Note: I configured this thinkfan setup for my old Thinkpad w520 on Ubuntu 17.10.
Install lm-sensors and thinkfan.
sudo apt-get install lm-sensors thinkfan
| // ==UserScript== | |
| // @name Autopoker | |
| // @namespace jeroenvanhoof.nl | |
| // @version 0.1 | |
| // @description Pokie poke | |
| // @author Jeroen van Hoof | |
| // @match https://www.facebook.com/pokes/ | |
| // @grant none | |
| // ==/UserScript== |
| import pymysql.cursors | |
| connection = pymysql.connect(host='localhost', user='slayer', password='', db='rumor_slayer', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) | |
| with connection.cursor() as cursor: | |
| sql = "SELECT text FROM tweets" | |
| cursor.execute(sql) | |
| result = cursor.fetchall() | |
| for tweet in result: |
| function randomIndex(list) { | |
| return Math.floor(Math.random() * list.length) - 1 | |
| } | |
| function triggerUpdate(el) { | |
| el.click() | |
| el.dispatchEvent(new Event('change')); | |
| } | |
| function fillRandom() { |
| from words import words | |
| minionese_to_english = {v: k for k, v in words.items()} | |
| def translate(sentence, minionese=False): | |
| dictionary = words if not minionese else minionese_to_english | |
| result = "" | |
| for word in sentence.split(" "): | |
| if word in dictionary.keys(): |
| from words import words | |
| minionese_to_english = {v: k for k, v in words.items()} | |
| def translate(sentence, minionese=False): | |
| dictionary = words if not minionese else minionese_to_english | |
| result = "" | |
| for word in sentence.split(" "): | |
| if word in dictionary.keys(): |
| from tqdm import tqdm | |
| import string | |
| import json | |
| import collections | |
| import numpy as np | |
| import os | |
| DATA_PATH = "data" | |
| ################################################################################################ |
| # /home/jhoof/python/python36/bin/python3 bench.py | |
| import openml | |
| from arbok.bench import Benchmark | |
| # We create a benchmark setup where we specify the headers, the interpreter we | |
| # want to use, the directory to where we store the jobs (.sh-files), and we give | |
| # it the config-file we created earlier. |
| import openml | |
| from arbok.bench import Benchmark | |
| # We create a benchmark setup where we specify the headers, the interpreter we | |
| # want to use, the directory to where we store the jobs (.sh-files), and we give | |
| # it the config-file we created earlier. | |
| bench = Benchmark( | |
| headers="#PBS -lnodes=1:cpu3\n#PBS -lwalltime=15:00:00", |
| import openml | |
| from arbok.bench import Benchmark | |
| # We create a benchmark setup where we specify the headers, the interpreter we | |
| # want to use, the directory to where we store the jobs (.sh-files), and we give | |
| # it the config-file we created earlier. | |
| bench = Benchmark( | |
| headers="#PBS -lnodes=1:cpu3\n#PBS -lwalltime=15:00:00", |