''' Script for Cartpole using policy gradient via Chainer, two layer MLP, dropout, and rejection sampling of historical memories ''' import gym import numpy as np import chainer from chainer import optimizers from chainer import ChainList, Variable import chainer.functions as F import chainer.links as L env = gym.make('CartPole-v0') env.monitor.start('./cartpole-experiment') print('Action space:', env.action_space) print('Observation space:', env.observation_space) INPUT = 4 HIDDEN = 32 MEMORY_STORE = 16 REWARD_DECAY = 0.99 EPSILON_RANDOM = 0.01 MINIMUM_UPDATE_SIZE = 2 SGD_LR = 0.8 DROPOUT = 0.5 class PolicyNetwork(ChainList): def __init__(self, input_size=4, hidden_size=32): super(PolicyNetwork, self).__init__( L.Linear(input_size, hidden_size, nobias=True), L.Linear(hidden_size, 1, nobias=True), ) def __call__(self, x, train=True, dropout=0.5): h = x h = F.dropout(self[0](h), train=train, ratio=dropout) h = self[1](F.tanh(h)) return F.sigmoid(h) model = PolicyNetwork(input_size=INPUT, hidden_size=HIDDEN) optimizer = optimizers.SGD(lr=SGD_LR) optimizer.setup(model) env.reset() episodes = [] reward_history = [] for iter in range(10000): episode = [] total_reward = 0 state = env.reset() for t in range(201): env.render() raw_action = model(np.array([state], dtype=np.float32), train=False) action = 1 if np.random.random() < raw_action.data else 0 if np.random.random() > 1 - EPSILON_RANDOM: action = env.action_space.sample() new_state, reward, done, info = env.step(action) episode.append((state, action, reward)) state = new_state total_reward += reward if done: break episodes.append((total_reward, episode)) reward_history.append(total_reward) if len(episodes) > MINIMUM_UPDATE_SIZE: gradW = [[], []] for _, episode in episodes: R = [r for idx, (s, a, r) in enumerate(episode)] accR = [sum(r * REWARD_DECAY ** i for i, r in enumerate(R[idx:])) for idx, (s, a, r) in enumerate(episode)] pred_actions = [model(np.array([s], dtype=np.float32), train=True, dropout=DROPOUT) for (s, a, r) in episode] losses = [(pa - a) ** 2 for pa, (s, a, r) in zip(pred_actions, episode)] for loss, r in zip(losses, accR): model.zerograds() loss.backward() gradW[0].append(r * model[0].W.grad) gradW[1].append(r * model[1].W.grad) for idx, gradW in enumerate(gradW): model[idx].W.grad = np.mean(gradW, axis=0, dtype=np.float32) optimizer.update() maxR = np.max([r for (r, ep) in episodes]) episodes = [(r, ep) for (r, ep) in episodes if maxR * np.random.random() < r] np.random.shuffle(episodes) episodes = episodes[:MEMORY_STORE] print('Episode {} finished after {} timesteps (avg for last 100 - {})'.format(iter, t, np.mean(reward_history[-100:]))) env.monitor.close()