I hereby claim:
- I am tethyssvensson on github.
- I am idolfhatler (https://keybase.io/idolfhatler) on keybase.
- I have a public key ASA_aryPlRjMh1wwOTLM6sgIjvlyeyx6iPPZg75T7JZkIwo
To claim this, I am signing this object:
| use std::marker::PhantomData; | |
| pub struct NegOne; | |
| pub struct Zero; | |
| pub struct Bit0<N>(PhantomData<N>); | |
| pub struct Bit1<N>(PhantomData<N>); | |
| macro_rules! t { | |
| ($accum:ty) => { |
| struct NegOne; | |
| struct Zero; | |
| struct Bit0<N>(PhantomData<N>); | |
| struct Bit1<N>(PhantomData<N>); | |
| type One = Bit1<Zero>; | |
| type NegTwo = Bit0<NegOne>; | |
| trait Integer { |
| struct NegOne; | |
| struct Zero; | |
| struct Bit0<N>(PhantomData<N>); | |
| struct Bit1<N>(PhantomData<N>); | |
| type One = Bit1<Zero>; | |
| type NegTwo = Bit1<NegOne>; | |
| trait Integer { |
| struct NegOne; | |
| struct Zero; | |
| struct Shift<N>(PhantomData<N>); | |
| struct Shift1<N>(PhantomData<N>); | |
| type One = Shift1<Zero>; | |
| trait Integer { | |
| const VALUE: i128; |
| { pkgs, writeScriptBin, hacksaw, shotgun, xclip }: | |
| writeScriptBin "screenshot" '' | |
| #!${pkgs.bash}/bin/sh | |
| set -e | |
| file=$(date +/tmp/screenshot-%F-%H%M%S.png) | |
| if [[ "$1" = "full" ]]; then | |
| ${shotgun}/bin/shotgun $file |
| #[derive(Copy, Clone)] | |
| enum LinkedList<'a> { | |
| Nil, | |
| Cons(u8, &'a LinkedList<'a>), | |
| } | |
| struct LinkedListIter<'a> { | |
| list: LinkedList<'a>, | |
| } |
I hereby claim:
To claim this, I am signing this object:
| use flatbuffers::{Vector, Follow}; | |
| fn first<'a, T: Follow<'a> + 'a>(v: Vector<'a, T>) -> Option<T::Inner> { | |
| if v.len() > 0 { | |
| Some(v.get(0)) | |
| } else { | |
| None | |
| } | |
| } |
| module Test where | |
| open import Function using (id ; _∘_) | |
| open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) | |
| open import Data.Maybe | |
| record RawFunctor (F : Set → Set) : Set₁ where | |
| field | |
| fmap : ∀ {A B} → (A → B) → F A → F B |
| module Test where | |
| open import Function using (id ; _∘_) | |
| open import Relation.Binary.PropositionalEquality using (_≡_ ; refl) | |
| record RawFunctor (F : Set → Set) : Set₁ where | |
| field | |
| fmap : ∀ {A B} → (A → B) → F A → F B | |
| open RawFunctor {{...}} public |