Skip to content

Instantly share code, notes, and snippets.

View SuperShinyEyes's full-sized avatar

Seyoung Park SuperShinyEyes

View GitHub Profile
@SuperShinyEyes
SuperShinyEyes / afp.conf
Created March 4, 2018 14:20 — forked from oscarcck/afp.conf
afp.conf sample for osx 10.7 lion time machine with netatalk 3.0 afpd on ubuntu 12.04
;
; Netatalk 3.x configuration file
; http://netatalk.sourceforge.net/3.0/htmldocs/afp.conf.5.html
;
[Global]
; Global server settings
vol preset = default_for_all_vol
log file = /var/log/netatalk.log
uam list = uams_dhx.so,uams_dhx2.so
@SuperShinyEyes
SuperShinyEyes / Netatalk_3_install_debugging2.md
Last active March 15, 2018 14:05
Netatalk 3 install & debugging

For better debugging I will elaborate my process and status. I installed Netatalk 3.1.11 by self-build from source. We DO NOT have Avahi installed as the module is prohibited in the system.

sudo apt-get install autoconf \
  libtool-bin \
  libtool \
  automake \
  build-essential \
  libssl-dev \

AppleVolume.default

# The line below sets some DEFAULT, starting with Netatalk 2.1.
:DEFAULT: options:upriv,usedots

# By default all users have access to their home directories.
#~/                     "Home Directory"
#/l/parks1_2 "lparks1_2's Time Machine" options:tm allow:parks1
#/l/parks1 "lparks1's Time Machine" options:tm allow:parks1
#/timemachine_backup_zpool/jkotimak "jkotimak's Time Machine" options:tm allow:jkotimak
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
@SuperShinyEyes
SuperShinyEyes / Autoencoders.md
Created May 11, 2018 06:40 — forked from tomokishii/Autoencoders.md
TensorFlow MNIST Autoencoders

README.md

These codes are TensorFlow Autoencoder implementation examples. They are inspired by very educational Keras Blog article.

http://blog.keras.io/building-autoencoders-in-keras.html

Building Autoencodes in Keras

"Autoencoding" is a data compression algorithm where the compression and decompression

@SuperShinyEyes
SuperShinyEyes / table2rst.py
Created July 29, 2018 09:03 — forked from marianoguerra/table2rst.py
csv table 2 rst
'''read a csv file representing a table and write a restructured text simple
table'''
import sys
import csv
def get_out(out=None):
'''
return a file like object from different kinds of values
None: returns stdout
string: returns open(path)
This file has been truncated, but you can view the full file.
/**
* plotly.js v1.39.4
* Copyright 2012-2018, Plotly, Inc.
* All rights reserved.
* Licensed under the MIT license
*/
!function(t){if("object"==typeof exports&&"undefined"!=typeof module)module.exports=t();else if("function"==typeof define&&define.amd)define([],t);else{("undefined"!=typeof window?window:"undefined"!=typeof global?global:"undefined"!=typeof self?self:this).Plotly=t()}}(function(){return function(){return function t(e,r,n){function i(o,s){if(!r[o]){if(!e[o]){var l="function"==typeof require&&require;if(!s&&l)return l(o,!0);if(a)return a(o,!0);var c=new Error("Cannot find module '"+o+"'");throw c.code="MODULE_NOT_FOUND",c}var u=r[o]={exports:{}};e[o][0].call(u.exports,function(t){var r=e[o][1][t];return i(r||t)},u,u.exports,t,e,r,n)}return r[o].exports}for(var a="function"==typeof require&&require,o=0;o<n.length;o++)i(n[o]);return i}}()({1:[function(t,e,r){"use strict";var n=t("../src/lib"),i={"X,X div":"direction:ltr;font-family:'Open Sans', verdana, arial, sans-serif;margin:0;padding:0;","X i
FROM kaakaa/opencv-contrib-python3
RUN pip install --upgrade pip && \
pip install jupyter scipy numpy matplotlib Pillow scikit-image
CMD unset XDG_RUNTIME_DIR && \
jupyter notebook --notebook-dir=/project --port=9999 --ip=0.0.0.0 --no-browser --allow-root
FROM python:3.5
MAINTAINER Yusuke Nemoto <[email protected]>
RUN apt-get update && apt-get install -y build-essential \
cmake \
wget \
git \
unzip \
yasm \
@SuperShinyEyes
SuperShinyEyes / min-char-rnn.py
Created October 26, 2018 20:52 — forked from karpathy/min-char-rnn.py
Minimal character-level language model with a Vanilla Recurrent Neural Network, in Python/numpy
"""
Minimal character-level Vanilla RNN model. Written by Andrej Karpathy (@karpathy)
BSD License
"""
import numpy as np
# data I/O
data = open('input.txt', 'r').read() # should be simple plain text file
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)