Last active
August 29, 2015 14:22
-
-
Save VikParuchuri/1c53fe151939ec0d76d3 to your computer and use it in GitHub Desktop.
Sample ipython notebook to test rescaling
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{"cells": [{"metadata": {}, "source": "# Rescaling sample", "cell_type": "markdown"}, {"execution_count": 45, "metadata": {"trusted": true, "collapsed": false}, "outputs": [{"name": "stdout", "output_type": "stream", "text": "2.49008925792\n1.45241337087\n2.51447280486\n1.45712533955\n"}], "source": "import random\nfrom itertools import chain\nimport numpy as np\n\n# Set seed to ensure determinism\nrandom.seed(1)\n\n# Initialize a certain number of judges\njudge_count = 100\n\n# Generate scores randomly for each judge\nscores = []\nscore_count = 100\nfor i in range(judge_count):\n score = [random.uniform(0, 5) for z in range(score_count)]\n score = np.asarray(score)\n scores.append(score)\n\n# Combine the scores, and calculate overall mean and standard deviation\nflat_scores = list(chain.from_iterable(scores))\noverall_mean = np.mean(flat_scores)\nprint(overall_mean)\noverall_std = np.std(flat_scores)\nprint(overall_std)\n\n# New scores list initialized\nnew_scores = []\n\n# Rescale scores using formula\nfor i in range(judge_count):\n sd_scaled = scores[i]/(numpy.std(scores[i]) / overall_std)\n mean_scaled = sd_scaled - (numpy.mean(scores[i]) - overall_mean)\n new_scores.append(mean_scaled)\n\n# Generate a new flat score list\nnew_flat_scores = list(chain.from_iterable(new_scores))\n\n# Print the new mean/standard deviation\nprint(np.mean(new_flat_scores))\nprint(np.std(new_flat_scores))", "cell_type": "code"}, {"execution_count": null, "metadata": {"trusted": true, "collapsed": true}, "outputs": [], "source": "", "cell_type": "code"}], "nbformat": 4, "nbformat_minor": 0, "metadata": {"kernelspec": {"display_name": "Python 3", "name": "python3", "language": "python"}, "language_info": {"mimetype": "text/x-python", "file_extension": ".py", "codemirror_mode": {"name": "ipython", "version": 3}, "name": "python", "pygments_lexer": "ipython3", "version": "3.4.2", "nbconvert_exporter": "python"}}} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment