Created
April 22, 2021 06:10
-
-
Save Verina-Armanyous/04c514775e1c02a3048bf636ed7791a9 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"execution_count": 1, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import pandas as pd\n", | |
"import numpy as np\n", | |
"import matplotlib.pyplot as plt\n", | |
"from scipy import optimize\n", | |
"import scipy.stats as sts" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 5, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/html": [ | |
"<div>\n", | |
"<style scoped>\n", | |
" .dataframe tbody tr th:only-of-type {\n", | |
" vertical-align: middle;\n", | |
" }\n", | |
"\n", | |
" .dataframe tbody tr th {\n", | |
" vertical-align: top;\n", | |
" }\n", | |
"\n", | |
" .dataframe thead th {\n", | |
" text-align: right;\n", | |
" }\n", | |
"</style>\n", | |
"<table border=\"1\" class=\"dataframe\">\n", | |
" <thead>\n", | |
" <tr style=\"text-align: right;\">\n", | |
" <th></th>\n", | |
" <th>time</th>\n", | |
" <th>count_rate</th>\n", | |
" </tr>\n", | |
" </thead>\n", | |
" <tbody>\n", | |
" <tr>\n", | |
" <th>0</th>\n", | |
" <td>0</td>\n", | |
" <td>32</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>1</th>\n", | |
" <td>5</td>\n", | |
" <td>28</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>2</th>\n", | |
" <td>10</td>\n", | |
" <td>29</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>3</th>\n", | |
" <td>15</td>\n", | |
" <td>28</td>\n", | |
" </tr>\n", | |
" <tr>\n", | |
" <th>4</th>\n", | |
" <td>20</td>\n", | |
" <td>25</td>\n", | |
" </tr>\n", | |
" </tbody>\n", | |
"</table>\n", | |
"</div>" | |
], | |
"text/plain": [ | |
" time count_rate\n", | |
"0 0 32\n", | |
"1 5 28\n", | |
"2 10 29\n", | |
"3 15 28\n", | |
"4 20 25" | |
] | |
}, | |
"execution_count": 5, | |
"metadata": {}, | |
"output_type": "execute_result" | |
} | |
], | |
"source": [ | |
"data = pd.read_csv('proctatinium_data.csv')\n", | |
"data.head()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 6, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[<matplotlib.lines.Line2D at 0x7f86565a9d90>]" | |
] | |
}, | |
"execution_count": 6, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXzU1b3/8ddnJvtOkhlIwpKwJCGJCEJxAYFEccG1vd1sa72tv1pbu6ltr17bK1hbb71uvW1ta1tb21ptbzcFcUE2QZHNBZKQBQgBkpB935fz+2MmISGTZMg2meTzfDzyyOTMmcyZ70PfnJzvWcQYg1JKKe9j8XQDlFJKDY8GuFJKeSkNcKWU8lIa4Eop5aU0wJVSykv5jOebRUdHm/j4+PF8S6WU8noHDx6sMMbYzi0f1wCPj4/nwIED4/mWSinl9USk0FW5DqEopZSX0gBXSikvpQGulFJeSgNcKaW8lAa4Ukp5KQ1wpZTyUhrgSinlpbwiwLfllPL0jqOeboZSSk0oXhHgu/Mr+enWo+je5UopdZZXBHiCLZjm9k5K61o93RSllJowvCPAo4IBOF7R4OGWKKXUxOEVAR4fHQTAiYomD7dEKaUmDq8I8NjwQPx8LJyobPR0U5RSasLwigC3WIT4qCAKKjTAlVKqm1cEOEB8VLAGuFJK9eI1AZ4QHczJyiY6u3QqoVJKgRcFeHx0MG2dXRTXNHu6KUopNSF4TYAnRDumEuqNTKWUchgywEUkQET2iciHIpIlIhuc5ZEiskVE8p3fp41lQ7sDXMfBlVLKwZ0eeCuQYYy5EFgMXCMilwD3AVuNMQuArc6fx4w91J8gP6sGuFJKOQ0Z4Mahewmkr/PLADcBzznLnwNuHpMWOokIc6KCOaEBrpRSgJtj4CJiFZEPgDJgizFmLzDdGFMC4PxuH+C1d4jIARE5UF5ePqLGzo3WqYRKKdXNrQA3xnQaYxYDM4HlIpLm7hsYY54xxiwzxiyz2WzDbSfgWFJ/qrqZ9s6uEf0epZSaDM5rFooxpgbYAVwDlIpIDIDze9mot+4c8VHBdHYZTlfrVEKllHJnFopNRCKcjwOBK4Ec4GXgNme124CXxqqR3XqmEuowilJK4eNGnRjgORGx4gj8vxpjNonIHuCvInI7cBL4xBi2Ezgb4McrGkkf6zdTSqkJbsgAN8YcApa4KK8ErhiLRg0kMtiP0ACfPj1wYwwHC6u5cFYEvlavWZeklFIj5lWJJyIkRAf3WY358ofFfPyXe3j8jTwPtkwppcafVwU49N2VsKmtg0c25yACz+4u0LFxpdSU4nUBnhAdTFFNMy3tnTy9/Rhn6lr4xWeX4msVHn4l29PNU0qpceOVAW4MvHOsgmd2HeejS+K4Jm0GX79iAW8eKWNH7pjPZlRKqQnB6wI83jkT5bt/O4yPRbjv2mQAvrAinvioIB7alE1bhy70UUpNfl4X4N0n1Fc0tHJX+nymhwUA4O9j5fvXp3C8vJE/7DnhuQYqpdQ48boADw/yJSrYj9mRQdy+MqHPcxnJdlYn2vjJm/m0tHd6qIVKKTU+3FnIM+E8+anF2MP8CfC19ikXEW5ZPoudeeXknKln8awID7VQKaXGntf1wAFWJdpInhHm8rnU2HAAMotqx7NJSik17rwywAczc1og4YG+ZBXXebopSik1piZdgIsIqbFhZBVrD1wpNblNugAHSIsLJ6ekXvcNV0pNapMywFNjw2jr7CK/tGHoykop5aUmaYA7bmTqMIpSajKblAGeEB1MkJ9Vb2QqpSa1SRngVouQEhOmUwmVUpPapAxwcIyDZ5fU0dVlPN0UpZQaE5M3wOPCaWrrpKBS9whXSk1OkzbA09xYkWmMoVADXinlpSZtgC+YHoKf1UL2IDcyd+SWs/p/dnC0rH4cW6aUUqNj0ga4r9VC0oxQMgeZSnigsAqAIyUa4Eop7zNpAxwgLS6MzKI6jHF9IzOzyNE717M0lVLeaFIHeEpsOLXN7RTVNPd7zhjTs9CnQANcKeWFhgxwEZklIttF5IiIZInIN53l60WkSEQ+cH6tG/vmnp+0WMeWs9097d7K6lupaGgD0JkqSimv5E4PvAO41xizELgEuEtEUpzPPWmMWez82jxmrRymhTFhWC3ickl99+yUxOkhOoSilPJKQwa4MabEGPOe83E9cASIG+uGjYYAXyvzbMEcdjGVMLOoDhFYd0EM1U3t1DS1eaCFSik1fOc1Bi4i8cASYK+z6GsickhEnhWRaQO85g4ROSAiB8rLy0fU2OFYnhDJvoIqWjv6npGZVVxLQnRwz8ZXOg6ulPI2bge4iIQAfwe+ZYypA34BzAMWAyXA465eZ4x5xhizzBizzGazjUKTz096kp2mtk72FVT1Kc8qriMtNpyE6CAATug4uFLKy7gV4CLiiyO8nzfG/APAGFNqjOk0xnQBvwaWj10zh++yedH4+VjYnnO291/d2EZRTTOpsWHMigzCIlBQ0eTBViql1PlzZxaKAL8FjhhjnuhVHtOr2keBzNFv3sgF+lm5dG4U23PLesq6t5lNiwvH38dK3LRAHUJRSnkdd3rgK4BbgYxzpgw+KiKHReQQkA7cPZYNHYmMZDsFFY09Id29OjPVOc0wPipYZ6IopbyOz1AVjDG7AXHx1ISbNjiQ9CQ7D5LF9pwyElYmkFlUS1xEIBFBfoDjAIh/vleEMQbHHxxKKTXxTeqVmN1mRwUxzxbcM4ySXVxHWlxYz/MJ0cHUt3ZQ2ahTCZVS3mNKBDg4euF7j1dRVtfC8YrGnu1mAeKjgwGdSqiU8i5TJsAzku20dXbxm90FAKT27oFHaYArpbzPlAnwZfGRhPj78Kd3CwH69MBnTgvExyJ6I1Mp5VWmTID7+VhYOT+aprZOokP8sYcF9DznY7UwOzJIe+BKKa8yZQIcID3ZsRK09w3MbvHRwUMGeEt756DPK6XUeJpaAZ5kxyKwaGZEv+fio4IprGwa8PCHU1VNLFr/Brvyx38/F6WUcmVKBbg9LID/u/MyvnR5Qr/nEmzBNLd3UlrX6vK1+09U0dbZxSuHSsa6mUop5ZYpFeAAS+dMIzTAt19590yU4xUNLl/XfSjE9tyyAXvpSik1nqZcgA8kvntXwgE2tcoqrkUESutayS4Z+KR7pZQaLxrgTrHhgfj5WFxuK9vVZcguruPqlBkAbM8p61dHKaXGmwa4k8UixEcFcby8f4CfrGqivrWDNUk2Fs0MZ3uu3shUSnmeBngv8VHBFLgYA++9/eyaJDvvn6ymWvdNUUp5mAZ4L2lx4RyvaKSioe9MlMziWnwswoLpIWQk2+ky8JZOJ1RKeZgGeC/pSXaMgZ3nDJFkFtWSOD0Ufx8ri+LCiQr203FwpZTHaYD3khobRnSIf5/Te4wxfbaftViE1Uk2duaV09ml0wmVUp6jAd6LxSKkJ9l4K6+cjs4uAM7UtVDZ2NZzej04djasbmrng1M1nmqqUkppgJ8rPdlOXUsH7510hHNWUfcNzLP7p1y+wIbVIjqMopTyKA3wc6xcEI2PRXqGUTKdC3gWxpwN8PBAX5bOmdZnqEUppcabBvg5wgJ8WRY/rad3nVlUx9zoYIL8+h4fmp5kJ6u4jtK6Fk80UymlNMBdyUi2k3OmnuKaZrKLa0mLC3dZB2CH9sKVUh6iAe5CepIjnP/x3mmKa1v6nN7TLXF6CLHhAWzTcXCllIdogLsw3x7CzGmB/Lb7/MzY/gdAiAjpyXZ251fQ1tE13k1USqmhA1xEZonIdhE5IiJZIvJNZ3mkiGwRkXzn92lj39zxISKkJzmmCgJ9phD2lp5kp7Gtk/0nqsazeUopBbjXA+8A7jXGLAQuAe4SkRTgPmCrMWYBsNX586TRPcY9c1og4UH99w8HuGx+FH4+Fh1GUUp5xJABbowpMca853xcDxwB4oCbgOec1Z4Dbh6rRnrCJXOj8PexuBz/7hbk58Mlc6OGnE64K7+cyx7ZyplanbGilBo95zUGLiLxwBJgLzDdGFMCjpAH7AO85g4ROSAiB8rLvWcDqEA/K7+8dSnfvjpx0HoZSTaOlzdS6GIfcYDWjk6+/69Mimtb2JJ9ZiyaqpSaotwOcBEJAf4OfMsY4/aRNMaYZ4wxy4wxy2w223Da6DHpSXbm20MHr+McahloVebv3j7Bicomgv2sOtSilBpVbgW4iPjiCO/njTH/cBaXikiM8/kYYEqm05yoYObagtnm4pCHsroWfro1nysX2vnEslm8c6ySlvZOD7RSKTUZuTMLRYDfAkeMMU/0eupl4Dbn49uAl0a/ed4hPcnOu8craWrr6FP+49dyae80fO+6FDKS7bR2dLHnWKWHWqmUmmzc6YGvAG4FMkTkA+fXOuC/gbUikg+sdf48JWUk22nr6OKdo2fD+f2T1fz9vdN8cWUC8dHBLE+IJNDXqvunKKVGjc9QFYwxuwEZ4OkrRrc53ukj8ZEE+1l5YksebzhvVO4/UY091J+vZcwHIMDXyor50WzLKWPDjQbHHzZKKTV8uhJzFPj5WPjcpXOobmpjV34Fu/Ir6OwyPPKxCwjxP/tvZHqyjdPVzRwr73/uplJKna8he+DKPfdfu5D7r104aJ3uPVa25ZQNObtFKaWGoj3wcRQbEUjyjFC253jPfHil1MSlAT7O0pPt7D9RRV1Lu6ebopTychrg4yw9yU5Hl+Ht/ApPN0Up5eU0wMfZRbMjCAvw0VWZSqkR0wAfZz5WC6sSbWzPLaery3i6OUopL6YB7gEZyXYqGlrJKnZ7SxmllOpHA9wDVifaEEFXZSqlRkQD3AOiQvy5cGaEjoMrpUZEA9xD0pPsfHi6hsqGVk83RSnlpTTAPSQj2Y4xsDNPF/UopYZHA9xDUmPDiA7xZ/s5+4ifrm7ik7/ao/ulKKWGpAHuIRaLkJ5kY2duGR2dXT3lP3zlCPsKqvjne0UebJ1SyhtogHtQerKdupYO3j9VA8A7xyp4NfMMPhbRGSpKqSFpgHvQygXR+FiEbTmOXviGl7OZOS2Qr6bPJ6u4jtI6PcVeKTUwDXAPCgvwZVn8NLbnlPHnfSfJLa3ngXULuTZtBgA7tBeulBqEBriHZSTbyTlTz/+8lsulc6O4Jm0GyTNCiQkP0HniSqlBaYB7WPchD41tHTx4YwoigoiwJsnO7vwK2jq6+tQ/cKKKQ6drPNFUpdQEowHuYfPtISyeFcEdq+aRPCOspzwj2U5jWyf7T1T1lJXXt/KF3+3n2//3oSeaqpSaYPRINQ8TEf5114p+5ZfNi8LPamF7Thkr5kcD8NjrudS3dlBf2sDp6iZmTgsa7+YqpSYQ7YFPUMH+Plw8N5JtzhuZh0/X8teDp7hy4XSAfguAlFJTz5ABLiLPikiZiGT2KlsvIkUi8oHza93YNnNqSk+yc7y8kcLKRtZvzCIq2I8nPnUhsyOD2KE3OJWa8tzpgf8euMZF+ZPGmMXOr82j2ywFjnFwgO/+7RAHC6v5ztVJhAX4kpFs5+1jFbS0d3q4hUopTxoywI0xbwFVQ9VToy8+OpiE6GD2FlRxQVw4n1g6C4A1STZa2rt493ilh1uolPKkkYyBf01EDjmHWKaNWotUH9298PU3pmCxCACXzI0iwNdxg1MpNXUNN8B/AcwDFgMlwOMDVRSRO0TkgIgcKC/XG2/n6xsZC3jxjktYOieypyzA18qKedFszy3HGD1XU6mpalgBbowpNcZ0GmO6gF8Dywep+4wxZpkxZpnNZhtuO6es8CBfLpkb1a88PdnOyaomjpU3eqBVSqmJYFgBLiIxvX78KJA5UF01NtKdQys6jKLU1OXONMIXgD1AkoicFpHbgUdF5LCIHALSgbvHuJ3qHHERgSRND9VtZ5WawoZciWmMucVF8W/HoC3qPK1JtvHbXQXUt7QTGuDr6eYopcaZrsT0YhlJdjq6jNvnaj71Zh5vH60Y41YppcaLBrgXWzpnGjOnBfLTrUf7HMvmSmldC0+9mc8L+06OU+uUUmNNA9yL+VgtfO+6heSW1vP83sGDuftwiBOVOmtFqclCA9zLXZ06g8vmRfHEljyqG9sGrNd9OMSJiiadO67UJKEB7uVEhAdvSKWhtYPHt+S6rNPW0cXu/AoCfa00tHZQ0TBw0CulvIcG+CSQNCOUz108mz/vPUl2cV2/5/efqKKxrZN/WxoHQEGFDqMoNRlogE8Sd69NJDzQlw0bs/oNkWzPKcPPauGzF88B4ISLAK9radej2pTyMhrgk0REkB/3XJXE3oIqNh8+0+e5bbllXDw3kgX2EHwsQoGLG5m/2nmMm37+NplFtePVZKXUCGmATyKfWT6b5Bmh/GjzEZrbHHuFF1Y2cry8kYxkOz5WC7Mjg1z2wD88VYsx8NDGbL3JqZSX0ACfRKwWYf2NqRTVNPPMW8eBs3ulpCc59k5JiA7uNwZujCGruJboEH/2nahi06GS8W24UmpYNMAnmUvmRnHdBTH8YudRimqa2Z5bztzoYOKjgwHHIREnKhvp6jrbyy6ubaG6qZ2vZ8wnNTaMR3r14JVSE5cG+CR0/7pkjIEHX8piz/FK1jh73+AI8Jb2LkrrW3rKuse9F80M58EbUimubeEXO4+Ne7uVUudHA3wSmjktiDtXz+PNI6W0dXT1nOoDkBDl6In3HkbJKq7DIpA8I4zlCZHccGEsv9p5jNPVTePedqWU+zTAJ6k7V88jNjyAID8rH0k4e+Jdgs1FgBfVMt8eQqCfFYD7r01GBJ7Ykje+jVZKnZcht5NV3inQz8ozn19GWX0L/j7WnvKYsAD8fSx9ZqJkFteyYl50z8+xEYHceGEsr2aeob