTqyoN\n3isUXc8S6Q/v9BSwmJ79l6ije+FMJZuVqn14p6fAG1GFE6Xuv77jseexTR39aoEP3nXuz8983tzH\nzmErirIR+x0hd66/CfR4wHbbgcKZjFkgEAjuxf94DlsgEAj+d/gfz2ELBALB/ww24bAFAoGgiPAv\nv+goHLZAIBDcRkTYAoFAUEQQDlsgEAiKBo97m/PTRjhsgUAguI2IsB+dJYZnMJ3iPZg55rdnrpme\nVji3pMuHPy8U3VV1JhWKbl1SH97pCWOLeebPVwAQikuh6KZY7jWNUBFBOGyBQCAoGtyeIO7finDY\nAoFAcJt/t78WDlsgEAhuIx6cEQgEgqKCcNgCgUBQRBApEYFAICgaiJSIQCAQFBFs5kd32LIsa4Cl\nQG0gCxigKMqF7LY62OsD3KYR8ApwGAgHzmSv/1lRlPtW/iiSDluSJPp/MhifgEqYsswsH7uYmMjo\nu/qMXTWBkO2H+WvNNlw8XBn22QicXJ1ISUzhi3FLSY4vcBnJ2zul+IRh6GVfbEYTsZMXYL56AwC9\n7Iv32Hdyuhpq+RMzfAoZ+0MAcO/5Kg7Fi5Gw8CvVmmU/HoJj9crYjCauf/g5xsionGbXFkGUfO8N\nkCQyzlwgatIytB6ulF8wyl5INzGF6x8twqLW1gJw6mwY85d9xarFc57cTiWJpjPewiugIhajmb2j\nV5IckVv9pPHUXpQKroYpLROA7f3m4+jpSosFg5EkiZTrcewd8yWWTJVVvSWJijMG4xxQCZvRTMTo\nxWRF5J5T7q3qUXbE6yBJpJ+6yJXxyyk9tDMeLesBoHV3QVfCk5P1+qrS9Jlp17RmmYgYvSSfpker\nepQd+RogkX76IpEffZGtWRcABw+75om6/dTZescxNJyZPd5ZZg6OXklKnvEu26oWtUd2BiDhdAT/\nfLTqMaQkxs8ajVyjKkajiSkjZ3I14tpdfZas+ZSdW/eyfvXPuLq5MHPJFFzcXNDpHJg7+XNOHT1z\nH4UnwOOlRF4BHBVFaSzLciPgU+BlAEVRTgAtAWRZ7gZcVxRlqyzLbYEfFEUpUFXwp1Z+Q5bllrIs\n22RZ7n7H+lOyLK/K/r+sLMvp2QYUmOAXGqIz6Jn46jh+mL2aXhPu/pC8PupNXN1dc5ZffbcrYUdC\nmdz1I7at+p03xvRUbZNz6+eQDHpu9HyfhIVf4j16UE6bUblEVL/RRPUbTfLaX0n7ax8Z+0OQDHpK\nzBqHR/dOqvUA3Ns1QtLruNR1FNFzVlH6o/45bRoXJ0qP60fkgGlc6vwBpms30Xq5U2LIa6SHnOXy\na2OJX72ZUqN6P0Dh0fhqzXomz/oMY5ZKx/gQKr0YhNag49eXp3Jk5loaTsxfA6N4YCW2vDmb37tN\n5/du0zGlZNBgwhuEfvc3m7t8TNTBUGoNaq9a1/PFhmgMesJeHse1maspPzH3nNK4OFJhfB8u9PmE\nsI5jMF67iYOXO9FLNqJ0m4DSbQLGqDguv6+uJFqxFxuiMegI7TSOazO/pcKk/JrlJ/ThfO/phHYc\nS9bVvJoTUbpNxBgVz6Xh6suw5aVi9nhv6TSVYzPXUn9S7ng7uDgSNOENdvSex5aOU0i9GovBy+2R\ntVq3b47BUU+v/wzis0+WMmrK3T5q2LjBuHvkavR++w3+2RtCv1eHMHH4J4yfOeqR9QuCzVrw1z1o\nCmwFUBTlEFD/zg6yLLsAU4Hh2auCgCBZlnfLsrxeluUyDzq+p10vKQzIcdiyLAdCvsev+gKfA0PV\n7FQO9ufk7mMAnD8eTpVaVfO1N3ypMTablRO7c8tDlverwIldR+0HFRKGXN9flSEAjvVqkr7PHjFn\nnQrDEFDtrj6SkyPFhvQmftZS+7JBT+ovf5K44nvVegDO9WuQusdua8YJBadAv9y2ev5khkdQ+qP+\nVF43G3NcIpaEZAx+FUnJtjU9JBSX+gGPpP0gKpQtw8IZE574fksHy1zddQqAm8cuUqJ25dxGScK9\ncmmazelPx58nUe315gAU8yvH1Z0nAYg5Ek6pBrJqXddgf5J22cc57Vg4LrVzzynX+tVJD4uk/KS+\nyBtmYIq9hTkhOafds30jLElpJO85oU6zgT9JO4/nataqkk8zIyySCpP7Un3jdExxSfk0i7VvhDkp\nleQ9J1XbmpeSDWRu7LSPd9yxi3jXyh3vkvX9uBV2jfqT3+SFjRPJiEsmKyHlkbXqNqjN/h2HADh1\n7CwBtfN/Bp//TyusViv7dx7KWfft8rWs/3YTAFoHLVlPOEC4C6uK1924A3l/ylpkWb4zi9EfWK8o\nyu0q4GHAJEVRWgCbgEUPOryn7bBPAj6yLHtkL/cE1gDIsiwBvbD/bNDLslyzoDt1dnUmPSW3JqDV\nYkWjtZtSoVpFmr7cnB8//SHfNhFnL1O/bQMA6j8fjMHpzmLvD0fj4ow1NS13hdUK2vxD6Pbqi6Rt\n34P1lv3DZU1OJePgUdVaOZquTlhScjVtVkuOptbLHZdGtYiZ/TWRfSfj3fdl9JXLknnuEm5tG9qP\np21DpEew9WE836opDg5PPqOmc3PCmOe9tVmsSNn26pwNnPt6OzuHLWNrzzkE9G6Ll38F4s9F4vN8\nEAA+7eqhewR7tW7OWO7QvT3ODl7uuD8XyLUZqznfaxqlBnTEULlsTt8yQ7twY8Fa9ZquTvk1rXdq\n1uTq9NWE9/yYUgP+g8E3j+a7nbkxf51qzTvRud4x3tbc8TZ4uVH6OX+OTl/L3z3nEDDgBdx8Sz+y\nlqubC6kpuVMDWC0WtFp73cmq1X1p/2o7lsxZkW+blORUsjKz8C7hxYzFU/hsRr6yr0+cx4ywk7HX\np72NRlGUOwt6vgmszLO8A9iZ/f/PQN0HHd+zqEi6Aeic7aAbALfLI7cBTiuKEgt8hYooOz01HUcX\np5xlSSNhtdhHsHmXVhQr5c3EHz6mRdfWdBjQidot6rJp6U+UKF+SKT9Op0T5ksRHxd1v9/fFmpaO\nJo8uGgks+d851w6tSd6wVfW+76uZmpFPU5I0OZqWxGQyTp3HHHcLa3omaYfP4ujvS+yy9ejLl6Ty\n2lnoy5fEdEO9rYWFKSUDfb4x1tidJ2DOyOLMl9uwZBoxpWVy48A5vAIqcmja9/i0q0uH9eOx2Wxk\nJqqPAi0p6WjvOKduj7M5MYW0kxcwx9rHOeWfszjXsEeijn7lsSSn5cs9F1gzNQONq2OBNFMPncO5\nRqUcTfMjat6JKTUDneu9xzsrMZW4k5fIjE3CnJ5FzCEFrxo+j6yVmpKGs2vuD2yNRoPFYi8Y0LFb\ne0qVKcHKDYvp9HoHeg3uTpNWjQDwq16FFT8tYtHMZRw9ePye+35S2MwFf92D/cBLANk57NN5G7MD\nV4OiKFfzrF4JdMn+vw3wwOjuWTjs77GnRZoDe/OsHwhUlmV5K/Ziva/licQfiBISRt1W9ojKr241\nriiROW1rZn7DhFfGMK37BHb/tIPfV/7Kyd3H8W9Yg7/XbmfKa+OJjoxGCQlTbUjW8bM4N7NH6YZa\n1TGej8jXLrk6I+l1WGJiVe/7fqQfPYdbS3sqzKmOTKaSq5lx9iKO1SqiLeYOWg3OdWWyLlzFuUEN\nEtZu43L3cRgjo0g/GvrEjudpEx0SToXWtQEoWa8KiWG557aHbxk6bpqEpJGQHLSUDq5G/OkIyjer\nyZFZ6/m923RsFivX9qi/KJUaEoZHa/s55VKvGhlhuedU+ulLOMkVcSjmBloNLvVkMs7bj8u9WW2S\ndh57JFtTj4TimUczPfTKAzSrkRl+LY/mk3FcN4+EUy57vIvXq8Kt0NzxTjgdgadcHkMxVySthuL1\nqpAUfv2RtU4cOUWzNo0BqFWvBufDcieJWvDxEt58aQD9Ow/l13W/8+3ytezfeQjfapWYt2I6496Z\nzL4dh+636yfGY0bYPwOZsiwfABYAI2RZHinL8u0LWNWAiDu2GQe8I8vyLuBtcnPb9+Sp3yWiKMql\n7ET7e8CHgC9QHAgEfBVFsQDIsrwC6IM9p/1Ajmw9RK2mtZm2cRaSBMtGLaLDgE5ER0Rx9K8j99zm\nxsXrDF3wPgCJ0fH8d8xi1bak/b0fp8b1KPvtApAkYid+ikfvLpiuXCd91yH0PuUx34h5+I5UkLzt\nIK5N6+K7fi5IEtfGLMS7/ysYI26Q8vdhYuauptKqaQAk/bGXrPBIbFlGys8bCYApJp7r4x7vwtSz\nJGJLCOWb1aTTpkkgSewe+QWBA9uTFBHDlT+PcWHDfl7+dSpWs5nzP+0jMfw6Di6OtFr0DhajmcTw\na+wf/41q3VtbDuHerDbVN80CCSJGLqLUwE5kRkSR9OcRrs36Fr81UwBI/G0fmYrduTr6liN576Pl\nkRO3/IN78zr4/zITJInLIxZRalAnsi5HcevPI1yb+R3Vvp8MQMLm/WTc1qxSTnW+/H5c2RJCmeY1\nefGXSUiSxP4RX+A/qD0pl2O49ucxjs/8kbbfjwUgYvM/3FKuPWSP9+fvP3bTqHkDVm/+AkmCie9P\np9fg7ly9fI1d2/fdc5vhH72D3lHP2E9GAJCanMrwt8Y+8jE8jMcpmq4oihW7081LWJ72I9jvJMm7\nzWWgVUE1pKc1Ybcsyy2BtxVF6S7L8jCgl6IoDWRZfhH4EVipKMrIPP0bAKsBf0VRbACv+7xSKHex\nz3RPf3inJ0x6mv6Za4KYXvVZYLP9/5pedV4hTa96KvrgYw90TMuWBfY5pXbteuZv7FOLsBVF2QXs\nyv5/EdlXPxVF2Yr9auqd/Q8D1Z/W8QgEAsHDeJwI+1lQJB+cEQgEgqeBzVo4v4YKinDYAoFAkI3V\nIhy2QCAQFAlESkQgEAiKCCIlIhAIBEWEp3TT3BNDOGyBQCDIRkTYAoFAUEQQFx0fg1LSk5+0qCB4\nVEp85pr6m/eenOBpU1gPsLx1Ylqh6K6o++ztLWkpnN/ZxWyWQtGtaihRKLpPAhFhCwQCQRGhsJ5K\nLSjCYQsEAkE24rY+gUAgKCJYRYQtEAgERQOREhEIBIIigrhLRCAQCIoI4i4RgUAgKCKIHPZTQJIk\nun3Sn3L+PpiNJn4Yu5y4yNxKL50n96FK/epkpmUAsGLgXJzcnOkx5x00DhokSWLth19w81KUWmFc\n3hmBtnJVMBlJXTQXa5S9ZJK2clVcBr6b09VBDiBl+gTM4aF4Lv8OS+RlAIwH95K5eYMqTc8xw9H5\nVQGjiYQZ87BcuwGAzq8KniNyS2HqawYQN2Yi5suRFJswGkmrBUkiceZ8zFeu3k/hvrpNZ7yFV0BF\nLEYze0evJDkid4wbT+1FqeBqmNIyAdjebz6Onq60WDAYSZJIuR7H3jFfYsl88lWuT50NY/6yr1i1\neM6T26kk0WL6W3hn27tzTH57m07pRek89m7pPx+DpyttFgwGSSL1Why7xn6JWY29kkTdWX3xDKiI\n1Wgi5IOVpOXRLN26Nv4jOyNJkHjqMsc/XIWDmxMNFg9B5+aERufAySnfkXD0gmpbA2f1w71GRaxG\nMydHfkF6Ht2SrWtT7YMuIEkknbrM6XFfoXU2UG/pu+g8XLCazJx4bxmZ0eqeV5AkiUGfvE2lgMqY\nskwsHbuY6Miou/qMXzWJw9v/YfuarTi7OTNy8WgcnR0xGU189v58bsXeUmevCv5nctiyLI8D2gI6\n7EXeRwHDgHpAQp6u3yqK8qUsy8WAeUDV7G2uAIMVRUnKri7zCfaakm7Aj4qifFrQYwlsF4zOoGNB\n54lUquvHqxN6sWLgvJz2CjV9Wdp7Bml5irF2mdKXPau3cnp7CNWb16bjmB58+XaBJQHQN2oKej3J\no4fgIAfg0m8IKdPHA2C5fIHkj+wlyPRNWqKPj8N07DC62kFk7d5B+hePVqbLsUVTJL2e2AHD0Nf0\nx3P4O8SPngiA6fxFYofYi/Y4tW6BU2wcWYeOUGzSWFLXbyJzz34MDevjMWQA8eMmq9Kt9GIQWoOO\nX1+eSsl6VWg4sQd/9l+Q0148sBJb3pxNVmJuBZfm8wYS+t3fXNx0EPmNltQa1J7jn//ySHbfj6/W\nrGfz1h04OT7Zh6p8XwhC66hj4ytTKVW3Ck0m9mBLHntLBFbit56zycxjb6u5Azn73d+c33QQ/+4t\nqT2oPUdV2Fu2vX2Md3acgle9qtSe/CYH+s4HwMHFkcCJb7C7yycYE1KpNuQ/6L3dqNq3HTf3neXC\niq24VilDw2VD+bvdBFW2lm5fH62jjv3/mYxnvarUmNKTI2/ZPwtaF0f8J73Jwc4fY0xIocrQjui9\n3SjXuSm3Tl3m/PyNlH+9OVWGduTsxNWqdBu80AidQc+Hr46hWl2Ztyb0Y9bA6fn69BjVE1d315zl\nVl3bEBkWybczV9G2ezteGdyZVZ98pUpXDf8Tc4nIshwAdAKaKIpik2W5DvANcBwYk11F5k5+AJYr\nivJz9j5GAMuxF+RdDPRWFCVMlmUdcECW5R2KohSosmiVYJnQ3fY6ehHHz1MhsEpOmyRJlKhUmu4z\nB+FW3IND63ZwaP0uNn3yLRkp9tJfGq0GU5b6yM8hoBamo4cBMCvncPCT7+5kcMSpR1+SP3wPAG3V\najhUrYb7zM+w3rpF2hefYUtMuHu7+2CoXZPMQ/Y6lcYzoeir360pOTriPqgPsYPtXxhJny3Dmppm\nb3PQYjOqt7V0sMzVXacAuHnsIiVqV84jKOFeuTTN5vTHqbgHytpdhK/bQzG/cuwdsxKAmCPhNJrS\nU7Xuw6hQtgwLZ0zgw2lzn+h+SzeQuZJtb8zxi5Sold9ej8qlaTnbbm/oul2EZdt7Zazd3uiQcJpM\nVmdv8QYy0Tvt53HCsQsUyzPG3sF+JIVepdbkN3H1KcnlNbswxqdw/ostWIwmwH4eWzNNqm31aiBz\nc4dd99axC3jU9s1tC65GSuhVAqb0xLliSa58vxNjfAqXV2wBjT36dCpXHFOy+jJ6/sH+HN9tL1gc\nflyhSq2q+dobv/QcVps1pw9ApBJJuSrlAXB2c8ZserpPBP/bUyIFrZqeBFQE+smyXE5RlBNAg/t1\nlmXZByh921ln8zkwOPv/GOBdWZaDsEfrTQrqrAEcXZ1znC+A1WJFo7Wbonc2sOebbax+fxHL+syg\naa92lK1ekbTEFKxmCyV9y/DK+F5s/eyngsrlIDk7Y0tPy1m2Wa2g0eY/tnYdMO7fhS05CQDLtStk\nrPmK5A+HYzy0F5fBDyyKfBcaF2dsqXk1LaDN/7a5dGpPxt+7sSYlA9j/Wiw4VKyAx7C3SV6pLhIC\n0Lk5YcwzxjaLFSlbV+ds4NzX29k5bBlbe84hoHdbvPwrEH8uEp/n7VXAfdrVQ+f05KcWeL5VUxwc\nnnwmT+/qhDH5/vaeXrWdv95bxm+95lCzd1u8q1cg7v/YO++4KI73j7/3jnoUFRvYFWUVK6ho7L2k\naGKLMTG22E1sMZqo2HvUJLbEaDTNxF4TWxJR7NixsCgKioIi0uu13x93Hgc2Fgvy++7b171kd2bn\nM+2em52dnedyBBXM5a3Q1hcbjbzy2jo7oktKy9I0ZGnaublQorE3wTP/JLDXfCoP7IBzJXe0iakY\n0rXYFy9E/aXDCJ6zXnZZbVwc0Vm1LfrsukUbe3NlxjpO9JpLpYEdcarkbopnMPLGpklUHNCe6L8f\n7+z6aWicNaQmZfVl6+9tOa9yNO3cnD8Xrst2TXJcInWa1eHbf5bSedB7/Lt+v2xdORgMQq4/+UGu\nDLYkSbcxj7CBY6IohgBvm4Pni6IYYPWpCZQCbuRIQy9JUoL58ENMRnsFcA9YKIpirnt7enIqDk4O\nWYVQCRj0pleUMtMyOLjmb7TpmWSkpBN69BKlq5UHoMob1flk5Th+Hb1U/vw1YExNRXDUZJ0QBDBk\n36/BrnkbMvbtshxrL5xBG2z6Lco8HohNpSqyNA0pqQgax6wTKhXos7+OpWnfhpTtf2c7Z1+3DkXn\nT+6mNnkAACAASURBVOfB1Dny568BbVIadk7ZdY1mXV1aBhdX70Wfnok2JZ07Ry/j5l2O49PXUb6d\nD29tnIjRaCTdakrqdSczOQ1b56zyCjnKe2H1XnTm8t4+cpmi3uU4OmMdFdr60HmDubwP5JVXm5yG\njVU/RsjSzIxL5sG562TEJKBPzeD+iRAKVzf1Y9eqZWm28Ssuzd3A/WMhj0v6qeiS0lA7W7etkE03\n/lyYRTf2+BVca1SwRD3WbSZHO0+j3urRsnVTk1NxtOpT1t/b5l1b4VbSjWl/zKRlt1Z0+qQzPs19\n6THqA7Z9v4WRbUYwvfcUxn3/pWxdORiMQq4/+UGuDLYoipWBREmS+kuSVA74CPgecMM0JdLC6hOM\nab66TI40bEVR/FAURQfAV5KkGZIk+QFVMI3eB+U209dPSXi39AGggk8V7kg3LWElKpZi1KbpCCoB\nlY0az/oity7eoMob1eni34cVfWZzK/h6bqWyobsSjG29BoDpoeLDB4kPETROCLa2GO7HWM45f/oF\ndo2aA2Bbqy66sFBZmpkXLuLQyKRpV6MaumvZ8y44OYGdLfp7WZr2detQaPRw7o+agDZEnt5Dok+F\nUrZVbQBK+HoSF5Jl9AtV8uCdbf4IKgHBRo17fS9ig8Mp07QGQXM38lf3WRj1BiIPXcyTdn4QHRRK\neXN5S/p4EmtV3sKVPOiy1d/SpzzqexFzMZyyTWtwYt5GtveYhdFg4FagvPLGBoXi3roOAG6+lUm0\n0oy/EE6hqmWwc3NGUKso6luZxNDbuHiVpuGPn3Fy2DKizdMacokLCqWkWbewb2WSrHQTgm/gWrUs\ndm4uCGoVRepWITk0ksqfdqZMtyYA6FLSLQZeDiGnruDbsh4AXj4iEVKEJezXOWuZ8O44/HtO5MCm\n/9ixajtnD54hOSGZFPPdQEJsPBrrH5qXgNEo5PqTH+T23rIWMEgUxU6SJGUCoUA88NjtwCRJui2K\n4n1RFDtLkvTwKcxITNMoG4HfRFFsJUlSqCRJD0RRjAAycpvpC3uDEJvWYvTm6SAI/D5uBS0HvEVM\nRDQX/zlN0NZAxmydhUGn4+SWQ0RfjaTPd59hY2fDRwuHAXDvehTrv/oxt5KAaYWHbZ16uM5fZloZ\n8O1cHDr3QB8VifbkUVSly2K4F53tmtSff8D5swk4vNkZY3o6yUvkrWxICziMvV9div+4BASImzEf\n5w+6oYu8Q3rgUWzKlUEflV2z0OjhCLa2uPmPB0B78xbxcxc/LvknEr77FGWa1qDTNn8QBA6OWUnN\ngR1JCL/Lzf1nuLb5CJ13TMOg03F102HiQm9j4+RAyyVD0WfqiAuN5MjEn2Vp5ifX95yibNMadNlq\nKu9/Y1dS21ze8P1nkDYfoeuOaRi0OqTNpvLaahxos2Qo+gwdD0IjCZwkr7y3/z5FiWY1abljCggC\np0b/QJXBHUm+cZeofWcInr2epn9MACByx3ESpUgarRmD2t6WOjN6A6BNTLM8qMwtUX8HUaxZTRrv\nnAYCnB/1A5UGv0nKjbvc3XeaK7P+pIFZ987O4ySFRJJxPwmf74ZStldLBJWKc6O+l6UJcGLPcWo3\nqcPsLfMQBIGln3/LO590Jjo8iqB/Tj72mj++/p1h80fQofeb2NiqWTFhmWxdObzuc9iCMZePRUVR\nnAj0AJIxjcznAe/y6CqRg5IkTRFFsRiwDNP0iB0QBgw1rxJpBMzHtHrECAQBoyVJyvZE4bMK7+fL\nM9spNaOfHekFk3ZP/exIL4Hdt0vli+7/1PaquvxZemCfTzsZrbFPeXakl8CWiB3PbW2Pl+qS68Zq\neGfLK7fuuX56I0nSLGBWjtPbnhL/PvD+E8KOAk1yq62goKDwKtAbcrsOI38okC/OKCgoKLwMXvPd\nVRWDraCgoPAQI6/3HLZisBUUFBTMGP4/vOmooKCg8L+AQRlhKygoKBQMlCkRBQUFhQKCXjHYCgoK\nCgUDZZXIc1BTZ5svuvdCnF65psblxe8bnRt8SH52pJdAfrzAAjDw7Kt/YedKPXkbfr0oDukL5Yvu\njqjT+aL7IlAMtoKCgkIBQZnDVlBQUCggvOYuHRWDraCgoPAQZVmfgoKCQgHhsduPvkYoBltBQUHB\njEFQRtgKCgoKBYLX/M10xWArKCgoPERZ1qegoKBQQHieVSKiKKqA5UBtTB60PpEk6ZpVeEdgCiAA\np4HhgAPwG1ACSAL6SJIUwxMomAZbEGgyuy9u3uXQZ+oIHLeKxPC7luA3pvWmZH0vtCnpAOzrvwiH\nws40XzwYQRBIun2fwC9Wo0+X+bKKIOA+bTj2VStizNQS9dW3aG9mOfN1alaP4p/2AkEg/eJVoqcu\nR1XImdJfj0PlrEEfn0jUxO/QP0h4isijmm5ffoadlyfGTC2xMxaiu3UHAFsvT9w+H2aJal+zGvfG\nTiH9qMmjtUuvLqiLuhG/ZJW8cpp1y80ejMa7AsZMHeHjlpIRnuWJx7WlL6VGvw+CQOqFMG5O/AH3\n4V0o1MIXALWrE7bFC3Pet59s3eaz+lLU3LYHvsjetk2m9sbdqm13D1iEfWFnWi8ebHLbFnmfgPGr\n0clt22dw4VIIi1b8xNql8ly8PRVBoPTMoThUM/WnyPFLyIzI6k8uLepSYmRPBEEgNTiMO5NXoHLR\nUG7JF6g1DhgytdwavRBdTLxs3Raz+lLMXMf/fbGKBKs6bjq1Nx5WdfzXgEXYuWho++0QEAQy4pPZ\nN2K57DoWBIGlS+ZQu5Y3GRkZDBoyjrCwcEv40CF9+PjjHmA0snDxD2zatNMSJoqeHD28i1Jl6pCR\nkWtvgrJ5zlfT3wUcJEl6QxTFhsBCoDOAKIouwAKghSRJ90VR/AIoBvQGgiVJmiqKYk9gEiZ3io/l\npRpsURRbABuAy5h+VeyBoeYMuUqS1MUqbrQkSe65SbdCh7qo7W3Z0XkaJXw9aTC5F/sHZPksLFaz\nArs/nEdGXNZbfM2+HsiV3/4lbNsxxA9aUGtQR85+t/1xyT8Rl7ZvINjbEtFjLA51REp++QmRQ2cA\noHJypMT4/tz8aAL6uETcBnZD7eZK0YHdST19idjvN6BpVIcSY/sSNfHbXGs6tmyMYGdHdN/PsKtZ\njSKjhxAzxvSWoDY0jLuDxgKgadMM/b37pB8NQrC3o+jksdjVEEn997CsMj6kcIcGqOztCOk8ASdf\nL8pM7kfYgDnmsjpQdmIfpO6T0MUl4T70PWzcXIletoXoZVsAqLx2IpGz5Pt0rNS+LmoHW7a8O42S\nPp40ntyL3VZtW7xmBXZ9NI90q7ZtuWAgl377l6vbjlGtZwtqD+rIaZlt+zR++n0jO/f8h6OD/QtL\nE8C1XUMEezvCuoxD4yPiMak/EQNNTp1UTo54fNmPsJ5foY9LpPjgLqjdXCncuTnpIeFEz12LW892\nFB/UhahZP8nSfVjHm6zq+O8cdbwjRx37jenC1Z0nuPjLPzT8ojvePZtzYe1+WbqdO3fAwcGeJs06\n0cDPlwXz/enStT8ARYsWYfDgj6lXvz0ODvYEnw+wGGwXF2cWzJtCRsbLfxv4OddhNwH2AEiSdFwU\nxXpWYY2AYGChKIqVgFWSJMWIotgEk7tEgN3A5KcJvAp/OP+Zvak3B/yBGebzTURR7J2XBN3ri9wK\nuADAvTNhFK9dMStQEHCt6E7T+QN4Z6s/Xu83A6BIldLcOmDyMn03KJSSfqJsXce61Uk5ZHrtNv2c\nhEONKllhPtXICA2nxIRPKL9uPvr7cegfJGJfuRzJh04BkHb6Mo51vWVpOtSpQZp5xJwZfAU7b69H\n4ggODhQa0ocHX5sclAp2diTv2kfC6nWyy/gQ5/rVSAg4A0DKmVCcalfOCqtXldSQCMr490PcPBtt\nTDy6B4mW8MIdG6JPSCHx0DnZuu5+IjfNbXv3bBjFa2Vv20IV3WkxbwDvbfGnqlXb3jS3bfSpUDzq\ny2/bp1G2lAffzJ70QtMEcKrvTdJBU39KPSuhqZnVnzR1q5IuheMxqT+eG+aiux+P/kEi6SERqM2e\nw1XOGow6+QvRSuWo4xI56rhwRXdazhtA1y3+VDPX8f1LN7EvpAHAztkRfR50mzTyY+++AwCcOHmG\nur61LGGxsXHUrdcOnU6Hu3sJ0tOzRtHfr5jPJP+5pKamydaUi0HG5zG4Ata3z3pRFB8OiosBLYHx\nQEdglCiKXjmuSQKeup/Aq54SKQLcw/RD8SUwTRTFA5IkRcpJxNbFkcykVMuxUW9AUKsw6g3Yauy5\nvGYfF1buRqVW8daGr7h/4QaxlyMo37YuVzcFUr6dL7aO8kdLamcNeitdDAZQq0BvQO3milODWlzv\n9CmG1DQq/LGAtLMhpF+5jkurhmRcvo5z64aoZOoKThoMyVZOTfVZmg9xfrcDqf8cxBBvMpqGpGTS\nj5/G6Z12sstoKatL9rIarXRt3FxxbVSTS+1HY0hJp+qW2SSflsi4YZqq8RjelesjFuZJ187ZkczE\nJ7dt8Np9nF+5G0GtovOGr4g5f4P7lyOo0LYu0qZAKrT1xUbzYkfCbVs24XbU3WdHlInaWYPhSXVc\nxBWnN2px9c3PMKSk47lxLilnQtDHJ+Lc1Aev/ctQF3YhrPt42bq2zo5kPKWOL6zdxzlzHb+34Svu\nnb9BctQD3pjwPl6dG6G2t+Xkoi2ydV1cnUlMSLIc6/UG1Go1er3efKxn2NC+TPH/nKXLVgPgP3kM\nf+/+lwsXLsvWywvPuUokEXCxOlZZORaPBYIkSYoGEEXxEFAnxzUuwFPnt17FCLuVKIoBoigeA9YA\nf5rP38Y0/F8tN0FtUhp2To5ZJ1SmzgagS8vg4uq96NMz0aakc+foZdy8y3F8+jrKt/PhrY0TMRqN\npMclPSH1J6NPTkWVQ/eh4dTHJZEWfBX9/TiMqemkBl3EvlolYn/YgG2ZkpRfNx+7MiXQRt2XpWlM\nSUXlpLHSFLIZawCnjq1J3rpbdnmehj4pFbVVWQUrXV1cEinnr6GLiceQmk7SiUtoqptGaQ5VyqBP\nTMk23y2HzOQ0bJ2tdbO37YXVe9GZ2/b2kcsU9S7H0RnrqNDWh84bzG37QH7b5geP9ierOo5PIu38\nVUsdp5y8hKN3JUqO/ICYH7YQ2nY4N3r7U37Fl7J1tclp2D2ljs9b1XHkkcsU8y5Ho4kf8O/YH/ij\nzQQCp/xKm2+GyNZNSkzG2cU5q7gqlcVYP2T5irWUKedD0yYNadG8Eb0+6EL/vj35d/9G3N2Ls+fv\nvN815gaDkPvPYzgCvAlgnsMOtgo7A9QQRbGYedTdENNUseUaTCPvwKfl71VOibwB+GAy2I4AkiT9\nDiSJojhUToLRp0Ip26o2ACV8PYkLuWUJK1TJg3e2+SOoBAQbNe71vYgNDqdM0xoEzd3IX91nYdQb\niDx0UXZB0s5cxrmFaVrKoY5IhhRuCUu/dA37KuVRF3EFtQrHOlXJvHYTTf0axK/fQ0SvL8iMiCLt\njLyRQsa5Szg29gPArmY1tNduZAsXnJ0Q7GzR333ig+U8kXwqhEKt6gLg5OtFWkiEJSw1+DqOYjls\niriAWoWTr0jaVVMbuDatTcKBM3nWjQ4Kpby5bUv6eBJr1baFK3nQZaupbVU2ajzqexFzMZyyTWtw\nYt5GtveYhdFg4Fag/LbND1JOXcGlpak/aXxE0qWsOk67GIaDmNWfND4i6Vdvok9IRp9kuuPSxcaj\ndtE8Nu2nEfWMOu76mDrOSEixjMpT7sZZpkfkcORYEB07tAKggZ8vFy9esYR5eXmyccOPAGi1WjIy\nMjAYDFT1bkLrtt1p3bY70dExdHizl2xdOTznlMhWIF0UxaPAYmC0KIpjRFHsJEnSPUyzCnuBE8AW\nSZIuAiuA6qIoHgYGAdOelr9XPSXyuPvKocBxst9KPJXw3aco07QGnbb5gyBwcMxKag7sSEL4XW7u\nP8O1zUfovGMaBp2Oq5sOExd6GxsnB1ouGYo+U0dcaCRHJsp/IJa07yhOjX0ov/5rEASiJizGrd97\nZEbcIfm/E8QsXEvZn0xT9Em7A8m4GoEhI5NSC0wPBnV3Y4n66htZmqkHDuPQ0JeSa75FEATuT12A\ny4dd0d26Q9qhY9iWK4Puzou/XY/ffRzXprWpum0uCBA+ZgklB3YiPTyKhP1BRM79lSq/TwUgbtdh\n0qWbADhUKk1i4Pk8617fc4qyTWvQZaupbf8bu5La5rYN338GafMRuu6YhkGrQ9psaltbjQNtlgxF\nn6HjQWgkgZPkt21+kLj3GC5N6+C5eT4IApHjvqXYgM5kRkSR+M9Joub/TMVfTN/fhL8OkxF6k+iF\nv1Nm3qcU/ehNBFsbIicsla0bZq7jrlv9EQSBf8aupM7AjsRb1XE3cx2HbD7Mg9DbHPL/meYz+iCo\nVabvXB7qeNu23bRp3YzAg9sRBIEBA0czauQgroXdYNeu/Vy4cJkjgTsxGo3s2fsfhwKPy9Z4XvTP\n8dBRkiQDkPPWI8Qq/E+yZhgenksFuudWQzAaX967PTlWiegxGeXlQAvgT0mS9pjjdQa2SZKUrbp+\nLPNRvrx41MTxwSvXzK/9sGPuOT870kvgpJA/usp+2C+fUXcP5IuuLvP2c79Xvrxs7m3OsFu/vfL3\n2F/qCFuSpABMC8JzsjZHvO3wmm+TpaCg8P8e5U1HBQUFhQKCspeIgoKCQgFBcWCgoKCgUEBQpkQU\nFBQUCgiKAwMFBQWFAoIyJaKgoKBQQFCmRJ6DKHX+PLMt6Z3y7EgvGG1C/vy0G+/mj24Jff60bX6s\nia52Kve7M75I0mp9ni+6qtfczdbTUFaJKCgoKBQQDK+5yVYMtoKCgoIZ5aGjgoKCQgFBmcNWUFBQ\nKCAoq0QUFBQUCgjKHLaCgoJCAeH1NteKwVZQUFCwoMxhKygoKBQQ9K/5GLtgGmxB4M2Z/XD3Locu\nQ8vO8auIi8jyutJ+Sm/K1hfJTDZ5WV4/cBGCSsWIgIXck0zukEL2nuLkmr2ydTVDRmNToTJGbSYp\nSxdgiL4NgLpiZTQDRlii2ojeJM+ehPbyBZyGjkFVwgPB1oaUld+ivxryJIXHarqMHo2NpydotSQu\nWID+tknTpnJlXEZkadp6exM/aRKZJ0+ajmvXptDEidzv0UNeOc265ecMRuNdAUOGlvBxy7L5aSzU\n0pdSY3oAAqnBYUR8tRL34V0o1MLHlLdCTtgWL8w5n/6ydX3m9qOwdzkMmVpOjV1FSnhW27q3qk21\nMV0QBIi7cIOzX67FxsURv6XDsHVxRGVrw/mpv/Hg9DXZuqVnDsWhWkWMmVoixy8hMyLKEuzSoi4l\nRvZEEEzlvTN5BSoXDeWWfIFa44AhU8ut0QvRxTzVh6psLlwKYdGKn1i7dP6LS1QQqDBnEBrvChgz\ntVz/fHmOtvWhzJj3QYCUC9cJ/2olHiPeo7C5bdXmtj1bZ4BMWYElS2ZTq6Y3GRmZDBk6jrCwcEv4\nkCF9+Lh3d4xGWLz4ezZt3gXAjeunuGZ2jXfixGkmTZ77nBXwZP6nR9g5PM4IgD0wVJKks6IoDgI+\nwlRHtsBEs8ODZ1K1fV1s7G356b2plPapTLtJH7J+4CJLuEfNivzeey5pccmWcxUbV+fijqPsmfJL\nnstj26AJgq0dieOHofbyRtN/GMmzJwKgv3GNpEmjTPEatcDuwX20Z0/i2LMv+ogbpHwzG3X5Sqgr\nVpZlsO2bNEGwsyNu+HBsvb1xHjqUhEmTANBdu0bcKJOmffPm2MfEWIy1qnhxNN27g03emrhIhwao\n7G250mkCTr5elPXvx7X+c0xpOzlQZlIfpG6T0MUl4T70XWzcXIletoXoZSZv2lV+nsitmfLdSJXq\nWBe1vS0H3pmKm29lak/5kKP9TG1r4+RAzckfcLDrTDIfJOM17G3sirpQuV877h2+xLUf9+Ds6UGD\nFcP5t90kWbqu7Roi2NsR1mUcGh8Rj0n9iRg4y1xeRzy+7EdYz6/QxyVSfHAX1G6uFO7cnPSQcKLn\nrsWtZzuKD+pC1KyfZJf5Sfz0+0Z27vkPR4cX6wW+SAc/VPa2XO70Jc6+XpSf0pfQfiYjqHJyoNzk\nPlzpNhndgyQ8hpnaNmrpVqKWbgXA6+evuDVT/veoc6cOONjb06x5Z/z8fJk/bzJdu5mMftGiRRg8\nqDf1/Trg4GDP+XMH2LR5F56eFTh3Lpj3uvR7cRXwFF73h46v0glvc8AfmCGKYk+gLdBakqQWmAz3\nr6IoFstNguXqi4QdNPkNvH32Gh61KmYFCgJuFdx5e+4n9Ns8hTo9mgMmI+5RsyJ91k+i2/LPcC5R\nWHZBbL1roT1rMoj60MvYVBYfjWTvgKZXP1J/XGK6xscPo06Ly9QFOL7fx3J9rjVr1iTDbIS1ly9j\nKz5G08EB5379SFpq9u9nZ4frmDEkfSPPf6Q1zn7VSDhwFoCUM6E41fLMCqtXlbSQCMpO6UfVLbPQ\n3k9A9yDREl6kY0N0CckkHpLv27GYn0j0AdN1D85co0jtrLYtWr8KCVduUWvKh7TYNpmMmAQyY5O4\nunI313/9FwCVWoUhXStb16m+N0kHTwOQelZCU7OKJUxTtyrpUjgek/rjuWEuuvvx6B8kkh4Sgdrs\nfVzlrMGoe7GvXZQt5cE3s+X98OQGF79qxAeY2jY5R9u61KtKakgE5fz7Um3rTLQx8TnatgH6hGQS\nDspv20aN67NvXwAAJ0+ewde3tiUsNjaOevXbo9PpcHcvQXpGBgC+PjUpVcqdfXs3sH37L3h5VcpL\nkXONUcYnP3gVBtuaIsA9YDAwW5IkLYAkSTeAOpIk3c9NInbOjmQkpVmOjXqDyTkoYKexJ+jnfWwd\nuZzfP55Hvd5tKFG1LPfDoghYuImf359JyL5TdJjWR37uNRqMKVn7jBgNBlCps0Wxb/sWmUcCMCYl\nACC4FkLl7ELS1HFkBh1F02+YLEmVkxPG5Kw7BQwGUGfXdHzzTdIDAjAmmDRdR44kZf16DPdzVZ2P\nRe3siD4p1XJsNBjAXMc2bq64NqrBrVm/EPrRDEp+8jb2lUpZ4nqM6MKdRevzpGvr7IjOum0NVm3r\n5kKJxt4Ez/yTwF7zqTywA86V3NEmpmJI12JfvBD1lw4jeI58bbWzBoN1efVW5S3iitMbtYieu5Yb\nfadSrH8n7CqWQh+fiHNTH7z2L6P44C48WL8vT2V+Em1bNsEmj3dIT0PtokGf+Ky2/RXpw5m4D3wb\nh0oelrilPu1K5KINedJ1dXEhITHJcqzX61Fb9WW9Xs/QoX0JPLSDP9aZ7tSiou8xf/5S2rXvwbx5\nS1i75rs8aeeW5/Sa/tJ5FQa7lSiKAaIoHgPWYPIaXAq4bh1JkqTY3CaYmZyGnZOD5VhQqUxfMECb\nlsGJn/agS88kMyWd8KOXKVmtPOFHLxF+7DIAIXtO4V69vPySpKYiOGqydAUBDNlHVfbN25Cxf5fl\n2JiUQObJI6a8nTzy+FH5UzCkpCBosjRRqUCfXdOxTRvS/vrLFFy0KLY1a+Lcty9FvvkGlYsLhfz9\nZWkC6JPTUDlb17EA5jrWxSWRcv4auph4DKnpJB+/jKZ6BQAcqpRBl5iSbU5UDtrkNGys2hYhq20z\n45J5cO46GTEJ6FMzuH8ihMLmdnStWpZmG7/i0twN3D8m4xmBpbypqJwcs05Ylzc+ibTzVy3lTTl5\nCUfvSpQc+QExP2whtO1wbvT2p/yKL/NU5leNPinVcmcAIAiqR9pWay5r0vHLaKqb7nIcq5RB/xxt\nm5iUhIuzk+VYpVKhz9GXV6xYS7nyvjRp2oDmzRtx+vR5duw0/RAePRqEh4d7nrRzix5jrj/5wauc\nEnkD8MFksG8CZa0jiaLYXhRFj8clkJObp0Kp3LIOAKV9KlseJAIUreRBv81TEFQCKhs1Zet7EX3x\nBu/MG0i1jn4AVGpcnajgG7ILor0SjG3dBgCovbzRRWRPQ9A4gY0thvsxWddcDsa2bkMAbKrXRn8z\nXJ7mxYvYNzRdb+vtje56tt85BCcnsLPDEGPSNMTGEvvxx8SNGkXcqFEYkpJImC7fU3hy0BUKt6oL\ngJOvF6lXblrCUoOv4yiWw6aIC6hVOPl6kR4aCYBr09qWqZS8EBsUintrU9u6+VYmMSSrbeMvhFOo\nahns3JwR1CqK+lYmMfQ2Ll6lafjjZ5wctozo/+TfqgOknLqCS8t6AGh8RNKlCEtY2sUwHMTyqIu4\nglplCr96E31CMvok0x2XLjYetYvmsWm/biQFhVC4lS8Azr5epIZklTXlYdu6mdrW2deLtIdt26wW\n8f+dybPusaOn6NChFQB+fr5cvJT1w+rlVYkN638EQKvVkpGRicFgYPKkMXz22ScA1KpZjcjIO3nW\nzw0GjLn+5AevepXIw8f9PwGTRVH8UJIknSiKXsAqoG5uEgnZc4pKTWrSb8sUBEFg++c/0PCTjjwI\nv0voP2e4sPUw/bdNw6DTc2HzYWKu3ubfeX/SacEg6vVugzYtg53jV8nOvPZ4ILZ16uEybxkCAsnf\nzcWhUw/00ZFoTx5FVaoshnvZRx/pm37DacQXuM5bjlGvI+Wb2bI0MwIDsatXjyJLl4IgkDhvHpru\n3dHfvk3G0aOoy5RBH523Ec/TiNt9Atdmdai2fQ4IAjdGL6HkoE5k3Igifn8QkXN+w2vdFAAe7DxC\nmmQy6A6epUk8dC7Purf/PkWJZjVpuWMKCAKnRv9AlcEdSb5xl6h9ZwievZ6mf0wAIHLHcRKlSBqt\nGYPa3pY6M3oDoE1MszyozC2Je4/h0rQOnpvngyAQOe5big3oTGZEFIn/nCRq/s9U/GUaAAl/HSYj\n9CbRC3+nzLxPKfrRmwi2NkROWJrncr9K4nafoFCz2njvmA0IXB+zFPdB75AeHk38viBuzfmNqutM\nd2WxO49a2tbRszQJeXgu8ZBt23fTuk1TDgZsQxAEBg4aw8iRAwkLC2fXrv1cuHCZwEM7MBqN3CMs\n9AAAIABJREFU7N17gMDA4wQHX2Ht2u/o2KE1Or2OTwaOfhFV8ERe70eOIBiNLy+LOVaJ6AEXYLkk\nSWtFURwNvA9kAmrgK0mSDlpfP738h/lSfyPqRL5yzfzaD/vm1SL5ohthyJ/RqJd94rMjvWDyaz/s\nM/m0H3bTWHkP1l8UmRmRz/0lGlyhe65tzg/hG1/5l/aljrDNy/RKPCFsMbD4ZeorKCgoyOF/eh22\ngoKCQkHC+JpPiigGW0FBQcGM8mq6goKCQgFBmRJRUFBQKCAYXuIijBeBYrAVFBQUzLze5lox2AoK\nCgoWXvfNn15rg50o5M+MUsqd/KmW/Lgbu4LTsyO9BIoY88c/9SF9oVev6eNPfX3qsyO+YHwvfP3K\nNQHq1Ho1O+u9DJRVIgq54jWfOlN4DvLDWCvkDZ1isBUUFBQKBsoIW0FBQaGAoCzrU1BQUCggvMy9\nlV4EisFWUFBQMKOsElFQUFAoICivpisoKCgUEJQRtoKCgkIBQZnDfgkIgkCXmf3xqFYOfaaODeNX\nEhtx1xLeecrHVKwnkpGSDsCagV9j62BPr2+Go7a1ITUhmT9GLbOEyxCmyPiR2FbxxKjNJG7mQnRm\nl0W2Xp4UHpPlYNe+hjf3x/mjvR6Bm//nJse5gkDc7EXoImQ4SBAEikwYiZ1Z88GM7JpFxmbXjPnc\npFnU/3OwUQMCD+RqPiYPDeb0xc27HPoMHcfGrSIpPKu+S7WsRe0xXQB4EBzOia/WPpdWzbn9ca1e\nDkOmjvNjVpJqpVWiVW28xnYFQSDhwg2CJ/yEWmOP7/IR2BZywqDVce6zFaRHx8nWbTGrL8W8TX3q\nvy9WkWCl23Rqbzzqe6E195m/BizCzkVD22+HgCCQEZ/MvhHL0aVnytKsMGcQGu8KGDO1XP98eTZ/\niYVa+lBmzPsgQMqF64R/tRKPEe9RuIUPAOpCTtgWL8zZOgPklTUXXLgUwqIVP7F26fwXlqYgCIyf\nM5oq3pXJzMxk1ucLiAy//Uicxb/O49Dew2z5dQcOjg7MWD4Z10IuaLVapo2cQ0x03p1LP4v/2VUi\nZm8z24EakmRyuiiK4lwgBJMz3nclSdpuPt8B6ClJUt/cpF29XT1s7G1Z2mUK5Xwq886kj1g7cKEl\nvEyNiqz8eC6pcVkemtuN7s6pzYc4vSWQdqO64tezJYGrd8sqk2OLxgj2dtwb8Cl2NapReNQQ7n9u\ncqWkDQ0jZshYU7zWzdDH3Cf9WBBuU8aTvGE7aQeP4NCwHoWGf0LsF1PladrZcbe/WXP0EO6PzdK8\nN9hK855Zc+p4kqw0Cw//hPsyNHNSrkNd1Pa27O40jWK+ntTz78WB/ibfEzZODtSd9AH7us0iIy6Z\n6kPfwt7NhYwHSc9I9fG4d6yH2sGWI29PobBvZapP/Yigvqa2VTs5UM3/Q451mUHmgyQ8h7+DXVEX\nSndpQvyFG1xdtIUy7zfDc/g7XJr8iyzdSu3ronawZdO70yjp40njyb34e0CWf43iNSuw46N5pMdl\nebD3G9OFqztPcPGXf2j4RXe8ezbnwtr9udYs0sEPlb0tlzt9ibOvF+Wn9CW031wAVE4OlJvchyvd\nJqN7kITHsHexcXMlaulWopZuBcDr56+4NVNeOXPDT79vZOee/3B0sH+h6Tbv0AQ7ezsGdBpGDV9v\nRk4Zxrh+E7PFGTL+E1wKOVuO3/3wbUIuhLJ68c+81aMDvYd9wCL/JS80X9Y8zzpsURRVwHKgNpAB\nfCJJ0rXHxPkL2C5J0veiKApAJHDVHOWYJElP9Ob8skfYGcAaURTbSpJkXROpwCJRFI9IkiT757Ji\nfRHpoMm33M2z1yhbs5IlTBAEilXwoPucT3AuVoiT6wMI2hjAjum/IAgCgiBQyKMocbfl/0rb165J\n2tEgADIvXsG22qMe0AUHBwoN6su9QaMAiP9mBYZkk6NW1GqMGTJGYIB9nZqkH8vStHuCZuHBfbk7\n0Ky5OIdmpjzNnJTwE7lz4AIA98+EUbRWxaywelWID4mk3pQPcS5Xgqt/BOTZWAO4+YncMzvSjT9z\njUK1s9rWrb4XSVdu4T31IzTlSnBz3QEyY5O48eNuk5dzwLF0MbSJ8t8sLOUncjPAVMa7Z8MoYVVG\nBIHCFd1pOW8AmmKFuLw+gCvrD3H/0k2cPEwu1uycHUm6EytL08WvGvEBJofFyWdCcarlmRVWryqp\nIRGU8++LffmSxKz7B92DLPdmRTo2QJ+QTMLBvPtYfBJlS3nwzexJfDl9wQtNt45fLY4FmNyHXTxz\nmWq1svflVm81x2gwcDwgy8XYn6s2oVKZfIW7ly5JUmIyL5PnnMN+F3CQJOkNURQbAguBzjnizASs\n/fJ5AmckSXonNwIv22D/h8kz+3DA2kNpEqbCrAC6y03UwdmR9KSsL6VBb0ClVmHQG7DT2HP4570c\nWvUXKrWKIX9MJjL4OlEhNxHUKsbunouNvS3/fLdFdmEEJw3GlJSsEwY9qFWgz7qRcurckdR/D2JI\nMH25Hv5vU74MhUcO5v44f1maKidNlvF9muY/j9csMmowMZ/L08yJrbMjmVb1bTQYENQqjHoD9m4u\nuDeqxs52E9GlpNNh62RiTl8l6XreHAPbuDiis9JCn6Vl5+ZC0cbeHGo9AV1KOo23TyXuVCgp16PB\nYOSNTZNwqVaW4z3kOTp+WMYMK0NvtNK11dhzYe0+zq3cjaBW8d6Gr7h3/gbJUQ94Y8L7eHVuhNre\nlpOL5PUptYsGfWL2en3YtjZurrg2qsHFtmPRp6TjvW0myacl0q9HAVDq065cGybP0XBuaduyCbej\n7j47okycXDQkJ2b1ZYPBgFqtRq/XU0msSPv32jBhoD+fjOmT7TqDwcDyDYvxrFaJET3HvvB8WaM3\nPtekSBNgD4AkScdFUaxnHSiKYjdMsy57rE7XBUqLongASANGS5IkPUlA9Ty5yyVDgdGiKFbOcX4F\nUEgUxV5yE0xPTsPeydFyLKgEDGYDlpmWweE1u9GmZ5KRks61o5fwqFYOAINOz4K249j05Sp6Lhr2\n2LSfhjElFUGTpYuQ3XACaDq0JmX739nO2detQ7EF04mdMlf2XLIhJRXVMzSdOrYm+TGaxb+eTqy/\nfM2caJPTsHW2yoPKZMgAMuKSuX/+OukxCehSM7h7XMKtevk8a+mS0lBn0xIsWplxycSfCyMjJgF9\nagaxx6/gWqOCJeqxbjM52nka9VbL96ytTU7Dztm6T2WVUZeWwfnVe9GlZ6JNSSfyyGWKeZej0cQP\n+HfsD/zRZgKBU36lzTdDZGnqk1KzlVWwaltdXBIp56+hjYnHkJpO0vHLaKqbRv2OVcqgT0zJNt9d\nEEhJSsXJOcv5siAI6PWmTcDe6t6e4u7FWL5xMW/16ECvQT1o2MLPEndYj9EMeu9T5v04/aXm0Sjj\n32NwBRKsjvWiKNoAiKJYA+gF5Bw9RQFzJElqCcwGfnta/l66wZYkKRYYBfxsrWeeIumP6RahlJw0\nw0+FUrVlHQDK+VQm2jRFDkDxih4M3zQNQSWgslFTsb7I7YvhdJnRH883vAHISEkzjWZkknH+Io6N\nGwBgV6Ma2rAb2cIFJycEO1v0d2Ms5+zr1qHw2OHEfDYB7ZXQPGk6WGtee4ym7aOaRT4fzr1PJ5CZ\nB82c3AsKpXSr2gAU8/Uk/kpWfT8IDqewWAb7Is4IahXFfD1JCL39pKSeSVxQKCVbm9q2sG9lkkKy\ntBKCb+BatSx2bi4IahVF6lYhOTSSyp92pky3JgDoUtIthlYOUUGhlDeXsaSPJ7FWuoUredB1q7+l\nT3nU9yLmYjgZCSmWUXnK3TjsC8nzBJ8UFELhVr4AOPt6kRoSYQlLCb6Oo1gOGzcXUKtw9vUiLdT0\nw+varBbx/52RXcb85nxQMI1amfpyDV9vwkKy+vKSmd/T/+2hDO02ir827GHdyg0cDzhJnxEf0rFr\nOwDSUtIsA7OXhcFozPXnMSQCLlbHKkmSdOa/PwZKY5p16AuMMT+7O4XpWR+SJB0GSpnntR/LK1kl\nIknSTlEU3zNn9Aur85GiKE4Fvgb+fvzVj3JxbxBeTWsyYvM0EGD9uB9oNuBN7kfc5fI/pzmzNZDP\nts5Ar9Nzeksgd69GErh2D91mDcD4WReMBiNbJv0kuxxpAYdxaFCXEqu/AwQeTJ+Pc69u6CJvk37o\nGLbly6C7k/1WsvCYYQi2NrhNHQ+ALiKSuDm5dxafdsCkWXL1dyAIxE6bj8uH3dDduk3aQ80ct69F\nxpo0i04zaWojIombnXcH9Td3n8KjWQ06bPdHEASOjF5JtUEdSbpxl8j9Zzg7ZwNt1pm0wneeIF7K\n+4g+6u8gijWrSeOdprY9P+oHKg1+k5Qbd7m77zRXZv1Jgz8mAHBn53GSQiLJuJ+Ez3dDKdurJYJK\nxblR38vWDdtzirJNa5gMsyDwz9iV1BnYkfjwu4TvP4O0+QjddkzDoNURsvkwD0Jvc8j/Z5rP6IOg\nVoEgcHDSz7I043afoFCz2njvmA0IXB+zFPdB75AeHk38viBuzfmNqutMA7LYnUdJk24C4OhZmoRD\nL37u+mUTsDuQBs3qsWrHMgQEpo+ZS69BPbgVHkngvqOPvWbnn38z5dsv6fTBm6jVaqaPmftS8/ic\ni/qOAO8AG8xz2MEPAyRJstg9s82LliRpjyiK84BYYL4oirWBWzme92VDeFnrDs2rRIZIktTTfOxq\nLsAUYK4kSe5WcbcCCTlXiXxe4YN8WRQ5svi9V66ZX8s/A6I88kW3iD5/9sOOsFW/cs382l41v/bD\nbpxP+2GfvHPwiSPT3NK4dKtcfxOP3P4vm57VKpFagAD0A94ErkmStMMq3lRMBvt7URSLYJoGcQZ0\nwHBJkkKepPnSRtiSJAUAAVbHicDDyc21OeK+97LyoaCgoJBbnmeViCRJBiDng4xHjK8kSVOt/o4D\n3sqtRoF8cUZBQUHhZfCcq0ReOorBVlBQUDCjODBQUFBQKCAoe4koKCgoFBCU3foUFBQUCgjKCFtB\nQUGhgKB/zffrUwy2goKCgpknvMH42vBaG+yl0UfyRTdYX/2VayYbMl65JkCSPixfdCvbF88X3R1R\np1+5pkp47vc58kSdfHqB5ciFNfmi+yJQVokoKCgoFBCUEbaCgoJCAUEZYSsoKCgUEJQRtoKCgkIB\nQXk1XUFBQaGAoEyJKCgoKBQQjMoIW0FBQaFg8Lq/mv4qfDq+cARBYMmS2QQEbGXfvvVUqpTdh+Dg\nwR9z+PBOAgN30LXr25bzYWEn2bdvPfv2rWfGjPF50v1s9ggWb1vE/A3zKFXh0c3/BUFg5i/Teeuj\nNwFQqVQMmTqYRVu+Zslf39Kgtd8j1zxLc9zcUfywYwlLNi6idIVHvakJgsDXv87h3d7ZHS+X8yzL\n3is7sLO3laX5MM1J877g110rWb1lGWUrlHlsnOXrFtH9Y9N25s4uTiz5ZQE/bV3Or7tWUqtujTzp\nDp41lDlb5zP9z1m4l398HU/6eQrtPuwAgMZFw6SfpzBz4xym/D6dwsUL50l32dK5HD60g3/3b8TT\ns0K28KFD+nDs6F8cO7KLbt2y17MoehIbcwV7e3vZmkuXzuHQwe3s3/eo5pAhfTh6ZBdHDu+im1U/\nvnH9FPv3bWT/vo3MnDFBluZD3Qlzx7B6x3JWbPqGMhVKPzbON7/Np0vvTgA4ODqwYM0sftjyHUvX\nL6S4ezHZurnhwqUQ+o744tkRXxJGozHXn/zglY+wzZ5oDgAfSJL0p9X5C5jcvfd9VhqdOrXHwcGe\nFi3ew8/Ph3nzJtO9+ycAFC1ahEGDetOgQUccHOw5d+5fNm/eRaVK5Tl37iJdu/bPc94btX8DWwc7\nRr87hqo+VRk0eSBTB2R3Ctr3i49xLpTl1q1111bY2NowpsvnFHUvSrO3msrSbNahCXb2dgzu9CnV\nfavxqf9QJvSfnC3OoPH9cS3sku2cxlnDp1OGos3UyiyliVYdm2HvYEfvtwdRy7c6n0/9lJF9s//I\nfTphMK5WZf14yAecCDzFbz+up4JnOeatmM777frK0vVr3xBbezu+fO8LvHxE+k7qz9yBs7LF6fX5\nRzi7OluOW3ZrTURIBL/OWUubnu14d3AX1s6U5wKuc+cOODjY06RZJxr4+bJgvj9dzH2laNEiDB78\nMfXqm/pd8PkANm3aCYCLizML5k0hIyNTlh5A504dcLC3p1nzzvj5+TJ/3mS6dhuQpTmoN/X9TPk6\nf+4AmzbvwtOzAufOBfNel7y/FNPc3KcGdBpGDV9vRk4Zxrh+E7PFGTL+E1wKZdXxux++TciFUFYv\n/pm3enSg97APWOS/JM95eBw//b6RnXv+w9FB3g/fi0QZYT+eEKDnwwNRFGsCTrm9uFGj+uzbFwDA\nyZNn8fWtZQmLjY3Dz68DOp2OkiWLk55ueoPQ17cWpUqVZO/eP9m2bS1VqlSSnenqftU5FWB6Uy7k\nbAhValXJFt7kzSYYDEZOBZyynKvbvC6x0bFMXzuNUfNGcvyfE7I0a/nV4PiBIAAunblC1VpitvAW\nbzXDYDBa4jxk/Pwx/DB3FelpeXuD0sevNkf+Ow7AhTOX8K5dLVt427dbYjAYOHLguOXcrz/8ycZf\ntwGgtlHnyYhVq1+NswdNDmZDz0p41qqcLfyNNxthMBoscQAipAgcnUzexzUuGnRaHXJp0siPvfsO\nAHDi5Bnq5uhTdeu1Q6fT4e5ewtKnAL5fMZ9J/nNJTU2TrdmosXU/PoOvb+1smvXqt8/SzDD3Y5+a\nlCrlzr69G9i+/Re8vOT34zp+tTgWcBKAi2cuUy1Hn2r1VnOMBgPHzXEA/ly1iTXf/gqAe+mSJCUm\ny9Z9FmVLefDN7EkvPF056A2GXH/yg/wy2OeB8qIoFjIffwT8ntuLXV2dSUhIshwbDHrU6ixffXq9\nniFD+nDo0Hb++GMrANHRd1mwYDnt2/dk/vxlrFnzrexMa5w1pCSmZOnqDajUpiosL5an5bst+OXr\nX7NdU6iIK6UqeODfdwobVmxk7MLRsjSdnDWkJGVp6g161GbNimIF2r3bmlULsr8K3H9MH47+e4Jr\nl6/L0rLG2cWJ5KSsL6VBn1XHlatWouN77Vg2/8ds1yQlJpORnkHR4m7MXjqVb2evkK2rcdaQmvT4\nOi7nVY6mnZvz58J12a5JjkukTrM6fPvPUjoPeo9/1++Xrevi6kyiVZ/S6w2P9KlhQ/tyJHAn6/7Y\nDID/5DH8vftfLly4LFsPwNXFhYREa81H+/HQoX0JPLSDP9ZtASAq+h7z5y+lXfsezJu3hLVrvpOt\n6+SiIdm6HxuyylpJrEj799rww4JH71AMBgPLNyymR/8uBOwOlK37LNq2bIKNTf4+VjPK+Jcf5Gft\nbAa6iKK4FvAD5gHlcnNhYmIyLi5Zt2uCoEKfw6nr99//zOrV69ix4xeaN3+DkyfPotOZ4hw9GoSH\nR0nZGU5NTkXj7Jilq1Jh0Jt+adt0bU0x96LMWz+XkmVKotNquRt5l8T4JE78YxqpBB8PpnTFR+cL\nn0ZKDk2VSoXerNmxWzuKuRfjuw0L8SjrjlarJepWNO27tOFeVAxv9+yIW3E3Fq9bwPCuo2TpJiel\noHHOuukx6Zrq753uHSnpUZxVm5dSqqwH2kwtd25FceTAcapU9WTeD9NZNG0Jp4+dlaUJpjp+OFo2\n6QqWOm7etRVuJd2Y9sdMSpQpgU6rIybyHm17tWfb91vYt24v5atWYNz3XzKmw2eydJMSk3G26lPW\n5X3I8