Skip to content

Instantly share code, notes, and snippets.

@shafik
shafik / WhatIsStrictAliasingAndWhyDoWeCare.md
Last active April 19, 2025 10:45
What is Strict Aliasing and Why do we Care?

What is the Strict Aliasing Rule and Why do we care?

(OR Type Punning, Undefined Behavior and Alignment, Oh My!)

What is strict aliasing? First we will describe what is aliasing and then we can learn what being strict about it means.

In C and C++ aliasing has to do with what expression types we are allowed to access stored values through. In both C and C++ the standard specifies which expression types are allowed to alias which types. The compiler and optimizer are allowed to assume we follow the aliasing rules strictly, hence the term strict aliasing rule. If we attempt to access a value using a type not allowed it is classified as undefined behavior(UB). Once we have undefined behavior all bets are off, the results of our program are no longer reliable.

Unfortunately with strict aliasing violations, we will often obtain the results we expect, leaving the possibility the a future version of a compiler with a new optimization will break code we th

@understeer
understeer / latency.txt
Created January 12, 2017 14:04 — forked from eshelman/latency.txt
HPC-oriented Latency Numbers Every Programmer Should Know
Latency Comparison Numbers
--------------------------
L1 cache reference/hit 1.5 ns 4 cycles
Floating-point add/mult/FMA operation 1.5 ns 4 cycles
L2 cache reference/hit 5 ns 12 ~ 17 cycles
Branch mispredict 6 ns 15 ~ 20 cycles
L3 cache hit (unshared cache line) 16 ns 42 cycles
L3 cache hit (shared line in another core) 25 ns 65 cycles
Mutex lock/unlock 25 ns
L3 cache hit (modified in another core) 29 ns 75 cycles
@jboner
jboner / latency.txt
Last active April 19, 2025 21:29
Latency Numbers Every Programmer Should Know
Latency Comparison Numbers (~2012)
----------------------------------
L1 cache reference 0.5 ns
Branch mispredict 5 ns
L2 cache reference 7 ns 14x L1 cache
Mutex lock/unlock 25 ns
Main memory reference 100 ns 20x L2 cache, 200x L1 cache
Compress 1K bytes with Zippy 3,000 ns 3 us
Send 1K bytes over 1 Gbps network 10,000 ns 10 us
Read 4K randomly from SSD* 150,000 ns 150 us ~1GB/sec SSD