Skip to content

Instantly share code, notes, and snippets.

@VinhDevNguyen
Created October 7, 2020 16:07
Show Gist options
  • Save VinhDevNguyen/ac165c64de10ee93d47b8b2d99e866ca to your computer and use it in GitHub Desktop.
Save VinhDevNguyen/ac165c64de10ee93d47b8b2d99e866ca to your computer and use it in GitHub Desktop.
Colab_25GBRAM_GPU.ipynb
Display the source blob
Display the rendered blob
Raw
{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "Colab_25GBRAM_GPU.ipynb",
"provenance": [],
"collapsed_sections": [],
"toc_visible": true,
"machine_shape": "hm",
"include_colab_link": true
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"accelerator": "GPU"
},
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "view-in-github",
"colab_type": "text"
},
"source": [
"<a href=\"https://colab.research.google.com/gist/VinhDevNguyen/ac165c64de10ee93d47b8b2d99e866ca/colab_25gbram_gpu.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "EdHVQrqyDB50"
},
"source": [
"# Memory Information"
]
},
{
"cell_type": "code",
"metadata": {
"id": "E58HaeA6CsM9",
"outputId": "a4a1713d-4e1e-4239-b6bf-9400ce116d84",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"import psutil\n",
"def get_size(bytes, suffix=\"B\"):\n",
" factor = 1024\n",
" for unit in [\"\", \"K\", \"M\", \"G\", \"T\", \"P\"]:\n",
" if bytes < factor:\n",
" return f\"{bytes:.2f}{unit}{suffix}\"\n",
" bytes /= factor\n",
"print(\"=\"*40, \"Memory Information\", \"=\"*40)\n",
"svmem = psutil.virtual_memory()\n",
"print(f\"Total: {get_size(svmem.total)}\") ; print(f\"Available: {get_size(svmem.available)}\")\n",
"print(f\"Used: {get_size(svmem.used)}\") ; print(f\"Percentage: {svmem.percent}%\")"
],
"execution_count": 1,
"outputs": [
{
"output_type": "stream",
"text": [
"======================================== Memory Information ========================================\n",
"Total: 25.51GB\n",
"Available: 24.60GB\n",
"Used: 589.02MB\n",
"Percentage: 3.6%\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "FgVfBlvZDEja"
},
"source": [
"# GPU Information"
]
},
{
"cell_type": "code",
"metadata": {
"id": "rxlkxvkrCyin",
"outputId": "5923c724-5489-4956-8ce0-0a9ddb3506ee",
"colab": {
"base_uri": "https://localhost:8080/"
}
},
"source": [
"from tensorflow.python.client import device_lib\n",
"device_lib.list_local_devices()"
],
"execution_count": 2,
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"[name: \"/device:CPU:0\"\n",
" device_type: \"CPU\"\n",
" memory_limit: 268435456\n",
" locality {\n",
" }\n",
" incarnation: 10611489201285832476, name: \"/device:XLA_CPU:0\"\n",
" device_type: \"XLA_CPU\"\n",
" memory_limit: 17179869184\n",
" locality {\n",
" }\n",
" incarnation: 13794914038225246883\n",
" physical_device_desc: \"device: XLA_CPU device\", name: \"/device:XLA_GPU:0\"\n",
" device_type: \"XLA_GPU\"\n",
" memory_limit: 17179869184\n",
" locality {\n",
" }\n",
" incarnation: 12183848674222790767\n",
" physical_device_desc: \"device: XLA_GPU device\", name: \"/device:GPU:0\"\n",
" device_type: \"GPU\"\n",
" memory_limit: 15695549568\n",
" locality {\n",
" bus_id: 1\n",
" links {\n",
" }\n",
" }\n",
" incarnation: 2862162821271877293\n",
" physical_device_desc: \"device: 0, name: Tesla P100-PCIE-16GB, pci bus id: 0000:00:04.0, compute capability: 6.0\"]"
]
},
"metadata": {
"tags": []
},
"execution_count": 2
}
]
}
]
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment