Muonium
- KNLMeansCL 参数介绍
- 从Sobel算子到ringmask2()
- iterLineDarken —— 一种新型迭代式线条加深方法
- 两种新式图像结构迁移方法
- MinBlurMod —— 一种新式去点状晕轮方法
# Parameters | |
input = YUV420P16 | |
# matrix = "709" | |
matrix = mvf.GetMatrix(input, matrix, True) | |
process_y = True | |
sigma_y = 2.0 | |
basic_y_args = dict(profile="fast", group_size=8, bm_range=6) | |
process_uv = False |
import numpy as np | |
import scipy as sp | |
from scipy import misc | |
import sympy as sym | |
import math | |
# Helper functions | |
# https://en.wikipedia.org/wiki/Norm_(mathematics) | |
def calculate_error(diff, norm=0): |
{ | |
"nodes": [ | |
{ | |
"op": "null", | |
"name": "data", | |
"inputs": [] | |
}, | |
{ | |
"op": "_plus_scalar", | |
"name": "_plusscalar0", |
fmtconv | equivalent | remarks |
---|---|---|
impulse=[1, 1, 1], fv=-1, fh=-1 |
std.Convolution([1]*9) or rgvs.RemoveGrain(20) |
Radius=1 box filtering. fv and fh are required to force the processing. |
scale=1/2, kernel='box' |
scale=1/2, kernel='impulse', impulse=[1]*3, kovrspl=3 |
Box downscaling with a factor of 2 |
scale=1/4, kernel='box' |
scale=1/4, kernel='impulse', impulse=[1]*5, kovrspl=5 |
Box downscaling with a factor of 4 |
scale=1/2, kernel='bilinear' |
scale=1/2, impulse=[0.5, 1, 0.5], kovrspl=2 |
Bilinear downscaling with a factor of 2 |
scale=1/3, kernel='bilinear' |
scale=1/3, impulse=[0.5, 1, 0.5], kovrspl=2 |
Bilinear downscaling with a factor of 3 |
scale=1/4, kernel='bilinear' |
scale=1/4, impulse=[0.5, 1, 0.5], kovrspl=2 |
Bilinear downscaling with a factor of 4 |
from vapoursynth import core
import chainer
# chainer.global_config.cudnn_deterministic = False
from vs_wadiqam_chainer import wadiqam_fr, wadiqam_nr
model_folder_path = "deepIQA-master\models" # path to the folder that contains model's parameter files
import vapoursynth as vs | |
from vapoursynth import core as _vscore | |
class _Plugin: | |
def __init__(self, namespace): | |
self.__dict__.update((name, getattr(namespace, name)) for name in dir(namespace)) # func_name : func | |
class _Core: | |
def __init__(self): | |
self.__dict__.update((name, get_plugin(name)) for name in dir(_vscore)) # (namespace : (func_name : func)) or (attr_name : attr) |