2zC1+r/juv1ESk/2dOYmlx4WQkT+9TZrEIc6KCKKhwDI+U17dSWtdKSmxYn3oZyXbqWzo4WFg9bu1VSp0fDfApKD4quGdXwqxixw3MtLjwPnVWzI/G1yp64o9SE5gG+BSUYAvmZGUTnV2GLOfeKef2wEMDfPlIfKSeuanUBKYBPgUlRAXT1tlFcU0zWcW1zIkKIszFkWzpSXbySht0NopSE5QG+BTUvainoKKRzKI60mLDXdbrOfk+170j25RS40sDfApKcAb4odM1nKxqIjUuzGW9ebZgZkUGskOHUZSakDTApyB7qD9BftaePU9SB+iBiwgZSXbePlZBS7surVdqotEAn4JEhPioYHLO1AOQGuu6Bw6wJtlOS3sXe45XjlfzlFJuGjLAReRZESkTkcxeZZEiskVE8p3fpw32O9TE0z2MEhMeQHSI/4D1Lp0bRYCvRYdRlJqA3OmB/x645pyy+4CtxpgFwFbnz8qLdAf4YL1vgABfK5fNi2ZbbpnuE67UBDNkgBtj3gKqzim+CXjO+fg54OZRbpcaY/E9Ae56/Lu39GQ7p6qaeT3rDAcLqzlYWM3Rsga33+tUlU5DVGosDHcvlOnGmBIAY0yJiNiHeoGaWJJnhAJw0ZyhR78yku08KHDnn97rKROBrfesZq4tZNDXbj5cwleff48/3r6cyxfYRtZopVQfY76ZlYjcAdwBMHv27LF+O+WmtLhw3rxnFfOGCGCAuIhAXv7aSiob2wBoaOngrj+/x9YjZYMGeHNbJw9vygbg9awzGuBKjbLhzkIpFZEYAOf3Ae9wGWOeMcYsM8Yss9n0f+CJZL49FBFxq25aXDirE22sTrRx3aIYkqaHDrlPyi93HqO4toX4qCC255TrGLpSo2y4Af4ycJvz8W3AS6PTHOUt0pPt7Cuoor6l3eXzp6ub+OXOY1y/KIY7Vs2jqKaZ/PMYN1dKDc2daYQvAHuAJBE5LSK3A/8NrBWRfGCt82c1haQn2ejoMrx9tMLl849szkEE/nPdQtKTHX956cZYSo2uIcfAjTG3DPDUFaPcFuVFls6ZRmiAD9tyyrgmLabPc3uOVfLK4RLuvjKR2IhAwHHTdFtOGV9ePc8TzVVqUtKVmGpYfKwWViXa2J7bd2y7o7OLDRuziIsI5Mur5/aUZyTbOVBYTd05Qy4bNmbxm13HXb5HZlEtn392H81tuoxfKVc0wNWwZSTZKa9v7dlTHOCF/afIOVPPA9ctJMD37FFu6cl2OrsMu/LODrm8lVfO794+wa93HXd5g/OFfSd5K6+cD0/XjO0HUcpLaYCrYVudZEPk7Nh2TVMbj7+RyyVzI7k2bUafuktmRRAe6Nszc6W9s4uHNmVjtQilda1kl9T1qW+MYYdzG9vMotpx+DRKeR8NcDVs0SH+LJoZwTZnKD+5JY+65nYevCG13/TE7iGXHblldHUZ/rCnkKNlDfzw5jSg/w3OvNIGimqaAfr08JVSZ2mAqxHJSLLzwaka9hyr5E97T/LZi+ewMMb1/ioZyTYqGtrYmV/OU2/msTrRxqc+MotFM8P7HRrR3VNPjQ3rObdTKdWXBrgakfRkG8bAl/94gBB/H+5Zmzhg3VULHEMu33zhfZrbOvn+9SmICGuS7Lx/sppq50pPgG05ZSyMCeOKZDtHyxr0RqZSLmiAqxFJiw0nOsSfupYO7r0qkWnBfgPWjQrxZ/GsCOpaOvj3y+KZb3csw89IttNl4K18Ry+8trmdg4XVZCTbSI0Lp8tAzpmRDaPsPV5JrnP/c6UmCw1wNSIWi/Cxi+JYMjuCzywfeq+bjy2JY05UEN+4ckFP2aK4cKKC/djmHAfflV9OZ5chPclOWpxjt8TMEYyDF9U0c9vv9nH/Pw4N+3coNRGN+WZWavL7z3ULMca4ta/KrZfG87lL5vSpa7EIq5NsbMspo7PLsD2nnIggX5bMnoZFICLIl6wRzER5ZPMRWtq7eP9UDVWNbUQO8leCUt5Ee+BqVLi7KdZAddOT7NQ0tfPeyWp25pWxOtGG1SKICGmx4cOeibL3eCWbDpWQkWzHGMfcc6UmCw1wNSGscgb2/27Np6KhjfSks1vMp8aFkXumnraOrvP6nZ1dhvUbs4kND+CntywhKthvyB0UlfImGuBqQggP9GXpnGnsyq9ABFYnnt16ODU2nLbOLvLLzu8m5Iv7T3KkpI771y0k2N+H1Uk2duY5xteVmgw0wNWE0d3rXjIros9sljTnuZ3nDqO0dnRSVt/i8quwspHHXs9leUIk1y+K6fn9NU3tfHCqepw+kVJjS29iqgnjioV2fvxaDlcsnN6nPD4qmGA/q+NG5rJZANQ2tbPuf3f1rNZ0xSLw4A0pPWPuqxY4hmm25ZSxdE7k2H0QpcaJBriaMBKnh/KHLy7nI/F9w9ViEVJiw/r0wJ98M4+S2mYeWLeQQD/rub8KgKQZoX0ObQ4P8mXp7GlszynnO1cnj82HUGocaYCrCWVVoutj91Jjw/nrgVN0dhmOljXwx3cL+czFs/nSqrku6w8kPdnRyz9T28KM8IDRaLJSHqNj4MorpMWF09TWSUFFIw9tyiLE34d71yad9+/pPh1oh85GUZOABrjyCqnOG5lPbMnl7aOV3LN28GX7A0maHkpseIBOJ1STgga48grz7SH4+VjYfPgMSdND+ezFQy/bd0VEWJNsZ3d+Ba0dukGW8m4a4Mor+FotLJwRCjhmlvhYh/+fbkaSnca2TvYerzrv15bWtfD1F97ntmf39Xw99nquyxOFGls7uO/vhzhR0Xje71NS28yDL2VS2dB63q9VU4cGuPIat14az9fS53PZ/OgR/Z4V86OJDvHjqTfzXAbvYB7alM3rWWeoaW6nprmdM7Ut/Gz7UV45XNKv7s+3H+XF/ad4Yf/J827jhpezeW5PIY++lnver1VThwa48hofXzqTb199/jcuzxXoZ+W71yTz3ska/vVBkduv23u8klcOlfCV1fN46a4VvHTXCjZ/83JSYsL40StH+uxZXljZyG92FQD9TxsayjtHK3gt6wwzpwXy14OnOHxaD7RQrmmAqynp4xfN5MKZ4fz3qzk0tnYMWb/3vip3rp7XU261COtvTKW4toVf7jzWU/7wK0fwsQpfujyBvNIGTlc3udWujs4uNmzMZlZkIP/86gqigv1YvzHrvP9SUFPDiAJcRE6IyGER+UBEDoxWo5QaaxaL8OCNqZTWtfLz7UeHrN+9r8p/Xtd/4VD3cv1f7jzG6eomduWXsyW7lLvS5/Np5x7p5x4ZN5Dn954kt7SeB9alYAv15ztXJ3GwsJqXPig+/w+pJr3R6IGnG2MWG2OWjcLvUmrcXDR7Gh9bEsdvdhVQWDnwjcbapnYeez2XixMiue6CGJd1/nPdQkTgB5uyeWhjNrMjg7h9ZQJzo4OZHRnEDjeGUaob23hiSx4r5kdxdapjO4FPLJ3FBXHhPPLqEbf+UlBTi67EVFPaf1ybzGtZZ3jgn5l86iOzXNbZkl1KbXM7D96QOuC+57ERgXxl9XyefDMPgGduXUqAr6OnnpFs58X9J2lp7+wpc+XxLbk0tHb0eR+LRVh/Ywr/9os9PL3jqG4BoPoYaYAb4A0RMcCvjDHPnFtBRO4A7gCYPXt4c3eVGivTwwK4Z20iD79yhN1HKwas9++XxZPiXEw0kC+vnstLHxSREB3M2pSzG3KtSbLx+3dO8O7xStb02ue8tyMldfx570k+f2k8idND+zy3dE4kNy+O5ddvFfCpZbOZHRV0Hp9QTWYykpsjIhJrjCkWETuwBfi6MeatgeovW7bMHDigQ+Vq4jlV1TTgwh6LCAnRwW6dOtTS3omv1YLVIn3KFj/0Bp9aNosNN6X1e40xhk8/8y55pfXs+HY64UG+/eqcqW0h4/EdrJwfzTOf19HKqUZEDroaph5RD9wYU+z8XiYi/wSWAwMGuFIT1azI0enVuhoiCfC1smJeNNtzy1nv4uzQzYfPsLegiodvTnMZ3gAzwgO4K30+//N6LrvzK1i5YGRz4dXkMOybmCISLCKh3Y+Bq4DM0WqYUpNJerKdk1VNHCvve7O0ua2TH20+wsKYMG5ZPvgQ4+0rE5gdGcSGjVm0d57f8XJqchrJLJTpwG4R+RDYB7xijHltdJql1OSSnuwY+z53F8RfvXWMoppm1t+Q0mfYxZUAXysPXLeQ/LIGnn+3cMzaqrzHsAPcGHPcGHOh8yvVGPPD0WyYUpNJXEQgSdND2dZrOmFRTTO/3HmM6zGQ33IAAAxySURBVBbFcPHcKLd+z1Up01k5P5ontuRR1dg2Vs1VXkJXYio1TtYk23jnWCVJ33uVpO+9yupHtwOOOeTuEhEevCGFxrZOnnZjAZKa3HQeuFLj5IsrEvCxCB1dZ2d+rV5gIy4i8Lx+z4LpoWQk23k18wwPXLfQrdkxanLSAFdqnEwPCxi1hTgZyXa2ZJeSX9bQb964mjp0CEUpL7QmyXE03Lbz3OlQTS4a4Ep5oZjwQBbGhJ33VrVqctEAV8pLpSfZOFBYTW1zu6ebojxEx8CV8lIZyXae3nGM3fkVXLfI9S6J5zLG8Pzek6ycH018dHC/57OKa3lx3ykMjhutgvDxpTO5cFZEv7qnqpp49u2CPouKrlw4fcD9XkbLjtwyrBbh8gW2MX0fb6ABrpSXWjwrgvBAX7bllLkd4JsPn+F7/8pk0cxw/vXVFVjO2bPljj8cpKKhlRB/RzQ0tnXwRvYZtt27hmD/s3FhjOHuv3zAh6drCAvw7Xn93w6eZuu9a857Zo27imqaufNPB7GIsO3eNcwIDxiT9/EWOoSilJfysVpYnWhjZ14ZXV1Db0rXvWw/LMCHQ6dr+dvB032ef+at4xTVNPO7L3yEg99fy8Hvr+X5/3cxpXWtPL2j75zzlz8s5kBhNQ/fnNZT9/W7V2EMPLL5yKh+zt4e2XwEY6Cjy/Dj13LG7H28hQa4Ul4sPdlGRUMbh4uGPjeze9n+r25dxtI503j09RzqWhzj58U1zTy94yjXps3gsnlnN8rq2cp2VwEnKx3HwjW1dfDI5hwuiAvnE0vP7qE+c1oQX149j02HSth7vHKUP6njTNJNh0q4c/U8vnR5Av98v4iDhdWj/j7eRANcKS+2OtGOCGzPHXw2Ss+y/QtiuHReFOtvSKWysY2fbs0H4JFXczDG9arQ+65diI9FePiVbACe3n6MM3UtrL8xpc8QDMBXVs8jNjyA9Ruz6XTjrwJ3nXsm6VfXzGd6mD8bNma59dfHZKUBrpQXiwz2Y8msiCGnE/7IOfRw/zrHQqILZobzyaWz+N3bJ/jL/pNs/LCYL6+e53Jb3e6tbN/ILuWFfSd5Ztdxbl4cy9I5kf3qBvpZuX/dQo6U1PHi/pOj8yE5eybpA9elEOhnJdjfh/uvXehyKGgq0ZuYSnm59CQ7j2/J452jFQT59/9f+kRFI68cKuGbVyxg5rSzAf2da5LYfLiE//j7YWLDA/jK6nkDvsftKxP4y/5T3P+PwwT5Wbnv2oH3b7l+UQx/fLeQx17PJXF6KL5WRz8xMshvWKcJ9T6TdN0FM3rKb1ocyx/fLeTR13O45oIZPTdTB1Pd2EZhVVPPzyH+Psy3h7is29jagdUigx6D1629s4us4rqeny0CqbHhQ+4wOVIa4Ep5uSsWTufxLXl85jd7B6wTFxHInecEdHSIP9+8cgEPv3KE+9ctJNBv4KAK8LXy/etT+NIfDnBX+vxBZ390b7h148/e5hO/3NOrHJ77wnJWJZ7f9L8n38xzeSapiLD+hlRu/Plufro1nweuSxn091Q1tnHlEzv77eL46L8t4pPnnIfa1tHFTT9/myA/K//86opBg9gYwxd/v59d+X2P5Lvxwlj+95Yl7n7MYRnRkWrnS49UU2psvHeymtqmgRf0LJoZTlSIf79yYwwFFY3MtbnuhZ6roKKR+KggtzbQOlrWwKlevd0NG7OwWoTXvrWqp1c+lLzSeq79yS5uWT6Lh2++wGWd//jbIf7+3mlev3sV8wb5HA/88zAv7j/FE5+8sKe3/tNt+ZyobGL7t9cQHni2B/+rncd45FXHLJcfffQCPnPxwIdtvJZZwp1/eo+vrJnH8njHsNL23DL+sKeQF750CZfOc2+r4MGMyZFqSqmJ4aLZ04b1OhFxO7wBElws/hnIfHtIn+GJLmO4/bkDPPfOCf7f5XOHfL0xhoc2ZhPi78O9a5MGrNc9FPSDTdn8/gvLXdbJLq7jhX0nue2yeG5aHNdTbgv154af7eYnb+bzXzc4evBl9S38dNtRMpLtNLR28NgbuVx3QYzL4+5a2jt5+JUjJM8I5d61ifg4/2G6dF4UW4+UsWFjFpu+vrKnfLTpTUyl1LjISLazOtHGT97Mp6Khdcj6b2SXsvtoBfesTWRasN+A9bqHgnbklrMtp7Tf88YY1m/MIiLIj29dmdjnubS4cD79kdn8Yc8JjpbVA/Doa7m0dnTy/etTePCGFGqa2nhqa57L9/71W8c5Xd3Mgzek9gnp7tOTcs7U88L+U0N+1uHSAFdKjQsR4fvXp9Dc3sljr+cOWtfRs80maXoonx1k+KLb5y+NZ64tmB9sOkJbR9/zQl85XMK+giq+fVVSn2GSbt++KpFAPysbNmbzwaka/nbwNF9cmUBCdDCpseF8evls/rCnkPzS+j6vK6lt5ukdx1h3wQyXwyTXps3gkrmRPP5GLjVNY3N6kga4UmrczLeH8O+XxfOXA6fIHGTx0W93F3CqqpkHb0hxa/jBz8fCf12fQkFFI79/p6CnvLmtkx+9coTU2DA+dc6Nym5RIf7cfWUiu/Ir+PIfD2AL9efrGQt6nv/2VUkE+1l5aFM2ve8ZPrI5hy5jBjxRyXEzN5W65nae3OK6Bz9SOgaulBpX37hyAf/6oIhbf7uXaBc3VgEKK5u4JnUGl82Pdvm8K2uS7FyRbOexN/L4vwOOueFNbZ0U17bw1KeXDDqT5NZL5/DCvpPklzXw2Ccu7NkLBhxz7e9em8iGjdlc8cROrCIYHDdpv3HO1MxzLYwJ47MXz+FPe09yy8WzSZ4R5vbncYcGuFJqXIUF+PKzz1zEH/cU9ux6eK4lsyO496qBb1wO5Ac3p/HEljya2jp6yu5YNZflCf0XHfXma7Xwk08v4c0jpXxsSVy/5z93yRzO1LX0mVVz+YLoQefOd7tnbSInKhtHdWVqN51GqJRSE9xA0wh1DFwppbzUiAJcRK4RkVwROSoi941Wo5RSSg1t2AEuIlbg58C1QApwi4gMvpZVKaXUqBlJD3w5cNQYc9wY0wa8CNw0Os1SSik1lJEEeBzQe4nRaWdZHyJyh4gcEJED5eXlI3g7pZRSvY0kwF1Nquw3pcUY84wxZpkxZpnNpoeQKqXUaBlJgJ8Gei9tmgkUj6w5Siml3DWSAN8PLBCRBBHxAz4NvDw6zVJKKTWUES3kEZF1wFOAFXjWGPPDIeqXA4XDfLtooGLIWkqvk/v0WrlHr5N7xvI6zTHG9BuDHteVmCMhIgdcrURSfel1cp9eK/fodXKPJ66TrsRUSikvpQGulFJeypsC/BlPN8BL6HVyn14r9+h1cs+4XyevGQNXSinVlzf1wJVSSvWiAa6UUl7KKwJct609S0SeFZEyEcnsVRYpIltEJN/5fVqv5+53XrdcEbnaM60efyIyS0S2i8gREckSkW86y/Va9SIiASKyT0Q+dF6nDc5yvU4uiIhVRN4XkU3Onz17nYwxE/oLxyKhY8BcwA/4EEjxdLs8eD1WARcBmb3KHgXucz6+D/ix83GK83r5AwnO62j19GcYp+sUA1zkfBwK5Dmvh16rvtdJgBDnY19gL3CJXqcBr9c9wJ+BTc6fPXqdvKEHrtvW9mKMeQuoOqf4JuA55+PngJt7lb9ojGk1xhQAR3Fcz0nPGFNijHnP+bgeOIJjt0y9Vr0Yhwbnj77OL4Nep35EZCZwHfCbXsUevU7eEOBubVs7xU03xpSAI7gAu7Ncrx0gIvHAEhy9S71W53AOC3wAlAFbjDF6nVx7Cvgu0NWrzKPXyRsC3K1ta5VLU/7aiUgI8HfgW8aYusGquiibEtfKGNNpjFmMY0fR5SKSNkj1KXmdROR6oMwYc9Ddl7goG/Xr5A0BrtvWDq1URGIAnN/LnOVT+tqJiC+O8H7eGPMPZ7FeqwEYY2qAHcA16HU61wrgRhE5gWMYN0NE/oSHr5M3BLhuWzu0l4HbnI9vA17qVf5pEfEXkQRgAbDPA+0bdyIiwG+BI8aYJ3o9pdeqFxGxiUiE83EgcCWQg16nPowx9xtjZhpj4nFk0DZjzOfw9HXy9F1dN+/8rsMxi+AY8ICn2+Pha/ECUAK04/hX/nYgCtgK5Du/R/aq/4DzuuUC13q6/eN4nVbi+JP1EPCB82udXqt+12kR8L7zOmUC/+Us1+s08DVbw9lZKB69TrqUXimlvJQ3DKEopZRyQQNcKaW8lAa4Ukp5KQ1wpZTyUhrgSinlpTTAlVLKS2mAK6WUl/r/1nTHNUWEqHMAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"t_vals = np.array(df[\"time\"], dtype=float)\n", | |
"count_rate = np.array(data[\"count_rate\"], dtype=float) \n", | |
"plt.plot(t_vals, count_rate)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 8, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(array([1.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 2.280e+02,\n", | |
" 1.472e+03, 4.627e+03, 3.169e+03, 5.040e+02]),\n", | |
" array([0. , 0.00155746, 0.00311492, 0.00467238, 0.00622984,\n", | |
" 0.0077873 , 0.00934476, 0.01090222, 0.01245968, 0.01401714,\n", | |
" 0.0155746 ]),\n", | |
" <a list of 10 Patch objects>)" | |
] | |
}, | |
"execution_count": 8, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAD4CAYAAAAD6PrjAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAO5UlEQVR4nO3df8id5X3H8fenSWsdw1XnowtJWOxIYVFYW1MX6Da6WmZaS+M/jpRtBiaEihvt2Chx/WNsELDt2IYwHbIWIy2VjHYYKrK6bK4MrNljp9VonWm1mhlM2jJm/3GL/e6Pc/XiNHl+nOd58jznzvp+weHc53vf17m/55jLT+77PuckVYUkSQBvmHYDkqThMBQkSZ2hIEnqDAVJUmcoSJK69dNuYDGXXnppbdmyZdptSNJ55bHHHvtuVc0sddzgQ2HLli3Mzs5Ouw1JOq8k+c5yxnn6SJLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQN/hvNkoZjy74HprLfF26/fir7/UnkkYIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1E4dCknVJ/j3Jl9vjS5I8lOS5dn/x2La3JTmW5Nkk143Vr07yZFt3R5Kc25cjSVqJpRwpfBR4ZuzxPuBwVW0FDrfHJNkG7AauBHYCdyZZ18bcBewFtrbbzhV1L0k6pyYKhSSbgOuBvx0r7wIOtOUDwA1j9fuq6rWqeh44BlyTZANwUVU9UlUF3Ds2RpI0AJMeKfwV8HHgh2O1y6vqBEC7v6zVNwIvjW13vNU2tuUz62dJsjfJbJLZU6dOTdiiJGmlFg2FJB8ETlbVYxM+51zXCWqB+tnFqrurantVbZ+ZmZlwt5KklVo/wTbvBj6U5APAm4GLknwOeCXJhqo60U4NnWzbHwc2j43fBLzc6pvmqEuSBmLRI4Wquq2qNlXVFkYXkP+pqn4bOATsaZvtAe5vy4eA3UkuSHIFowvKR9oppleT7GifOrppbIwkaQAmOVKYz+3AwSQ3Ay8CNwJU1dEkB4GngdPArVX1ehtzC3APcCHwYLtJkgZiSaFQVQ8DD7fl7wHXzrPdfmD/HPVZ4KqlNilJWht+o1mS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSt37aDUjSYrbse2Bq+37h9uuntu9p8EhBktQZCpKkzlCQJHWLhkKSNyc5kuSJJEeT/GmrX5LkoSTPtfuLx8bcluRYkmeTXDdWvzrJk23dHUmyOi9LkrQckxwpvAa8t6p+CXg7sDPJDmAfcLiqtgKH22OSbAN2A1cCO4E7k6xrz3UXsBfY2m47z+FrkSSt0KKhUCM/aA/f2G4F7AIOtPoB4Ia2vAu4r6peq6rngWPANUk2ABdV1SNVVcC9Y2MkSQMw0TWFJOuSPA6cBB6qqkeBy6vqBEC7v6xtvhF4aWz48Vbb2JbPrEuSBmKiUKiq16vq7cAmRn/rv2qBzee6TlAL1M9+gmRvktkks6dOnZqkRUnSObCkTx9V1X8BDzO6FvBKOyVEuz/ZNjsObB4btgl4udU3zVGfaz93V9X2qto+MzOzlBYlSSswyaePZpK8pS1fCLwP+CZwCNjTNtsD3N+WDwG7k1yQ5ApGF5SPtFNMrybZ0T51dNPYGEnSAEzyMxcbgAPtE0RvAA5W1ZeTPAIcTHIz8CJwI0BVHU1yEHgaOA3cWlWvt+e6BbgHuBB4sN0kSQOxaChU1TeAd8xR/x5w7Txj9gP756jPAgtdj5AkTZHfaJYkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6hYNhSSbk/xzkmeSHE3y0Va/JMlDSZ5r9xePjbktybEkzya5bqx+dZIn27o7kmR1XpYkaTkmOVI4DfxhVf0isAO4Nck2YB9wuKq2AofbY9q63cCVwE7gziTr2nPdBewFtrbbznP4WiRJK7RoKFTViar6elt+FXgG2AjsAg60zQ4AN7TlXcB9VfVaVT0PHAOuSbIBuKiqHqmqAu4dGyNJGoAlXVNIsgV4B/AocHlVnYBRcACXtc02Ai+NDTveahvb8pn1ufazN8lsktlTp04tpUVJ0gpMHApJfhr4IvCxqvrvhTado1YL1M8uVt1dVduravvMzMykLUqSVmiiUEjyRkaB8Pmq+lIrv9JOCdHuT7b6cWDz2PBNwMutvmmOuiRpICb59FGAzwDPVNVfjK06BOxpy3uA+8fqu5NckOQKRheUj7RTTK8m2dGe86axMZKkAVg/wTbvBn4HeDLJ4632x8DtwMEkNwMvAjcCVNXRJAeBpxl9cunWqnq9jbsFuAe4EHiw3SRJA7FoKFTVvzL39QCAa+cZsx/YP0d9FrhqKQ1KktaO32iWJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqZvk32iWNDBb9j0w7Rb0/5RHCpKkzlCQJHWGgiSpMxQkSZ2hIEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpG7RUEjy2SQnkzw1VrskyUNJnmv3F4+tuy3JsSTPJrlurH51kifbujuS5Ny/HEnSSkxypHAPsPOM2j7gcFVtBQ63xyTZBuwGrmxj7kyyro25C9gLbG23M59TkjRli4ZCVX0V+P4Z5V3AgbZ8ALhhrH5fVb1WVc8Dx4BrkmwALqqqR6qqgHvHxkiSBmK51xQur6oTAO3+slbfCLw0tt3xVtvYls+szynJ3iSzSWZPnTq1zBYlSUt1ri80z3WdoBaoz6mq7q6q7VW1fWZm5pw1J0la2HJD4ZV2Soh2f7LVjwObx7bbBLzc6pvmqEuSBmS5oXAI2NOW9wD3j9V3J7kgyRWMLigfaaeYXk2yo33q6KaxMZKkgVi/2AZJvgC8B7g0yXHgT4DbgYNJbgZeBG4EqKqjSQ4CTwOngVur6vX2VLcw+iTThcCD7SZJGpBFQ6GqPjzPqmvn2X4/sH+O+ixw1ZK6kyStKb/RLEnqDAVJUmcoSJI6Q0GS1BkKkqTOUJAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEndov/IjiT9JNuy74Gp7PeF26+fyn49UpAkdYaCJKkzFCRJnaEgSeoMBUlSZyhIkjpDQZLUGQqSpM5QkCR1hoIkqTMUJEmdoSBJ6vxBPGmZpvVDadJq8khBktQZCpKkzlCQJHWGgiSpMxQkSZ2hIEnq1jwUkuxM8mySY0n2rfX+JUnzW9NQSLIO+Gvg/cA24MNJtq1lD5Kk+a31kcI1wLGq+nZV/Q9wH7BrjXuQJM1jrb/RvBF4aezxceCXz9woyV5gb3v4gyTPLnN/lwLfXebY1WZvy2Nvy2NvyzeV/vLJiTZbqLefX85+1zoUMketzipU3Q3cveKdJbNVtX2lz7Ma7G157G157G35htzfavS21qePjgObxx5vAl5e4x4kSfNY61D4N2BrkiuSvAnYDRxa4x4kSfNY09NHVXU6ye8B/wCsAz5bVUdXcZcrPgW1iuxteexteext+Ybc3znvLVVnndKXJP2E8hvNkqTOUJAkdedNKCz28xgZuaOt/0aSdy42NsklSR5K8ly7v3hAvX06yTfb9n+f5C1D6W1s/R8lqSSXDqm3JL/f1h1N8qnl9LZa/SV5e5KvJXk8yWySa6bQ22eTnEzy1BljhjAf5uttCPNhzt7G1k9zPszb25LnQ1UN/sboovS3gLcCbwKeALadsc0HgAcZfRdiB/DoYmOBTwH72vI+4JMD6u03gPVt+ZND6q2t38zoAwPfAS4dSm/ArwP/CFzQHl82sD9zXwHePzb+4bXsra37NeCdwFNnjJnqfFikt6nOh4V6m/Z8WOR9W/J8OF+OFCb5eYxdwL018jXgLUk2LDJ2F3CgLR8AbhhKb1X1lao63cZ/jdF3OgbRW/OXwMeZ48uHU+7tFuD2qnoNoKpODqy/Ai5qyz/D8r6ns5LeqKqvAt+f43mnPR/m7W0A82Gh9w2mOx8W6m3J8+F8CYW5fh5j44TbLDT28qo6AdDuLxtQb+N+l9HfEAbRW5IPAf9ZVU8so6dV7Q14G/CrSR5N8i9J3jWw/j4GfDrJS8CfA7etcW8LmfZ8mNQ05sO8BjAfFrLk+bDWP3OxXJP8PMZ820z00xorsKq9JfkEcBr4/BB6S/JTwCcYHc6vxGq9b+uBixkdXr8LOJjkrdWOnQfQ3y3AH1TVF5P8JvAZ4H1r2NtqW9Xepjgf5utnCPNhIUueD+fLkcIkP48x3zYLjX3lR4df7X45pxpWqzeS7AE+CPzWMv6ntlq9/QJwBfBEkhda/etJfm4Avf1ozJfaIfYR4IeMfjRsqVarvz3Al9ry3zE6bbCWvS1k2vNhQVOeD/MZwnxY7HmXNh8Wu+gwhBujtPs2ozf/Rxdhrjxjm+v58YswRxYbC3yaH7+w9qkB9bYTeBqYGdr7dsb4F1jehbXVet8+AvxZW34bo8PtDKi/Z4D3tOVrgcfWsrex9Vs4+6LkVOfDIr1NdT4s1Nu058Mi79uS58Oy3txp3Bhdef8PRlfoPzH2gj/SlsPoH/D5FvAksH2hsa3+s8Bh4Ll2f8mAejvW/gM+3m5/M5TezsUkWMX37U3A54CngK8D7x3Yn7lfAR5jNOkfBa6eQm9fAE4A/8vob5I3D2g+zNfbEObDnL0NZD7M974teT74MxeSpO58uaYgSVoDhoIkqTMUJEmdoSBJ6gwFSVJnKEiSOkNBktT9HyF8bQjiudxyAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"def N(x, lamb):\n", | |
" return 32 * np.exp(-lamb * x)\n", | |
" \n", | |
"trials = 10000\n", | |
"lambdas = []\n", | |
"lambdas.append(0)\n", | |
"for i in range(trials): \n", | |
" count_rate = count_rate + np.random.normal(0,1, size=len(count_rate))\n", | |
" estimate = optimize.curve_fit(N, t_vals, count_rate, lambdas[0])\n", | |
" lambdas.append(estimate[0][0])\n", | |
"plt.hist(lambdas)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": null, | |
"metadata": {}, | |
"outputs": [], | |
"source": [] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.7" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment