Last active
August 30, 2023 14:54
-
-
Save UmbreLu/a0fb6cca3f342ad79a40df79e2e08620 to your computer and use it in GitHub Desktop.
4myportfolio_cldfreportbuilder.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"nbformat": 4, | |
"nbformat_minor": 0, | |
"metadata": { | |
"colab": { | |
"provenance": [], | |
"authorship_tag": "ABX9TyPoDqEwPrKKqOGAD3X9nZ45", | |
"include_colab_link": true | |
}, | |
"kernelspec": { | |
"name": "python3", | |
"display_name": "Python 3" | |
}, | |
"language_info": { | |
"name": "python" | |
} | |
}, | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": { | |
"id": "view-in-github", | |
"colab_type": "text" | |
}, | |
"source": [ | |
"<a href=\"https://colab.research.google.com/gist/UmbreLu/a0fb6cca3f342ad79a40df79e2e08620/4myportfolio_cldfreportbuilder.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"!pip install xlsxwriter" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "R5Ubp3AnIw-M", | |
"outputId": "4a793868-6632-4b6c-ffef-3c252eddf0c3" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stdout", | |
"text": [ | |
"Collecting xlsxwriter\n", | |
" Downloading XlsxWriter-3.1.2-py3-none-any.whl (153 kB)\n", | |
"\u001b[?25l \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m0.0/153.0 kB\u001b[0m \u001b[31m?\u001b[0m eta \u001b[36m-:--:--\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m30.7/153.0 kB\u001b[0m \u001b[31m1.1 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[91m━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[90m╺\u001b[0m\u001b[90m━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.2/153.0 kB\u001b[0m \u001b[31m1.4 MB/s\u001b[0m eta \u001b[36m0:00:01\u001b[0m\r\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m153.0/153.0 kB\u001b[0m \u001b[31m1.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", | |
"\u001b[?25hInstalling collected packages: xlsxwriter\n", | |
"Successfully installed xlsxwriter-3.1.2\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": { | |
"id": "ljnO73xeoNxg" | |
}, | |
"outputs": [], | |
"source": [ | |
"import requests\n", | |
"import pandas as pd\n", | |
"import json\n", | |
"from datetime import date" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"source": [ | |
"url = \"###########################################\"" | |
], | |
"metadata": { | |
"id": "gSO6mDaa8AJO" | |
} | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df = pd.read_json(url)" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "cr5NxLySoVSp", | |
"outputId": "1bbadec7-0cf6-4c13-9308-2c0f0bdb9bba" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"<ipython-input-4-fcbc1ffd57af>:1: UserWarning: Parsing dates in DD/MM/YYYY format when dayfirst=False (the default) was specified. This may lead to inconsistently parsed dates! Specify a format to ensure consistent parsing.\n", | |
" df = pd.read_json(url)\n" | |
] | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df.columns" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "WWBR9Z1Do2Jp", | |
"outputId": "99d4861d-fdec-4a7a-bed0-a907a7b1658d" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"Index(['campaign_id', 'campaign_name', 'campaign_start_datetime',\n", | |
" 'campaign_end_datetime', 'placement_id', 'placement_purchase_qty',\n", | |
" 'placement_name', 'account_id', 'account_name', 'team_id', 'team_name',\n", | |
" 'format_name', 'format_size_width', 'format_size_height', 'site_id',\n", | |
" 'site_name', 'site_website', 'site_mediakit_url', 'channel_descr',\n", | |
" 'channel_purchased_quantity', 'purchase_type_format', 'creative_id',\n", | |
" 'creative_active', 'creative_redirect_url', 'creative_delivery_order',\n", | |
" 'creative_delivery_limit', 'creative_dates', 'creative_has_file',\n", | |
" 'creative_deleted_at', 'group_name', 'blocklists', 'unique_users',\n", | |
" 'impressions', 'unique_impressions', 'views', 'unique_views', 'clicks',\n", | |
" 'unique_clicks', 'viewables', 'errors', 'starts', 'firstquartiles',\n", | |
" 'midpoints', 'thirdquartiles', 'completes', 'safeframes', 'pixels',\n", | |
" 'viewables_starts', 'viewables_firstquartiles', 'viewables_midpoints',\n", | |
" 'viewables_thirdquartiles', 'viewables_completes', 'viewability', 'ctr',\n", | |
" 'datetime'],\n", | |
" dtype='object')" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 5 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df[['campaign_name', 'datetime','group_name', 'site_name','channel_purchased_quantity', 'impressions', 'viewables', 'views','clicks', 'viewability']]" | |
], | |
"metadata": { | |
"id": "SMbZNnDMo2mI" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"df['group_name'].unique()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "BpCnPM_Rvh26", | |
"outputId": "e8d7bf1d-4824-40ba-d6d2-c5fe5f82a88a" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "execute_result", | |
"data": { | |
"text/plain": [ | |
"array(['MOTIVO 1', 'MOTIVO 2'], dtype=object)" | |
] | |
}, | |
"metadata": {}, | |
"execution_count": 7 | |
} | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"def creative_start_date(dataframe):\n", | |
" return dataframe[['site_name', 'datetime', 'impressions']][dataframe['impressions'] > 10].groupby('site_name').agg({'datetime': 'min'})" | |
], | |
"metadata": { | |
"id": "iDcmyaowvn1Y" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"creative_start_date(df[df['group_name'] == 'MOTIVO 1'])" | |
], | |
"metadata": { | |
"id": "stt7tjVhxooa" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"section = df[['campaign_name', 'site_name','channel_purchased_quantity', 'impressions', 'viewables','clicks']]\n", | |
"base = section.groupby('site_name').agg({'channel_purchased_quantity': 'max', 'impressions': 'sum', 'viewables': 'sum','clicks': 'sum'}).copy(deep=True)" | |
], | |
"metadata": { | |
"id": "hvvtNVMkx2on" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"viewabilities = base[['viewables', 'impressions']]\n", | |
"viewability = []\n", | |
"for _, row in viewabilities.iterrows():\n", | |
" if row[1] != 0:\n", | |
" viewability.append(row[0]/ row[1])\n", | |
" else:\n", | |
" viewability.append('No viewables')\n", | |
"base['viewability'] = viewability" | |
], | |
"metadata": { | |
"id": "ZCAxdu0u93Lp" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"base['Taxa de Entrega'] = [(row[1] / row[0]) for index, row in base[['channel_purchased_quantity', 'impressions'] if row[0] else None].iterrows()]" | |
], | |
"metadata": { | |
"id": "oLP-m-88D1RU" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"base['MOTIVO 1'] = creative_start_date(df[df['group_name'] == 'MOTIVO 1'])\n", | |
"base['MOTIVO 2'] = creative_start_date(df[df['group_name'] == 'MOTIVO 2'])\n", | |
"base['MOTIVO 1'].fillna('Nunca', inplace=True)\n", | |
"base['MOTIVO 2'].fillna('Nunca', inplace=True)" | |
], | |
"metadata": { | |
"id": "4kqorW36GLET" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"base" | |
], | |
"metadata": { | |
"id": "lmgJvkscGLph" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"dfs = {'monitoramentoCLDF': base.reset_index().rename({'channel_purchased_quantity': 'contratado'}, axis=1)}" | |
], | |
"metadata": { | |
"id": "t11X7nxfJLBJ" | |
}, | |
"execution_count": null, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"source": [ | |
"writer = pd.ExcelWriter('monitoramentoCLDF_' + date.today().strftime('%d-%m-%Y') + '.xlsx')\n", | |
"for sheetname, df in dfs.items(): # loop through `dict` of dataframes\n", | |
" df.to_excel(writer, sheet_name=sheetname, index=False) # send df to writer\n", | |
" worksheet = writer.sheets[sheetname] # pull worksheet object\n", | |
" for idx, col in enumerate(df): # loop through all columns\n", | |
" series = df[col]\n", | |
" max_len = max((\n", | |
" series.astype(str).map(len).max(), # len of largest item\n", | |
" len(str(series.name)) # len of column name/header\n", | |
" )) + 1 # adding a little extra space\n", | |
" worksheet.set_column(idx, idx, max_len) # set column width\n", | |
"writer.save()" | |
], | |
"metadata": { | |
"colab": { | |
"base_uri": "https://localhost:8080/" | |
}, | |
"id": "T1f-rI4DI_0L", | |
"outputId": "5e612968-f2d6-4cf6-f33e-bfe344b96757" | |
}, | |
"execution_count": null, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"name": "stderr", | |
"text": [ | |
"<ipython-input-17-e9ddb8facd18>:12: FutureWarning: save is not part of the public API, usage can give unexpected results and will be removed in a future version\n", | |
" writer.save()\n" | |
] | |
} | |
] | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment