Last active
February 11, 2021 09:57
-
-
Save Verina-Armanyous/47bf0b8959079baf0dc797ab09db9e54 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"cells": [ | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Exercise 8: Random walk with drift" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"Use a biased coin to simulate a random walk of 30 steps on the line. If the coin falls heads (H), take one step to the right, if it lands tails (T ), take one step left. After 30 steps, note the final position. Take Pr(H) = 0.6 and Pr(T) = 0.4. (a) Plot a sample path. (b) Make a histogram for 200 such random walks. (c) Report the sample mean. (d) Report the sample variance. (What should these be exactly?)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 34, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"import random \n", | |
"import matplotlib.pyplot as plt\n", | |
"import numpy as np\n", | |
"\n", | |
"def random_walk(steps = 30, head_prob = 0.6, tail_prob = 0.4):\n", | |
" output = [0]\n", | |
" for step in range(steps):\n", | |
" flip = random.random()\n", | |
" if flip > 0.4:\n", | |
" output.append(output[step-1]+1)\n", | |
" else:\n", | |
" output.append(output[step-1]-1)\n", | |
" return output\n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 35, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAWoAAAD4CAYAAADFAawfAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2deZBkV3Xmv5trZWVmbZ3Zrd6rs9DWEkISLQkhqRsDwkaWETABBgzGYulWhBc89oTtYTwB9oTDHo/XiHEgtSzwAkYGgW0gGBkIsFoSIFStBalbsqSqXiura8vMqtzXO3+8dzNfZb3Mt2e+rDq/CIW6q7Ju3Vev63snzz3nO4xzDoIgCMK9ePq9AYIgCKI7JNQEQRAuh4SaIAjC5ZBQEwRBuBwSaoIgCJfjc2LRWCzGJycnnViaIAhiU3Ly5Mllznlc7XOOCPXk5CSmp6edWJogCGJTwhg71+lzlPogCIJwOSTUBEEQLoeEmiAIwuWQUBMEQbgcEmqCIAiXQ0JNEAThckioCYIgXA4JNUEQhA187/QC7n9sxpG1SagJgiBs4LunF/CFJ884sjYJNUEQhA1ky1VEh/yOrE1CTRAEYQPZUg3RIUdcOUioCYIg7GCtVKOImiAIws1kS1VEgxRREwRBuJYcpT4IgiDcDeWoCYIgXEy13kCxWqccNUEQhFvJlWoAQBE1QRCEW8mVJaGO0GEiQRCEO1krVQGAUh8EQRBuJSunPkYo9UEQBOFOss0cNUXUBEEQriQrpz4iFFETBEG4E3GYSFUfBEEQLiVL5XkEQRDuZq1URcDnQdDndWR9EmqCIAiLZEs1xyo+ABJqgiAIy2RLNceaXQCdQs0Y+6+MsVOMsRcZY19mjA05tiOCIIgBI1dybroLoEOoGWO7AfwGgEOc82sBeAF8wLEdEQRBDBhOOucB+lMfPgAhxpgPwDCApGM7IgiC6AHff3kBryxkbVmr70LNOZ8D8GcAzgOYB7DKOf9O++sYY0cZY9OMsemlpSX7d0oQBGEjv/PIC7j/sRlb1sqWqogE+5v6GAdwD4ADAHYBCDPGPtz+Os75cc75Ic75oXg8bv9OCYIgbKLR4EgXKsgUqrasly33P/XxdgBnOOdLnPMqgK8DeLNjOyIIgnCYbKmGeoNjtWhdqBsNjly5/+V55wG8iTE2zBhjAN4G4CXHdkQQBOEwqUIFALBmg1DnKzVw7pwhE6AvR/0UgEcAPAPgBflrjju2I4IgCIdJy0JtR0TtdPs4IFVzaMI5/wyAzzi2C4IgiB6Sztsv1E455wHUmUgQxBYkJQt1udZAqVq3tFau7Ox0F4CEmiCILYhIfQDW89RrPUh9kFATBLHlSCvK8qymP5wewwWQUBMEsQUROWrADqGWp7v0s+GFIAhis5GyVagp9UEQBGE7mUIVl41IJqBWhTpXqsHrYRgOODM0ACChJghiC5IqVDAZGwZg/TBR8vnwQeoHdAYSaoIgthzpfAX7J8IAgNVizdJaTjvnASTUBEFsMRoNjkyxing0iEjQZzn1sebwdBeAhJogiC2GMGQaG/ZjNOS3nqMuVzHiYLMLQEJNEMQWQxgyTYQDGLFBqCn1QRAEYTOiNG88HMDIkM+Gw0QSaoIgCFvJiIh6OGBL6iPr8GBbgISaIIgtRjOitkGoOefIlmqOOucBJNQEQWwxhCHTeNj6YWK51kCtwSn1QRAEUW9wPHhiFrmytZpnQDJk8nsZIkEfRkN+FKt1VGoNU2utlZy3OAVIqAmCGABOJ9fwR99+Cd87vWB5rXS+grHhABhjGB2WBFYIrlF64ZwHkFATBDEArOTLAIClbNnyWql8BRPDAQDAaEgSarPpj+Z0F2p4IQhiqyPyyss560KdLlQwHpYEesSiUOeaznmU+iAIYouTzktCakdEnS5UMRG2K6IWOWqKqAmC2OKIiHrJjohazlEDaLZ+m2166YUXNUBCTRDEACBqn61G1I0GR7pgX46aqj4IgiBk7MpRZ0s1NLjUPg4ohLpAh4kEQRCWEDnqlXwFtbq5mmegZcg0LpflBXwehPxe84eJ5RrCAS+8HueGBgAk1ARBDAAioua8JbZmUBoyCax0J/bC5wMgoSYIYgBI5SsYk6NgK3lqpSGTYDTkt9Tw4vRBIkBCTRCEy+GcI1Oo4ortUQDWhFppyCSwFlE7b8gEkFATBOFy8pU6KvUGLt8RAQAs58ynPpSGTAJpeIA5DxFKfRAEQUCqewaAK3bYEVG3DJkEoyG/+TrqMqU+CIIgmlHw7rEQwgGv5Rz1uGzIJBgJmR9wmy3VHDdkAkioCYJwOcpKjXg0aKmWOpWvrMtPA1JEnSvXTJX9UeqDIAgCirzysB/xaNBSRK00ZBKIppe1krE8dbXeQKnacLzZBSChJgjC5aTkZpeJcACxSNCS34fSkElgto081yOfD4CEmiAIl5MpVOBhkoGS1dSH0pBJYFaosz2yOAVIqAmCcDkpWVw9HoZ4JIhMoYpyrW54nXZDJoFZoV7rkcUpoFOoGWNjjLFHGGMvM8ZeYozd6vTGCIIgADmvLHclxqJBAMCKiVrqtVJ1nSGToJmjNhtRuyhH/dcAHuWcXwXgDQBecm5LBEEQLdL5Vl45HpGE2kz6I10QuW71w0TjqY/eWJwCOoSaMTYC4DCAhwCAc17hnGec3hhBEJ156IkzuJgu9HsbHTm/UsAXnjxjy1rpQqukTkTUZio/RJlfe47a7DguMRHdLamPBIAlAF9gjD3LGPtbxli4/UWMsaOMsWnG2PTS0pLtGyUIQmIlV8b/+tZpfP2ZuX5vpSNfmb6AP/jm6aYJkhWUtc/xqIWIOr/RkAkAhvxeBHwe86kPlwi1D8CNAD7HOb8BQB7A77W/iHN+nHN+iHN+KB6P27xNgiAEzbFUNswPdIpkpgjA+h4553LtsxxRRwKm1xU/t/byPMCcMZNIfbjFlOkigIuc86fkvz8CSbgJgugDItdqx0Rup0iuykJtcY/5Sh3VOm/mlYM+L0aGfJaEWtilKjEn1DUEfB4EfV7DezGKplBzzi8BuMAYu1L+0NsAnHZ0VwRBdMSu+YFOksyUAFjfY1olryzVUhtPqagZMgnMCPVaj3w+ACmtoYdfB/AlxlgAwCyAe53bEkEQ3RDiZcdEbidoNDgurdoj1CmVvLLZNnI1QybBaMiPhbWSofVy5VpPKj4AnULNOX8OwCGH90IQhA6aqQ+XRtTL+TIqssGRFe9oQOkf3RLqWCSIU8k1w2ul8hXV/DQgCfUrC1lD60mGTL2JqKkzkSAGDCFe+UodhYo5w3snEWkPwIbUh8oBYDwaNPWQShcqqvlpwJwndbZU64khE0BCTRADh0gHAMBy1nr5m93MyxUfQ36P5fSMMGQaVwhsPBpEtlxDsWKsjbxbRD0S8iNbrqHR4LrXo4iaIIiOpBVCvZQzllftBXOyUF+za9RyekZpyCSImexOzBSqG7yoBaMhPzhv1UbrIVfqXY6ahJogBgyl94UbKz/mV0sI+b24fHvEhohaOgD0eFoHgKLpxcjawpCpm1ADxroTezWBHCChJoiBI12otuYHWjysc4JkpoidY0OIR4NI5SuoG0gntKNsdhEIvw8jD6lOhkwCUWanV6gbDY5chSJqgiA6kMpXMLU9AsbcGVEnV0vYPRZCLBJEXY5kzSJF1OvFMG7C76OTIZPAaESdq9TAeW+c8wASaoIYKGr1BtZKVcQjQWwLB9wp1Jkido4OmRLUdtTyyhPhABgzlqPuZMgkGB02JtS99PkASKgJYqBYLVbBeWssldvayMu1OpayZewaC1kyUBKoVWr4vR6MDxt7SHUyZBIYjqh7ON0FIKEmiIFC6VdhddCrEyysSvvZJac+APMRtTBkUouC4xFj157qYsgEGBfqbA+nuwAk1AQxUCgHvRoVq14gSvN2jYYspz7aDZmUGJ2dmFHpcFQS8nvh97LmeC0tROqjF855AAk1QQwUzZbq4QBislhxbr6qwm7mZde8XWNDCAe8CPm9plMfIl2hVlIXiwQMlecJQ6ZwQN3pjjFmyJhJCHqvTJlIqAligGiKlxxRl2sNZMvuaSMXPtQ7R0NgjCEWNX/g2TRkUomCRdpH70Mqne9syCQYMSDUvZxADpBQE8RA0cy1DgcQi5o30XeK5GoJE+EAQnLkGo8ETTe9pAqdKzXi0SBK1QbyOtvI04XO7eMCI34fvRzDBZBQE8RAkSlUMeT3IBTwIh4ZAuAuFz1RmieQDJTM1VFnuhwAGj2o7GbIJBgZMhJRV+H1MIT8zg8NAEioCWKgSOUrzRIzM63UTjOfKWHXWKj595iViFocnHaIqAH9Qt3NkElgJEctnPO6pVLshISaIBwmla/g//z7y6jJHs1WSOdb5WpW5ge28++nLuE7py5ZXieZKWK3QqhFG3nVxLWn85Ihk1p6wWiNdrqLIZPAqFD3Ku0BkFAThON859Ql/M0PZnB63rjZfTspRa51fDgAr4fZ0vTy1997FX/5vVctrbFWqiJbrm1IfQDrrVn1IkyUlIZMAiOpj0aDI2MgR63H6jTbQ+c8gISaIBxHVELYIaiZQrVZC+zxMKlMzYaIOrlaxJnlnCE/5nbm5YEB7akPwPzU8E51z+IhpWddYcjUqX1cMBryo8ElHw8teulFDZBQE4TjJOX5gXaY/LebFElt5NbWLVRqyBSqKFUbzenhZhAPpF1jGyNqM0KtzMe34/UwbAsHdD38WmV+3SPgZndiQTv9kS3VembIBJBQE4TjCAGzeuhXqzewWlyfa7WjjVw5Omt2KW9+nWaziyJHHTF/4JkpVLtWasR0dmYK5zytHPWILNR6uhOzZYqoCWJTMW/TRG5x0LVufqANbeTziih6Zilnep1kpgivh2F71MaIukteWW8bebcORyVG/D4oR00QmwjOedP/wmpErTRkEsSiQazky5ZyyyLiZ8xaRD2fKeGykSF4FYd/Q34vokGfYaEWhkydctSA/ncTWoZMAiHUWk0vnHN5DBdF1ASxKVjJV1CpSaVpViNfpSGTIB4JolrnhkZItTOXKYEx4JpdI5Yi6rlMcV1+urlHgwZKgNT5V63zDUMDlIj8vFYbuZYhk2AkpG/KS6naQK3BKaImiM2CqISwYk4kUBoyCexoepnPFLEjOoQrdkQt56h3joY2fFxvLllJRkdeOR4NolJvYK3YvUojla8i4PV0NGQS6E19CIvTXjnnASTUBOEoIu1x7e4RyxF1WsWkqDmR28LayVUpEp6KR3BprdT0sTBCo8FxaXV9V6IgHjXendjNkEnQbPjRmMQuNQn5NbsII0EfvB6mKdRrsiFTr5zzABJqgnAUcVB33Z4xZEs1lKr6TITUSDkWUZewcyyERCwMADhjIqpezpVRrXPV1EcsEjD8IEnpSFeIa1/UWDulo9kFkKxOR4Z8uiNqylETxCYhmSki6PPgih0RANaaXtL5StOQSWDVnF8cdu4eC2Fqu7TH2WXjeWpRK75LJfURjwaxZvAhlVF5KLWzvdlG3r2OPCN3OOpBaiPv/o6i5ZxHOWqC2BSIidx2DHpNF6obGkBGhnwIeD2mI+p0oYpyrYGdo0PYv20YHgbMLJoQauFD3eEwEZAOVvXSzZBJoLfrMZWvYFyj2UWgx++j14NtARJqgnCUZKaInWNDTUtSS0Kd3zg/kDFmqeml1U0YQtDnxd6JYcwsG099iHV2q+SozbSRp/MVeD2sqxiOhvzwe7XbyPUYMglGdHhSNw8TqTORIDYHyUxx3fxAK+3enXKtMQtCrZxxCACJWNhU5UcyU8JwwNusnFBi5t1EqlDBWMivasgkYIwhrjGJXa8hk0DP8IBeT3cBSKgJwjGq9QYWs2XsHAthmw2WpEpDJiXxSMD0A2C+zZ9jKh4xZc40vyoNDFCrrDBqSQrIeWUd4qr1kNJryCQwkvqgiJogNgGXVkvgHNg9NgS/14PxYb9mKVk3JJMi9YjVdOpjtYSgz9OMOBPxiClzpmSmqFqaBwDbwiYi6i6GTEq0Wuj1GjIJxNzEbk00YmiAt0u0bzck1AThEMLjQwiYlbFUwpBJdX5gJIhUvoy6iTZyIbAiEk7EpRK9GYPpj7lMSbXiAwACPg/Ghv0Gc9RVXQeAWl2Pak1C3RgN+VFrcBS6zGLMlqo9jaYBEmqCcAzlRG7A2liqjIohkyAWDaLBzZnzJ9vavqficomegVbycq2O5Vy5Y0QNQDOX3E5aZ0ldLBLESr7S8SGVVmm774ae7sReT3cBSKgJwjFatp+SEFpJUXTzq4hbMOefXy2ta/uORQKIDvkMeX5ckt85qJXmtdbVf+16DJkE8WgQ9QZvRs7tqDUJdUOXUPfY4hQwINSMMS9j7FnG2Lec3BBBbBaSmSLGhv0YDki/1EajSiWirljNpMhsd2K13sDC2vq2b8YYpuIRQ5Ufws9arTRPuUe9+xOGTLpy1BoHlU2LUxsj6lyPLU4BYxH1pwC85NRGCGKzMd+Wt41FgyhU6sib8NJIdfFUNuv3sbBWQoMDu0bXR8KJuLESPWUtdiek/Ly+/QlDpm5DAwRaNdrpgj5DJoFbUx+6vhtjbA+AnwfwRwB+y9EdEQPJuZU8/vejL6Na1z7QCvo8+J93H8SOkc5vlfvJiVeWcHYlj1++ddLSOnOZIvaMq0w7yZYRNngYleniqWw2om4/7BRMxSP4+jNzyJVrug7NhJ/JztHuqY+8/JDSunY9hkwCrRptvYZMAj1CveZWoQbwVwB+B0C00wsYY0cBHAWAffv2Wd8ZMVD85XdfwfdeWmweRnXjlYUsYpEgPvuua3qwM+P83x+8hlNzq/jIm/br/gVXI5kp4uYDE82/xxRv0ydlAyS9dMu1hoM+yUbVYEStNuMQAKbiLXOm1+8Z1VxnLlPCtnAAQ/7OUasyRaEp1Dr9o4GWg16n1IdeQybBiI7hAdJg296mPjSFmjF2N4BFzvlJxthbOr2Oc34cwHEAOHTokPlxE8TAcTFdwDd/Oo973zyJ37/7oObrf/srz+Ofn76AT73tct25w15RqTXw/IUMyjWpWcVs1J8r17BWqqnPDzQzkVvFkEmJGStRkVtu95BOyA/bmaWcLqEWbfLdUAr1/m3dH1JNO1cdOepI0Ichv6fjz9SIIRMARIM+MNZZqCu1Bsq1Rk8H2wL6ctS3AXgXY+wsgIcBvJUx9kVHd0UMFA89cQYMwMduP6Dr9UcPJ1Cs1vGPPz7n7MZMcCq5irI8kcXKtJP5zMZ0gBVLUjVDJiVmKkqSmSJGQ/4NEa4wZ9Jboje/WuxYQy2IGejM1DuMFtD2OtGau9iOx8MQDXa2Om0557lMqDnn/51zvodzPgngAwC+zzn/sOM7IwaCdL6Ch39yAe+6flfXwyQlV14WxVuv2o6/++FZFLs0FvSDk+fSzT8bbfpQImw/lZUQE+EAPMycyX86371cLRYJGK4omV9V7yY0as6UzKgPDFBixO9DjyGTEjGSS3UtjUnmaowOd24jb013cW/VB0Fs4B9/fA7Fah3HDk8Z+rpjhxNI5St45OQFh3ZmjumzaeydCGE44DXU9NFOy/azJWBeD8NE2FzTS0rjLbyZiHouU8LuDimLqXhEl93pWqmKXLmmOjBAycRwAIwBSzo8SaRr7W7IpKRTG7lRQyZBN7+PflicAgaFmnP+H5zzu53aDDFYlKp1/N0Pz+KtV23HlZd1PGdW5eYDE7hh3xgefPwMavWGQzs0Bucc0+fSuGn/BA7EwpYi6vlMER4G7JAjSYEkqMY7CLUi6nhkCOlCFVUDP8tkRn3GISC56J1ZzmuaM+kpzQMAn9eDbeGArodJprDRzrUbndrIhSGTkRw10F2o1/ow3QWgiJqwwFdPXkQqX8GxwwnDX8sYw7HDUzifKuDRU5cc2J1xzqcKWM6V8cbJcbnpw8pE7hJ2jAzB513/KxaLBCzkqLtM5I5KYrSi00UvX65htVjtKLBT2yMo1xpNG9ROzHc4kFTdo87uRL2GTMp1U4XKhodUs/ZcpyGToJtQ55rzEin1QQwA9QbHgydmcf3esXUlaEa48+AOJGJhPPDYbFe3sl7x9FkpP31o/wQS8TDmMkXTMw47uckZafwQdDNkaq5rsKJkflW9NE8g5ifOauSp57oMDNiwRw0DJYFeQyblulzF68SoIZOg2ziugUh9EITg0Rcv4XyqgPuOJEzXGns9DEcPJ/DC3Cp+OLNi8w6Nc/JcCiNDPly+PYJEPALOgTMmpp0ALX/mdkQZnZEHUzdDJuW6gPZEboEozesUUSd0mjMlM0X4PKz5/buhZUkqMFr73Omg0qghk0BMeVG7R/2Y7gKQUBMm4Jzj/sdmcCAWxp0HL7O01rtv2I14NIj7H5uxaXfmmT6bxo37x+HxsGbTh5lpJ5zz5qzEduKRICq1BtZK+tvIuxkyCVpt5PpSH0mV8sH16wUwosOcaX5VSvHo8WbW85DinBvOUTfbyNuidaOGTILRkB+VeqNZpqmkH9NdABJqwgQ/mlnBC3OrOHo4Ydk8fcjvxb23TeLxV5dxKrlq0w6NkylU8OpiDof2jwMADsSEL7PxPPVKvoJKrdEx9QEYNdHXHvRqtEY7uVqSDjs7NPQwxpDQYc4012aT2o2Y/JDKdvE6MWLIJNjeMaI2Zsgk6NZGni3XEPR5EPD1VjpJqAnD3H9iFrFIEO+5Ybct6/3SLfsRCfpw/MSsLeuZ4Znzcn56Usq3Dwd82D0WMnWg2C1aFblkIzXPIvfarR54yO9FdMin+wGQzBSxPSpNnunEVDyiI6LuPNmlHT0PKZGuMCKusQ4/01ShYsiQSSAOClWFug/OeQAJNWGQ08k1nHhlCffeNtnV28EIoyE/PnTLPnzrp/O4kCrYsqZRps+m4fMwvGHPWPNjiXhY8zBNjW7535iJiDrdxZBJSdzAYIL2gQFqJOJhLKyVm9147TQaHJdWtZtdmvvTI9TNdIV+MQwFvIgENz6kMvKhpNEzlK4Rdan3XtQACTVhkOMnZhAOePHhW/bbuu69t03Cw6R29H4wfS6Na3aPrvPSSMTCmFnMGa5I6VZbbMbvQ2/1gpFp5PM6BFZr2styroxqnW+wSe24Px3vJowYMilRa/jRahLqRFOoC50iahJqwsVcSEnmSx+6ZR9GDbblarFzNIR7rt+Nh58+b2qklBWEEZPITwumtkeQr9SxaMJDY8jvUY0KR0N++L3M2FgqDUMmgd7SP85512G0Aq0D1TmdzS7K/QFaqQ/9hkxK1Fro03mLQk0RNTGIGDVfMsqxwwmUqg384496a9b0omzE1C7UiZjsIqejlVrJ/Ko0MEDtLbfHw7AtbKzdO5Xvbsgk0Jv6SOUrKNcampHwPg1zpk7ue50YC/nh83R/SKVMHgCqRdRpE+3jgJZQ1xANUo6acCnpfAX//PQF3HP9bt2/mEa5fEcUb796O/7+R701azopN7q8cbI9opYrPwzmqec0olWjlqQZA/MDs6WaZpNOU2A1IuGgz4t9E8MdW+lF04yeZhdAfkhFureRZwpVeD0MIwajVrUabTOGTEDLk1pNqHNlSn0QLkaYLx010S5uhGNHppDKV/DVHpo1TZ9LYd/EMLZH10eYl40MYTjgNRFRqze7CIw63eltANFbUZI0ILCJLpUfc5kihgNejIT0C5eWeZQwZDJ6ABiLBLFWqqFckx5SZg2ZAKkRq5PVabZUQ4SEmnAjVsyXjHJo/zhu3DeGBx+f7YlZE+ccJ8+lN6Q9AKmW+EDMWOVHRR44oBlRGzlMzOtrABF+H1prazW7KJmKdzZnmpftTY2IaryLJSlgPq/cGkwgrW3WkEkguhOV1Btcjqgp9UG4kK9OX0AqX8F9R4xZmZqBMYb7jkzhQqqI//ei82ZN51YKWM5VNqQ9BEbNmRbWSuBceyL3cq6i6UwnkEyKtMUhHpGEV49QB30eXdFmIt7ZnClpoIZaoGXMlDZZqdF+UGlk7qIaoyF/0ylPIMoUjaZl7ICEmuhKrd7Ag4+fwQ37xnBTBzGzm7dfvQOJeBj3PzbjuFnTtDwo4KZJdWMpo+ZMLR/q7oNe6w3e9PDoRq0utZvrzVED6BqxAlJXot5IuFmip/KuIpkp6S7NU+5xOVfu+JAyasgkaJ/ELkoazeSoAWAktDH10a/pLoD+4bbEJuObzyfxlWntPHChUsf5VAGfvutqS4NejeDxMBw7nMDvfu0F/OLxHyOo0a7LGMNHb92Pt129w/D3EkZMr+swlHdKYc509c4RzfU6TfZWooz+tCI+IeZ6osxtOsdd6Wl2ESTkEr2ZxRyOXBFvfrxcq2M51z3Fo0YsEkStwbFarKo+fFKFCm4Mj6l8ZXfaW+hTJg2ZBKMh/wZDrpYhU+9THyTUW5BStY7PfuMUvB6G3ePav2jvvn4X7jxoXASt8O4bduMHLy9hIVvSNMM/v1LAH3zzNI5cEd/g/6zF9Nk03igbManRFKqlnC6hbtYWd6mMUTa9aOX8jfhV+L1S7baWg958poQ7Lo9prgcA28KSOdPs8vr0z6VVUZpnPKIGJEFtvyZhyGQm9dH+kDJrcSpQ86Tul8UpQEK9JXnk5EWs5Ct4+Oib8KbEtn5vR5Wgz4v7P/JGXa999MVLuO+LJ/HoqUu4+7pdur+HMGJ6dxfPElFLrddFL5kpYnzY37U5JRbV7/chBr3qbQCRml46pz6q9QYWsiXN0jwBYwxT2yOYWVx//UZ8qNv3B0iCesWO9Q8pYchkRlyDPi9GQ/7mz9SsIZNAXaj7M90FoBz1lqPe4Hjw8Vm8Ye8YbjFp+O82zA4gEINs36hS8SEIBbyGzJnmV0uadeZGHPT0GDIpiWk0vbQOO/VHwolYZENErbcWW21/gPpDyowhkxJlNY1ZQybBaMiPUrXRLPcD+mdxCpBQbzkeffESzq0UcN9h84b/bsPrYfikiQEE0+c2GjGpkYjrn5+opzU7GvQh6PPoanrRa8gk0Cr9M9pNCEiNPwtr5WZECUgzIaV1TKY+VPaYal6rOSFUNr2YNWQSqHUnZktU9UH0AKXh/zuusWb47zbec8NuxCLGBhCcPLvRiEkNUaKnJ1pPZoqa0SpjDLGIPl8Oo2FSVZoAABcYSURBVLnWWKT7uCu9w2iViPSP8nAtuVpELBIw7KA4MuRDwOdRFepWpYa5iDqmGPVl1pCpuU9ZqNdUhJoaXghH+dGsZPj/yTusG/67jSG/Fx+7Xf8AgkqtgecvbjRiUiMRDyNfqWNhrbuw5so1rJVqutIBetvI0/kKQn6v5sNEuW6hUke+gzVpUmNWohqv277RnCmZ0U7xqMEY6+hJYtaQSaCMqM02zgjUI2qpvT1kk72vEUiotxD3PzaLWCSA995oj+G/2/ilW/YjHPDqGkAgjJj01IZr2X0K5g1Eq3q7E1P5qiFvZi0b1WSmiLFhP4YD+qPCfRNheD1sXSu5kRK/djrZsZo1ZGqtG0C+UkehUjM8d7Gd0WZE3XrgCYvTfqQMSai3CC3D/wO2Gf67DSMDCJpGTPu1D1SbJXo6J3LraQLRSlEI0joNmZrralSUzJuIhAM+D/aOh5oRtbBJNWvO1WnIrVlDJuW6gDQ3MlMw1zgjUDNm6pfFKUBCvWVwyvDfbXzs9gO6BhBMn0th/7ZhXdOz9ZozaU32VhKPBrGSr2j6mRi16tSKqOd05NDVUI7lWivVkK/UDZfmNfcYDah2T5o1ZGqtK137QrZkuh5boJb6yJVrfWl2AUiotwQX05Lh/wdvtt/w323oGUDAOW82uuhBGvSqbc40v1qEh7WGrXYjHg2C81alQyf0GjIp1wU6D7nVM9lFjYTCnElPm3zXPUaCSOXLqLe1kVvNK4vSv5nFnCVDJkBdqNf6NN0FIKHeEvzt484a/ruNoxoDCM6uFLCSr+CQjrSHIBGLaEbUc5kiLhsZ0tUdGdfZ7q3XkEkwEQ7Aw6BaUZIr17BarJpKWUwpzJnmV41XjiiJR4NocGAl3zY6K28szdOOeEC+siDdJys5ar/Xg+GAd0N5Xj9K8wAS6k2P0vDf7C/WoHHFjijedlXnAQTTZ1MAgEMGTKam4hEkV4tdBxrMZ/R3/OlpejFiyCTwehgmwupVFa3DTuORcEI+UJ1ZymFOTvGYTX3EFLlkJZmCsYPTdibCATAGvLKQBWDekEnQ3p0o5agp9UE4QK8M/91GtwEEJ8+luxoxqZGIh5vmTJ0wYvspLEm7Od0JQyajkaFUUbJx3aQOw6hOKOcnzmeK8HlYU3CN0ik9Y7VSw+f1YGI40BRqK2sBG4W6X9NdABLqTU0vDf/dxk2T47ihwwCC6XPdjZjUEJUf7a3UgkaDy/lfnRO5dZj8p/PmGkBikYBqRG2m2UUwEQ5gNOTHzFIOyUwRl40Oma7FV3s3wTm3nKMWa4thxFbXGlEINedcmu4SJKEmbEYY/h/bYtE00HkAQaZQwWuLORzq4D/dCS1zppV8BZVao6trnpLhgA/hgLf7WCqTDSCdppHPZ6TDzh06DjvbaR6oLuUlP2sLczPV/D5y5RpqDW45ClZW8dgRUYvOxGK1jnqDU+qDsBel4f/Nm8R8ySh3Xi2bNZ1oDSAQRkx6OhKVCHOmTvMDzUSrypZnNYRzntF6YNH12N7yPpcpYYfOw041puKSOZOVZhcACAd9GG57SAlDJrPt4wLxEAjIh4FWUAp1Py1OARLqTcujpy7hfKqAY4enNo35klE8HoajhxN4cW4NT74mmTVNn0vD72V4w17j5vQiolRDVEIYMSnq1PghMOupHI8EUalJB5HtezRqoqQkEZfMmeZX9R+adqJ9JJdVQyaBiKitGDIJlDnqflqcAiTUmxJhvpSIhXtu+O823n3DbsSjQTxwQjJrmj6bwjW7Rk11Z3YzZzJTCaHl99FsqTaR+gA25r/1OPt1Q7TS1xvccgVRvO3dhFWj/+a6ckRtdR0AGBnyI1+po1pvKJzzKPVB2MQPZ1bw4twaPnl485kvGWXI78XHbjuAx19dxrPn03j+4qrhtIdgqos503ymiCG/x1BJmFYbeaZgzJBJEFfJAXPOm7MSzSIqPwBjftZqtL+bSJt8KLUjDmntEOrRkBQ9rxWrfXXOA3QINWNsL2PsB4yxlxhjpxhjn+rFxgjz3P/YDOLRIN7TZXLJVuJDt+xDJOjDf/vq86jUGobqp5UkupgzidI8I2+349EgMoXqOnN6Jal81dSBWEwlom4ddpoXWGHOBBjzs1bfY2Ddg8SqIZNAlD1aPUgE0OziXVUItZtTHzUAv805vxrAmwD8KmPsoLPbIsxyKrmKx19dxr23TW5a8yWjCLMmYf6vx4hJDeX8xHakidzmxlKtdKilThcqppo21Pw+rJTmCQI+D/ZNDFteB5AENV2oolKTSifThYolQyZBM6K2mOsG1reRt3LU/Ul9aP5UOOfzAOblP2cZYy8B2A3gtMN7I2Q45/j9f32xWcjfjWSmhHDAi1/a5OZLRrn3tkl84ckz2DUW0mXEpEbTnEnlQDGZKeItV8ZVvqozyjI1NeEzasgkGA354feydRGrEcOobiRiYSyulSwLavMhlS9j52gI6UIV48MByweA4iFl1tNayXqh7m9Ebei7MsYmAdwA4CmVzx0FcBQA9u3bZ8PWCMGPZlfwpafO49rdI5qHGfu3DePX3vq65j8yQmLnaAj/466rEbbQsCBqidsj6kqtgaUOYtsNrTbydL6CvePDhvfp8TBsCwdtj6gB4MO37sehyQnLghqTvU6WsxVJqPMVS+3jgolwAJ+4/QB+9lrrE4zWCbU8iCFswMfbTnR/V8ZYBMDXAPwm53yt/fOc8+MAjgPAoUOH9E8YJTR5QDb8f+S+N1M6wwK/cpt1U6qpeATTspe1QAyMNZv66CTUKQvi1V5RMr9aRNDnsSyGP3PldvzMldstrQEo28hLAEYtGzIJGGP4/bvtycwqx3FlS1VEgr6+Hc7rqvpgjPkhifSXOOdfd3ZLhJKX5tfw2CY3/B8kErGN5kxzJqPVbbIwqVV+mDFkUtJe/pbMlLDb4GGnk7Q/pDKFqi3pCjtpT330K+0B6Kv6YAAeAvAS5/wvnN8SoeSBx2YwvAUM/wcFNXOmZrOLwZK1Ib8XI0M+9WknJg2ZBLFIYN26c5miaf9oJ2jl56WD1FShYssBoJ0EfV4M+T1YK9X6Ot0F0BdR3wbgIwDeyhh7Tv7vLof3RWBrGf4PCs35icvK+YHyQZ2JkrVOTS9mDZmU6y7nKmjI5vzzq0VL/hx2M+T3Iio/pOwyZHKCkSE/VgtV2Tmvf7+Deqo+ngDgjvdLW4yHnpAM/z++RQz/B4EDMblEb1E5kbuI8WG/4cYUQG56UbEkNWvIpFy33uDIFKXc6mK2bLnt227EgN+sTYZMTiDayLOlWl8fJNSZ6FLS+Qoe/skFvOv6XVvG8H8QEOZM6yNq863ZHSNqk4ZMynUBKQcsDjutdhPaTSwiXXtGNmRyY0StFGq3pz6IPrBVDf8HgfYSPbNzCIFWVNlOumlSZDL1oWh6sas0z26EHaswZHJbjhpQCnX/prsAJNSuRBj+/8yVcVx12Ui/t0O0MRWP4MxSvmnONJcpmm7NjkWCyJVrG0Z8mTVkaq4bbTXTJJvOfi4Tatnvwy6fDycQQr3Wx3mJAAm1K/nqyYtI5Su478hUv7dCqKA0Z8qWpLfFViJqYGOJXjovGTKZLclUpj5aXYnuSn3Eo0FkyzXMyyPC3JijHgn5sZIvo1Jr9G26C0BC7TrqDY4HT8zi+r1b1/Df7SgHvQqRMXtQJ1IUi23pj3TBnCGTIBr0IejzSBF1poixYT+G+9RV1wlx7a1htO4T6tGQH6Wq5EfSzxy1u+4cgUdflAz/P33XVa5pTiDWM6Vw0avI8xjNHtR1jKhNGjIJGGNNc/5Mseqq0jyBMFB6dTFriyGTEyitGFxdnkf0DmH4fyAWxp0HrXsVEM6wYySIsGzO5PVIb0rN5n87tZGn8tYmcou1l3JlLGXL2DPuPqEWlqSvLORsMWRygvVCTakPAsCPZlbwwtwqjpLhv6uRzJkizYncXg/DdpOOfBMd2sgzBXsmcouqD7dVfADrH1JWR3A5xYhLImoSahdx/4lZxCJk+D8ItCZyF7EjGjQ9MNbv9WAiHHAkoo5FgjifKmCtVHNdxQcAbIu0rs+N+WmAImqijdPJNZx4ZYkM/weERCyCuUwRM0t5G0z019dSV2VDJis5akCKWAty2Z/bKj4A6SEl3PzcZsgkIKEm1vHAiRmEyXxpYJjaLrWSv3AxY1mo28dSZQrWDJkEygEJRobu9pLW1PBBEGpKfWxpLqQK+NZP5/GhW8h8aVBIxKTKjwY37prXTjyyvo08Y9tE7tbXu83nQxBrTg135797pVD3s46aqj5cgDBf+hiZLw0MB2JhMAbZQ8Ni6kM+9OOcgzFmuStRuS4AeBiww+Rhp9OIPbqx2QUAhvweBLweMCbNjOwXFFH3mXS+gn9++gLuuX63Kw98CHVCAW+zNtnyRO5IEKVqA3k5n5y2yftClL/tGBkyfdjpNPFmRO1OoWaMYSTk72vaAyCh7jvCfOnYETJfGjTEVHKrB3XttdRpm3LUoqHEjaV5gpjLI2oAGA35+t6MM5Cpjz999GU8/uqyrtfeOrUNn77raod3tJ5LqyX8xsPPbjDaUWNmKYe3XbUdV+yI9mBnhJ1MxSN4/NVly11/SqE+EAvblvoYDvgQDnix06RhVC8QEbXVChcnGQ35UW/0dwzswAn1zFIOn3tsBldfNoLLNP4BLmZLOH5iFv/lxj248rLeCeEDJ2bwzLk0Dl8R13ztZaND+K07r+jBrgi7ef+hvYgO+SyLTGsslRxRWzRkUvJb77gSB3e614HxyJVx/PKt+3Fwl3v3+PHbE6g1Gn3dw8AJ9YMnZhHwevAPH7+5+Q+8E+l8BW/+k+/j+IlZ/Pn739CT/SkN///i/df35HsS/eHgrhFbBEYt9WFXKsDt04FikSD+8J5r+72Nrvz8dTv7vYXBylEvrpXw9Wfm8L5DezRFGpBqM3/xpr34t+fmmgNIneaLZPhPGGR8OACvhymE2n2DXon+MlBC/fknz6LWaOATt+sXwY/ffgAcwOefOOPcxmTI8J8wg9fDMBFuNb2kXDrolegfAyPU2VIVX/rxObzz2p2YlAeM6mHvxDDuvm4n/ump81iVT9Od4qsnL2IlX8ExMvwnDKJsI0/bYMhEbC4GRqi//JPzyJZrpsrYjh5OIF+p44tPnXNgZxJKw/9byPCfMEhMMeQ2bYMhE7G5GAihrtQaeOiJM3jz1DZct2fM8Ndfs2sUh6+I4wtPnkWpql0yZwZh+H/fkYQrfXUJdxOPSINe7TJkIjYXAyHU//rcHBbWypZSCvcdTmA5V8a/PDtn484kyPCfsIow+bc6fZzYnLheqBsNjuMnZnH1zhEcvjxmep1bp7bh9btHcfzErO3F68Lw/5N3kOE/YY5YJIBqnePcSgGAe1uqif7geqH+/suLeG0xZzmlwBjDsSMJnFnO47unL9m4w5bh/3tvJMN/whyilloMeqWImlDieqF+4MQMdo+FcNfrrRedv/Pandg3MYzPPTYLzu2Jqsnwn7CDplBfEhO5KUdNtHC1UJ88l8LTZ9P4xB0H4LfB/cvrYfjk4QSev5DBT86kbNghcJwM/wkbEJ4XryzkAFBETazH1UJ9/2OzGBv24xdv2mvbmu974x5sCwdw/2Mzlte6kCrgm2T4T9iAiKhfXZQiaspRE0pcK9SvLebw3dML+OVbJzEcsM+SZMjvxUffPIkf/OcSXr60ZmktMvwn7GI05Iffy7Ccs8+Qidg8uFaoHzwxi6DPg4/ean9K4SNv2o+Q34vjJ2ZNr0GG/4SdMMaa/jWU9iDacaVQL6yV8C/PzuH9h/Zimw7zJaOMhwP4wM178Y3nkkhmzJk1keE/YTetQa+URiPW40qh/vyTZ1BrNPDJO5wTQWHW9JAJs6ZiRTJfIsN/wk7cPpaK6B+uE+q1UhX/9OPzuOv1O7Fv27Bj32fP+DB+4bqd+PJPjJs1PXLyAlJkvkTYTIyEmuiA64T6y0/J5kuHnRfBo4enUDBo1lSrN/Dg42dww74x3DQ57uDuiK2G2ydyE/1Dl1Azxn6OMfafjLHXGGO/59RmyrU6HnriDG573Ta8fs+oU9+mycFdIzhyRRxfePKMbrOmR09J5kvHDk+R+RJhK80cNUXURBuaQs0Y8wL4GwDvBHAQwAcZYwed2My/PZvEYrbck2hacOxIAsu5Cr72zEXN1wrzpUQsjHcc3NGD3RFbiWbqgw4TiTb0FCjfDOA1zvksADDGHgZwD4DTdm6k0eB44MQMDu4cwR0WzJeMcmtiG67bM4o//vbL+Lsnz3Z9bZ1zzC7l8SfvfT08ZL5E2IyIqMcooiba0CPUuwFcUPz9IoBb2l/EGDsK4CgA7Nu3z/BGCtU6bpqcwB2Xx3uaUmCM4TO/cA0+/+QZXf4ftya24T1kvkQ4wBv2juLo4QSOXK49vZ7YWjAtcWKMvQ/Az3LOPyH//SMAbuac/3qnrzl06BCfnp62daMEQRCbGcbYSc75IbXP6TlMvAhAabaxB0DSjo0RBEEQ2ugR6qcBXM4YO8AYCwD4AIBvOLstgiAIQqCZo+ac1xhjvwbg3wF4AXyec37K8Z0RBEEQAPQdJoJz/m0A33Z4LwRBEIQKrutMJAiCINZDQk0QBOFySKgJgiBcDgk1QRCEy9FseDG1KGNLAPRb0q0nBmDZxu30k81yLZvlOgC6FjeyWa4DsHYt+znnqm2pjgi1FRhj0526cwaNzXItm+U6ALoWN7JZrgNw7loo9UEQBOFySKgJgiBcjhuF+ni/N2Ajm+VaNst1AHQtbmSzXAfg0LW4LkdNEARBrMeNETVBEAShgISaIAjC5bhGqHs1QLcXMMbOMsZeYIw9xxgbqAkKjLHPM8YWGWMvKj42wRj7LmPsVfn/AzF+vcO1fJYxNiffm+cYY3f1c496YIztZYz9gDH2EmPsFGPsU/LHB+6+dLmWQbwvQ4yxnzDGnpev5Q/kj9t+X1yRo5YH6L4C4E5IgwqeBvBBzrmtcxl7BWPsLIBDnPOBK+JnjB0GkAPwD5zza+WP/SmAFOf8T+SH6Djn/Hf7uU89dLiWzwLIcc7/rJ97MwJjbCeAnZzzZxhjUQAnAbwbwK9gwO5Ll2t5PwbvvjAAYc55jjHmB/AEgE8BeC9svi9uiaibA3Q55xUAYoAu0WM45ycApNo+fA+Av5f//PeQfrFcT4drGTg45/Oc82fkP2cBvARplunA3Zcu1zJwcImc/Fe//B+HA/fFLUKtNkB3IG+eDAfwHcbYSXno76Czg3M+D0i/aAC293k/Vvk1xthP5dSI69MFShhjkwBuAPAUBvy+tF0LMID3hTHmZYw9B2ARwHc5547cF7cItdrY8f7nZMxzG+f8RgDvBPCr8ltwwh18DsAUgOsBzAP48/5uRz+MsQiArwH4Tc75Wr/3YwWVaxnI+8I5r3POr4c0S/Zmxti1Tnwftwj1phqgyzlPyv9fBPAvkFI7g8yCnFsUOcbFPu/HNJzzBfmXqwHgQQzIvZFzoF8D8CXO+dflDw/kfVG7lkG9LwLOeQbAfwD4OThwX9wi1JtmgC5jLCwfkoAxFgbwDgAvdv8q1/MNAB+V//xRAP/Wx71YQvwCybwHA3Bv5EOrhwC8xDn/C8WnBu6+dLqWAb0vccbYmPznEIC3A3gZDtwXV1R9AIBcjvNXaA3Q/aM+b8kUjLEEpCgakGZS/tMgXQtj7MsA3gLJrnEBwGcA/CuArwDYB+A8gPdxzl1/SNfhWt4C6e01B3AWwDGRT3QrjLHbATwO4AUADfnDn4aU2x2o+9LlWj6Iwbsv10E6LPRCCnq/wjn/Q8bYNth8X1wj1ARBEIQ6bkl9EARBEB0goSYIgnA5JNQEQRAuh4SaIAjC5ZBQEwRBuBwSaoIgCJdDQk0QBOFy/j+wbt7+b4ZZUgAAAABJRU5ErkJggg==\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"# a) sample path \n", | |
"result = random_walk()\n", | |
"plt.plot(result)\n", | |
"plt.show()" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 36, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"#b) \n", | |
"lst_historgram = []\n", | |
"for step in range(200):\n", | |
" walk = random_walk()\n", | |
" # to store last element \n", | |
" lst_historgram.append(walk[-1])\n", | |
" " | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 37, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"(array([ 6., 10., 21., 36., 41., 38., 30., 11., 6., 1.]),\n", | |
" array([-5. , -3.2, -1.4, 0.4, 2.2, 4. , 5.8, 7.6, 9.4, 11.2, 13. ]),\n", | |
" <a list of 10 Patch objects>)" | |
] | |
}, | |
"execution_count": 37, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAP8klEQVR4nO3df6zddX3H8edLxOiUDRgX7IR6N0fMmInF3HRsLAsTMawYgT9MJJlrMpJqMhJIXLaqyYbxn7qJLkscSxnEzjEXEmQQwM2u0xATxd2yUkqKq5jqgLu2ahTIEjfgvT/Ot/N6e07v6b3n1wefj+TkfL+f7+fc77ufc7+vfu/3fL/nm6pCktSeV0y7AEnS2hjgktQoA1ySGmWAS1KjDHBJatQrJ7myc845p+bn5ye5Sklq3t69e79bVXMr2yca4PPz8ywuLk5ylZLUvCTf7tfuIRRJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWrURK/ElFYzv/2Bqaz38I6rprJeaT3cA5ekRg0d4ElOS/LvSe7v5s9OsjvJoe75rPGVKUla6VT2wG8EDi6b3w7sqaoLgT3dvCRpQoYK8CTnA1cBf7Os+WpgVze9C7hmtKVJkk5m2D3wvwD+CHhpWdt5VbUE0D2f2++FSbYlWUyyeOzYsXUVK0n6sVUDPMm7gKNVtXctK6iqnVW1UFULc3MnfB+5JGmNhjmN8FLg3Um2AK8GfjbJ3wFHkmyoqqUkG4Cj4yxUkvSTVt0Dr6oPVdX5VTUPvBf416r6XeA+YGvXbStw79iqlCSdYD3nge8ArkhyCLiim5ckTcgpXYlZVV8GvtxNfw+4fPQlSZKG4ZWYktQoA1ySGmWAS1KjDHBJapRfJysxva+xBb/KVmvnHrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKKzF1gmlelShpeO6BS1Kjhrmp8auTfD3Jo0keT/LRrv3mJE8n2dc9toy/XEnSccMcQvkR8Paqej7J6cBXknyhW/apqvrE+MqTJA2yaoBXVQHPd7Ond48aZ1GSpNUNdQw8yWlJ9gFHgd1V9XC36IYk+5PckeSsAa/dlmQxyeKxY8dGVLYkaagAr6oXq2oTcD6wOclbgFuBNwGbgCXglgGv3VlVC1W1MDc3N6KyJUmndBZKVf2A3l3pr6yqI12wvwTcBmweQ32SpAGGOQtlLsmZ3fRrgHcATyTZsKzbtcCB8ZQoSepnmLNQNgC7kpxGL/Dvqqr7k3w2ySZ6H2geBt4/vjIlSSsNcxbKfuDiPu3vG0tFkqSheCWmJDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRw9xS7dVJvp7k0SSPJ/lo1352kt1JDnXPfe9KL0kaj2H2wH8EvL2q3krvDvRXJrkE2A7sqaoLgT3dvCRpQlYN8Op5vps9vXsUcDWwq2vfBVwzlgolSX0Nc1Njuhsa7wV+Gfh0VT2c5LyqWgKoqqUk5w547TZgG8DGjRtHU7X0MjK//YGprPfwjqumsl6NzlAfYlbVi1W1CTgf2JzkLcOuoKp2VtVCVS3Mzc2ttU5J0gqndBZKVf0A+DJwJXAkyQaA7vnoyKuTJA00zFkoc0nO7KZfA7wDeAK4D9jaddsK3DuuIiVJJxrmGPgGYFd3HPwVwF1VdX+SrwJ3Jbke+A7wnjHWKUlaYdUAr6r9wMV92r8HXD6OoiRJq/NKTElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSo4a5pdoFSb6U5GCSx5Pc2LXfnOTpJPu6x5bxlytJOm6YW6q9AHywqh5JcgawN8nubtmnquoT4ytPkjTIMLdUWwKWuunnkhwE3jDuwiRJJ3dKx8CTzNO7P+bDXdMNSfYnuSPJWSOuTZJ0EkMHeJLXAXcDN1XVs8CtwJuATfT20G8Z8LptSRaTLB47dmwEJUuSYMgAT3I6vfC+s6o+D1BVR6rqxap6CbgN2NzvtVW1s6oWqmphbm5uVHVL0k+9Yc5CCXA7cLCqPrmsfcOybtcCB0ZfniRpkGHOQrkUeB/wWJJ9XduHgeuSbAIKOAy8fywVSpL6GuYslK8A6bPowdGXI0kalldiSlKjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1KhhbuigKZnf/sC0S5A0w9wDl6RGDXNPzAuSfCnJwSSPJ7mxaz87ye4kh7rns8ZfriTpuGH2wF8APlhVvwJcAvxBkouA7cCeqroQ2NPNS5ImZNUAr6qlqnqkm34OOAi8Abga2NV12wVcM64iJUknOqVj4EnmgYuBh4HzqmoJeiEPnDvgNduSLCZZPHbs2PqqlST9v6EDPMnrgLuBm6rq2WFfV1U7q2qhqhbm5ubWUqMkqY+hAjzJ6fTC+86q+nzXfCTJhm75BuDoeEqUJPUzzFkoAW4HDlbVJ5ctug/Y2k1vBe4dfXmSpEGGuZDnUuB9wGNJ9nVtHwZ2AHcluR74DvCe8ZQoSepn1QCvqq8AGbD48tGWI0kalldiSlKjDHBJapQBLkmNMsAlqVEGuCQ1ygCXpEYZ4JLUKANckhplgEtSowxwSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaNcwt1e5IcjTJgWVtNyd5Osm+7rFlvGVKklYaZg/8M8CVfdo/VVWbuseDoy1LkrSaVQO8qh4Cvj+BWiRJp2A9x8BvSLK/O8Ry1qBOSbYlWUyyeOzYsXWsTpK03FoD/FbgTcAmYAm4ZVDHqtpZVQtVtTA3N7fG1UmSVlpTgFfVkap6sapeAm4DNo+2LEnSatYU4Ek2LJu9FjgwqK8kaTxeuVqHJJ8DLgPOSfIU8KfAZUk2AQUcBt4/xholSX2sGuBVdV2f5tvHUIsk6RR4JaYkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGmWAS1KjDHBJatSqXycr6eVpfvsDU1v34R1XTW3dLyfugUtSo1YN8O6u80eTHFjWdnaS3UkOdc8D70ovSRqPYfbAPwNcuaJtO7Cnqi4E9nTzkqQJWjXAq+oh4Psrmq8GdnXTu4BrRlyXJGkVa/0Q87yqWgKoqqUk5w7qmGQbsA1g48aNa1zddE3zwx5JGmTsH2JW1c6qWqiqhbm5uXGvTpJ+aqw1wI8k2QDQPR8dXUmSpGGsNcDvA7Z201uBe0dTjiRpWMOcRvg54KvAm5M8leR6YAdwRZJDwBXdvCRpglb9ELOqrhuw6PIR1yJJOgVeiSlJjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGrXWe2JOnPellF4+prU9H95x1VTWOy7ugUtSo9a1B57kMPAc8CLwQlUtjKIoSdLqRnEI5ber6rsj+DmSpFPgIRRJatR6A7yALybZm2TbKAqSJA1nvYdQLq2qZ5KcC+xO8kRVPbS8Qxfs2wA2bty4ztVJko5b1x54VT3TPR8F7gE29+mzs6oWqmphbm5uPauTJC2z5gBP8tokZxyfBt4JHBhVYZKkk1vPIZTzgHuSHP85f19V/zSSqiRJq1pzgFfVt4C3jrAWSdIp8DRCSWqUAS5JjTLAJalRBrgkNcoAl6RGGeCS1CgDXJIaZYBLUqMMcElqlAEuSY0ywCWpUQa4JDXKAJekRhngktQoA1ySGrXee2JKUjPmtz8wtXUf3nHVyH+me+CS1Kh1BXiSK5N8I8k3k2wfVVGSpNWt56bGpwGfBn4HuAi4LslFoypMknRy69kD3wx8s6q+VVX/A/wDcPVoypIkrWY9H2K+AfjPZfNPAb+2slOSbcC2bvb5JN9Y4/rOAb67xtdOUit1Qju1WufotVLry6bOfHxdP/+N/RrXE+Dp01YnNFTtBHauYz29lSWLVbWw3p8zbq3UCe3Uap2j10qt1nly6zmE8hRwwbL584Fn1leOJGlY6wnwfwMuTPKLSV4FvBe4bzRlSZJWs+ZDKFX1QpIbgH8GTgPuqKrHR1bZidZ9GGZCWqkT2qnVOkevlVqt8yRSdcJha0lSA7wSU5IaZYBLUqNmNsCT3Jzk6ST7useWAf2mejl/kj9P8kSS/UnuSXLmgH6HkzzW/VsWJ1jfSccnPX/ZLd+f5G2Tqm1FHRck+VKSg0keT3Jjnz6XJfnhst+JP5lSrSd9L2dhTJO8edk47UvybJKbVvSZ2ngmuSPJ0SQHlrWdnWR3kkPd81kDXjuxbX5AnbOzzVfVTD6Am4E/XKXPacCTwC8BrwIeBS6acJ3vBF7ZTX8c+PiAfoeBcyZc26rjA2wBvkDvvP5LgIen9H5vAN7WTZ8B/EefWi8D7p9GfafyXs7KmK74Pfgv4I2zMp7AbwFvAw4sa/szYHs3vb3ftjTpbX5AnTOzzc/sHviQpn45f1V9sape6Ga/Ru98+FkxzPhcDfxt9XwNODPJhkkXWlVLVfVIN/0ccJDe1b4tmokxXeZy4Mmq+vYUa/gJVfUQ8P0VzVcDu7rpXcA1fV460W2+X52ztM3PeoDf0P2ZcseAP6f6Xc4/zY3+9+ntefVTwBeT7O2+XmAShhmfWRtDkswDFwMP91n860keTfKFJL860cJ+bLX3ctbG9L3A5wYsm4XxPO68qlqC3n/owLl9+sza2E51m5/qDR2S/Avw+j6LPgLcCnyM3iB8DLiF3mD9xI/o89qRnxd5sjqr6t6uz0eAF4A7B/yYS6vqmSTnAruTPNH97z5Ow4zPRMZwWEleB9wN3FRVz65Y/Ai9wwDPd5+J/CNw4aRrZPX3cmbGtLvI7t3Ah/osnpXxPBWzNLZT3+anGuBV9Y5h+iW5Dbi/z6KJXM6/Wp1JtgLvAi6v7uBXn5/xTPd8NMk99P4UHHeADzM+M/OVCElOpxfed1bV51cuXx7oVfVgkr9Kck5VTfTLjoZ4L2dmTOl93fMjVXVk5YJZGc9ljiTZUFVL3SGno336zMTYzso2P7OHUFYcM7wWONCn29Qv509yJfDHwLur6r8H9HltkjOOT9P7EKTfv2fUhhmf+4Df686cuAT44fE/YycpSYDbgYNV9ckBfV7f9SPJZnq/v9+bXJVDv5czMaad6xhw+GQWxnOF+4Ct3fRW4N4+fdzmlxvnJ6TreQCfBR4D9tN7gzZ07b8APLis3xZ6Zyw8Se+QxqTr/Ca9Y3L7usdfr6yT3ifmj3aPxydZZ7/xAT4AfKCbDr0bczzZjffClN7v36T3p/D+ZWO5ZUWtN3Tj9yi9D49+Ywp19n0vZ3RMf4ZeIP/csraZGE96/6ksAf9Lb6/6euDngT3Aoe757K7v1Lb5AXXOzDbvpfSS1KiZPYQiSTo5A1ySGmWAS1KjDHBJapQBLkmNMsAlqVEGuCQ16v8A4EtTGkPNaXQAAAAASUVORK5CYII=\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.hist(lst_historgram)" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 43, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"name": "stdout", | |
"output_type": "stream", | |
"text": [ | |
"Sample mean is, 3.28\n", | |
"Sample variance is, 13.601599999999998\n" | |
] | |
} | |
], | |
"source": [ | |
"# c) sample mean \n", | |
"print(\"Sample mean is,\", np.mean(lst_historgram))\n", | |
"# d) sample variance \n", | |
"print(\"Sample variance is,\",np.var(lst_historgram))" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"### Exercise 9: Gambler’s ruin with time limits" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 72, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"def gambler_ruin(upper_bound):\n", | |
" fortune = 100 \n", | |
" counter = 0 \n", | |
" while fortune > 0 and fortune <2100 and counter < upper_bound:\n", | |
" counter += 1\n", | |
" w = random.random()\n", | |
" if w >= 0.5: \n", | |
" fortune += 1\n", | |
" else:\n", | |
" fortune -=1 \n", | |
" return fortune" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 77, | |
"metadata": {}, | |
"outputs": [], | |
"source": [ | |
"bounds = [100,1000,10000,100000]\n", | |
"variances = []\n", | |
"for i in bounds:\n", | |
" experiments = []\n", | |
" for j in range(20):\n", | |
" experiments.append(gambler_ruin(i))\n", | |
" variances.append(np.var(experiments))\n" | |
] | |
}, | |
{ | |
"cell_type": "code", | |
"execution_count": 79, | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"data": { | |
"text/plain": [ | |
"[<matplotlib.lines.Line2D at 0x7f9ff57d18d0>]" | |
] | |
}, | |
"execution_count": 79, | |
"metadata": {}, | |
"output_type": "execute_result" | |
}, | |
{ | |
"data": { | |
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD4CAYAAAAHHSreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de3hU1b3/8fdXMBAChHAPJDEgEQhIuEQEsdaDCngvR2yxteIVD6f1eCqoWLXV+qMVW0WtVouWo1irJKCCWLyAF7QqAoWEOwm3JAQIEAjhkpDL+v2RnTYShBCS7MnM5/U882TPmr0m30VCPrP23jPLnHOIiIhUdYbfBYiISOBROIiISDUKBxERqUbhICIi1SgcRESkmqZ+F1Bb7du3d/Hx8X6XISLSqCxfvnyPc67DyfZrtOEQHx/PsmXL/C5DRKRRMbNtNdlPh5VERKQahYOIiFSjcBARkWoUDiIiUo3CQUREqlE4iIhINQoHERGpRuEgItJIFJWU8bsF69i+/0i9f69G+yY4EZFQsiJrHxNT09i8+xAxUS346ZCz6vX7KRxERAJYcWkZzyzM4MXPNhEdGc7rt5/PsB7t6/37KhxERALUmtwCJqaksX5nIT9KjuWhq3rTqvmZDfK9FQ4iIgGmtKycFz7dxDOLMoiKCGPGzckM79WpQWtQOIiIBJDMvEImpqSRllPANUldePSaPkRFhDV4HTW6WsnMtprZKjNbaWbLvLa2ZvaRmWV4X6Oq7P+AmWWa2QYzG1mlfZD3PJlm9qyZmdfezMxmee1LzCy+bocpIhLYysodLy3ezBXPfkFW/mGe//FAnr1hgC/BAKd2Ket/OOf6O+eSvfuTgUXOuQRgkXcfM0sExgJ9gFHAn8ysidfnBWA8kODdRnnttwH7nHM9gGnA1NoPSUSkcdm29xBjp3/FlL+v4/vndODDX3yfK/tF+1rT6bzP4VrgVW/7VeAHVdrfdM4VO+e2AJnAYDOLBlo7575yzjlg5jF9Kp9rNnBJ5axCRCRYOed47ettjHr6c9bvLOSpHyYx/aeD6NCqmd+l1ficgwM+NDMH/Nk5Nx3o5JzbAeCc22FmHb19uwJfV+mb47WVeNvHtlf2yfaeq9TMCoB2wJ6qRZjZeCpmHsTFxdWwdBGRwJO7/wj3z0nn84w9fC+hPU+M6Ud0ZLjfZf1LTcNhmHMu1wuAj8xs/Qn2Pd4rfneC9hP1+XZDRShNB0hOTq72uIhIoHPOMXt5Dr95dy1lzjFldF9+PDiOQDtYUqNwcM7lel/zzOxtYDCwy8yivVlDNJDn7Z4DxFbpHgPkeu0xx2mv2ifHzJoCkUB+7YYkIhKY8gqL+OVbq1i4Lo/B3dryhzFJxLVr4XdZx3XScw5mFmFmrSq3gRHAamAeMM7bbRww19ueB4z1rkDqRsWJ52+8Q1CFZjbEO59w0zF9Kp9rDPCxd15CRCQozE/PZcS0xXyesYeHr0rkzTuGBGwwQM1mDp2At70pT1Pgb865981sKZBiZrcBWcD1AM65NWaWAqwFSoGfOefKvOeaALwChAMLvBvAX4DXzCyTihnD2DoYm4iI7/YdOsrDc1czP30HSbFtePL6JHp0bOl3WSdljfUFenJyslu2bJnfZYiIfKeFa3cx+a1VFBw5yv9eeg53XtSdpk38/TBsM1te5S0J30nvkBYRqWMHikr4zbtrmb08h97RrZl562ASu7T2u6xTonAQEalDX2Ts4b7ZaewqLOau4T24a3gCYU0b39I5CgcRkTpwqLiUxxes57Wvt3F2hwjmTLiA/rFt/C6r1hQOIiKnaenWfCalppGVf5jbL+zGpJE9aX5mk5N3DGAKBxGRWioqKePJDzfw8hdbiI1qwazxQxncra3fZdUJhYOISC2kZe9nYmoamXkHuXFIHA9c3puIZsHzJzV4RiIi0gCOlpbz3McZPP/pJjq2asbMWwdz0Tkd/C6rzikcRERqaP3OA9wzK421Ow5w3cAYfnV1IpHhDbNsZ0NTOIiInERpWTl/XryZpxduJDL8TKb/dBAj+nT2u6x6pXAQETmBTbsPMjEljZXZ+7myXzSPXduXtj6tztaQFA4iIsdRXu545cutTH1/PeFhTfjjDQO4OqmL32U1GIWDiMgxsvMPMyk1jSVb8rmkV0d+d925dGzV3O+yGpTCQUTE45zjjW+ymfLeWs4w4/dj+jFmUEzALcTTEBQOIiLAzoIi7puTzuKNu7mwR3umjulH1zaBs2xnQ1M4iEhIc87xzsrt/HruGkrKHI9d24efnH8WZ5wRerOFqhQOIhKy9hws5sG3V/HBml2cFx/F78ckEd8+wu+yAoLCQURC0oJVO3jwndUcLC7lwSt6c+uF3WgS4rOFqhQOIhJS9h8+yq/nrWHuylz6xUTy5PVJJHRq5XdZAUfhICIh45P1edw/J538Q0e557JzmHDx2Zzp87KdgUrhICJBr7CohP83fx2zlmXTq3MrZtx8Hn27RvpdVkBTOIhIUPsycw/3zk5nR8ER/vvis7n70gSaNW3cC/E0BIWDiASlw0dLmbpgPa9+tY3u7SOYPeECBsZF+V1Wo6FwEJGgs3xbPhNT0ti69zC3DIvnvpG9CA/TbOFUKBxEJGgUlZQxbeFGXlq8mS5twnnjjiEMPbud32U1SgoHEQkKq3IKmJi6ko27DnLD4DgevLI3LYNo2c6Gpn85EWnUSsrKee7jTJ7/JJN2LcN45ZbzuLhnR7/LavQUDiLSaG3YWcjE1JWs3n6A0QO68sjVfYhsEZzLdjY0hYOINDpl5Y6XPt/MUx9upFXzprx44yBG9Q3uZTsbmsJBRBqVLXsOMTFlJf/M2s+oPp2ZMrov7Vo287usoFPj942bWRMzW2Fm8737bc3sIzPL8L5GVdn3ATPLNLMNZjaySvsgM1vlPfaseStomFkzM5vltS8xs/i6G6KIBIPycscr/9jC5c8sJjPvIM+M7c8LNw5UMNSTU/lQkbuBdVXuTwYWOecSgEXefcwsERgL9AFGAX8ys8oLjF8AxgMJ3m2U134bsM851wOYBkyt1WhEJCjl7DvMT15ewiPvrmVI93Z8dM/3ubZ/15Bcoa2h1CgczCwGuBJ4uUrztcCr3varwA+qtL/pnCt2zm0BMoHBZhYNtHbOfeWcc8DMY/pUPtds4BLTT10k5DnnmLU0i1FPf056zn6mXncu/3fzeXRqHVrrOfuhpuccngbuA6p+rm0n59wOAOfcDjOrvHasK/B1lf1yvLYSb/vY9so+2d5zlZpZAdAO2FO1CDMbT8XMg7i4uBqWLiKN0a4DRUyek84nG3YztHs7nhjTj9i2LfwuK2ScNBzM7Cogzzm33MwursFzHu8VvztB+4n6fLvBuenAdIDk5ORqj4tI4+ecY15aLr+au4bi0jIeuTqRm4bGh/yynQ2tJjOHYcA1ZnYF0BxobWZ/BXaZWbQ3a4gG8rz9c4DYKv1jgFyvPeY47VX75JhZUyASyK/lmESkkdp7sJiH3lnNgtU7GRDXhievT6J7h5Z+lxWSTnrOwTn3gHMuxjkXT8WJ5o+dczcC84Bx3m7jgLne9jxgrHcFUjcqTjx/4x2CKjSzId75hJuO6VP5XGO876GZgUgI+WDNTkZMW8yidXlMvrwXs//rAgWDj07nfQ6PAylmdhuQBVwP4JxbY2YpwFqgFPiZc67M6zMBeAUIBxZ4N4C/AK+ZWSYVM4axp1GXiDQiBYdLePTdNby1Yjt9urTmb3f0p2dnLdvpN2usL9CTk5PdsmXL/C5DRE7DZxt3c//sdHYfLObn/9GDnw/voWU765mZLXfOJZ9sP71DWkQa3MHiUqa8t443vskioWNLXropmXNjtGxnIFE4iEiD+nrzXialprF9/xHu/H53fnHpOTQ/UwvxBBqFg4g0iKKSMp54fwMz/rGF+HYtSL1zKMnxbf0uS76DwkFE6t2KrH1MTE1j8+5DjBt6Fvdf3osWYfrzE8j00xGRelNcWsYzCzN48bNNREeG8/rt5zOsR3u/y5IaUDiISL1Yk1vAxJQ01u8s5EfJsTx0VW9aNddCPI2FwkFE6lRpWTkvfLqJZxZlEBURxoybkxneq5PfZckpUjiISJ3JzCtkYkoaaTkFXJPUhUev6UNURJjfZUktKBxE5LSVlTtmfLGF33+4gYiwJjz/44Fc2S/a77LkNCgcROS0bNt7iEmpaSzduo/LEjvx29Hn0qGVVmdr7BQOIlIrzjn+uiSL3763jqZNjKd+mMToAVqdLVgoHETklOXuP8L9c9L5PGMP30tozxNj+hEdGe53WVKHFA4iUmPOOWYvz+E3766lzDmmjO7LjwfHabYQhBQOIlIjeYVF/PKtVSxcl8fgbm35w5gk4tpp2c5gpXAQkZOan57LQ++s5sjRMh6+KpFbLtCyncFO4SAi32nfoaM8PHc189N3kBRbsWxnj45anS0UKBxE5LgWrt3F5LdWUXDkKPeO7MmdF3WnqRbiCRkKBxH5lgNFJfzm3bXMXp5D7+jWzLx1MIldWvtdljQwhYOI/MsXGXu4b3YauwqLuWt4D+4ankBYU80WQpHCQUQ4VFzK4wvW89rX2zi7QwRzJlxA/9g2fpclPlI4iIS4pVvzmZSaRlb+YW6/sBuTRvbUsp2icBAJVUUlZTz54QZe/mILsVEtmDV+KIO7adlOqaBwEAlBadn7mZiaRmbeQW4cEscDl/cmopn+HMi/6bdBJIQcLS3nuY8zeP7TTXRs1YyZtw7monM6+F2WBCCFg0iIWL/zAPfMSmPtjgNcNzCGX12dSGS4lu2U41M4iAS50rJy/rx4M08v3Ehk+JlM/+kgRvTp7HdZEuAUDiJBbNPug0xMSWNl9n6uPDeax37Ql7ZatlNqQOEgEoTKyx2vfLmVqe+vJzysCX+8YQBXJ3XxuyxpRBQOIkEmO/8wk1LTWLIln0t6deR3/3kuHVs397ssaWRO+r54M2tuZt+YWZqZrTGzR732tmb2kZlleF+jqvR5wMwyzWyDmY2s0j7IzFZ5jz1r3gohZtbMzGZ57UvMLL7uhyoS3Jxz/G1JFqOeXsza3AM8MaYfL49LVjBIrdTkQ1OKgeHOuSSgPzDKzIYAk4FFzrkEYJF3HzNLBMYCfYBRwJ/MrPLtli8A44EE7zbKa78N2Oec6wFMA6bWwdhEQsbOgiLG/d9Sfvn2KgbERfH+Ly7ih8mxWqFNau2k4eAqHPTunundHHAt8KrX/irwA2/7WuBN51yxc24LkAkMNrNooLVz7ivnnANmHtOn8rlmA5eYfqtFTso5x9srchgx7TOWbsnnsWv7MPPWwXRto/Wc5fTU6JyD98p/OdADeN45t8TMOjnndgA453aYWUdv967A11W653htJd72se2VfbK95yo1swKgHbDnmDrGUzHzIC4urqZjFAlKew4W8+Dbq/hgzS7Oi4/i92OSiG8f4XdZEiRqFA7OuTKgv5m1Ad42s74n2P14r/jdCdpP1OfYOqYD0wGSk5OrPS4SKhas2sGD76zmYHEpD17Rm1sv7EYTLdspdeiUrlZyzu03s0+pOFewy8yivVlDNJDn7ZYDxFbpFgPkeu0xx2mv2ifHzJoCkUD+KY5FJOjtP3yUX89bw9yVufSLieTJ65NI6NTK77IkCNXkaqUO3owBMwsHLgXWA/OAcd5u44C53vY8YKx3BVI3Kk48f+Mdgio0syHe+YSbjulT+VxjgI+98xIi4vlkfR4jpi3mvfQd3HPZOcyZcIGCQepNTWYO0cCr3nmHM4AU59x8M/sKSDGz24As4HoA59waM0sB1gKlwM+8w1IAE4BXgHBggXcD+AvwmpllUjFjGFsXgxMJBoVFJUx5bx1vLs2mV+dWzLj5PPp2jfS7LAly1lhfoCcnJ7tly5b5XYZIvfoycw/3zk5nR8ER/uv7Z3P3pQk0a6qFeKT2zGy5cy75ZPvpHdIiAejI0TKmvr+eV77cSvf2EcyecAED46JO3lGkjigcRALM8m35TEpNZ8ueQ9wyLJ77RvYiPEyzBWlYCgeRAFFUUsa0hRt5afFmurQJ5407hjD07HZ+lyUhSuEgEgBW5RQwMXUlG3cd5IbBcTx4ZW9aatlO8ZF++0R8VFJWznMfZ/L8J5m0axnGK7ecx8U9O568o0g9UziI+GTDzkImpq5k9fYDjB7QlUeu7kNkCy3bKYFB4SDSwMrKHS99vpmnPtxIq+ZNefHGQYzqq2U7JbAoHEQa0JY9h5iYspJ/Zu1nVJ/OTBndl3Ytm/ldlkg1CgeRBlBe7pj51VYef389YU3O4Jmx/bkmqYvWW5CApXAQqWc5+w5zb2o6X23ey8U9OzD1un500upsEuAUDiL1xDlHyrJsHpu/DuccU687V6uzSaOhcBCpB7sOFDF5TjqfbNjN0O7teGJMP2LbtvC7LJEaUziI1CHnHPPScvnV3DUUl5bxyNWJ3DQ0njO0EI80MgoHkTqy92AxD72zmgWrdzIgrg1PXp9E9w4t/S5LpFYUDiJ14IM1O/nlW6soLCpl8uW9uON73bVspzRqCgeR01BwuIRH313DWyu206dLa/52R396dtbqbNL4KRxEaumzjbu5f3Y6uw8Wc/clCfx8eA/ObHLSlXdFGgWFg8gpOlhcypT31vHGN1kkdGzJSzclc26Mlu2U4KJwEDkFX2/ey6TUNLbvP8Kd3+/OLy49h+ZnaiEeCT4KB5EaKCop44n3NzDjH1uIb9eC1DuHkhzf1u+yROqNwkHkJFZk7WNiahqbdx9i3NCzuP/yXrQI038dCW76DRf5DsWlZTyzMIMXP9tEdGQ4r99+PsN6tPe7LJEGoXAQOY41uQVMTElj/c5CfpQcy0NX9aZVcy3EI6FD4SBSRWlZOS98uolnFmUQFRHGjJuTGd6rk99liTQ4hYOIJzOvkIkpaaTlFHBNUhcevaYPURFhfpcl4guFg4S8snLHjC+28PsPNxAR1oTnfzyQK/tF+12WiK8UDhLStu09xKTUNJZu3cdliZ347ehz6dBKy3aKKBwkJDnn+OuSLH773jqaNjGe+mESowd01UI8Ih6Fg4Sc3P1HuH9OOp9n7OF7Ce15Ykw/oiPD/S5LJKCc9FPCzCzWzD4xs3VmtsbM7vba25rZR2aW4X2NqtLnATPLNLMNZjaySvsgM1vlPfaseS/TzKyZmc3y2peYWXzdD1VCnXOO1GXZjJy2mOXb9jFldF9m3jpYwSByHDX5CMlSYKJzrjcwBPiZmSUCk4FFzrkEYJF3H++xsUAfYBTwJzOr/PCZF4DxQIJ3G+W13wbsc871AKYBU+tgbCL/kldYxB0zl3Hv7HR6d2nN+3dfxE/OP0uHkUS+w0kPKznndgA7vO1CM1sHdAWuBS72dnsV+BS432t/0zlXDGwxs0xgsJltBVo7574CMLOZwA+ABV6fR7znmg08Z2bmnHOnP0QJdfPTc3nondUcOVrGw1clcssFWrZT5GRO6ZyDd7hnALAE6OQFB865HWbW0dutK/B1lW45XluJt31se2WfbO+5Ss2sAGgH7Dnm+4+nYuZBXFzcqZQuIWjfoaM8PHc189N3kBRbsWxnj45atlOkJmocDmbWEpgD/K9z7sAJpuPHe8CdoP1Efb7d4Nx0YDpAcnKyZhXynRau3cXkt1ZRcOQo947syZ0XdaepFuIRqbEahYOZnUlFMLzunHvLa95lZtHerCEayPPac4DYKt1jgFyvPeY47VX75JhZUyASyK/FeCTEHSgq4TfvrmX28hx6R7dm5q2DSezS2u+yRBqdmlytZMBfgHXOuaeqPDQPGOdtjwPmVmkf612B1I2KE8/feIegCs1siPecNx3Tp/K5xgAf63yDnKovMvYwatpi3l6xnbuG92Duz4YpGERqqSYzh2HAT4FVZrbSa/sl8DiQYma3AVnA9QDOuTVmlgKspeJKp58558q8fhOAV4BwKk5EL/Da/wK85p28zqfiaieRGjlUXMrjC9bz2tfbOLtDBHMmXED/2DZ+lyXSqFljfYGenJzsli1b5ncZ4rOlW/OZlJpGVv5hbhvWjUkje2rZTpETMLPlzrnkk+2nd0hLo1RUUsaTH27g5S+2EBvVglnjhzK4m5btFKkrCgdpdNKy9zMxNY3MvIPcOCSOBy7vTUQz/SqL1CX9j5JG42hpOc99nMHzn26iY6tmzLx1MBed08HvskSCksJBGoX1Ow9wz6w01u44wHUDY/jV1YlEhmvZTpH6onCQgFZaVs6fF2/m6YUbiQw/k+k/HcSIPp39Lksk6CkcJGBt2n2QiSlprMzez5XnRvPYD/rSVst2ijQIhYMEnPJyxytfbmXq++sJD2vCH28YwNVJXfwuSySkKBwkoGTnH2ZSahpLtuRzSa+O/O4/z6Vj6+Z+lyUSchQOEhCcc7zxTTZT3luLmfHEmH5cPyhG6y2I+EThIL7bWVDEfXPSWbxxN8N6tOOJMUl0baPV2UT8pHAQ3zjneGfldn49dw0lZY7Hru3DT84/SwvxiAQAhYP4Ys/BYh58exUfrNnFefFR/H5MEvHtI/wuS0Q8CgdpcAtW7eDBd1ZzsLiUB6/oza0XdqOJZgsiAUXhIA1m/+Gj/HreGuauzKVfTCRPXp9EQqdWfpclIsehcJAG8cn6PO6fk07+oaPcc9k5TLj4bM7Usp0iAUvhIPWqsKiEKe+t482l2fTq3IoZN59H366RfpclIiehcJB682XmHu6dnc6OgiP898Vnc/elCTRrqoV4RBoDhYPUuSNHy5j6/npe+XIr3dtHMHvCBQyMi/K7LBE5BQoHqVPLt+UzKTWdLXsOccuweO4b2YvwMM0WRBobhYPUieLSMqZ9lMH0xZvo0iacN+4YwtCz2/ldlojUksJBTtvq7QXck7KSjbsOcsPgOB68sjcttWynSKOm/8FSayVl5Tz/SSbPfZxJu5ZhvHLLeVzcs6PfZYlIHVA4SK1s2FnIxNSVrN5+gNEDuvLI1X2IbKFlO0WChcJBTklZueOlzzfz1IcbadW8KS/eOIhRfbVsp0iwUThIjW3Zc4iJKSv5Z9Z+RvXpzJTRfWnXspnfZYlIPVA4yEmVlztmfrWVx99fT1iTM3hmbH+uSeqihXhEgpjCQU4oZ99h7k1N56vNe7m4ZwemXtePTlq2UyToKRzkuJxzpCzL5rH563DOMfW6c/lhcqxmCyIhQuEg1ew6UMTkOel8smE3Q7u344kx/Yht28LvskSkAZ30M5PNbIaZ5ZnZ6iptbc3sIzPL8L5GVXnsATPLNLMNZjaySvsgM1vlPfaseS9BzayZmc3y2peYWXzdDlFqyjnH3JXbGTFtMV9t3ssjVyfy+u3nKxhEQlBNPlD/FWDUMW2TgUXOuQRgkXcfM0sExgJ9vD5/MrPKD9Z5ARgPJHi3yue8DdjnnOsBTAOm1nYwUnt7Dxbz36//k7vfXEn3DhH8/X++x83Dumk9Z5EQddJwcM4tBvKPab4WeNXbfhX4QZX2N51zxc65LUAmMNjMooHWzrmvnHMOmHlMn8rnmg1cYjqw3aA+WLOTEdMWs2hdHpMv78Xs/7qA7h1a+l2WiPiotuccOjnndgA453aYWeVnJnQFvq6yX47XVuJtH9te2Sfbe65SMysA2gF7jv2mZjaeitkHcXFxtSxdKhUcLuHRd9fw1ort9OnSmr/d0Z+enbVsp4jU/Qnp473idydoP1Gf6o3OTQemAyQnJx93H6mZzzbu5v7Z6ew+WMzdlyTw8+E9tGyniPxLbcNhl5lFe7OGaCDPa88BYqvsFwPkeu0xx2mv2ifHzJoCkVQ/jCV15GBxKVPeW8cb32SR0LElL92UzLkxWrZTRL6tti8V5wHjvO1xwNwq7WO9K5C6UXHi+RvvEFShmQ3xzifcdEyfyucaA3zsnZeQOvb15r2Menoxby7N4s7vd+fduy5UMIjIcZ105mBmbwAXA+3NLAf4NfA4kGJmtwFZwPUAzrk1ZpYCrAVKgZ8558q8p5pAxZVP4cAC7wbwF+A1M8ukYsYwtk5GJv9SVFLGE+9vYMY/thDfrgWpdw4lOb6t32WJSACzxvoiPTk52S1btszvMgLeiqx9TExNY/PuQ4wbehb3X96LFmF676NIqDKz5c655JPtp78SQaq4tIxnFmbw4mebiI4M5/Xbz2dYj/Z+lyUijYTCIQityS1gYkoa63cW8qPkWB66qjetmmshHhGpOYVDECktK+eFTzfxzKIMoiLCmHFzMsN7dfK7LBFphBQOQSIzr5CJKWmk5RRwTVIXHr2mD1ERYX6XJSKNlMKhkSsrd8z4Ygu//3ADEWFNeP7HA7myX7TfZYlII6dwaMS27T3EpNQ0lm7dx2WJnfjt6HPp0ErLdorI6VM4NELOOf66JIvfvreOpk2Mp36YxOgBXbUQj4jUGYVDI5O7/wj3z0nn84w9fC+hPU+M6Ud0ZLjfZYlIkFE4NBLOOWYvz+E3766lzDmmjO7LjwfHabYgIvVC4dAI5BUW8cu3VrFwXR6Du7XlD2OSiGun1dlEpP4oHALc/PRcHnpnNUeOlvHwVYncckG8VmcTkXqncAhQ+w4d5eG5q5mfvoOk2DY8eX0SPTpqdTYRaRgKhwC0cO0uJr+1ioIjR7l3ZE/uvKg7TbUQj4g0IIVDADlQVMJv3l3L7OU59I5uzcxbB5PYpbXfZYlICFI4BIgvMvZw3+w0dhUWc9fwHtw1PIGwppotiIg/FA4+O1RcyuML1vPa19s4u0MEcyZcQP/YNn6XJSIhTuHgo6Vb85mUmkZW/mFuv7Abk0b2pPmZTfwuS0RE4eCHopIynvxwAy9/sYXYqBbMGj+Uwd20bKeIBA6FQwNLy97PxNQ0MvMOcuOQOB64vDcRzfRjEJHAor9KDcA5R3b+EVKWZfPCZ5vo2KoZM28dzEXndPC7NBGR41I41IMDRSWkZxewMnsfK7L2szJ7P3sPHQXguoEx/OrqRCLDtWyniAQuhcNpKit3bNxVyMrs/azI2sfK7P1k5B3EuYrHz+4QwX/06kj/2DacF9+Wnp1b+VuwiEgNKBxOUV5hESuz9rPCC4NVOQUcOloGQFSLM+kf24ar+nWhf2wbkmLbaIYgIo2SwmJVAqAAAAZzSURBVOEEikrKWJNbwAovDFZm7Wf7/iMAND3D6NOlNWMGxTAgLor+sW04q10LfYS2iAQFhYPHOce2vYdZkb3vXzODdTsOUFJWcXyoa5twBsS14ZZh8QyIi6JPl9Z6T4KIBK2QDofs/MO8vWL7v84V7DtcAkCLsCYkxbThju91p39sG/rHtaFjq+Y+Vysi0nBCNhxKy8q5acY3bN17iISOLRmR2Jn+cW0YENeGhI6taKI1E0QkhIVsOLybnsuWPYd48caBjOob7Xc5IiIBJSQ/9rOs3PHHjzPp1bkVIxI7+12OiEjACZhwMLNRZrbBzDLNbHJ9fq/56bls3n2I/7kkQUtuiogcR0CEg5k1AZ4HLgcSgRvMLLE+vldZuePZRRn07NSKUX00axAROZ6ACAdgMJDpnNvsnDsKvAlcWx/f6O+rdrBp9yHuuqSHZg0iIt8hUMKhK5Bd5X6O1/YtZjbezJaZ2bLdu3fX6htFNGvCZYmduEInoUVEvlOgXK10vJfwrlqDc9OB6QDJycnVHq+J4b06MbxXp9p0FREJGYEyc8gBYqvcjwFyfapFRCTkBUo4LAUSzKybmYUBY4F5PtckIhKyAuKwknOu1Mx+DnwANAFmOOfW+FyWiEjICohwAHDO/R34u991iIhI4BxWEhGRAKJwEBGRahQOIiJSjcJBRESqMedq9V4y35nZbmBbLbu3B/bUYTmNgcYcGjTm0HA6Yz7LOdfhZDs12nA4HWa2zDmX7HcdDUljDg0ac2hoiDHrsJKIiFSjcBARkWpCNRym+12ADzTm0KAxh4Z6H3NInnMQEZETC9WZg4iInIDCQUREqgmpcDCzUWa2wcwyzWyy3/WcKjOLNbNPzGydma0xs7u99rZm9pGZZXhfo6r0ecAb7wYzG1mlfZCZrfIee9bMzGtvZmazvPYlZhbf0OM8lpk1MbMVZjbfux/U4wUwszZmNtvM1ns/76HBPG4z+4X3O73azN4ws+bBOF4zm2FmeWa2ukpbg4zTzMZ53yPDzMadtFjnXEjcqPgo8E1AdyAMSAMS/a7rFMcQDQz0tlsBG4FE4Algstc+GZjqbSd642wGdPPG38R77BtgKBWr8C0ALvfa/xt40dseC8wKgHHfA/wNmO/dD+rxerW8CtzubYcBbYJ13FQsCbwFCPfupwA3B+N4gYuAgcDqKm31Pk6gLbDZ+xrlbUedsFa//xM04A9lKPBBlfsPAA/4XddpjmkucBmwAYj22qKBDccbIxXrZQz19llfpf0G4M9V9/G2m1LxLkzzcYwxwCJgOP8Oh6Adr1dHayr+WNox7UE5bv69hnxbr5b5wIggHm883w6Heh9n1X28x/4M3HCiOkPpsFLlL2ClHK+tUfKmiwOAJUAn59wOAO9rR2+37xpzV2/72PZv9XHOlQIFQLv6GEMNPQ3cB5RXaQvm8ULF7HY38H/e4bSXzSyCIB23c2478AcgC9gBFDjnPiRIx3scDTHOU/77F0rhYMdpa5TX8ZpZS2AO8L/OuQMn2vU4be4E7Sfq0+DM7Cogzzm3vKZdjtPWaMZbRVMqDj284JwbAByi4nDDd2nU4/aOsV9LxaGTLkCEmd14oi7HaWs04z0FdTnOUx5/KIVDDhBb5X4MkOtTLbVmZmdSEQyvO+fe8pp3mVm093g0kOe1f9eYc7ztY9u/1cfMmgKRQH7dj6RGhgHXmNlW4E1guJn9leAdb6UcIMc5t8S7P5uKsAjWcV8KbHHO7XbOlQBvARcQvOM9VkOM85T//oVSOCwFEsysm5mFUXGyZp7PNZ0S74qEvwDrnHNPVXloHlB59cE4Ks5FVLaP9a5g6AYkAN94U9dCMxviPedNx/SpfK4xwMfOO0jZ0JxzDzjnYpxz8VT8vD52zt1IkI63knNuJ5BtZj29pkuAtQTvuLOAIWbWwqvzEmAdwTveYzXEOD8ARphZlDdTG+G1fTc/Tsj4dQOuoOIKn03Ag37XU4v6L6RiKpgOrPRuV1BxTHERkOF9bVulz4PeeDfgXdHgtScDq73HnuPf75ZvDqQCmVRcEdHd73F7dV3Mv09Ih8J4+wPLvJ/1O1RcYRK04wYeBdZ7tb5GxRU6QTde4A0qzquUUPFq/raGGidwq9eeCdxyslr18RkiIlJNKB1WEhGRGlI4iIhINQoHERGpRuEgIiLVKBxERKQahYOIiFSjcBARkWr+P2cGx1qHrCnhAAAAAElFTkSuQmCC\n", | |
"text/plain": [ | |
"<Figure size 432x288 with 1 Axes>" | |
] | |
}, | |
"metadata": { | |
"needs_background": "light" | |
}, | |
"output_type": "display_data" | |
} | |
], | |
"source": [ | |
"plt.plot(bounds,variances)" | |
] | |
}, | |
{ | |
"cell_type": "markdown", | |
"metadata": {}, | |
"source": [ | |
"As seen in this graph, the more we increase the upper bound, the more the variance increases as well as the bias because of the variabili of the results." | |
] | |
} | |
], | |
"metadata": { | |
"kernelspec": { | |
"display_name": "Python 3", | |
"language": "python", | |
"name": "python3" | |
}, | |
"language_info": { | |
"codemirror_mode": { | |
"name": "ipython", | |
"version": 3 | |
}, | |
"file_extension": ".py", | |
"mimetype": "text/x-python", | |
"name": "python", | |
"nbconvert_exporter": "python", | |
"pygments_lexer": "ipython3", | |
"version": "3.7.7" | |
} | |
}, | |
"nbformat": 4, | |
"nbformat_minor": 4 | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment