Created
July 28, 2021 13:22
-
-
Save SupreethRao99/e53e122883149326e82553a0cf7e6811 to your computer and use it in GitHub Desktop.
colab-issue.ipynb
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"name": "colab-issue.ipynb", | |
"provenance": [], | |
"authorship_tag": "ABX9TyMBv/gP4bWURduq6Nh4Pp+B", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
}, | |
"widgets": { | |
"application/vnd.jupyter.widget-state+json": { | |
"b4e349e1c89a441b9081fe1a054ef2c6": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HBoxModel", | |
"state": { | |
"_view_name": "HBoxView", | |
"_dom_classes": [], | |
"_model_name": "HBoxModel", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"box_style": "", | |
"layout": "IPY_MODEL_96c4f4c731b843a9bde5d26c33dfab5a", | |
"_model_module": "@jupyter-widgets/controls", | |
"children": [ | |
"IPY_MODEL_1f5f8355296043d7bb3323c386952c68", | |
"IPY_MODEL_a6459fa57be149e6bcef10e1fc2cd48c" | |
] | |
} | |
}, | |
"96c4f4c731b843a9bde5d26c33dfab5a": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"1f5f8355296043d7bb3323c386952c68": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "FloatProgressModel", | |
"state": { | |
"_view_name": "ProgressView", | |
"style": "IPY_MODEL_e08521c0669040ee8a6464cddecbf1e4", | |
"_dom_classes": [], | |
"description": "Dl Completed...: 100%", | |
"_model_name": "FloatProgressModel", | |
"bar_style": "success", | |
"max": 4, | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": 4, | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"orientation": "horizontal", | |
"min": 0, | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_8eaf665661c44e8c9f24f17c67267242" | |
} | |
}, | |
"a6459fa57be149e6bcef10e1fc2cd48c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "HTMLModel", | |
"state": { | |
"_view_name": "HTMLView", | |
"style": "IPY_MODEL_5b8a226f6fd04b6caf733a0e36f6f72c", | |
"_dom_classes": [], | |
"description": "", | |
"_model_name": "HTMLModel", | |
"placeholder": "", | |
"_view_module": "@jupyter-widgets/controls", | |
"_model_module_version": "1.5.0", | |
"value": " 4/4 [00:01<00:00, 3.44 file/s]", | |
"_view_count": null, | |
"_view_module_version": "1.5.0", | |
"description_tooltip": null, | |
"_model_module": "@jupyter-widgets/controls", | |
"layout": "IPY_MODEL_25d6f488baf44d6aab4f15ab3c091fd0" | |
} | |
}, | |
"e08521c0669040ee8a6464cddecbf1e4": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "ProgressStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "ProgressStyleModel", | |
"description_width": "initial", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"bar_color": null, | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"8eaf665661c44e8c9f24f17c67267242": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
}, | |
"5b8a226f6fd04b6caf733a0e36f6f72c": { | |
"model_module": "@jupyter-widgets/controls", | |
"model_name": "DescriptionStyleModel", | |
"state": { | |
"_view_name": "StyleView", | |
"_model_name": "DescriptionStyleModel", | |
"description_width": "", | |
"_view_module": "@jupyter-widgets/base", | |
"_model_module_version": "1.5.0", | |
"_view_count": null, | |
"_view_module_version": "1.2.0", | |
"_model_module": "@jupyter-widgets/controls" | |
} | |
}, | |
"25d6f488baf44d6aab4f15ab3c091fd0": { | |
"model_module": "@jupyter-widgets/base", | |
"model_name": "LayoutModel", | |
"state": { | |
"_view_name": "LayoutView", | |
"grid_template_rows": null, | |
"right": null, | |
"justify_content": null, | |
"_view_module": "@jupyter-widgets/base", | |
"overflow": null, | |
"_model_module_version": "1.2.0", | |
"_view_count": null, | |
"flex_flow": null, | |
"width": null, | |
"min_width": null, | |
"border": null, | |
"align_items": null, | |
"bottom": null, | |
"_model_module": "@jupyter-widgets/base", | |
"top": null, | |
"grid_column": null, | |
"overflow_y": null, | |
"overflow_x": null, | |
"grid_auto_flow": null, | |
"grid_area": null, | |
"grid_template_columns": null, | |
"flex": null, | |
"_model_name": "LayoutModel", | |
"justify_items": null, | |
"grid_row": null, | |
"max_height": null, | |
"align_content": null, | |
"visibility": null, | |
"align_self": null, | |
"height": null, | |
"min_height": null, | |
"padding": null, | |
"grid_auto_rows": null, | |
"grid_gap": null, | |
"max_width": null, | |
"order": null, | |
"_view_module_version": "1.2.0", | |
"grid_template_areas": null, | |
"object_position": null, | |
"object_fit": null, | |
"grid_auto_columns": null, | |
"margin": null, | |
"display": null, | |
"left": null | |
} | |
} | |
} | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/SupreethRao99/e53e122883149326e82553a0cf7e6811/colab-issue.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "HfQEgmDcPqEI" | |
}, | |
"source": [ | |
"import tensorflow as tf\n", | |
"import tensorflow_datasets as tfds" | |
], | |
"execution_count": 1, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 222, | |
"referenced_widgets": [ | |
"b4e349e1c89a441b9081fe1a054ef2c6", | |
"96c4f4c731b843a9bde5d26c33dfab5a", | |
"1f5f8355296043d7bb3323c386952c68", | |
"a6459fa57be149e6bcef10e1fc2cd48c", | |
"e08521c0669040ee8a6464cddecbf1e4", | |
"8eaf665661c44e8c9f24f17c67267242", | |
"5b8a226f6fd04b6caf733a0e36f6f72c", | |
"25d6f488baf44d6aab4f15ab3c091fd0" | |
] | |
}, | |
"id": "sYxRYd2lQPIi", | |
"outputId": "2037d156-66aa-429b-da91-745cb4814f6e" | |
}, | |
"source": [ | |
"(ds_train, ds_test), ds_info = tfds.load(\n", | |
" 'mnist',\n", | |
" split=['train', 'test'],\n", | |
" shuffle_files=True,\n", | |
" as_supervised=True,\n", | |
" with_info=True,\n", | |
")" | |
], | |
"execution_count": 2, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"\u001b[1mDownloading and preparing dataset mnist/3.0.1 (download: 11.06 MiB, generated: 21.00 MiB, total: 32.06 MiB) to /root/tensorflow_datasets/mnist/3.0.1...\u001b[0m\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "stream", | |
"text": [ | |
"WARNING:absl:Dataset mnist is hosted on GCS. It will automatically be downloaded to your\n", | |
"local data directory. If you'd instead prefer to read directly from our public\n", | |
"GCS bucket (recommended if you're running on GCP), you can instead pass\n", | |
"`try_gcs=True` to `tfds.load` or set `data_dir=gs://tfds-data/datasets`.\n", | |
"\n" | |
], | |
"name": "stderr" | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/vnd.jupyter.widget-view+json": { | |
"model_id": "b4e349e1c89a441b9081fe1a054ef2c6", | |
"version_minor": 0, | |
"version_major": 2 | |
}, | |
"text/plain": [ | |
"HBox(children=(FloatProgress(value=0.0, description='Dl Completed...', max=4.0, style=ProgressStyle(descriptio…" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "stream", | |
"text": [ | |
"\n", | |
"\n", | |
"\u001b[1mDataset mnist downloaded and prepared to /root/tensorflow_datasets/mnist/3.0.1. Subsequent calls will reuse this data.\u001b[0m\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "cNW4irM-QS2-" | |
}, | |
"source": [ | |
"def normalize_img(image, label):\n", | |
" \"\"\"Normalizes images: `uint8` -> `float32`.\"\"\"\n", | |
" return tf.cast(image, tf.float32) / 255., label\n", | |
"\n", | |
"ds_train = ds_train.map(normalize_img)\n", | |
"ds_train = ds_train.batch(128)" | |
], | |
"execution_count": 3, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "REFE87jhQTZ5" | |
}, | |
"source": [ | |
"ds_test = ds_test.map(normalize_img)\n", | |
"ds_test = ds_test.batch(128)" | |
], | |
"execution_count": 4, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"id": "ZfQu-SABQW5W" | |
}, | |
"source": [ | |
"model = tf.keras.models.Sequential([\n", | |
" tf.keras.layers.Flatten(input_shape=(28, 28, 1)),\n", | |
" tf.keras.layers.Dense(128,activation='relu'),\n", | |
" tf.keras.layers.Dense(10, activation='softmax')\n", | |
"])\n", | |
"model.compile(\n", | |
" loss='sparse_categorical_crossentropy',\n", | |
" optimizer=tf.keras.optimizers.Adam(0.001),\n", | |
" metrics=['accuracy']\n", | |
")" | |
], | |
"execution_count": 5, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "ZRhT_AU2QbWN", | |
"outputId": "0aa49946-0316-4a32-dc74-3cb55d1b8e50" | |
}, | |
"source": [ | |
"model.fit(ds_train,epochs=10,validation_data=ds_test)" | |
], | |
"execution_count": 6, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"Epoch 1/10\n", | |
"469/469 [==============================] - 10s 21ms/step - loss: 0.3597 - accuracy: 0.8998 - val_loss: 0.1909 - val_accuracy: 0.9456\n", | |
"Epoch 2/10\n", | |
"469/469 [==============================] - 4s 8ms/step - loss: 0.1650 - accuracy: 0.9535 - val_loss: 0.1381 - val_accuracy: 0.9596\n", | |
"Epoch 3/10\n", | |
"469/469 [==============================] - 4s 8ms/step - loss: 0.1184 - accuracy: 0.9664 - val_loss: 0.1133 - val_accuracy: 0.9667\n", | |
"Epoch 4/10\n", | |
"469/469 [==============================] - 3s 7ms/step - loss: 0.0912 - accuracy: 0.9742 - val_loss: 0.1003 - val_accuracy: 0.9714\n", | |
"Epoch 5/10\n", | |
"469/469 [==============================] - 4s 8ms/step - loss: 0.0734 - accuracy: 0.9792 - val_loss: 0.0923 - val_accuracy: 0.9733\n", | |
"Epoch 6/10\n", | |
"469/469 [==============================] - 4s 8ms/step - loss: 0.0603 - accuracy: 0.9831 - val_loss: 0.0877 - val_accuracy: 0.9745\n", | |
"Epoch 7/10\n", | |
"469/469 [==============================] - 4s 8ms/step - loss: 0.0503 - accuracy: 0.9865 - val_loss: 0.0842 - val_accuracy: 0.9757\n", | |
"Epoch 8/10\n", | |
"469/469 [==============================] - 4s 8ms/step - loss: 0.0422 - accuracy: 0.9891 - val_loss: 0.0816 - val_accuracy: 0.9756\n", | |
"Epoch 9/10\n", | |
"469/469 [==============================] - 4s 9ms/step - loss: 0.0353 - accuracy: 0.9913 - val_loss: 0.0803 - val_accuracy: 0.9758\n", | |
"Epoch 10/10\n", | |
"469/469 [==============================] - 4s 9ms/step - loss: 0.0295 - accuracy: 0.9930 - val_loss: 0.0786 - val_accuracy: 0.9763\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"<tensorflow.python.keras.callbacks.History at 0x7f1769bb0c50>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
}, | |
"execution_count": 6 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "Td_as7ZCQif8", | |
"outputId": "c65ce3fe-9745-429b-a45e-323af1475d35" | |
}, | |
"source": [ | |
"model.save('MNIST-Model')" | |
], | |
"execution_count": 7, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
"INFO:tensorflow:Assets written to: MNIST-Model/assets\n" | |
], | |
"name": "stdout" | |
}, | |
{ | |
"output_type": "stream", | |
"text": [ | |
"INFO:tensorflow:Assets written to: MNIST-Model/assets\n" | |
], | |
"name": "stderr" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "iAMyWSpsQn2G", | |
"outputId": "c594ef3f-b904-4c2c-aa12-38fd10e34ac3" | |
}, | |
"source": [ | |
"!zip -r /content/MNIST.zip /content/MNIST-Model" | |
], | |
"execution_count": 8, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"text": [ | |
" adding: content/MNIST-Model/ (stored 0%)\n", | |
" adding: content/MNIST-Model/assets/ (stored 0%)\n", | |
" adding: content/MNIST-Model/variables/ (stored 0%)\n", | |
" adding: content/MNIST-Model/variables/variables.data-00000-of-00001 (deflated 12%)\n", | |
" adding: content/MNIST-Model/variables/variables.index (deflated 59%)\n", | |
" adding: content/MNIST-Model/saved_model.pb (deflated 87%)\n", | |
" adding: content/MNIST-Model/keras_metadata.pb (deflated 85%)\n" | |
], | |
"name": "stdout" | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/", | |
"height": 34 | |
}, | |
"id": "ka7I7rE9Qv-o", | |
"outputId": "a4e7a9f4-2489-4f85-ed8a-1237c4036094" | |
}, | |
"source": [ | |
"from google.colab import files\n", | |
"files.download('/content/MNIST.zip')" | |
], | |
"execution_count": 9, | |
"outputs": [ | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/javascript": [ | |
"\n", | |
" async function download(id, filename, size) {\n", | |
" if (!google.colab.kernel.accessAllowed) {\n", | |
" return;\n", | |
" }\n", | |
" const div = document.createElement('div');\n", | |
" const label = document.createElement('label');\n", | |
" label.textContent = `Downloading \"${filename}\": `;\n", | |
" div.appendChild(label);\n", | |
" const progress = document.createElement('progress');\n", | |
" progress.max = size;\n", | |
" div.appendChild(progress);\n", | |
" document.body.appendChild(div);\n", | |
"\n", | |
" const buffers = [];\n", | |
" let downloaded = 0;\n", | |
"\n", | |
" const channel = await google.colab.kernel.comms.open(id);\n", | |
" // Send a message to notify the kernel that we're ready.\n", | |
" channel.send({})\n", | |
"\n", | |
" for await (const message of channel.messages) {\n", | |
" // Send a message to notify the kernel that we're ready.\n", | |
" channel.send({})\n", | |
" if (message.buffers) {\n", | |
" for (const buffer of message.buffers) {\n", | |
" buffers.push(buffer);\n", | |
" downloaded += buffer.byteLength;\n", | |
" progress.value = downloaded;\n", | |
" }\n", | |
" }\n", | |
" }\n", | |
" const blob = new Blob(buffers, {type: 'application/binary'});\n", | |
" const a = document.createElement('a');\n", | |
" a.href = window.URL.createObjectURL(blob);\n", | |
" a.download = filename;\n", | |
" div.appendChild(a);\n", | |
" a.click();\n", | |
" div.remove();\n", | |
" }\n", | |
" " | |
], | |
"text/plain": [ | |
"<IPython.core.display.Javascript object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
}, | |
{ | |
"output_type": "display_data", | |
"data": { | |
"application/javascript": [ | |
"download(\"download_eb82d8cd-2f8a-46ca-86ec-a208047048f6\", \"MNIST.zip\", 1092977)" | |
], | |
"text/plain": [ | |
"<IPython.core.display.Javascript object>" | |
] | |
}, | |
"metadata": { | |
"tags": [] | |
} | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment