Muonium
- KNLMeansCL 参数介绍
- 从Sobel算子到ringmask2()
- iterLineDarken —— 一种新型迭代式线条加深方法
- 两种新式图像结构迁移方法
- MinBlurMod —— 一种新式去点状晕轮方法
| # Parameters | |
| input = YUV420P16 | |
| # matrix = "709" | |
| matrix = mvf.GetMatrix(input, matrix, True) | |
| process_y = True | |
| sigma_y = 2.0 | |
| basic_y_args = dict(profile="fast", group_size=8, bm_range=6) | |
| process_uv = False |
| import numpy as np | |
| import scipy as sp | |
| from scipy import misc | |
| import sympy as sym | |
| import math | |
| # Helper functions | |
| # https://en.wikipedia.org/wiki/Norm_(mathematics) | |
| def calculate_error(diff, norm=0): |
| { | |
| "nodes": [ | |
| { | |
| "op": "null", | |
| "name": "data", | |
| "inputs": [] | |
| }, | |
| { | |
| "op": "_plus_scalar", | |
| "name": "_plusscalar0", |
| fmtconv | equivalent | remarks |
|---|---|---|
impulse=[1, 1, 1], fv=-1, fh=-1 |
std.Convolution([1]*9) or rgvs.RemoveGrain(20) |
Radius=1 box filtering. fv and fh are required to force the processing. |
scale=1/2, kernel='box' |
scale=1/2, kernel='impulse', impulse=[1]*3, kovrspl=3 |
Box downscaling with a factor of 2 |
scale=1/4, kernel='box' |
scale=1/4, kernel='impulse', impulse=[1]*5, kovrspl=5 |
Box downscaling with a factor of 4 |
scale=1/2, kernel='bilinear' |
scale=1/2, impulse=[0.5, 1, 0.5], kovrspl=2 |
Bilinear downscaling with a factor of 2 |
scale=1/3, kernel='bilinear' |
scale=1/3, impulse=[0.5, 1, 0.5], kovrspl=2 |
Bilinear downscaling with a factor of 3 |
scale=1/4, kernel='bilinear' |
scale=1/4, impulse=[0.5, 1, 0.5], kovrspl=2 |
Bilinear downscaling with a factor of 4 |
from vapoursynth import core
import chainer
# chainer.global_config.cudnn_deterministic = False
from vs_wadiqam_chainer import wadiqam_fr, wadiqam_nr
model_folder_path = "deepIQA-master\models" # path to the folder that contains model's parameter files| import vapoursynth as vs | |
| from vapoursynth import core as _vscore | |
| class _Plugin: | |
| def __init__(self, namespace): | |
| self.__dict__.update((name, getattr(namespace, name)) for name in dir(namespace)) # func_name : func | |
| class _Core: | |
| def __init__(self): | |
| self.__dict__.update((name, get_plugin(name)) for name in dir(_vscore)) # (namespace : (func_name : func)) or (attr_name : attr) |