hVr+XHV7/y18zdaNG9Erw+6cPt2FP379sTdvTh7/l5Hy9Zdc62ZmJSEyxPq+CErVqxl1arf\n2bnzV5o3b8TJk2dy9GN35JKSlIqTs8ZyLAiCRfet7u0p7l6M5RsX41HWHV2mjju3oi2j7WE9RlO+\ncjkW/zKXLo16ydZ+3VG2V30y64AVwHVA1s/1sWOneOutNmzevAs/Px8uXcryc1mlSiVmzBhPz56D\n0Wq1ZGRkYDAYmDhxNA8exLFo0ffUrFmNyMg7sjN8OegyDdo24NCuQKr6VCU85IYlbPXsrBHJR6M/\nJC4mjlMBpylVvhT1W9Xn8O4jVKpWkZg7MbI0g4Mu0rjtG/y38yDVfasRdiVr1Lx81krL3/3H9OFB\nzANOBATxfpPelvObjq9jdK9xsst6LugCzds1Yd+Of6nlW52rIVmbRC2esczy99DPB3D/3gOOHDhO\nJa8KfP3jLMYNnkTo5WuyNQFCTl2hXms/jv51BC8fkQgpwhL265y1lr/fH/UBcTFxnD14hjfeakxK\nkskzeUJsfLYfuNxy5FgQb7/Vlk2bdtLAz5eLF69Ywry8PJk1cwLdewzM1qeqejexxLkWepwOb8oz\nYMeOmvrxps278PPz5aJVP/byqsTMGV/S4/2HmpkYDAYmTxpD7IM4Fi5cQa089uPzQcE0bduIf3Ye\noIavN2FW/XjJzO8tfw8c25fYew84HnCSPiM+5F5UDLs37yMtJc3yI/r/jdd9DjvfDLYkSddFUXQC\nPgO+BHI9Gbd9+x5at27KgQNbEASBQYM+57PPPiEsLIK//tpPcPAVDh7chtFoZN++AAIDTxAcHMKa\nNd/QsWMrdDo9AweOlZ3nI3uO4tvUh8VbF4IgsGjsIroMfI874Xc4vv/xc9O7/9jDp7NH8M32xQgC\nfPelvAc1B3cfpn6zuny/fQmCALNGz+f9Qd24feMOh/cflV2G3PLv3wdp2MyPX3auRBBg8qhZ9B7c\nk1s3IgnYd/ix14z8aih2DnaMn2ma9klOTH7kQeWzOLHnOLWb1GH2lnmmVRSff8s7n3QmOjyKoH9O\nPvaaP77+nWHzR9Ch95vY2KpZMWHZY+M9jW3bdtOmdTMCD25HEAQGDBzNqJGDuBZ2g1279nPhwmWO\nBO7EaDSyZ+9/HAo8/uxEn6W5fTet2zTlYMA2BEFg4KAxjBw5kLCwcItm4KEdGI1G9u49QGDgcYKD\nr7B27Xd07NAanV7HJwPlTbEBBOwOpEGzeqzasQwBgelj5tJrUA9uhUcSuO/xfWrnn38z5dsv6fTB\nm6jVaqaPmfu8xX8ted1H2MKrzqB5lcgQSZJ6iqL4KdBbkiQ/URQ7AD2tV4k4OJTLl9prXvx/aXtV\n+Q/LXgTK9qovnzpFPfNFN7+2V7UtVum5K7qIc+Vc25y45GuvvGFf+QhbkqQAIMD89xJgifnvPcCe\nV50fBQUFhYcoUyIKCgoKBYTXfUpEMdgKCgoKZpTtVRUUFBQKCMpufQoKCgoFBGWEraCgoFBAMCjb\nqyooKCgUDJSHjgoKCgoFhNfdYL/yF2cUFBQUFPJGgXRgoKCgoPC/iGKwFRQUFAoIisFWUFBQKCD8\nv3joKIpidWA+oAGcgb+BZOAtoDBQCni4y3xrSZL0j0snR5otMG9SZXVuLiZvOX8BXwPlATVwCxgj\nSVK0OV5TwB+wxeRJZ40kScvNYROANuYwA/C5JEmP3ZHoZeVBLrlx6yaKYingGtBHkqSNMtN/pE6A\nTwFf4IFV1F8lSVotimIRTGWvbL7mJjBYkqQEURT9gJmYBiMuwAZJkhbmobwbMPUZAbAHhgIjAVdJ\nkrpYxY2WJEn+ptQydCVJOiuK4iBMjj4MmMo80bwvz4vQ3A7UkCTplvncwz62BnhXkqTt5vOPbND2\nIngRbgP/VyjwI2xRFAsDfwKjJElqCTQEagJJkiS1AEYB/0mS1ML8eaaxfgYCsAXYYk6vKfATsEsU\nRbUoipWA74CPzPrNgI9FUewgiqI30AloK0lSc2C0+dpXlofnKPez3Lr1M2sOl5PoM+rkC6t2ayFJ\n0mrz+T+AXZIkNZckqRFwAvjBHLYU+EySpDZAE6CnKIo+cvJk5mGfaY7ph2+G+XwTURR7P+W65+UR\nXVEUewJtMQ02WmAy3L+KoviiPOFmAGtEUcy5+1wqsOgF6jyN53Ib+L9CgTfYQGdMnfwqgNkgf0ze\nDGFuKAokPBx1mDX/AcIwGcbewC+SJN01h6UB7YH9QAImrzr9RVEsLUnSOUzedl5lHvLKE926mb/o\nvYGFgJ0oinLcpcuqE1EUywPukiRttTr9HTDY/PddYIQoinUxjUYbS5Ik3/VNdooA98x/fwlME0Xx\nUTfyL56HuoOB2ZIkaQEkSboB1JEk6f4L0vkP051Mzh/bJExtKt/Xm3yey23g/wr/Hwx2KUxeayxI\nkpQsSZJ8D7C5IwaTYczJdUzTE4/LT4IkSXpJkm5jGk02Bo6JohgCvP0q85AHLWseunUTMBnVh7vd\ntwaCJUmKwfRD+X/tnTtoFUEUhr9Cg4JBEIVEVAw+fixUYqHYBEmjIKI2FkaIiBHS+AgqIoiCnaAI\nUSJEBYMPbIIQFcsEBIuUFnIU31r4RKMoBGIsZi5sbu7GZG8S2Hg+2OLO7p4zMzv7z8yZvcyoR9n/\nqJMzkroTx0pC2V4W2Rgws+/xZwNBtNsIYndWUpZtuOujz0eE0EBhqv4eOAFcSb2zPEr5LfU8v4yz\n32bgkKSlReltwGxJk7EfWFr7ciJTQbBfAwuTCZJqJNWVafc3IYaYZBawOB7FLCPEUkvlZ7Wk2vgy\n9JnZHjNbRBhFXJI0Z7LykOJntNwkTFvrGLqtWxNQI+kBsBPYkRgpjUhanQBzGB4SeRzLt6DIxnRJ\nDZJmAGvM7LSZrSXUxyJgX4ayFkIT64FagnDOBDCzG8APSc0Z7Gbx+4bhz3OjpOrxcho7gIPANRK6\nYGaDwB7CusD88fKXQlr7ciJTQbDvApskLYHw8gLngLFMy0vxBKgtvBRRDOoIjapK0pbChTE2vBTo\nief3SpoXz80ixFergVXABUkV8danwDcgbeQ7EXnIjJm9IMQV9wPXY/JcwrrBOjPbZGb1hPh64yjN\njqlO4oj8s6StieQDhNDYH+C6pOXx2q+Ezqvc7Xw+lEhrJiyOVpZpezR+rwInJE0DiOWhDvtbAAAB\nJUlEQVS7THq7yYSZdQEG7C5KfwecAiZ0X7CU9uUkyP1XImbWJ6kRaJdU+DKgizLjbtFuC3BP0i+g\nAmg1s2dRKM9LOh4vfwtsjiGHV5KOAp2SBmJ+LpvZfQBJK4BeST8JHeaRxHR+UvJQJrcJ27o9jYub\nddF2UjzagQ5JrXGEloqZdZaqE2AbISRyLHF5j5mdJMTLL0o6TKiT50CTmfVL2gFcjR33INBLtvWM\nekndBFGsBFqADYl8f4rP5k4G22Pya2a3JFUBDyX1E74K2mVmH0ewk5WDhBDXEMysQ9L2CfBXTHH7\nchL4X9Mdx3FywlQIiTiO4/wXuGA7juPkBBdsx3GcnOCC7TiOkxNcsB3HcXKCC7bjOE5OcMF2HMfJ\nCS7YjuM4OeEvt0ee2f/zmaIAAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2007767c90>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "sns.heatmap(features.corr(), annot=True)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "How we can se thruth this graphs, that atributes BN and M are the best to separate the data in classes" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 58, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "<matplotlib.collections.PathCollection at 0x7f200806a490>" | |
| ] | |
| }, | |
| "execution_count": 58, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| }, | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWsAAAD0CAYAAABdAQdaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmYFPW59vFvz8Ys7LKIQlzQLuCYuKCiGAWNSzRuh0TN\n0Rwl0ST6ahY1LmjwuCQak7ibaNQQ0YjHxCU5IeIuiIoKo6LCULiBIqssAwwzzEz38/5RszLVyMz0\n/KpL7s919cVQDVU31TV391Q39STMDBERyW15UQcQEZEvprIWEYkBlbWISAyorEVEYkBlLSISAypr\nEZEYKOiqFZeXl+szgSIiHTBy5MjElsu6rKwbNtiVq+9yFRUVDB8+POoYOUP7o5n2RWvaH806uy/K\ny8tDl+s0iIhIDKisRURiQGUtIhIDKmsRkRjIrbLevBkefRRuvRVmzYKoLjL12mswejS7jhsHU6ZE\nkyFXmMGMGXDLLXR/7jmoq4smR8tj49VXozs2Vq+G++6jz0MPwUcfRZNBWms8Nm65Jdpj4/77oUcP\nkvvuC+efn/31m9kX3pLJ5KhkMjm94es9ksnky8lkcmYymbwrmUzmhf2dOXPmWLv4vtmAAWY9epgV\nFZmVlZkddZTZ5s3tW09nnXyyWfBwW7rhV9t1V7cZckVVldnBB5t1725WVGT1ZWVmgwebLV7sNsfC\nhWYDB7Y+No480v2x8cQTZiUlZmVllurWzay42Ozqq91myFHz58+PZsNhx8Y3vmFWU+M2x847t+2N\n/PwOraqhO9t06he+svY871LgPqC4YdHNwC993z8USAAnZeVZ47TTYNUq2LABamuhqgpefjl4JeXK\ne+/BP/7R9NumDzouWgTXXOMuR6647jp46y3YuBFqa8mvqoJly+DMM93mOO00WLmy9bHxyivBKylX\nKivhjDOguhqqqsjbvBlqauC3v4XZs93lkNa++922x8arr7o9NqZOhc8+a/ptU2+kUvD1r2dtM9ty\nGuRDYFyL348EZjR8PQ04stMpli6Fioq2P75UV8OkSZ1e/Ta7+OLM9/3hD+5y5IrJk4NCaimVCr4Z\n1q93k2HZMpg/P/pjY9o0yM9vu7ymBv76V3c5pNny5TBvXvTHxvjxme975ZWsbeYL/1OM7/uPeZ63\na4tFCd/3G/fOBqBXpr9bUVGxbSGWLWMo4c8ctZs28eE2rqezhqxbRxktnhkbGJCqreV9RzlyxZ61\ntaEHiJmxsKKCdM+eXZ6hYPnynDg2ei5ezI6pFFvWtZmxduVKVmxnx8aWampqtvn7PVsKVqzIfGxU\nVzs7NvasqyOf8N4AWJCtHGHnRra8JZPJXZPJ5GsNXy9psfykZDJ5Z9jfadc563TaLJlsOufTdCsu\nNps4sUPnfTpk1qy2GRpvP/2puxy54oILgvOALfdDImG2//7uMqTTZp4Xfmz88pfucqxaFWxzyxxl\nZWbTp7vLkaMiO2c9bFjbx6RbN7Mrr3SX4S9/ydwbe+3V7tV1+Jx1iLc8zxvb8PWxwMxOP2MkEvDw\nw9CzJ5SWBsu6d4dhw+DSSzu9+m120EHBrUHTD1d9+sDNN7vLkSuuvRZ22y14LIB0SQn07h2cHnEl\nkQg+kbPlseF5cNll7nL06wd33AElJVBYiCUSQZ7vfQ8OO8xdDmltyhTo1attb1x+ubsM48c3fY9A\ni94AyPBfxzuiI9cGuRi41/O8IqACeDQrSfbbL3gj76GHYPFiOOQQOP54KOjSy5e0NWsWPPAAXH01\n9VVVFP7oR8EbbdujPn3gnXeCN11nz2ZFWRmDLrooKE6XGo+NKVOCX0ePhhNOcH9snHMOHH44PPww\nqz/5hH5nnw2jRrnNIK3tuy98/HH0x8aGDXDuuXDffZBOw8EHZ/V8NUDCuugzieXl5aYLOX25aH80\n075oTfujWTYu5BR21b3c+k8xIiISSmUtIhIDKmsRkRhQWYuIxIDKWkQkBlTWIiIxoLIWEYkBlbWI\nSAyorEVEYkBlLSISAyprEZEYUFmLiMSAylpEJAZU1iIiMaCyFhGJAZW1iEgMqKxFRGJAZS0iEgMq\naxGRGFBZi4jEgMpaRCQGVNYiIjGgshYRiQGVtYhIDKisRURiQGUtIhIDKmsRkRhQWYuIxIDKWkQk\nBlTWIiIxoLIWEYkBlbWISAyorEVEYkBlLSISAyprEZEYyKmyfv/ZRVy433RO3PF1bvvP6axfsj7q\nSLJ2Lfzud3DCCfT//e9h0aKoE0ldHUyZAuPGwQ9+ALNmRZ0oWs8/D/vtBwMHwsknw5Il0eS44w4Y\nOpQ9xo6Fiy6C2trsrt/M2n1LJpOFyWRySjKZfDWZTM5MJpPDtvwzc+bMsfZ49sZyK2WjFbLZwKyU\njTYkf4mtnL+qXevJpvnz50e27ZywZInZgAFmJSVmYKnCQrOyMrNXXok6WeQiOzbq6szGjAkeBzBL\nJMxKS81uuimaPA0i2x+//W2wH1re8vPN3nvPbY6xY9vm6NcveLzaqaE72/RuR19ZHwcU+L4/GrgW\n+HVnnjDS9WnGTxjEJsqoowiATZSxItWPX5/+XmdWLZ0xYQKsXg3V1QDk1dVBVRWcfXbEwbZjjz4K\nc+YEjwMEtbBpE1x5JXz+ebTZXEung2N0S6kUnH66uxyzZ8P06W2Xf/45XHtt1jbT0bJeCBR4npcH\n9ATqOhNi8aufsTbdq83yWrrxj3f36MyqpTOmTQsO/C199FFQ4uLeY481F3VLhYXhhfFlNmtW+PEJ\nMG+euxz33JP5vkceydpmCjr49zYCuwILgH7A8WF/qKKiYptWtq5yPSn6h97XPb9qm9eTbTU1NZFt\nOxcMLSpq+DmntbQZCxctwlaudJ4pV0R1bOyYSNA7L49EOt1qeSqd5rN166jajr5XCisrGQokQu5L\n5+XhO8rT34wdQnIYUF1UxOJs5Qg7N/JFt2QyeXMymbyh4eshyWTy/WQyWdzyz7T3nPWYXm9aAbWt\nTvmUstH+dMaMdp/zyZbt/pz1jTcG50NbPiiFhWYnnRR1sshFdmzMnt32MQGz/v07dH40WyLbH717\nt90XYPZf/+Uuw+rV4RnA7J//bPfqsn3Oei1Q2fD1GqAQyO/Mk8b/vrQzw7otojsb6cF6iqnhDK+c\nc+7/emdWK51x0UVw4olQXAw9e5IuKYG994ZJk6JOtv3af3+48camx4QePaB/f3j6aSjo6A/KMTZz\nJnTr1nrZnnvCAw+4y9C3L/zpT5AIXltb4/Lvfz/4/smSjj66twCTPM+bCRQBV/i+H3Iibdvt+LUB\nvLOpP7Mnz2dJxQZGnjSYXQ45rDOrlM4qKICHH4YPP4S5c1lsxm7jxjUdlBKRCy6AM86AGTOCsh4z\nZvssaoC99greYJ08GSoq4KST4JBD3Of40Y+CNzXvuIPPFy2i/8SJMHhwVjfRoUfY9/2NwKlZTQIk\n8hIc+P3/4MBsr1g6Z+hQGDqUmooKFXWu6NMn+EyxQF5e8Co2at27w4QJfF5RQf8sFzXk2H+KERGR\ncCprEZEYUFmLiMSAylpEJAZU1iIiMaCyFhGJAZW1iEgMqKxFRGJAZS0iEgMqaxGRGFBZi4jEgMpa\nRCQGVNYiIjGgss5RG5dv5MZjp7N/WQXf6PMmT1z2Gpa2L/6LX1avvRZM8953X7jwQli6NOpEsngx\nnH8+7LMPO194IZSXR5Oj8djYZx/4+c/hs8/cZ6ivD7afSDBsxAgYNAg++CC72wibSJCNW3snxeSi\nqKZfbFq9yUYUvW8lVDUNnChjo11y4IuR5GkU2TSQRx4JpqMkEs3Tavr2NVu0KJo8pilCtnChWa9e\nwWMBlm6csj51qtscf/tbbhwbRUXhk2JWrWr3qrI9KUa60JSL5rC4dhDVlDYtq6KMO94YxdI3l0eY\nLAKpVPDqbdOm4PAHqKuDykq45ppos23PJkyADRuCxwJINE5ZP++85sepq6VS8P/+X/ixcfXVbjIA\n/O53UFsbft+RR2ZtMyrrHDT1mUKqKGuzvIg6XvnrxxEkitDixVBd3XZ5KgXPPus+jwSmT4cthvYC\nsHIlrFrlJsMnnwRFvaVUCp57zk0GgHvvzXxfFqesq6xz0OB+m8mnrs1yI8HA3UpD/saXWJ8+wfnA\nMAMGuM0izXbYIfN9PXq4ydC7d1DMYfr3d5MBgvPTmZSUZG0zKuscdN6vdqZoi7LOI0Xf/Eq+ft5X\nI0oVkT594JvfbDsUtawMLr00mkwCF18MpVu8cCguhtNOy2pBbVWfPnDccW2PjdJSt8fGY49lvu/X\nv87aZlTWOWjEiXvwwEVz6UUlPVlPKVV4RR/zwnNp8gq2w4fsgQeCobDFxdCrV1AGl1wCp2Z9DKhs\nqx/+MHgvoeExSRcVwdFHw113uc1x//0wdmzrY+PSS4MnDVf69YOJE5t+23TGfswY+MlPsraZhHXR\nmwHl5eU2cuTILlm3KxUVFQwfPjyy7ddurGXuYx/QfYduDDtudxJ50Q6rjXp/8MknwUf2RoyAnj2j\ny0EO7ItcsW4dLFjA+zU17Dl2bHQ5Pv00+MhelMdGfT1cdRVrPviAvvfcE5ym6YDy8nJGjhzZ5pt9\nO51fHw9F3Ys44KwRUcfIHV/5SnCT3NG7Nxx0EPUVFdHmGDIkuEWpoACuv54VFRX07WBRb812+DO1\niEj8qKxFRGJAZS0iEgMqaxGRGFBZi4jEgMpaRCQGVNYiIjGgshYRiQGVtYhIDKisRURiQGUtIhID\nKmsRkRhQWYuIxECHy9rzvAme583yPK/c87yzsxlKRCRWKith2LDm6eb9+2d92nuHytrzvLHAaOAQ\nYAwQ8bUJRUQiNHAg+D4ACYDPP4f99w+usZ0lHX1lfQzwLvAE8C9gatYSiYjEyc03w+bN4fdlcWJN\nR8u6H7A/cApwLvCQ53nRjjEREYnC449nvm/u3KxtpqOTYlYDC3zfrwV8z/NqgP7AypZ/qCLq6RGd\nVFNTE/t/QzZpfzTTvmhte94fO+64I71pOP3RggG1vXvzUZb2S0fL+mXgZ57n3QwMAsoICryVuM+o\n05y91rQ/mmlftLZd748pU9pOWCco726TJrV7v5RneGOyQ6dBfN+fCrwFvEFwzvp83/dTHVmXiEis\nFRXBv/8N+flAi+nmV1wBRx2Vtc10eGCu7/uXZi2FiEicHXdcMN28vJxP3n6bXcaPbyrvbNF0cxGR\nbBk5kk2lpVkvatD/YBQRiQWVtYhIDKisRURiQGUtIhIDKmsRkRhQWYuIxIDKWkQkBlTWIiIxoLIW\nEYkBlbWISAyorEVEYkBlLSISAyprEZEYyJmyNoPbb4eddw6u433AAfDyy1GnitAHH8C3vgXFxdCn\nD/ziF1BTE3UqEQkzb17wvdo43Tw/H+65J6ubyJmy/p//gQkTYOlSqK2FOXPgmGOCX7c7q1bBqFHw\n1FPBIM516+APf4D//M+ok4nIlurrYa+9mobmJgDSafjxj2H27KxtJifKuroabroJNm1qu/zqqyOJ\nFK177gl2RjrdvKymBmbMgPnzo8slIm396EeZ78viC6ycKOvPPoO8kCRmWR0OHB9vvBF+yqOwEN57\nz30eEcls5szM961YkbXN5ERZDxoEqQwTHLfLGZz77BM6gJP6evA893lEJLP998983w47ZG0zOVHW\nZWVw3nlQWtp6eWlpcC57u3PuuW3Lulu34KDYe+9oMolIuAcfzHzflClZ20xOlDXAb38Ll10GvXpB\nIgHJJDz2GBxySNTJIjBoUPBRmEMOCc4PdesGZ5wRTFAWkdxSUBCcCtlyuvm118IRR2RvM1lbUyfl\n58NVV8HEicEpkYKcSRaRr341KOxUKijsRCLqRCKSyde/HpymrK9nwVtvMfyAA7K+iZyrxERCRd1K\nF0xJFpEuUlAA3bt3yapz5jSIiIhkprIWEYkBlbWISAyorEVEYkBlLSISAyprEZEYUFmLiMSAylpE\nJAZU1iIiMaCyFhGJAZW1iEgMqKxFRGIg98q6vh4qK4MxMVGqqSFRVRVtBoANG5pmu4lIBvX1wazS\nqHvj5ZcpnjatS1bdqbL2PG+A53mfep43rNNJ6uvh4ouDC1r37w9DhgQXtHZt5Uo4/njo2RPvoIOC\nMevvvus+x5w58LWvQd++0LMnnHIKrF3rPodILquvh0suCXpjwAAYPBgefdR9jquuCi4Zeuih7Hrx\nxcHXI0dmdRMdLmvP8wqBPwHVWUnys5/B3XcHg2Lr6oLBjGeeCS++mJXVb5N0GsaMgaefhro6EqlU\nUJqHHgqff+4ux5IlcPjhwZNEfX0w7v3//i8Y9y4izS68EP74x+beWLoUzjoLXnjBXYaaGrjuuqbf\nNl15/s03gxLPks68sv49cDewtNMpNmyASZPajjfftCmYtuDKjBlBUdbXt15eWwv33+8uxx//GGxz\nywzz5wcHgIhAVRXcd194b1xzjbscu+2W+b4WJd5ZHbrMv+d544FVvu8/7XnehEx/rqKiYpvWV7h4\nMbvn5YU+c9QtWMAH27iezur98ssMTKXa5qiuZt2sWSxzlGPw66/TY8uyBlLAshkz2FBS4iTHlmpq\narb5Mf2y075oLYr9Ufjpp+yeSIT3hu876w1v1SoStHhF3YIBC7KUo6MzWX4AmOd5RwL7AA94nnei\n7/vLW/6h4ds6mny33YLRVVtKJCgcNWrb19NZxx4LN97YdnlZGb2POYbernIccwzMmgXVrc8w5afT\nDP7Wt4IBlRGoqKhw91jkOO2L1iLZH7vvHj5JKZGg8MAD3eXxvOCn3hCJRKLdOcrLy0OXd+g0iO/7\nh/m+P8b3/bHA28CZWxZ1uxQXw5VXth1vXlLi9jTI/vvDgQcGeRoVFECfPsHAWlfOOScYDdTyQCwp\ngW9+M7KiFsk53boFQ1uj7o158zLf97e/ZW0zufPRvcsuC87V7rln8OmHI46Al14KPhHh0pNPBm9a\nDBxIqmdP+N73YPZsKCtzl6FvXygvh1NPDd7l3mknuPxyeOQRdxlE4uCSS+Cuu5p74/DDg/ee9tnH\nbY6ZM5u+bPrw4IUXwne+k7VNJKyLPpdYXl5uI7P80RXX9KNua9ofzbQvWtP+aNbZfVFeXs7IkSPb\nnALPnVfWIiKSkcpaRCQGVNYiIjGgshYRiQGVtYhIDKisRURiQGUtIhIDKmsRkRhQWYuIxIDKWkQk\nBlTWIiIxoLIWEYkBlbWISAzkXFmvfXY2n1x1LzWLOn557C+N+nqYNi2YAxmlzz6DO++kKMMF1p15\n/32YOjWYYh2lTz+lcNGiaCdpp9Pg+8FjE6Xqapg/n7zKymhzrF4dDACoqYk0RuVOHgNHjsXWdMFw\nazPrktucOXOsPaoWLLZVef0tDU23hYMObdc6sm3+/PnRbfxXvzLLyzMLKsGse3ez2bPdZqivNxs6\ntClDujHHypVuc6xaZTZ4cPO+ALNx49xmMDP78EOzffc1Ky62VElJkGn6dPc5nnrKbOBAs7Iys+Ji\ns1GjzD791G2GdNrs+uuDDD16WKqoyOzMM81qatzmqKoyO/VUs27dzHr0CI7PW291m8HM1vUd0qq7\n0mBVlHRoXQ3d2aZTc6asV+YPCMqgxS0NtmD0WR36B2dDZGX9zDOti6nxVlholkq5yzFmTHiOPn3c\nZTAz+8pXwnNMmOAuQ11dUM4tn0AhKKslS9zleP99s9LS1hny882SyaBAXXnggbY5SkrMfvxjdxnM\nzE4/PXjCapmjtNTsiSecRah/fU5TQW/ZX+sGD2v3+jKVdU6cBql8+R36pVa2GTiZAIa8mr2xOLFx\n2WXhy+vq4N573eWYMSN8+dq1sNzRaapPPgluYW6/3U0GgOeeg8rK4PRDS/X18Oc/u8tx113BcdBS\nKgVLl8Krr7rL8ZvftJ0qXl0Nkye7OxVRWQmPPdZ2e5s2wfXXu8kA1I4aDYQPzO2xZEHWtpMTZb3x\n9cwzzIrY7DBJjthaEfq+uxxb8+GHbrbz0UeZ73N5fnLp0rZFDbB5Myxa5C7Hxx+3LWuARMLt+esV\nK8KXm8H69W4yrFkTzEgNs3SpmwxAAfWhyzNNPO+onCjrAWcd1zy3rAUD1uQPcB0neocdlvm+U05x\nl6OoKPN9Bx3kJsNBBwVFFGbwYDcZAA4+OLysy8qCeaGuHHVU+DzQujoYNcpdjoMPDn9c+vaFfv3c\nZBgyJPwYzcvb+vdQllUX9w1dbkA9IdPXOygnyrqwXy/eH3pMq8Ju/LruxpujiBStW28Nf8UwfHjw\nTeLKjTeGLz/++NaT17tScTGMHx9+n8vTD8OHw0kntZ6kXVwMu+zi9gn0zDNh4MBgsnejsrJg+S67\nuMtxww3BdvNaVEhpKdx2W+tlXamgAG6+ufVjkp8P3bvDNde4yQD0rF4FENpf6Tv+mL0NhZ3Izsat\nvW8wmpn5R59v6+lhteTbsoKdbcktj7R7HdkU6adBPvooeJe/sDB44+bss92+udjo7rub3khK5eeb\n/fSn7jOYmd1wg1nv3mYFBWZ77GH2/PPuM9TXB/tj772tZtddza66ymz9evc51qwxu/xysz33NNtv\nP7O//MXtm4uNKiqCN/h23902jB4dzSdjzMyefdbs8MPNdt/d7KyzzD74wHmE+tfnWB2JpjcaU2CV\np47v0LoyvcGo6eZboYnNrWl/NNO+aE37o5mmm4uIbMdU1iIiMaCyFhGJAZW1iEgMqKxFRGJAZS0i\nEgMqaxGRGFBZi4jEgMpaRCQGVNYiIjGgshYRiQGVtYhIDKisRURiIOfK+ppr4LjjgiHWUamvh/vu\ng8mT+0Q7SPvzz+Gmm4JRSWEXvndl+XJ49tlgoneEFlxwJ88deAWrHnomuhDpNLz2GqVvvBHpJO1N\nm+CFF2D27GiHrPPOO/Cb31D6yisRhsgRH30EeXkkR4wIrkmfbWHXTf2iWzKZLEwmkw8mk8mZyWTy\njWQyeeKWf6a917MOmxFbWhrMKXXpr39tORM1bWD2i1+4zWBmZuec03Yo6r/+5TZDKhUMQO3WzaxX\nL0t162Z2xBFmlZVOY6x+YoaN5mUrYaP1Yq0Vs8kuLrjF0rWOD4433zTbaSezHj2svnv3YJr23//u\nNoOZTZ4cfG/07BkM8/7KV8zmzXMcoq7ObMSIVsNhrXdv91PWc0VhYet90XjrgKxON08mk99PJpO3\nNnzdN5lMfrLln2lvWScS4QOshw/v0L+3QyorM+dweq37Rx4JD5GXZ7Z5s7sct93WdoJ1t25mp53m\nLoOZfZMnrZCa1kPF2WCTd7zUXYiaGrO+fds+JiUlwcRxR+bODTbZMkIiYTZoUDAbwZlvfzv8GB0y\nxGGIHHH33eH7AoJn1HbK9nTzvwMTG75OQIaJkdvoqacy/yhXUdGZNbfPDTdkzjFxYvjyLpFpJFE6\nDXfe6S7Hbbe1nWC9eTP84x9tl3eR1Y9N50UOp45urZZX0Z2bl/+XkwxAcJCGDaqtr4dJk5zFuPtu\nqK1tvcwMNm7MPIy+S/zzn+HLP/00OH23PTn33Mz3ZXF4cIbRwFvn+/5GAM/zegCPAr8M+3MV29i0\n06f3BnYkfBawUVGRvXHuW7NgwY5A79Acy5ZtpqJiK5O2s2iPVasoDFluwJp33mGlo2ewPdesCT1A\n0uk0H7z9Nqk+fbo8w/rnZ5PPAaH3raHvNh9jndXrvfcYmEq1HX9aV8fahQtZ7ijHBx/sTCrVs83y\ndDrF3LnLGDRog5Mcw1KpDN+t8NFrr1E7dKiTHLnAI/MkcwMWZOvYCHu5vS23ZDI5JJlMzkkmkz8I\nu789p0GqqzP/FFFU1O6fIjpsxozMOS6/3F0O++EPMwd59113Ob773ZYn8Jtvu+/ubOZfqqraBrKs\nTYQCNtuP8/7kJIOZmX38sVlxcdt90b272eOPO4vxwANmZWVtYxQXmy1f7ixGcKI87PgsKIhmVmiU\nBgzI/P3agfPWWT0N4nneQOAZ4DLf9zv9M2BxMYweHX7fX/7S2bVvu8MOg333bbu8Vy+nw5Lh979v\nPbG50dixsNde7nJcfz307t00STudnx/kuuceSIS9jsi+vNJi7h1+C6VUkddwtq2Yavqylqtu7+8k\nAwC77grnnRdM9G5UWhocMCec4CzGqacGg9ZbHh5lZXD55cHQc2ceeqjVMdB09vD6691NN88VK1Zk\nvu+557K3nbAG/6JbMpm8LZlMLk8mk9Nb3Epa/pmOTDf/2c+CJ2Yw69XLbNq0dq+i01Ips4kTgyfL\nnj3rbPx4sw0b3OewtWuDV7a9ewfvHt1wQwQhzGzZsuDHikMPtTXf+Y5ZRBPf3z79Rjsrcb8dygy7\nquh6W/W/z7kPkU4Hn8g5/njbOGqU2X33uX3Dt0F1tdldd5mNHWt28slmTz/tPEJg7lyzgw8269kz\nmPb+z39GFCQHrFnT9Eq66dMgDz7YoVVpunkHaGJza9ofzbQvWtP+aKbp5iIi2zGVtYhIDKisRURi\nQGUtIhIDKmsRkRhQWYuIxIDKWkQkBlTWIiIxoLIWEYkBlbWISAyorEVEYkBlLSISAyprEZEYyKmy\nTiTWkEikSCTSJBK1X/wXusgvz5jH3ok3OWVEHScMfi2yHFcO+TNPJY7m0cQ4HrtmTmQ5rt7hNi5P\nXM+kr/2b2g2bI8mwZv5yZiQOZUEiycOFp0eSAQjGmT3+OD2nToVVq6LLcdddsPPO4Hng+5HFmFV8\nGM8kjmL5iPNIr62MJkRtbTBaa8yYYL9E5POCIlKJBN6IEVR1xfXew66bmo1be69nDdUN08S3vC3p\n0DVhO+oAXm2TYTcWOs1gZvYmX7N0w7Vx02ApsFs532mG95+cZ1M51jZSausps/V0t3kMs/uPecBp\njsm9z2+1L9Jg1RTZkunuBtWaWTA1uUePYLp5aWkwnuX2291mMGs7MRfMjj7aaYQNDz5ur3GAVVFi\nGyiz9ZTZB+xm/t7jnOawf/2r7b4oKXF+Efr6LY7Pxu/ZjsjqdPNtubW/rBvLseV+Txu4GxH082Pf\nDskQ5DiEGc5y3MF5rcfZN9xSJOyZu+Y5y3E9l1gVrYthM4U2jWOcZTAzqyevzf5Igy1iZ3chNm4M\nRniFFcOjvSqIAAAFn0lEQVTcue5yHH105vFRixc7i/E0R4QcGwX2BiOdZTCz8LFzYPbVrzqLsIJE\n6PdrGqw26rFe2ZZIVDV+teU9Icu6zvPTMg9iqMDdhdVPJnxydAJj+Xm/dpbjDP6XUqpbLSuijiN4\ngZm/fsFJhr/ucjl5pEOPjCF85iQDAE8+GT7KrLYWJk92l+PZZzPfd9JJzmL8BwtCjo16vsa7LDvn\nSjchXnoJ0unw+959100GYAcy90aHJpJnkBNlnd1/UsfVhc4U/+L7sq2I2oxPUWVUZbgn+4q3+GZs\nZCRYvXCtkwzptZm34+5pnOBcddhUpVQKNm50l2Nrk502uJlsDtCN8PcuEhibP3T0JLp6tZvtfAFX\nx2GOlHWGZ8etPGN1hSG9Mr9B4rHAWY5ZHJTxX75w7A+c5XiS46gNeSL1SXLy5G87yXDKhzeFLjdg\nHT2dZADg6KOhvr7t8rIy+LabfQHA0KGZ77vtNmcx3mMEtSEvYBazC7u+eL+bECeemPm+AQPcZABq\ntnJfpmbriJwoa7MSIEXwLdhYU42/rneW45l1oxnC4hY5glsx1Ty1zN08yWEzJ7GOXq32hAEzOJTL\nX9zKAZpliWOOZAU7spFgonc1xaynB490d/eEUdK/O8/wjdAj49mDJjjLwaBBcN11UFLSPL27rAyO\nOw6OOspdjvLy8OV9+8K3vuUsxs4jB7KKfmwkGLNeTTEb6M6K/J2cZSA/Hy6+OPy+p592FqPUrFVj\n0OLXxNNbOW3VXmEnsrNx68h0c9hkkGp6YxE+bfc6smE0M6w3q607lTaS1+3zZbXOMyyYudL+xjj7\nlJ3sfXa36/KvcJ7BzOylXz1vV3KNPcR37XoutUnfuD+SHPf3vcBW0tc20c0WMtRe/PkjkeSw8nKz\nn/zE1owbZzZtWjDx3LV168yGDzdLJMzy883++7/dZzCz5ef/jz3FN+wlDrFnOMIW/MfJkeSwf//b\nbJddzMrKzEaPdvpGa0u1LT4JUg9WN+HKDq1H0807QBObW9P+aKZ90Zr2RzNNNxcR2Y6prEVEYkBl\nLSISAyprEZEYUFmLiMRAl34apEtWLCLyJRf2aZAuK2sREckenQYREYkBlbWISAzkxuXucozneYXA\nJGBXoBvwK9/3/y/SUBHzPG8AUA4c5fu+u6ta5SDP8yYAJwJFwB993/9zxJEi0fB9Mpng+yQF/HB7\nPTY8zxsF3Oj7/ljP8/YA7ie4RMh7wPm+73f6mk56ZR3ue8Bq3/cPBb4J3Blxnkg1fFP+CTJcM3U7\n4nneWGA0cAgwBhgSaaBoHQcU+L4/GrgWcHex9Rzied6lwH1AccOim4FfNvRHAsjKhcZV1uH+Dkxs\n+DoBhFwbc7vye+BuYGnUQXLAMcC7wBPAv4Cp0caJ1EKgwPO8PKAnUBdxnqh8CIxr8fuRwIyGr6cB\nR2ZjIyrrEL7vb/R9f4PneT2AR4FfRp0pKp7njQdW+b7v7pqTua0fsD9wCnAu8JDneU7nIOSQjQSn\nQBYA9wK3R5omIr7vP0brJ6qE7/uNH7PbAPTKxnZU1hl4njcEeBF40Pf9KVHnidAPgKM8z5sO7AM8\n4HnejtFGitRq4Gnf92t93/cJrj3fP+JMUbmQYF8kgb2ByZ7nFX/B39ketDw/3QNYl42V6g3GEJ7n\nDQSeAS7wff/5qPNEyff9wxq/bijsc33fXx5dosi9DPzM87ybgUFAGUGBb4/W0vyKcg1QCORHFydn\nvOV53ljf96cDxxK86Os0lXW4K4A+wETP8xrPXR/r+/52/wbb9s73/ame5x0GvEHwk+n5vu+nIo4V\nlVuASZ7nzST4ZMwVvu+7GxKauy4G7vU8rwioIDiV2mn6H4wiIjGgc9YiIjGgshYRiQGVtYhIDKis\nRURiQGUtIhIDKmsRkRhQWYuIxIDKWkQkBv4/Nq5BHpfYzI4AAAAASUVORK5CYII=\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x7f2007bb3650>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "colormap = {0:'red',1:'blue'}\n", | |
| "colors = [colormap[x] for x in labels]\n", | |
| "plt.scatter(x='BN',y='M',data=features, color=colors)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 59, | |
| "metadata": { | |
| "collapsed": true | |
| }, | |
| "outputs": [], | |
| "source": [ | |
| "# f, ax = plt.subplots(figsize=(6, 6))\n", | |
| "# cmap = sns.cubehelix_palette(as_cmap=True, dark=0, light=1, reverse=True)\n", | |
| "# for i in features.columns:\n", | |
| "# for j in features.columns:\n", | |
| "# sns.kdeplot(features[i], features[j], cmap=cmap, n_levels=60, shade=True)\n", | |
| "# plt.show()\n", | |
| "# plt.clf()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 12, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [ | |
| "df = df.values.tolist()\n", | |
| "features = features.values.tolist()\n", | |
| "labels = labels.tolist()" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 21, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "90\n" | |
| ] | |
| } | |
| ], | |
| "source": [ | |
| "perc = int(input())/100" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 23, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "613 613 69 69\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "1.7123893805309736" | |
| ] | |
| }, | |
| "execution_count": 23, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "features_train = features[:int(perc*682)]\n", | |
| "features_test = features[int(perc*682):]\n", | |
| "\n", | |
| "labels_train = [df[i][-1] for i in range(int(perc*682))]\n", | |
| "labels_test = [df[i][-1] for i in range(int(perc*682),682)]\n", | |
| "\n", | |
| "print(len(features_train),\n", | |
| " len(labels_train),\n", | |
| " len(features_test),\n", | |
| " len(labels_test))\n", | |
| "\n", | |
| "#checking the proportion of the classes on training labels\n", | |
| "float(labels_train.count(1))/float(labels_train.count(0))\n", | |
| "# print(labels_train)\n", | |
| "# print(features_train,features_test)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "97.10144927536231" | |
| ] | |
| }, | |
| "execution_count": 24, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "predictions = KNN.predict(features_test,features_train,labels_train,3)\n", | |
| "KNN.score(predictions, labels_test)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "markdown", | |
| "metadata": {}, | |
| "source": [ | |
| "So, now we see what happen when we use just 2 atributes (BN and M) to predict a object class" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 17, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "name": "stdout", | |
| "output_type": "stream", | |
| "text": [ | |
| "614 614 68 68\n" | |
| ] | |
| }, | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "1.7168141592920354" | |
| ] | |
| }, | |
| "execution_count": 17, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "features_train = [[features[i][5], features[i][7]] for i in range(int(perc*682)+1)]\n", | |
| "features_test = [[features[i][5], features[i][7]] for i in range(int(perc*682)+1,len(features))]\n", | |
| "\n", | |
| "labels_train = [labels[i] for i in range(int(perc*682)+1)]\n", | |
| "labels_test = [labels[i] for i in range(int(perc*682)+1,len(features))]\n", | |
| "\n", | |
| "print(len(features_train),\n", | |
| " len(labels_train),\n", | |
| " len(features_test),\n", | |
| " len(labels_test))\n", | |
| "\n", | |
| "#checking the proportion of the classes on training labels\n", | |
| "labels_train.count(1)/labels_train.count(0)\n", | |
| "\n", | |
| "# print(len(features_train[0]), len(features_test[0]))" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "text/plain": [ | |
| "23.52941176470588" | |
| ] | |
| }, | |
| "execution_count": 18, | |
| "metadata": {}, | |
| "output_type": "execute_result" | |
| } | |
| ], | |
| "source": [ | |
| "predictions = KNN.predict(features_test,features_train,labels_train,1)\n", | |
| "KNN.score(predictions, labels_test)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": 20, | |
| "metadata": {}, | |
| "outputs": [ | |
| { | |
| "data": { | |
| "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWYAAAD0CAYAAACo/4zqAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAACcZJREFUeJzt3U+opXUZB/Dv6B0VQiGwrEBw1W9ZMC7K0txIKRltatWi\nokAokBZFSZJF7voDEWJEgkUtKhDSRQZR0B8inFWbeaJ1RGFRTdgfh2lxR+Y2OPec7j3vfZ9z3s9n\ndf/N4Zk7c758z/P+3ntPXbx4MQD0cc3cAwDwvwQzQDOCGaAZwQzQjGAGaEYwAzSzd9wHOHv2rPN2\nAEdw5syZUy/38WMHc5LcfvtnN/EwAIvx3HOfuernrDIAmhHMAM0IZoBmBDNAM4IZoBnBDNCMYAZo\nRjADNCOYAZoRzADNCGaAZgQzQDOCGaAZwQzQjGAGaEYwAzQjmAGaEcwAzWzkV0sB2+ORPH3g7ftn\nnISr0ZgBmtGYYccdbMiHfU577kNjBmhGMAM0Y5UBO+iw9cW6f8ZqYz4aM0AzGjNsqaO04qM+vvZ8\nsjRmgGY0ZmAl7flkacwAzWjMsEWm3ivTg8YM0IzGDI1pyMukMQM0ozFDM1oyGjNAM4IZoJmVq4wx\nxukkTya5LcmFJB+uqnMTzwU7zbqCw6zTmO9LsldVdyT5XJJHpx0JYNnWCebfJtkbY1yT5KYk/5l2\nJIBlW+dUxvnsrzHOJbk5yTunHAhg6dZpzB9L8mxVvT7JG5I8Oca4YdqxAJZrncb8l1xeX/w5yekk\n1042EcDCrRPMX07yxBjjZ0muS/JQVf1j2rFgtx380ZlOaHCllcFcVeeTvPcEZgEgbsmG2V35g+c1\naNz5B9CMYAZoxioDmnFhEI0ZoBmNGRo77DdSa9O7S2MGaEZjBlY6rLmzeRozQDMaM2ypqU9vaMnz\n0ZgBmtGYYQds4rZuDbkPjRmgGcEM0IxVBuygdS8MWl/0pDEDNKMxw47TirePxgzQzEYac7cfprL0\nhnDlv8fSvx+wbTRmgGZ2csd8sDEupS0efuV9ed8P2GYaM0AzO9mYD9rlfevRbrvVnqE7jRmgGcEM\n0MzOrzKutM0v5Td9LHGX1zywzTRmgGYW15gP2obGeJI372zzqwnYJRozQDOLbsxX6tAYu9zevg2v\nJmBXacwAzWjMV3GS7blLSz5Mh1cTsBQaM0AzGvMapti3bkNLvhrtGaalMQM0I5gBmllrlTHG+FSS\ndyW5LsljVfWNSadq7igv5bd5dXEYx+pg81Y25jHG3UnuSPKWJG9LcuvEMwEs2jqN+e1JfpPkqSQ3\nJfn4pBNtmcPa86625MO4MAjHt86O+eYktyd5T5IHknx7jHFq0qkAFmydxvx8knNV9e8kNcb4Z5JX\nJfnjpJOxlbRkOL51GvPPk7xjjHFqjPG6JK/IflgDMIGVjbmqnhlj3JXk19kP8o9U1YXJJ9sShzXE\ng59b4r4ZOJq1jstV1SemHgSAfW7JXsNmbsHenRMb9sgwLXf+ATQjmAGascqYiQuDwNVozADNbKQx\nuxh0PL5/wEEaM0AzghmgGcEM0IxgBmhGMAM0I5gBmhHMAM0IZoBmBDNAM4IZoBnBDNCMYAZoRjAD\nNCOYAZoRzADNCGaAZgQzQDOCGaAZwQzQjGAGaEYwAzQjmAGaEcwAzQhmgGYEM0AzghmgGcEM0Ixg\nBmhGMAM0I5gBmtlb54vGGK9OcjbJPVV1btqRAJZtZWMeY5xO8rUkL0w/DgDrrDK+kOTxJL+feBYA\nsiKYxxjvT/Knqnr2ZMYBYFVj/mCSe8YYP03yxiTfHGO8ZvKpABbs0It/VXXXS29fCucHquoPUw8F\nsGSOywE0s9ZxuSSpqrsnnAOASzRmgGYEM0AzghmgGcEM0IxgBmhGMAM0I5gBmhHMAM0IZoBmBDNA\nM4IZoBnBDNCMYAZoRjADNCOYAZoRzADNCGaAZgQzQDOCGaAZwQzQjGAGaEYwAzQjmAGaEcwAzQhm\ngGYEM0AzghmgGcEM0IxgBmhmbxMP8kie3sTDkOSR3D/3CHCors/3XXruaMwAzWykMQO7p2szvpqD\n8257e9aYAZrRmIGds+3tWWMGaEZjhgXbtj3yUVz5d9yGBn1oMI8xTid5IsltSa5P8vmq+sEJzAWw\nWKtWGe9L8nxV3Znk3iRfnX4kgGVbtcr4XpLvH3j/xQlnAZjcNlwYPDSYq+p8kowxbsx+QH/6JIYC\nWLKVF//GGLcmeSrJY1X1nelHAjZpCRf4/h9dW/JBqy7+3ZLkR0k+WlU/PpmRAJZtVWN+KMkrkzw8\nxnj40sfuraoXph0LYDO2oSFfadWO+cEkD57QLADEDSbADtrGlnyQW7IBmtGYYcdd2R6d0uhPYwZo\nRjADNLOh3/m33Yt2WBLP1/40ZoBmBDNAM4IZoBnBDNCMYAZoRjADNCOYAZoRzADNCGaAZgQzQDOC\nGaAZwQzQjGAGaEYwAzQjmAGaEcwAzQhmgGYEM0AzghmgGcEM0IxgBmhGMAM0I5gBmhHMAM0IZoBm\nBDNAM4IZoBnBDNCMYAZoRjADNLO36gvGGNckeSzJG5L8K8mHqup3Uw8GsFTrNOZ3J7mhqt6c5JNJ\nvjjtSADLtk4wvzXJD5Okqn6V5PZJJwJYuJWrjCQ3JfnrgfcvjDH2qurFlz7w3HOf2fhgAEu1TjD/\nLcmNB96/5mAonzlz5tTGpwJYsHVWGb9Icl+SjDHelOQ3k04EsHDrNOanktwzxvhlklNJPjDtSADL\ndurixYtH+oOO0V02xjid5IkktyW5Psnnq+oHsw7VwBjj1UnOJrmnqs7NPc+cxhifSvKuJNcleayq\nvjHzSLO49Fx5MvvPlQtJPrz0/xsv5zg3mDhGd9n7kjxfVXcmuTfJV2eeZ3aXnoBfS/LC3LPMbYxx\nd5I7krwlyduS3DrrQPO6L8leVd2R5HNJHp15npaOE8yO0V32vSQPH3j/xat94YJ8IcnjSX4/9yAN\nvD3712aeSvJ0kmfmHWdWv02yd+kV901J/jPzPC0dJ5hf9hjdMefZSlV1vqr+Psa4Mcn3k3x67pnm\nNMZ4f5I/VdWzc8/SxM3ZLy7vSfJAkm+PMZZ6mul89tcY55J8PclXZp2mqeME86HH6JZmjHFrkp8k\n+VZVfWfueWb2wexfMP5pkjcm+eYY4zXzjjSr55M8W1X/rqpK8s8kr5p5prl8LPvfi9dn//rUk2OM\nG2aeqZ3jNNxfJLk/yXeXfoxujHFLkh8l+WhV/XjueeZWVXe99PalcH6gqv4w30Sz+3mSB8cYX0ry\n2iSvyH5YL9Ffcnl98eckp5NcO984PR0nmB2ju+yhJK9M8vAY46Vd871VtfgLXyRV9cwY464kv87+\nq9SPVNWFmceay5eTPDHG+Fn2T6g8VFX/mHmmdo58XA6Aafh5zADNCGaAZgQzQDOCGaAZwQzQjGAG\naEYwAzQjmAGa+S/or8dcURwKmAAAAABJRU5ErkJggg==\n", | |
| "text/plain": [ | |
| "<matplotlib.figure.Figure at 0x163d236efd0>" | |
| ] | |
| }, | |
| "metadata": {}, | |
| "output_type": "display_data" | |
| } | |
| ], | |
| "source": [ | |
| "import numpy as np\n", | |
| "import pylab as pl\n", | |
| "\n", | |
| "\n", | |
| "x_min = 0.0; x_max = 10.0\n", | |
| "y_min = 0.0; y_max = 10.0\n", | |
| "h = .1 # step size in the mesh\n", | |
| "xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))\n", | |
| "Z = KNN.predict(np.c_[xx.ravel(), yy.ravel()], features_train, labels_train, 1)\n", | |
| "\n", | |
| "# Put the result into a color plot\n", | |
| "Z = np.asarray(Z)\n", | |
| "Z = Z.reshape(xx.shape)\n", | |
| "plt.xlim(xx.min(), xx.max())\n", | |
| "plt.ylim(yy.min(), yy.max())\n", | |
| "\n", | |
| "plt.pcolormesh(xx, yy, Z, cmap=pl.cm.seismic)\n", | |
| "colormap = {0:'red',1:'blue'}\n", | |
| "colors = [colormap[x] for x in labels]\n", | |
| "# plt.scatter(x=[0],y=features[1],data=features, color=colors)\n", | |
| "\n", | |
| "# plt.pcolormesh(xx, yy, Z, cmap=pl.cm.seismic)\n", | |
| "# colormap = {0:'red',1:'blue'}\n", | |
| "# colors = [colormap[x] for x in labels]\n", | |
| "# plt.scatter(x='BN',y='M',data=features, color=colors)" | |
| ] | |
| }, | |
| { | |
| "cell_type": "code", | |
| "execution_count": null, | |
| "metadata": {}, | |
| "outputs": [], | |
| "source": [] | |
| } | |
| ], | |
| "metadata": { | |
| "kernelspec": { | |
| "display_name": "Python 3", | |
| "language": "python", | |
| "name": "python3" | |
| }, | |
| "language_info": { | |
| "codemirror_mode": { | |
| "name": "ipython", | |
| "version": 3 | |
| }, | |
| "file_extension": ".py", | |
| "mimetype": "text/x-python", | |
| "name": "python", | |
| "nbconvert_exporter": "python", | |
| "pygments_lexer": "ipython3", | |
| "version": "3.6.3" | |
| } | |
| }, | |
| "nbformat": 4, | |
| "nbformat_minor": 2 | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment