You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Solidity lets you program on Ethereum, a blockchain-based virtual machine that allows the creation and execution of smart contracts, without needing centralized or trusted parties.
Solidity is a statically typed, contract programming language that has similarities to Javascript and C. Like objects in OOP, each contract contains state variables, functions, and common data types. Contract-specific features include modifier (guard) clauses, event notifiers for listeners, and custom global variables.
Some Ethereum contract examples include crowdfunding, voting, and blind auctions.
As Solidity and Ethereum are under active development, experimental or beta features are explicitly marked, and subject to change. Pull requests welcome.
// First, a simple Bank contract
// Allows deposits, withdrawals, and balance checks
Typings for using the Service Worker API with TypeScript
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Service Worker Typings to Supplement lib.webworker.ts
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
I've started writing a toy structured concurrency implementation for the Lua programming language. Some motivations:
use it as a simple introduction to structured concurrency from the perspective of Lua (this article)
learn the fundamental properties of structured concurrency and how to implement them
share code that could become the starting point for a real Lua library and framework
So what is structured concurrency? For now, I'll just say that it's a programming paradigm that makes managing concurrency (arguably the hardest problem of computer science) an order of magnitude easier in many contexts. It achieves this in ways that seem subtle to us—clearly so, since its utility didn't reach critical mass until around 2018[^sc_birth] (just as control structures like functions, if, and while weren't introduced to languages until long after the first compu