netD = Discriminator(ngpu).to(device)
if (device.type == 'cuda') and (ngpu > 1):
netD = nn.DataParallel(netD, list(range(ngpu)))
netD.apply(weights_init)
print(netD)criterion = nn.BCELoss()
fixed_noise = torch.randn(64, nz, 1, 1, device=device)
real_label = 1
fake_label = 0
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))img_list = []
G_losses = []
D_losses = []
iters = 0
for epoch in range(num_epochs):
for i, data in enumerate(dataloader, 0):
# Part 1
netD.zero_grad()plt.figure(figsize=(10,5))
plt.title("Generator and Discriminator Loss During Training")
plt.plot(G_losses,label="G")
plt.plot(D_losses,label="D")
plt.xlabel("iterations")
plt.ylabel("Loss")
plt.legend()
plt.show()#%%capture
fig = plt.figure(figsize=(8,8))
plt.axis("off")
ims = [[plt.imshow(np.transpose(i,(1,2,0)), animated=True)] for i in img_list]
ani = animation.ArtistAnimation(fig, ims, interval=1000, repeat_delay=1000, blit=True)
ani.save("anim.mp4")
HTML(ani.to_jshtml())import pandas as pd
import numpy as np
import seaborn as sns
df = pd.read_csv("speed-dating-experiment/Speed Dating Data.csv", encoding="ISO-8859-1")
df.head(10) #shows the first 10 rows
df.shape # gives rows and columns
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| df2['match'].shape | |
| pd.crosstab(index=df2["match"], columns="count") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| to_remove = [] | |
| for a in df.columns: | |
| if df[a].isna().sum() > 4000: | |
| to_remove.append(a) | |
| df = df.drop(to_remove, axis=1) | |
| df.shape |
| col_0 | count |
|---|---|
| match |