Skip to content

Instantly share code, notes, and snippets.

View WalkerHarrison's full-sized avatar

Walker Harrison WalkerHarrison

View GitHub Profile
library(tidyverse)
library(ggvis)
## this column needs to be unique for each row (primary key)!
mtcars$url <- paste0("https://en.wikipedia.org/wiki/", 1:nrow(mtcars))
mtcars %>%
ggvis(~mpg, ~hp) %>%
layer_points(size := 50, size.hover := 200,
fillOpacity := 0.4, fillOpacity.hover := 0.7,
# pitch/play data scraped with pitchRx
pitches18 %>%
filter(type == 'X',
pitch_type == "FF") %>%
mutate(TB = case_when(
event == "Single" ~ 1,
event == "Double" ~ 2,
event == "Triple" ~ 3,
event == "Home Run" ~ 4,
git clone https://github.com/jeetsukumaran/Syrupy
cd Syrupy
python setup.py install
syrupy.py -m 20
strapz <- list()
k <- 10
for (i in 1:k){
meps.bs <- meps %>% sample_n(nrow(.), replace = TRUE)
prop.score.fit <- multinom(race ~ . - healthExp, data = meps.bs, maxit = 200,
trace = FALSE, model = TRUE)
strapz[[i]] <- prop.score.fit
}
save(strapz, file = "strapz.Rdata")
library(expm)
###### polynomial ######
p <- 4
mt <- rep(1, p)
G <- diag(p); G[1:(p-1), 2:p] <- G[1:(p-1), 2:p] + diag(p-1);
F <- c(1, rep(0, p-1))
print(G); print(mt); print(F)
library(expm)
p <- 4
mt <- rep(1, p)
G <- diag(p); G[1:(p-1), 2:p] <- G[1:(p-1), 2:p] + diag(p-1);
F <- c(1, rep(0, p-1))
print(G); print(mt); print(F)
k <- 5
G %^% k
library(tidyverse)
phis <- c(0.6, -0.4, 0.2, 0.2, 0.1)
p <- length(phis)
X <- rnorm(p)
G <- rbind(phis,
cbind(diag(p-1),
rep(0, p-1)))
figure(4); clf
subplot(2,1,1)
h=sqrt(squeeze(sC(itrend,itrend,:)))'.*sq; ciplot(sm(itrend,:)-h,sm(itrend,:)+h,1:T,[.85 .85 .85]); hold on
plot(1:T,sm(itrend,:),'b-'); eval(xa); hold off
title('90% smoothed posterior intervals for trend trend '); ylabel('Parameter')
def build_hash_table(C, d, k, data):
vals = np.arange(C*d)
HT = defaultdict(set)
HTR = defaultdict(set)
I = np.random.choice(vals, k, replace = False) # figure out if replace = True or False
for j in range(n):
# for every point, generate hashed point and sample k bits
p = data[j]
hashed_point = lsh_hash(p, C)[I]
a = 3
b = 4
sigma = 2
1 - pnorm((a-b)/sigma)
pnorm((b-a)/sigma)